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Fig. 1: Illustration of conventional menu-based tool selection and HotGestures. Left) The user selects the sphere primitive tool from the
menu, moves their hand to where they want to place the sphere, and then performs a pinch gesture to confirm its placement. Middle)
The user moves their hand to where they want to place a sphere primitive, and then performs the sphere HotGesture to place it in a
single gesture articulation. Right) The user can modulate the state of the HotGesture to control tool triggering, such as to designate the
start and end of a planar cut.

Abstract—Conventional desktop applications provide users with hotkeys as shortcuts for triggering different functionality. In this paper
we consider what constitutes an effective parallel to hotkeys in a 3D interaction space where the input modality is no longer limited
to the use of a keyboard. We propose HotGestures: a gesture-based interaction system for rapid tool selection and usage. Hand
gestures are frequently used during human communication to convey information and provide natural associations with meaning.
HotGestures provide shortcuts for users to seamlessly activate and use virtual tools by performing hand gestures. This approach
naturally complements conventional menu interactions. We evaluate the potential of HotGestures in a set of two user studies and
observe that our gesture-based technique provides fast and effective shortcuts for tool selection and usage. Participants found
HotGestures to be distinctive, fast, and easy to use while also complementing conventional menu-based interaction.

Index Terms—Gesture interaction, neural networks, gesture recognition, virtual reality

1 INTRODUCTION

Our hands are powerful tools that allow us to complete a wide array
of manual tasks and augment our communication with others. Hand
interaction therefore offers an intuitive and natural way for engaging
with interactive devices. Modern Virtual Reality (VR) headsets provide
integrated hand tracking and embed users in a virtual world supporting
fully embodied interaction. In VR, users can interact with objects and
space in ways that are unrestricted by the limits of the physical world.
To enable this vision of VR and apply it within daily routine tasks [7],
prior work has sought to enhance and streamline the interaction experi-
ence [4, 8, 47]. Hand gestures offer an expressive and efficient form of
interaction and have therefore received increasing research attention.

Enabling gesture interaction in VR requires robust and real time
processing of hand motion to predict the user’s intent. Thanks to recent
advances in vision-based hand tracking technology, free-hand inter-
action in VR has emerged as a viable interaction method. Modern
commercial VR headsets, such as the Oculus Quest, natively support
vision-based hand tracking. Currently, these headsets provide recogni-
tion of basic gestures, such as pinching to select, but do not support a
more extensive range of gestures for user interaction. Fast and accurate
recognition of complex, multi-frame, dynamic gestures is now possible
thanks to modern machine learning techniques but its integration into
standard VR applications remains limited. In recognition of this gap,
we examine the following research questions (RQs):
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RQ1 Can a more extensive range of gestures be recognised continu-
ously to enhance user interaction?

RQ2 Can hand gestures effectively complement conventional mid-air
menu-based interaction in VR?

The metaphoric nature of hand gestures helps human beings to com-
municate and convey messages. Karam and Schraefel [24] presented
a gesture taxonomy based on how gestures are used to interact with
systems, and Aigner et al. [1] conducted a gesture elicitation study
expanding on this concept. Our central hypothesis is that gestures with
metaphorical meanings can be associated with system functions to pro-
vide shortcuts during free-hand interaction. The meaning attached to
hand gestures can serve as a memory-aid that facilitates recollection of
shortcuts [16,23,31,34]. Furthermore, such gesture shortcuts can unify
the sub-tasks of selection and use. That is, a hand gesture shortcut not
only activates a function but also controls its use.

As an example, consider a user seeking to add a sphere to the scene
as part of a 3D modeling task. A conventional approach might be to
select a sphere primitive from a menu and then place (or use) it in the
scene by pressing the controller’s trigger button or by performing a
pinch gesture. We propose an alternative and complementary approach
where the user can perform a gesture with fingers clenched to form a
ball which both triggers the function to insert a sphere primitive but also
places it at the location of the hand. These two alternatives approaches
are illustrated in Fig. 1.

We refer to our conceptualization of hand gestures as shortcuts as
HotGestures. HotGestures enable the user to seamlessly switch between
different tools by performing different gestures during a task, without
having to pause their work to browse a menu or to press a button on the
controller. The benefits of combining command selection and control
have been previously shown in touchpad [17] and mouse input [43].
We hypothesize that this unification of selection and usage with hand
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gestures will enhance the interaction experience, and help the user stay
focused on the current task without breaking the flow of thought. As
a vehicle for demonstrating the concept of HotGestures, we evaluated
the use of this technique within the context of a 3D modeling task.
There are several commercial 3D modeling applications designed for
use in VR, including Adobe Medium1, Gravity Sketch2 and ShapeXR3.
However, they all rely on controller and menu interactions.

To enable HotGestures, we built a neural network gesture recog-
nition system that is able to recognize online gestures by performing
predictions on an incoming hand joint data stream. To support online
recognition without explicit or implicit delimitation means that the
system must robustly ignore typical hand gestures and motions that
may be similar to but are not HotGestures. We also employ a multi-task
structure to not only classify gestures, but also to classify intermediate
states of dynamic gestures. This structure is particularly useful when
the sub-states of a gesture may carry particular meaning. For example,
this allows the system to not only recognize a ‘scissors’ (cut) gesture
but also to classify whether the ‘scissors’ are open or closed. We refer
to such gestures as Multi-State Gestures and illustrate this concept in
Fig. 1. To our knowledge, we are the first to formalize dynamic ‘state-
ful’ gestures in this way and are also the first to offer a neural network
structure that supports robust recognition of such gestures.

In summary, this paper makes the following three main contributions:
1. We present HotGestures: a novel framing and implementation of

gesture-based shortcuts for command selection and use in VR.

2. We present a multi-task neural network-based recognition system
with adaptations that underpins HotGestures. This system delivers
real-time online recognition of multi-state gestures—that is, it not
only distinguishes between different gestures but also classifies
distinct states within gestures.

3. We present an evaluation of the performance and usability of
HotGestures and demonstrate its ability to complement standard
graphical menus in free-hand interactions in VR.

2 RELATED WORK

2.1 Gesture Interaction in Mixed Reality
Human hands play a significant role to complete physical tasks and
communicate with other users in the real world, and Mixed Reality
(MR) devices offer an extension of this experience by replacing or
enhancing the real world with additional 3D information and interac-
tion, supporting activities such as bare-handed 3D drawing [15]. As
hand-tracking technology becomes more accessible and robust, VR
research has started to focus on hand gestures as a more natural and
intuitive way of interaction [29], opening up possibilities for new ways
of efficient interaction, such as the selection of special characters by
gesture switching [55]. Masurovsky et al. [33] compared free-hand
interaction with controller interaction in a simple grab-and-place task.
Surale et al. [57] and Park et al. [40] investigated static hand gestures
as a method for mode switching in VR. Hand gesture are also explored
in combination with other interaction techniques. Marquardt et al. [32]
and De Araùjo et al. [12] proposed continuous interactive spaces that
extend touchscreen interaction into gesture and touch on and above the
surface. Surale et al. [56] explored the design space of VR interaction
with a multi-touch tablet, supporting both screen touch and mid-air
gestures. Ruiz et al. [44] conducted a guessability study to elicit user
defined gestures for mobile interaction, and one interesting implication
was that although some gestures have high agreement scores, they are
indistinguishable from meaningless motions requiring some form of
explicit delimitation to use them in practice.

Human beings often use gestures to convey information as an en-
hancement to spoken language, which means gestures often carry spe-
cific meanings. Prior work has looked at the metaphorical aspects of
gestures, and how they can be used to issue commands during interac-
tion. Arora et al. [3] conducted a gesture elicitation study to identify

1https://www.adobe.com/uk/products/medium.html
2https://www.gravitysketch.com/
3https://www.shapesxr.com/

user-defined gestures for animation generation in VR and implemented
them into an animation design system. They then evaluated the concept
using handheld controllers due to limitations in recognition technology.
Seol and Kim [48] performed a gesture elicitation study to design hand
gestures to mimic the usage of physical tools in VR. Song et al. [53]
used a handlebar metaphor for object manipulation, and Hayatpur et
al. [20] used gestures to aid precise object manipulation in 3D using a
controller. Yan et al. introduced VirtualGrasp [67], a technique that al-
lows users to retrieve virtual objects by ‘grasping’ them in VR. Pei et al.
later proposed a similar concept, called HandInterface [42], that uses
gestures to either imitate the tool shapes or the hand motion of using the
tool to achieve object retrieval. They then used template matching to
recognize a set of static gestures, and evaluated this technique through
two qualitative user studies. VirtualGrasp and HandInterface share
some conceptual similarities with HotGestures but the focus of this
prior work was primarily on the design exploration of suitable gestures
and the ability of users to recall them. The evaluations presented in
VirtualGrasp and HandInterface relied on relatively simplistic imple-
mentations of gesture recognition sufficient for this purpose. However,
as a consequence, these prior implementations are ultimately unsuit-
able for integration in productive free-hand applications. In this work,
we aim to examine the potential usability of gesture shortcuts in a
more complete and practical setup. The recognition system is online
and delimiter-free, allowing us to fully explore the fluidity of hand
gesture-based shortcuts. To the best of our knowledge, we are the first
to evaluate the usability of this gesture-based interaction technique in a
real use case with modern VR hand-tracking capabilities and using a
novel robust recognition system.

2.2 Gesture Interaction in Other Platforms

Prior work has investigated gesture interaction applications outside the
MR domain [6, 25, 41, 62]. They are mostly based on accelerometer
and gyroscope input, or body skeleton tracking, which have many
lower degrees of freedom than hand skeletons. Hespanhol et al. [21]
conducted a gesture elicitation study and compared different mid-air
gestures in a card flipping exercise, yet the work did not include actual
gesture recognition. Alanwar et al. [2] used the pointing nature of
gestures to combine device selection and control, but did so with inputs
using a smartwatch. Xu et al. [64] built a gesture recognition system
on smart watches that also allowed users to customize gestures with a
touchscreen based application. Schmitz et al. [46] investigated using
pinch as a continuous input modality based on finger span.

2.3 Gesture Recognition

Research interest in hand gesture recognition has increased over the
past few years [38] and there are recent systematic reviews on the topic
[38, 68]. Previous work has explored an extensive range of techniques,
including hidden Markov models [27, 35], decision trees [37], support
vector machines [11, 45], and deep neural networks (DNN). Among
these methods, DNNs have recently attracted more attention because
of their superior performance over traditional approaches and have
become the dominant approach for action and hand gesture recognition.
Prior work has explored various model architectures as well as different
input features. For example, Molchanov et al. [36] and Köpüklü et
al. [26] used a convolutional neural network (CNN) as the classifier
and images of gestures as input, whereas Devineau et al. [13] used
a CNN but with hand skeleton data, that is, the 3D coordinates of
hand joints. Liu et al. [30] separated hand skeletons into two data
streams to distinguish between posture change and hand movement and
then passed the data to a CNN to classify a set of dynamic gestures.
Both Du et al. [14] and Wang [63] used a recurrent neural network
(RNN) and hand skeleton data for prediction. Other derivatives of
conventional networks, such as Graph CNN [28, 66] and Long-Short
Term Memory (LSTM) [54, 58], have also been used for gesture and
human action prediction. In addition, inspired by the recent success
of the transformer architecture [61] for sequence-to-sequence tasks,
self-attention-based models have attracted significant recent attention
in the field of gesture recognition. Both Chen et al. [10] and Shi et
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al. [52] applied self-attention models to benchmark dynamic gesture
sets and achieved state-of-the-art results.

However, while the research on gesture recognition is extensive,
few prior works acknowledge the intrinsic difference between offline
and online real-time recognition and address the challenges of the
latter. Molchanov et al. [36] investigated early detection of gestures in
unsegmented video streams. Shen et al. [51] developed a toolkit for
fast prototyping of recognition models for online hand gestures based
on variations of CNN and LSTM architectures. Prior work has looked
at multi-task prediction using neural networks for additional outputs
[59,60] and a way to facilitate transfer learning [39,64,65,69]. Another
area of interest has been generative adversarial networks (GANs) for
gesture data augmentation (e.g. [49, 50]).

3 HOTGESTURES: DELIMITER-FREE GESTURE SHORTCUTS

HotGestures provides a rapid and fluid method for triggering and ap-
plying application functions by performing hand gestures. We draw
an intentional parallel with hotkeys which deliver quick shortcuts for
frequently used functions in desktop applications. Indeed, we consider
our proposed technique as an equivalent to hotkeys for embodied 3D
free-hand interaction.

The design of HotGestures was motivated by two key hypothesized
benefits of using hand gestures as a shortcut for command selection
and use. First, hand gestures inherently serve as an aide-mémoire for
associated function thanks to their ability to carry and convey meaning,
whether this be a metaphorical or symbolic association. Many keyboard
shortcuts exploit a related method to aid recall by utilizing the first
character in the associated function as a hotkey. Second, hand gestures
can be used to unify the usually distinct sub-tasks of function selection
and use. By this we mean that gestures can be performed at a particular
location in space to indicate the place at which the corresponding
function should be applied. We hypothesize that these two key benefits
will allow users to both quickly recall gestures and also more quickly
execute application functions.

3.1 Evaluation Context

The concept of HotGestures described above has broad potential ap-
plications in VR. We offer a concrete demonstration of this technique
by applying HotGestures in a 3D modeling use case. Our choice of
3D modeling as the context for our evaluations was based on two key
factors. First, we see 3D modeling as a challenging interactive task that
allows us to assess our proposed gesture shortcuts from a variety of
angles, such as speed, accuracy, enjoyment, and immersion, etc. Sec-
ond, we believe 3D modeling is a use case where delimiter-free gesture
shortcuts can potentially improve the user experience by allowing users
to freely and fluidly switch between tools.

We implemented a simplified 3D modeling application which pro-
vided 10 basic tools. The choice of these tools was, in part, inspired by
the functions available in Adobe Medium, a VR-based 3D modeling
application with handheld controllers. The application allows the se-
lection of tools by either a traditional menu or by using HotGestures.
The 10 tools and their corresponding gestures are illustrated in Fig. 2.
Among these gestures, five are static gestures: Cube, Cylinder, Sphere,
Palette and Duplicate, and the rest are dynamic gestures. Spray and
Cut are Multi-State Gestures with four sub-states. We define static
gestures as gestures that are performed with a static hand, and can be
represented in a single frame. Dynamic gestures are gestures that are
performed by hand motion, and are completed across multiple frames.
Multi-State Gestures are dynamic gestures with state labels that indicate
minor variations of the underlying gesture. To realize and demonstrate
the HotGestures technique, a robust hand-gesture recognition model
is required. We explain our design decisions regarding the recognition
model in the following section.

4 RECOGNITION MODEL

In this section, we describe the design of the gesture recognition system
that underpins HotGestures. There are three main components of
this recognition system: the gesture dataset with associated collection

Pen: Free drawing with 
adjustable width 

Cube:  Create a cube Cylinder: Create a cylinder

Sphere: Create a 
sphere

Spray: Fill object 
with selected color

Cut: Cut object with a cutting 
plane.

Palette: Select colors

Duplicate: Duplicate the 
selected object

Delete: Delete the 
selected object

Scale: Scale the size of 
the object

width

Flick

Fig. 2: The tool and gesture set for the 3D modeling application. The
arrows indicate the movement direction of a dynamic gesture. (e.g., the
arrow on the Delete gesture indicates an outward flick of the left index
finger.)

procedure, the model architecture, and the training and recognition
pipeline. Each of these components is described in detail below.

4.1 Gesture Dataset
To train a recognition model for this work, we collected a customized
gesture set of 10 gestures as well as hand movements representative
of a Null class (see Section 4.1.1). We used the integrated hand track-
ing functionality of the Oculus Quest 2 VR HMD to obtain the hand
skeleton data. We recruited 8 participants and introduced them to the
3D modeling application that provides the application context for the
gesture set. Participants were then shown a video demonstrating how
to perform each gesture. We logged participants’ hand skeleton data
as they performed the 10 gestures. Each gesture class was repeated 20
times. For the static gestures, each gesture clip has a fixed length of
2 seconds. For the dynamic gestures, the video was manually clipped
to record from the start to the end of the gesture, and each clip lasts
approximately 2–5 seconds. We ran the data collection at the native
frame rate of the Quest 2, which is approximately 72 Hz. We intro-
duced Multi-State Gestures for Cut and Spray. These gestures are
associated not only with a single gesture class label, but also a series
of sub-states (0–3) with a frame-to-frame correspondence (a gesture
clip of length T has sub-state labels of length T). The participants were
asked to perform the gesture steadily following a progression bar from
start to finish. This allowed the sub-states to be automatically labeled
according to the progression. These state labels essentially divide a
dynamic gesture into discrete segments, allowing more specialized
applications for gesture recognition than a single classification output.
For Cut and Spray gestures, the state labels that are smaller essentially
represent cutting down and pressing down, and state labels that are
larger represent not cutting and not pressing. All other gestures in the
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Fig. 3: The recognition network and the framework overview. Left) SA is the masked Spatial Attention block. TA is the masked Temporal Attention
block. FC is a linear transformation layer with ReLU activation function and layer-normalization. The number on each block indicates the output
dimension. The left-hand model has a similar structure, except that it does not have the sub-state branch, and the output dimension C is 4. Right)
Both model outputs are jointly considered and passed to the finite state machine (FSM) to obtain the final prediction.

set are labeled with the sub-state ‘4’. We designed our Multi-State
Gestures to have four sub-states and trained the model using all state
labels. However, during the actual experiment we collapsed the four
sub-states into two, and treated Cut and Spray as binary-state gestures,
that is, open/closed and on/off. This is a design choice we make to
better suit the tools. One can make use of all the states by, for example,
using different Spray states for different color intensity. We built the
finer granularity state recognition capability into our system to offer
greater extensibility than binary state recognition alone and plan to
validate this functionality in future work.

4.1.1 Null Gestures

A common strategy to reduce false activation is to include a Null
gesture class which captures common hand movements (e.g., hands at
rest/grabbing at objects) the user may perform in between intentionally
performing gestures. We designed four mini-tasks for the participant
to complete during which their hand motion was recorded to collect
random gestural behaviors for the Null gesture class. In the first two
tasks the participants were asked to rest their hands on the laps, and
then move their hands up and down. In the third task the participants
were asked to touch objects that appeared at random locations, and in
the fourth task the participants grabbed objects and moved them from
one location to another. In each task, approximately 10 seconds of hand
movement was recorded and labeled as Null for training. Given that
the recognition is delimiter-free, the ability to ignore Null gestures is
essential to prevent false activation when the user is not intending to
perform a meaningful gesture.

4.2 Model Architecture

To recognize both uni-manual and bi-manual gestures, we ran two
recognition models in parallel for each hand. The right-hand recogni-
tion model is a multi-task self-attention based neural network, which
takes fixed-length, hand skeleton graphs of dimension (T,J,D) as input,
and predicts the gesture class probability C and the sub-state probabil-
ity of the predicted gesture S. A diagram of the model architecture is
shown in Fig. 3.

The input dimension T is the number of frames of each skeleton
graph, also known as the window size of the gesture. The dimension
J is the number of hand joints, and D is the feature dimension of each
joint. The network consists of two types of multi-head self-attention
blocks: the Spatial Attention block and the Temporal Attention block,
similar to Chen et al. [10] and Shi et al. [52].

We extended the model from Chen et al. [10] using a two-head
architecture to adapt our concept of Multi-State Gestures. One head

outputs the class probability distribution and the other outputs the
sub-state probability of the current gesture. The classification output
C was expanded T times and concatenated to the output from the
second temporal block, and then passed to a final linear layer. The
concatenation of class label helps the model to correctly predict sub-
states only when a multi-state gesture is classified. The state prediction
S is a sequence of 5-dimensional vectors with the same length as the
input gesture graph, therefore providing a frame-to-frame sub-state
estimation of the input gesture. It was found that this separation of
Temporal blocks can help learn separate attention weights for both
the coarse temporal association of the entire gesture and also the fine
relation between frames of multi-state gestures. The final classification
output was also passed through a temperature scaling layer [18] before
the final prediction.

The left-hand model has the same structure as the right-hand model,
except that it does not have the sub-state branch, and the output dimen-
sion is C = 4 for the three bi-manual gestures and the Null class.

4.3 Training and Recognition Pipeline

There is a trade-off between the ability to learn long temporal features
with large window sizes and fast inference during online recognition
with short window sizes. The increase in window size also scales
up the model size at a quadratic rate. We found T = 20 yields good
performance with short inference delay. We used J = 11, including
the wrist root, all finger tips, and one joint below each finger tip for
prediction as these joints are considered most relevant when performing
dynamic gestures. In order for the predictions to be spatially invariant,
we used the relative 3-dimensional position and 4-dimensional rotation
(quaternion) of the 10 joints with respect to the wrist root, and thus
D = 7. For the wrist root joint, we padded the position with zeros
and kept the absolute rotation for prediction. We separated the data
set in Section 4.1 into training and test sets by randomly selecting
two participants to be the test subjects, and used the remaining six
participants as the training subjects. We cross-validated all possible
combinations and chose the model with the best performance on the
test set for the user studies. We augmented the training set by adding
uniformly distributed noise to 5 random joints in 20% of the data. The
model was trained using a NVIDIA GTX 1070 GPU using a standard
Adam optimizer and learning rate of 10−3. The weights were updated
by a combination of two Cross-Entropy (CE) loss functions, one for the
gesture classification task and one for the sub-state prediction task, as
shown in Equation 1. Lclass represents the CE loss between the class
prediction C and the class labels. Lstate represents the CE loss between
the state prediction S and the state labels. The parameters α = 0.8 and
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β = 0.2 were the loss weights for back-propagation. We allow training
to continue for 5 epochs with no accuracy improvement on validation
set, and the average convergence time is approximately 10 minutes.

Ltotal = α ×Lclass +β ×Lstate (1)

4.3.1 Offline Recognition Accuracy
The offline recognition accuracy of the model was calculated by directly
comparing the window-level predictions C and S of both hands with
the ground truths. Figure 4 and 5 show the confusion matrices for
the window-level predictions of gesture classes and sub-states on the
validation set. The model achieves an accuracy above 90% for all
gestures except for Cylinder. The lower accuracy of the Cylinder class
results from its confusion with the Null gestures. Some of the Cylinder
gestures will be falsely recognized as Null, resulting in a less accurate
prediction when making a Cylinder. Note the Null class has accuracy
of 0.96, providing reasonable prediction when hands are inactive.

For the state prediction, the state ‘4’, which represents non-Multi-
State gestures, has the highest accuracy, while states ‘0-2’ have low
accuracy. This is expected because the state loss weight β is lower
than the class loss weight α , forcing the model to learn better at class
prediction and be less sensitive about sub-states. Eight out of the
10 gestures are single-state gestures and this imbalance distribution
of gesture type will also cause the model to be biased towards less
accurate prediction for Multi-State Gestures.

S1
No Gesture

S2
Check

S3
Activation

p > γ for gesture g n = N

p < γ for all gestures

n < N

p > γ for 
different gesture

Fig. 6: Finite-State Machine (FSM) for online prediction. n represents
the counter at S2, and is reset to zero if a different gesture is detected.

4.3.2 Online Recognition

The difference in online recognition is that gesture inputs no longer
arrive in segmented, fixed-length windows, but instead in a continuous
data stream. We use a data buffer to always select the latest T frames
from the data stream as input to predict the gesture class C and state
sequence S. We post-process the outputs C and S for robust online
recognition. The classification output C is passed through a softmax
function to obtain a probability distribution of the gesture classes, and
a gesture is only considered to be detected if its output probability is
above a threshold γ . A finite-state machine (FSM), as shown in Fig. 6,
is used to process the prediction. When a gesture class that is not Null
is detected, the machine will move to S2. If the machine receives N
gestures of the same class consecutively at S2, the machine will move
to S3, fire a gesture output and return to S2. If no gesture probability
exceeds the threshold γ during S2, the machine will return to S1. This
significantly reduces the oscillation of prediction. A ‘majority voting’
process is used to pick the most frequent sub-state from the sub-state
sequence S to be the final state of the current gesture.

We tuned the parameters N and γ using the unsegmented recordings
of the 8 participants in Section 4.1 performing all the gestures one after
another. During the recording, the participants were asked to return
back to rest position before they start the next gesture. We fed the long
sequence of gesture data to the model to perform sliding-window recog-
nition with step size of 1 to obtain a sequence of gesture classes c, and
compared this with the ground truth y using the Levenshtein distance
between the two sequences. We experimented with different values for
the parameters to produce the shortest distance, and found N = 30 and
γ = 0.9 to be the optimal choice. We tested our final model on these
sequences and found the average percentage Levenshtein distance to be
5.7%, which can be interpreted as a 94.3% online recognition accuracy
on our test data stream. We have additionally created a confusion matrix
in Fig. 7 for online prediction. Considering that the predicted sequences
might have varying lengths compared to the ground truth labels, we
inserted null labels to the ground truth where necessary to match the
lengths of the predictions. The Pen gesture has the lowest accuracy,
with 14% being misclassified as Spray, illustrating that gestures that
have similar form would cause degradation of performance.

We evaluate our proposed interaction technique along with our novel
recognition system in a series of two user studies, as explained in the
following sections.

5 EVALUATION 1: COMPARING HOTGESTURES AND MENUS
FOR COMMAND SELECTION AND USE

We conducted a series of three user studies to evaluate our proposed
method of gesture shortcuts in the context of 3D modeling in VR.
We implemented our experiments using the Unity Engine and ran
them on a Quest 2 HMD via Oculus Link. Our recognition model
was implemented using PyTorch, and the sampling rate during the
experiments was the same as for the data collection in Section 4.1. In
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Fig. 7: Online Class Prediction Confusion Matrix.

this first evaluation, we examine HotGestures by comparing it with
a baseline representing a standard menu-based tool selection method.
Participants completed the study in both experimental conditions.

5.1 Participants

We recruited 16 participants via convenience sampling for the eval-
uation (average age = 24.4 ± 3.9, min = 20, max = 34; 9 male, 7
female; all right-handed). No one from the data collection described
in Section 4.1 participated in the evaluation. Four participants were
undergraduate students while the other participants were postgraduate
students or holding a postgraduate degree. Their educational back-
grounds were as follows: engineering (13), education (1), philosophy
(1), and linguistics (1). In a pre-experiment questionnaire, we asked
the participants to rate their level of prior VR experience. Three partici-
pants had never experienced VR before, five participants had used VR
once or twice before, three participants used VR once a year, and five
participants used VR every month or more. We also asked participants
to rate their 3D modeling skills on a scale from 1–5 (1 = inexperienced,
5 = very experienced). The mean result was 2.5 ± 1.2.

5.2 Baseline Choice

To examine how our proposed gesture shortcuts compare with existing
methods for tool selection and usage, we chose a baseline representing
a well-established and conventional method for selecting and using
tools. This baseline involved menu-based tool selections and a pinch
gesture to use a selected tool. The menu design was based on demo
samples from the Microsoft Mixed Reality Toolkit (MRTK)4. The
participant can activate a hand-attached, hierarchical menu by raising
their left hand and then press buttons on this menu with their right hand
to select desired tools. The user can use any selected tool with an index-
thumb pinch gesture as the triggering mechanism. For interactions
that require more than a trigger (e.g., width of Pen, ScaleX, ScaleY,
and ScaleZ), a touch slider is provided. The aesthetics of the menu
interface strictly followed the default design of the sample MRTK
menus. We grouped the 10 tools into 4 categories to make the menu as
understandable and accessible as possible. We understand that a menu
hierarchy artificially introduces extra steps for interaction, however we
suggest it is a reasonable choice for a menu with 10 tools. We chose
this method as the baseline because we believe it is the most widely
adopted hand interaction technique and one that most users can readily
familiarize themselves with.

4https://docs.microsoft.com/en-us/windows/mixed-reality/m
rtk-unity/mrtk2/?view=mrtkunity-2022-05

5.3 Procedure
Participants were shown a video demonstration of each of the gestures
introduced in Section 4.1. They were then given as long as they wished
to practice these gestures, with feedback provided by the gesture recog-
nition system. Participants were asked to complete the experiment
using both conditions (MENU and GESTURE). The order of the con-
ditions was counterbalanced across participants. The experiment is a
instruction-based task where participants follow instructions to select
and use specified 3D modeling tools.

5.3.1 Familiarization phases
At the beginning of the experiment, the participants were introduced
to the 3D modeling tools. Then they were shown video clips of the 10
gestures associated with each tool and were asked to memorize them.
Before the start of the experiment, they were given the opportunity
to practice with the tools and their first experimental condition. After
the first condition was completed, they were given the opportunity
to familiarize with the second condition before continuing with the
experiment.

5.3.2 Tasks
In this experiment, participants received a sequence of instructions to
select and use one of the 10 tools summarized in Fig. 2 (e.g. ‘Please
Use Cube’, ‘Please Select this Color’). For each condition, participants
needed to complete 6 groups of instructions, with 12 instructions within
each group. The order of instructions was randomized within each
group. The first instruction group was considered to be a practice
group, and the next 5 groups were the actual task. Using a Scale X
task as an example, the participants were first shown the task objective
and a target object. To indicate they were ready to commence the task,
participants placed their hands inside a virtual prism roughly aligned
with the surface of a desk. This initialization ensured a consistent
starting position. Once their hands left the prism, the timer would start
and they could perform the task. Participants were told to scale their
object according to the randomized X scale of the target. As soon as
the participants scaled the object to the correct size, the task was treated
as being complete. We recorded the completion time and selection
accuracy of each individual task. An opportunity to take a break was
provided before each group. At the end of the study, participants
were asked to complete a post-experiment questionnaire capturing the
perceived speed and accuracy of each condition.

5.4 Results
5.4.1 Completion Time
The distribution of mean completion time for participants using each
tool is summarised in Fig. 8a. Repeated measure analysis of variance
on the overall completion time across all tools with a significance level
of α = 0.05 revealed a significant main effect due to the interaction
technique (GESTURE or MENU) (F1,15 = 109.9, η2

p = 0.365, p < .001).
This result suggests that the tasks can be completed significantly faster
in the GESTURE condition than in the MENU condition. This is con-
sistent with our hypothesis that gesture shortcuts can provide a faster
way to select and use tools by avoiding the additional steps involved in
menu-based tool selection and use.

Non-parametric Wilcoxon signed-rank test on the completion time
for each individual tool, with an initial significance level of α = 0.05
and applying Holm-Bonferroni correction for multiple comparisons
[22], revealed that the GESTURE method was significantly faster than
the MENU for Pen, Cube, Sphere, and Duplicate.

The 2-level menu used in this study is consistent with MRTK design
guidelines5 but does introduce one additional step during selection
compared to an equivalent 1-level menu. To assess the impact of
this particular design decision, we performed a post hoc analysis by
removing the time from the first button press to the last button press
when computing completion time for MENU. This is based on the
assumption that the participant only takes one ‘press’ to access the

5https://learn.microsoft.com/en-us/windows/mixed-reality
/design/hand-menu
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Fig. 8: Distribution of completion time and selection accuracy of Evaluation 1 tasks for each individual tool. The boxplots show the median (the
horizontal line), the mean (‘x’), the first and third quartile (the box) and the minimum and maximum (the whiskers). The plus signs (‘+’) indicate
outliers. The asterisks (‘∗’) on x-axis indicate the sample groups that have a statistically significant difference.

desired tool and is always correct on their first try. Note that there
is additional task time associated with actually using the tool, which
remains unchanged. This analysis revealed that for 7 out of the 12 tasks,
GESTURE was still faster, and among those Pen, Cube and Sphere were
significantly faster. No GESTURE was significantly slower than the
MENU. These results show that our proposed gesture shortcuts indeed
provide users with a faster way of selecting and using a majority of
tools compared to a conventional menu-based interaction.

5.4.2 Selection Accuracy
A non-parametric Wilcoxon signed-rank test on the overall accuracy
with a significance level of α = 0.05 revealed that there was a sig-
nificant difference in overall accuracy between GESTURE and MENU
(z = −3.2, p = .001). We summarize the selection accuracy of each
tool during Evaluation 1 in boxplots as shown in Fig. 8b. The average
accuracy of selection when using the MENU condition is higher for all
tools than the GESTURE condition except for Cut, Palette, and Delete.
This is expected as the MENU condition provides more certainty than
the GESTURE condition during selection, and it was less likely for
participants to make mistakes when using the menu. For the GESTURE
condition, the selection accuracy is above 0.95 for all task types. The
Pen had low accuracy because some participants confused the gesture
with Spray due to their similarity. Some participants also found the
scaling gesture unnatural to use, as they needed to move their hands in
a particular way to scale precisely. This could cause discomfort and
lead to inaccurate gestural forms.

A Holm-Bonferroni corrected non-parametric Wilcoxon signed-rank
test, with an initial significance level of α = 0.05, revealed that the dif-
ference in selection accuracy for individual tools is not significant for all
tools. These results suggest that gesture shortcuts are not significantly
less accurate than menu-based selection.

5.4.3 Participant Feedback
At the end of Evaluation 1, participants were asked to complete the
perceived workload (NASA-TLX) [19] questionnaire and answer five
questions about their perceived speed and accuracy of each condition as
well as their overall preference. Figure 9 shows that during Evaluation 1
the participants perceived the GESTURE condition to be more mentally
demanding, required more effort, and had performed worse. Although
the actual speed and accuracy did not suggest a worse performance, one
reason can be that memorizing and recalling different gestures during
the task causes more mental burden. Further, since the concept of using
gestures for 3D modelling is likely unfamiliar to most participants,
it may lead to more hesitation and uncertainty compared to use of a
more conventional menu. However, a non-parametric Wilcoxon test
did not reveal any statistical significance in the difference in ratings.
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Fig. 9: The perceived workload ratings for Evaluation 1 (MENU and
GESTURE) and 2. The error bars show ± 1 standard deviation. A lower
‘Performance’ rating indicates ‘better’ perceived performance. Evaluation
1 and 2 concerned different tasks and are therefore not directly compara-
ble.

Table 1 lists the question statements and the participant responses.
Participants rated the GESTURE condition higher for ‘select and use
tools quickly’, while the MENU condition was rated higher in ‘select
and use tools accurately’. This agrees with our previous findings about
the completion time and selection accuracy. Overall, 13 participants
preferred the GESTURE conditions for this task. Based on these results,
it can be concluded that while gesture shortcuts provide additional
benefits to the user experience in terms of faster access to desired
functionality, they have shortcomings in terms of selection accuracy
and additional effort to learn.

Table 1: Median and interquartile range (IQR) of the responses to the
five questions in Evaluation 1. Responses for Q1 to Q4 were recorded on
a five-point Likert scale from 1—strongly disagree to 5—strongly agree.
Q5 lists the number of participants who preferred each method.

MENU GESTURE

The technique made it easy to... MEDIAN IQR MEDIAN IQR

Q1 Select tools quickly. 3.5 2 5 1
Q2 Select tools accurately. 4 1.25 3 1.25
Q3 Use tools quickly. 2 1 5 1
Q4 Use tools accurately. 4 1 3 1.25

Q5 Preference for this task? 3 13
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Fig. 10: The target 3D models used for Evaluation 2 and illustrative
outcomes from participants.
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Fig. 11: Distribution of selection-usage delay during Evaluation 2.

6 EVALUATION 2: COMPLEMENTING MENU USE WITH HOT-
GESTURES IN AN APPLICATION

6.1 Participants
The same group of participants from Section 5.1 took part in Evalua-
tion 2 immediately after they completed Evaluation 1. They were given
a short break before the experiment, and were given the opportunity to
revise both MENU and GESTURE conditions before they started.

6.2 Procedure
In the second study, participants were asked to reproduce two ‘stimulus’
3D models (see Fig. 10) one after the other with balanced order. We
designed the targets such that they require all 10 tools to be fully
replicated. In this study, however, participants were provided with both
the MENU and GESTURE methods, and were able to interchange freely
between the two during the study. The aim was to investigate whether
this hybrid mode can combine the benefits of both techniques. The
participants pressed a start button when they were ready to begin, and
the target model would appear on the left-hand side of the workplace
and remained visible throughout the study for reference. Participants
were told there was no time limit and were asked to continue with
the modeling task until they were satisfied with their results. After
they completed both models, the participants were asked to complete a
series of questionnaires: System Usability Scale (SUS) [9], perceived
workload (NASA-TLX), and a customized questionnaire capturing
more qualitative feedback. The aims of this evaluation are to examine
user behavior when provided with both MENU and GESTURE under
a realistic 3D modeling task. Unlike Evaluation 1 where participants
were allowed to only use one technique, this experiment encouraged
free technique switching at their will.

6.3 Results
6.3.1 Selection-Usage Delay
We computed the participants’ average time delay between selecting
a tool and successfully using the tool during the modeling task and
plot this in Fig. 11. The average time delay between selection and
usage is approximately 1.5s for GESTURE, whereas the average time
delay for MENU is 4.9s. A repeated measure analysis of variance with
significance level of α = 0.05 on the log-delays revealed that difference
in log-delays is significant (F1,15 = 38.6, η2

p = 0.734, p < .001).
This result confirms the central hypothesis underpinning the design

of HotGestures: it allows rapid tool selection and usage at almost no
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Fig. 12: Proportion of usage of each technique during Evaluation 2.
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Fig. 13: Participant response on technique preference for each tool.

delay by executing both actions in one gesture. Unlike the MENU
condition which forces participants to shift their focus away from the
current task in order to make a new selection, and then shift back to
their work to use the tool, HotGestures reduces the time taken for
participants to recover from the selection process, allowing them to
switch their attention back to the actual task quickly. This demonstrates
that HotGestures increases the speed of interaction and potentially helps
the user concentrates more on the task.

6.3.2 Individual Preferences

We computed the proportion of valid tool selections performed by par-
ticipants during the task with either GESTURE or MENU (see Fig. 12).
All tools had higher proportion of use with the gesture condition, con-
sistent with the overall preference from the participants. The three
geometry primitive tools and Duplicate were mostly used by gestures
only, whereas Cut, Spray, and Palette and Scale had higher proportion
of menu use at 25% or higher.

Participants were asked to indicate which technique they ultimately
preferred to use for each tool, as summarized in Fig. 13. The individual
preferences mostly agree with the proportion of selection during Eval-
uation 2 (see Fig. 12). Most participants preferred gesture shortcuts
for the geometry primitives and Duplicate and Delete, and preferences
were approximately equal for other tools except for Pen. More partici-
pants preferred pen on the menu despite its relatively low proportion of
menu use during the task. It was observed that for the menu-preferred
tools, participants often attempted to use the gesture first, had unsatis-
factory outcomes, and then decided to use the menu. Because such tools
require more precise operation, participants were tempted to choose
the more reliable menu approach rather than the faster but potentially
more error-prone gesture shortcut.
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6.3.3 Participant Feedback
Participants completed the questionnaires for the System Usability
Scale (SUS) at the end of Evaluation 2. The average SUS score for
this hybrid system was 70.6 ± 11.1. According to the results from
Bangor et al. [5], a SUS score of 70 means the system usability is
at an acceptable level. This suggests that the participants found that
the combined provision of a conventional menu with HotGestures as
delimiter-free shortcuts delivered good usability. The NASA-TLX
results from Evaluation 2 are shown in Fig. 9.

When participants were asked about what they thought made an
effective gesture shortcut, most participants mentioned a gesture that
is ‘easy to use’, ‘quick’, and can be recognized reliably. A more
distinctive design was also mentioned as the reason why the gestures
were preferred because they were ‘easy to remember’. On the other
hand, the menu technique requires ‘more steps’ than the gestures. This
agrees with our hypothesis that HotGestures combines tool selection
and usage into one action, thereby reducing the time taken to complete
tasks. When asked in what circumstances they would prefer to use the
menu, two participants said the menu was preferred when the gesture
failed to be recognized reliably, making them ‘less confident’ about
using gesture shortcuts. Eleven participants mentioned ‘hard to control’
or ’accurate operation’ when answering why the menu was preferred
for tools like Pen, Cut and Scale. These participants thought gesture
shortcuts could not offer the same level of control and precision as a
menu method because of occlusion of hand-tracking and shaking on the
fingertips. When asked about whether they prefer MENU, GESTURE,
or a hybrid system, 14 out of the 16 participants preferred the mixture
of menu interaction with complementary gesture shortcuts, and two
participants preferred the gesture shortcut only approach.

7 DISCUSSION

Evaluation 1 compares HotGestures directly with a representative menu
baseline, and the results reveal that our proposed gesture shortcuts sac-
rifice selection accuracy for fast selection and usage. This is the typical
trade-off between speed and accuracy that is commonly observed in
Human-Computer Interaction (HCI). The same trade-off is exhibited
by conventional shortcut techniques used in other interaction settings.
Note that the reduction in accuracy was minor, and some gestures had
higher selection accuracy, demonstrating that HotGestures are a com-
plementary alternative to the conventional menu. There are multiple
reasons for the lower accuracy of HotGestures, including misrecogni-
tions by the model, the articulation of an incorrect gesture by the user,
and inaccurate hand tracking by the headset. Nonetheless the majority
of participants still preferred HotGestures to complete the tasks.

Evaluation 2 reveals the underpinning benefit of HotGestures, which
is that they reduce the delay between tool selection and use by com-
bining the two operations into one fluid execution within a single
continuous gesture articulation. HotGestures had a significantly larger
proportion of use during the task overall as the participants thought they
were faster and easier to use. There were several drawbacks, however,
including the inaccuracy in recognition and difficulty in control for
tools that require precision. The Pen tool was more preferred with the
menu due to these two reasons. It is worth noting that one participant
encountered difficulty in selecting the Spray tool, even though they
performed the ‘correct’ gesture from a human’s perspective. These
observations are consistent with the lower online accuracy in Fig. 7 for
Pen and Spray. In contrast, the menu method provided users with more
accurate tool selection and usage and a more consistent interaction with
better control. Overall one approach forms a suitable counterpart for
the other, and a hybrid interaction was preferred by almost all partic-
ipants over either technique in isolation. It shows that HotGestures
form a suitable complementary technique that can benefit conventional
interaction by offering optional shortcuts for frequently used system
functionality in the system.

From a system design perspective we found that users tend to per-
form the same gesture differently, even though they were shown the
same demonstration video. Therefore a more distinctive gesture design
is helpful for both memorability and model prediction. Caution is re-
quired when using gestures that are easily mistaken for another gesture.

This also applies for gestures that are more difficult to predict, such
as dynamic gestures. Moreover, even if the gesture set is distinctive
according to human judgment, uncertainty in model prediction may
still remain. The system needs to handle erroneous input appropri-
ately. Gestures with lower accuracy should be assigned a less critical
function to avoid catastrophic consequences from false recognition.
It was also found that the natural shaking of participants hands made
precise operation with gestures difficult at times. This proved to be
one of the most common reasons for participants to switch to the menu
technique. Therefore gesture shortcuts are most suitable for tasks that
require speed more than precision.

8 LIMITATIONS AND FUTURE WORK

The system only considered ten gestures. As the gestures in the system
increase, gesture-only interaction becomes problematic as larger ges-
ture sets are more difficult to memorize, recognize and require more
training data. We suggest future work explores the scalability of gesture
interaction systems further.

The recognition model was trained and calibrated using a 8-subject
data set. A larger and more diverse data set would likely improve the
models ability to generalize to unseen users. Including a new gesture
requires collecting data for that gesture and retraining the model.

The data set was collected using Oculus Quest 2’s integrated hand
tracking system, which may be subject to occlusion. The participants
were only allowed to perform gestures in certain postures and orienta-
tions to avoid occlusion, and this limits the variety of the gestures. To
collect a dataset with more diversity and higher precision, wearable de-
vice based hand-tracking could be a better choice. Although we believe
most of the findings in this work are transferable to other platforms,
we would like to see whether more reliable hand-tracking can further
improve HotGestures.

While we believe 3D modeling is a suitable application for demon-
strating the utility of HotGestures, there are certainly other applications
where HotGestures can be beneficial as a complementary technique,
such as data visualization, video editing, text entry, etc., as the recog-
nition model is not bound to a specific gesture set. We anticipate that
gesture shortcuts will be most useful in tasks that value a fast inter-
action process and a continuous workflow. We plan to explore the
effectiveness of gesture shortcuts in other contexts as future work.

9 CONCLUSIONS

In this work we present HotGestures, a gesture-based shortcut system
for command selection and use in VR. We introduce a multi-task recog-
nition framework developed to realize this system and trained on a
customized gesture set with both uni-manual and bi-manual gestures.
We evaluate this system with two user evaluations in the context of a
3D modeling application. In the first evaluation we directly compared
HotGestures with a conventional menu baseline and found that HotGes-
tures allow faster tool selection with only a small reduction in accuracy,
and were preferred by the majority of participants. There was no signif-
icant difference between HotGestures and the menu baseline in terms
of perceived workload (NASA-TLX). In Evaluation 2 we combined
HotGestures with the menu for a 3D modeling task. The task revealed
that HotGestures combine both selection and use into a single gesture
and support user tool-based interaction with less delay than the menu.
We suggest this served to lower the barrier between user intention and
execution. During the task, HotGestures had a larger usage proportion
than the menu across all tools, and half of the HotGestures were over-
whelmingly preferred by the participants. The System Usability Scale
(SUS) score was above 70, indicating that HotGestures complement-
ing a conventional menu had acceptable usability. Participants also
commented on the shortcomings of the gesture shortcuts, including
inaccuracy, difficulty to control, and lack of precision. The majority of
participants therefore appreciated the hybrid approach of allowing the
user to choose whether to use the menu or a HotGesture depending on
the task and context. Finally, we conclude that HotGestures are a highly
promising complementary interaction technique for VR applications
since they are distinctive, fast, and easy to use.
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