
MeTACAST: Target- and Context-aware Spatial Selection in VR

Lixiang Zhao , Tobias Isenberg , Fuqi Xie , Hai-Ning Liang , Lingyun Yu

Fig. 1: MeTACAST: a family of Target- and Context-aware spatial selection techniques for 3D point cloud data in VR.

Abstract—We propose three novel spatial data selection techniques for particle data in VR visualization environments. They are
designed to be target- and context-aware and be suitable for a wide range of data features and complex scenarios. Each technique
is designed to be adjusted to particular selection intents: the selection of consecutive dense regions, the selection of filament-like
structures, and the selection of clusters—with all of them facilitating post-selection threshold adjustment. These techniques allow
users to precisely select those regions of space for further exploration—with simple and approximate 3D pointing, brushing, or drawing
input—using flexible point- or path-based input and without being limited by 3D occlusions, non-homogeneous feature density, or
complex data shapes. These new techniques are evaluated in a controlled experiment and compared with the Baseline method, a
region-based 3D painting selection. Our results indicate that our techniques are effective in handling a wide range of scenarios and
allow users to select data based on their comprehension of crucial features. Furthermore, we analyze the attributes, requirements, and
strategies of our spatial selection methods and compare them with existing state-of-the-art selection methods to handle diverse data
features and situations. Based on this analysis we provide guidelines for choosing the most suitable 3D spatial selection techniques
based on the interaction environment, the given data characteristics, or the need for interactive post-selection threshold adjustment.

Index Terms—Spatial selection, immersive analytics, virtual reality (VR), target-aware and context-aware interaction for visualization.

1 INTRODUCTION

Immersive environments experienced via virtual, augmented, and mixed
reality (i. e., extended reality, XR) head-mounted displays (HMDs) are
increasingly receiving attention from visualization researchers who
aim to improve ways of understanding and exploring complex data.
HMD-based immersive visualization is now an important research field
with applications in natural sciences, in contexts that require users’
comprehension and exploration of three-dimensional spatial data.

Likewise and due to the rapid development of scientific simulation
and computing technologies, the size, scale, and complexity of datasets
in the natural sciences have grown exceptionally. This development
substantially increases the challenges of spatial data exploration in
immersive environments. Astronomical datasets today, e. g., usually
consist of multiple billions of spatial points. According to the cold dark
matter paradigm [5, 8], cosmological simulations predict that a cosmic
web is formed of the matter in the universe and that filaments transport
matter to dense centers of clusters (formed by galaxies). To comprehend
such vast amounts of spatial data, researchers need to observe the 3D
space to gain an overview of the data, zoom in and out of the data space
to find a clear view of the structures, and select and explore important
subsets of clusters such as those linked by cosmic filaments (Shnei-
derman’s mantra [49]). Dealing with multiple billions of data points,
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however, is a significant challenge in exploratory visualization on a 2D
interface, for two reasons. First, a 2D planar surface cannot portray
well the 3D shape or spatial positions of the points without constant
animation. Second, it may be difficult for scientists to identify a specific
target, define a precise location, and select particular parts with 2D
input. These challenges motivate us to enhance the users’ ability to
explore massive 3D point cloud datasets in immersive contexts.

Data selection is a fundamental and prerequisite step of data explo-
ration and has been explored for many years [6, 59]. Spatial selection,
by selecting sub-regions in point cloud data in 3D space, is often based
on the locations, structures, and density distribution of the 3D points.
The goal of our paper is to investigate effective techniques for select-
ing large-scale point cloud data in a VR environment. In contrast to
interactions on 2D monitor screens, immersive 3D spatial interactions
are not limited by a static and planar screen for selecting objects—so
interactive selection has the potential to be more expressive. In an
immersive 3D space, however, users have not only the ability but also
the need for six degrees of freedom for a single point of input, leading
to substantial differences in their spatial interaction and selection strate-
gies compared to those on 2D monitor screens. Nonetheless, we can
take inspiration from 2D selection strategies, in particular those that use
a structure- or context-aware approach [63, 64] as this technique allows
us to limit the input complexity and adjust it to people’s mental abilities
and expectations. These strategies then have to be adapted, in particular,
to unstructured point cloud data that contain vast amounts of detail
distributed across multiple levels with unknown spatial distributions.

To understand these constraints and ultimately develop a suitable
approach, we conducted a think-aloud user study to observe users’
perception, interpretation, and actions when they were asked to select
point cloud data in VR. The study was conducted with local university
students, as we were specifically interested in how selection strategies
might differ when users were asked to select parts of unknown and
unstructured point cloud data. Based on the findings, we developed
MeTAPoint, MeTABrush, MeTAPaint, three context- and target-aware
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selection techniques for point cloud data rendered in an immersive VR
environment. All three methods analyze the density distribution of the
local area where users interact and as such, users can select the crucial
features without precise input. MeTAPoint selects the cluster that is
closest to the location where the user is pointing, and then changes its
selections as the user continues to provide input. MeTABrush examines
the user’s input stroke and uses this information to infer their intention
by identifying the primary filament that is closest to the path. Finally,
MeTAPaint selects targets based on the user’s perception of the struc-
ture and how well they can distinguish it from the surrounding context.
To achieve real-time feedback, we compute the density distribution and
generate the selection volume on the GPU. Thus, immediate results are
shown, and based on these, users can further adjust the density thresh-
old. We then conducted a controlled experiment to test the efficiency,
accuracy, and user preferences for our three selection techniques in an
immersive environment, which demonstrated their effectiveness and
suitability for different data scenarios.

In summary, we make the following four main contributions:
• a study on users’ behavior in selecting unknown point cloud data

in an immersive environment;
• a toolbox of three context-aware and target-aware selection tech-

niques that allow users to precisely select regions of space they
intend to further explore with simple and approximate actions;

• algorithms to compute density fields and generate selection vol-
umes on the GPU to facilitate fast exploratory visualization; and

• guidelines for designing and selecting appropriate 3D spatial
selection techniques in diverse environments and contexts.

2 RELATED WORK

Several methods exist for selecting data points in visualizations, which
differ based on the data type, user requirements, and the environment
and platform used for data visualization. Our primary focus in this work
is spatial selection, which entails defining a Region of Interest (ROI) in
3D space to specify a 3D subspace. We are specifically interested in
selections in unstructured datasets that do not feature explicit objects
(e. g., particle or volumetric data) based on their unique properties (e. g.,
density, spatial distribution, or given scalar fields). Below we review
relevant work on spatial selection in general as well as on techniques
specifically designed for immersive environments.

2.1 Spatial selection techniques
Raycasting techniques are commonly used for selecting single objects
in 3D space (in both immersive and projected settings) and are found
in many applications [1, 34, 39, 45, 60]. The concept relies on 3D
pointing: the user selects a specific pre-defined shape or object in
3D space by pointing at it, and a 3D ray is cast from the pointer to
the object. The target object is identified by finding the first shape
or object that intersects the ray. Adjusted techniques for selection
in dense environments exist as well [27]. Raycasting techniques can
operate at a distance, are fast, and are easy to understand. Precise input,
however, is critical for selecting the correct object, in particular when
dealing with small objects that are possibly occluded. To address this
occlusion issue, Kopper et al. [32] designed a progressive refinement
technique to reduce the required precision of the selection task. Many
3D selection approaches have been proposed to provide precise input
for selection tasks, such as 3D picking [54] and 3D lasso [30]. The use
of raycasting can also facilitate the identification of a point of interest
(POI) in spatial data, such as in scalar fields. Wiebel et al. [58], e. g.,
devised WYSIWYP to analyze the scalar values along the selection ray
to assist users in pinpointing a POI in medical volume data.

Raycasting approaches, however, are often not ideal for handling
complex data distributions such as a 3D space with millions of particles.
In such scenarios, selecting a single particle is often not meaningful
because users are more interested in particle groups than in single data
items. Selection of multiple targets or regions of interest (ROI) is often
accomplished using various volume-based selection techniques that
involve the use of pre-defined basic geometric shapes. These shapes
can easily be manipulated in three-dimensional space, such as the use
of cones to select multiple data points [23] or the use of cubes to
select brain fibers [11]. Nonetheless, these techniques’ ability to select

target objects far from a pre-defined shape is restricted. Therefore,
freeform lasso methods are proposed to offer more flexible input to
select objects or ROI in 3D space based on the 2D lasso or stroke. Lazy
Selection [62], e. g., allows users to quickly select one or more desired
shape elements with a novel scribble-based tool by roughly sketching
through them. The Tablet Freehand Lasso (Cylinder Selection) [37, 38]
and Volume Catcher [44] allow users to flexibly select an ROI in 3D
space based on a 2D lasso or a stroke. Besançon et al. [7] proposed a
hybrid approach that emphasizes the level of user control in defining
the selection volume in 3D space. They introduced Tangible Brush, a
technique that provides manual control over the final selection volume
and which combines 2D touch lasso input with 6-DOF 3D tangible
brushing to allow users to perform 3D selections in volumetric data.

Compared to the use of pre-defined shapes, freeform lasso selec-
tion offers greater adaptability and flexibility, in particular when it
comes to manual control over the final selection volume in 3D space.
This approach allows users to customize their ROIs based on the local
data characteristics—which is why we also target a freeform tech-
nique. These fully manual techniques, however, may not be efficient for
complex selection tasks such as identifying small, dense, or complex
clusters in noisy backgrounds that may be difficult to visually recog-
nize. Several approaches have been proposed to address this limitation.
Chen et al. proposed LassoNet [12], a deep learning-based approach
to lasso selection for 3D point clouds. It aims to learn a latent map-
ping from viewpoint and lasso to point cloud regions, enabling users
to select particles that best match their selection intention. Structure-
and context-aware selection techniques [63, 64] have also been de-
signed to take data features such as the local density into account. With
these techniques, users draw a 2D lasso around the target, and only
clusters with densities above a certain threshold are selected. While
context-aware approaches have been effective, they are not designed
for immersive environments—which we target with our paper—, where
users do not have a dedicated 2D surface for drawing the lasso.
2.2 Spatial selection in immersive environments
In immersive visualization settings, researchers can gain a clearer un-
derstanding of the data, not only through interaction and exploration
but also simply through the stereoscopic projection. Studies have also
demonstrated [33] that users can perform better in cluster identification
tasks when using immersive scatterplot visualizations compared to
traditional 3D-to-2D projected representations.

Also in immersive VR, raycasting is a common technique to help
determine where a user is looking or pointing at. It is frequently used
for various interactions such as object selection, manipulation, and
action triggering. Hurter et al. [28] introduced FiberClay, a raycasting-
based approach to brush paths using two VR controllers to select paths
that connect both targeted points. Selecting multiple objects in VR,
however, can be challenging and imprecise, especially when the objects
are small, moving, occluded, or complex. To improve interaction
precision, researchers have proposed various approaches. De Haan et al.
[17] developed IntenSelect to aid users in selecting objects in motion
within cluttered and occluded VR environments with a scoring function.
Baloup et al. [4] introduced a controllable cursor positioned on top of a
ray, allowing users to select nearby or occluded objects. Maslych et al.
[41] showed how to select fully occluded objects in dense environments.
Their two approaches maintain the spatial relations between minimized
versions of the original objects by displaying the objects that collide
with a cone-shaped selection volume in a flat or cylindrical mini-map.
Wei et al. [57] recently proposed a user intention model for gaze-based
selection techniques based on eye and head endpoint distributions to
estimate the intended targets. Adaptive pointing [31] also enhances
the accuracy of pointing devices. Finally, Stenholt [52] designed a
magic wand, a novel multiple-object selection technique based on local
proximity, enabling users to select hundred or thousands of objects. We
also aim for precise selection, yet one in which the input imprecision is
mediated by context-aware selection processing as well as one in which
the user can easily adjust the selection after the initial specification—
like in the projected 3D settings we reviewed above.

Compared to interaction on a 2D surface, selecting within immersive
VR is conceptually more straightforward and is more preferred by users



than using traditional 2D monitors [21], as users can view the data
in stereoscopic 3D and have manual control over the final selection.
To facilitate 3D input, various techniques have been developed, such
as user-defined box virtual tool [26, 55] and cone-based selection vol-
umes [10]. Spatio-Data Coordination [14] and the Embodied Axes [13]
proposed by Cordeil et al. enable users to accurately determine the
selection region of the spatial data using sliders on the tangible axes.
These techniques rely on predefined 3D selection volumes such as
boxes, cones, and cylinders to select multiple objects within the space.
Several approaches have also been proposed to select within complex
datasets using freeform methods. Lubos et al. [36] introduced a bi-
manual user interface for selecting point cloud data. Their approach
involves tracking the users’ hands and enabling them to touch and se-
lect a 3D point cloud in an immersive environment. Similarly, Gemoz
et al. [22] proposed a contacting method with a spherical input to select
neural fiber tracts. In addition, various hybrid approaches have been
proposed to improve selection accuracy by using hybrid approaches.
They leverage different technologies and techniques to make the selec-
tion process more efficient and intuitive for users. Sereno et al. [48],
e. g., integrated an AR device with a tablet that acts as a tangible device
for 3D selection. Montano-Murillo et al. [43] proposed a hybrid VR
selection technique that allows users to place a selection volume at
a specified position in the VR environment. The volume is initially
attached to a virtual tablet and can be adjusted for size and thickness
to better fit the target object. Researchers have also focused on in-
corporating data features or geometric features into the 3D selection
process. For example, Malmberg et al. [40] used surface generation
based on a 3D live-Wire drawn by the user to segment and select
within volumetric images. This approach enables users to select objects
based on their volumetric value as well as geometric properties. Torin
et al. [42] introduced a semi-automatic neuron tracing method based on
the Morse-Smale complex in an immersive environment. This approach
enables users to select the desired region even with inaccurate trace
input, reducing fatigue during the exploratory task. Jackson et al. [29],
finally, proposed a tangible 3D interface that is capable to select the
fibers that own the same orientation as the tangible prop.

All these spatial selection techniques for immersive environments
can select single objects or regions based on the data’s location and/or
distribution. They employ tangible and hybrid interaction techniques to
improve the selection accuracy for complex data. In our work, we aim
for selection directly within the HMD-based VR environment, without
any additional required hardware, and for an interaction design that
is as flexible as the traditional context-aware techniques, but without
any need for a planar interaction surface. We work toward this goal by
studying users’ strategies in various situations to be able to incorporate
data features and user intention into the selection process.

3 THINK-ALOUD ELICITATION STUDY

To gain a deeper understanding of how users adopt selection strategies
within VR in various contexts and for various targets, we began by
conducting a think-aloud study with six participants from our local
university. Here we present our findings and discuss the resulting design
considerations related to selection context, target, action, and strategy.

3.1 Study design

Various factors such as the size of the visualization, the interaction envi-
ronment, the characteristics of the data (e. g., context, data distribution,
density), and input precision requirements can influence the selection
strategies employed by users. To design effective selection techniques
we need to understand the users’ selection strategies in VR environ-
ments as they deal with these situations. In a think-aloud elicitation
study we thus, instead of teaching them any specific selection methods,
showed participants datasets and selection targets and first asked them
to freely explore the 3D point cloud data. We then let them demonstrate
their selection strategies to us with a 3D drawing tool and asked them
to explain why they thought it was the most appropriate and direct way
to select crucial features or regions. We recorded all user actions and
input trajectories for further analysis. Both studies (think-aloud, user
study) received approval from the University Ethics Committee.

The size of the visualization is a crucial factor for the users’ se-
lection strategies, especially in VR. In the physical world, perspective
distortion causes objects located closer to the human eye to appear
larger than their actual size. This effect is even more obvious when
viewing point clouds in VR due to the narrower field of view. As
a result, gaps between 3D points that are closer to the user appear
larger than those between points further away. This effect can make
it challenging for users to accurately estimate the density distribution
and, thus, to identify a dense cluster when they are “within” it. Kraus
et al. [33] found that cluster identification task performance differs
between different visualizations (monitor screen for 2D/3D scatter plot,
table-size VR, and room-size VR) in terms of accuracy, efficiency,
memorability, sense of orientation, and user preference. To answer the
question about whether users could find the entire cluster and further
investigate how visualization size would impact the users’ selection
strategies, following the approach by Danyluk et al. [16] we investi-
gated three different sizes (Fig. 12 in Appx. A): hand-size, table-size,
and room-size:
Hand-size: We adopted a hand-size scale of 30 cm for the data visua-

lization—a suitable size to observe the detailed structures clearly
in most cases. The data is controlled by the left and, its center is
attached to the left controller with a 35 cm offset to prevent the left
hand from obstructing interactions with the right hand in the data.

Table-size: We placed the data statically 1 m above the floor with a
base length of 64 cm; users can walk around and reach inside.

Room-size: In this setting we also do not allow users to manipulate
the data placement and for the selection, they have to rely on the
picking/raycasting metaphor to reach far-away data locations.

We used four distinct datasets (Fig. 13 in Appx. A). We rendered the
target particles in yellow, while we presented the interfering particles
in blue. We selected each dataset based on its unique features:
Clusters: five uniformly dense ellipsoidal clusters in a noisy setting.
N-body simulation: a cosmological N-body simulation that comprises

a huge, extremely dense cluster at the center, which is surrounded
by multiple smaller clusters (from [50]).

Filament: a cosmic web simulation with thin filaments (from [51]).
Complex geometries: an empty half-box outside, a half-ball, and a

cuboid of particles inside.

3.2 Findings
Preferred visualization size. All participants preferred hand-size and
table-size visualization settings that allowed them to select data directly.
Moreover, these settings also facilitated easier recognition of point
cloud clusters and their boundaries by the participants. Thus, in the
following, we focus on analyzing users’ actions and selection strategies
with hand- and table-size environments.

Target: Dedicated cluster. When we asked participants to select
clusters that are visually clearly separable from the background (e. g.,
a separate ball-shape cluster or small, isolated clusters), most pointed
at the target clusters directly and hoped that the target clusters could
be selected with minimal actions. This observation aligns well with
traditional 3D selection, which relies on picking and raycasting.

Target: Regular, simple shape. When the shape of the target
particles is simple, many participants attempted to draw lassos in the air
that followed the geometric features of the target, while a minority also
mentioned that pointing was also possibly applicable if the selection
range could be determined in some way.

Target: Filament-like structure. In this case some participants
brushed the points following the dominant branch, while others tried to
separate the target points from the noisy context through a helix in 3D
space. Both strategies seem to be valid approaches.

Context: Unclear boundary. When participants were unable to
clearly distinguish the boundary of clusters (e. g., many small clusters
surrounded by particle noise), they attempted to enclose the target
cluster(s) by drawing a lasso around them as they would on a monitor
screen. Most of them realized, however, that drawing a 1D linear lasso
to enclose points in 3D space is insufficient. So they expressed the
desire for a more intuitive way to define a 3D region around the input
location that would allow them to include the target points.



Context: Occlusion. We found that, for easy shapes, participants
were able to estimate the 3D location and shape of target clusters even
when the particles were fully or partially occluded. In the complex
geometries dataset, e. g., participants placed a contact point (the inter-
acting point in 3D) on the opposite side of the target without the need to
rotate the data or selected occluded geometries by placing the contact
point inside directly. This ability may allow us to design an effective
3D interaction for clear target clusters.

Accuracy. In comparison to screen-based selection, in VR partic-
ipants were generally able to mark the targets closer to their actual
locations. We observed, however, that participants often had difficulties
accurately clicking on, for instance, the exact position of an intended
cluster. When attempting to select data by drawing lines directly in VR
using controllers (6DOF input), participants also often failed to align
their input precisely with target filaments. Even the input lasso looked
as if it would precisely follow the filament. After rotating the data
to observe it from another viewpoint, participants saw that the input
lasso was at a distance from the target due to VR’s imprecise depth
perception—an issue that was also noted in related work [42].

3.3 Design considerations
Based on these findings, we propose the following design considera-
tions and requirements for the design of selection techniques in VR.
• Target-aware selection. The techniques should be capable of han-

dling various target shapes, such as clusters, filaments, partially
occluded structures, and structures intertwined with others.

• Context-aware selection. The techniques should be capable of han-
dling various challenging situations, including non-uniform feature
density, unclear boundaries, and occlusion. Users should not be
limited or hindered by these interfering factors but, instead, should
be able to focus on their selection tasks, including identifying the
shape, location, and critical features of the data.

• Accurate and intuitive selection. The techniques should minimize a
user’s need to move and, instead, infer their selection intention from
the approximate location and path of the input, precisely adjusting
the selection to crucial data features such as geometric shape and
region density. Users should be able to use simple, natural, and
approximate input to select intended regions precisely in VR.

• Exploratory selection and immediate results. When dealing with a
complex dataset that contains a large number of noisy points and
unclear boundaries, it is crucial for users to visually examine the
selection results and receive them without delay. This is important,
e. g., in astronomical data exploration where numerous unknown
features are concealed within the data and noise is prevalent.

• Partial selection and threshold adjustment. Enabling post-selection
threshold adjustment is important for our selection tool to be flexible
in handling various situations such as selecting complex data shapes,
partial regions, and non-homogeneous density.

4 SELECTION TECHNIQUES

Based on these design considerations we developed the MeTACAST
family for selection in HMD-based VR environments, which consists
of three spatial techniques, each tailored to a specific selection intent.

4.1 Interaction metaphor
Our think-aloud study showed that participants preferred visualization
tools that rely on direct interaction with data. We thus adopted the
Worlds in Miniature (WIM) metaphor [46,53,65] and developed a hand-
held miniature of the 3D point cloud data to facilitate data selection
in a virtual environment. We attached the WIM to the VR controller
of the non-dominant hand, providing users with an exocentric view of
the 3D data and facilitating correct density comprehension of the point
clouds. To select points, the user can use their dominant hand to control
a red sphere. We positioned the sphere 1 cm above the top of the VR
controller to prevent collisions between two VR controllers. This red
sphere follows the movement of the controller, allowing users to have
full control in 3D space to point, brush, or paint within the data.

Similar to CloudLasso [63] and CAST [64], instead of relying on
particle positions we use a continuous density field ρ(r) that represents

(a) (b) (c)

(d) (e) (f)

Fig. 2: MeTAPoint: (a) the user points at the target cluster (red); (b)
we derive the closest maximum point (blue) and density threshold
(schematic representation); (c) we compute the selection volume; (d)
the user drags the controller to adjust the density threshold; (e, f) we
recompute the density threshold and selection volume.

the particle density at position r in space. We compute the field at all
nodes i of a regular 3D grid (box B) that covers the dataset as ρ(r(i)).
We then derive the value ρ(r) of the field at any other point r in space
through linear interpolation from the values ρ(r(i)) at the grid-nodes
that are closest to r. This approach enables us to apply our method not
only to particles but also to volumetric data that samples a scalar field
representing any visually salient data aspect, rather than just density.

Based on this field concept we can now design interaction techniques
that are adjusted to our VR environments. In contrast to projection-
based approaches such as CloudLasso and CAST, we need to allow
users to directly point, brush, or draw on the dataset in the 3D virtual
space according to their preferred strategies. We aim to meet the
design goals we formulated in Sec. 3.3 and developed three techniques—
MeTAPoint, MeTABrush, and MeTAPaint—that we describe next.

4.2 MeTAPoint
The problems in VR with general free-hand input imprecision and
placement with respect to a 3D structure (Sec. 3.2) lead to users wanting
to test their initial selection results through interactive exploration to
better understand the data distribution. Users attempted to draw a stroke
on the target to explore the boundary of the target cluster. To address
this need, we propose our first selection technique MeTAPoint. With it,
the user begins by pointing at the target cluster, or near it, and the initial
selection is based on this input position. To account for imprecision, we
attempt to determine the intended target by analyzing the input position.
Specifically, we follow the direction of the gradient from the input
position r(s) (red point in Fig. 2(a)) to find the local maximum r(m) of
the scalar field (blue point in Fig. 2(b)). We use this input adjustment
in all MeTACAST techniques and discuss technical details in Sec. 4.5.

Next, we determine the selection volume V that surrounds the local
maximum r(m), based on the density field. To enable users to explore
the edges of the target cluster, we derive the density threshold based
on the density at the initial input position ρ(r(s)). Using the Marching
Cubes algorithm [35,61] we identify all volumes where the density ρ is
above ρ(r(s)) in the whole space, and we pick the volume that encloses
r(m) as the initial selection volume V (blue area in Fig. 2(b, c)).

The user can continue to explore the target boundary by dragging
the controller with the trigger pressed. As they drag the red point, we
adjust the density threshold accordingly (Fig. 2(d, e)) and compute
a new selection volume (Fig. 2(f)). It is important to note that we
designed MeTAPoint to select the single volume that is closest to r(s).
Therefore, if the user drags the red point close to another cluster, the
selected target may switch. In this way, we provide the user with
an immersive experience of testing the target volume and selection
boundary through continuous interaction in the 3D environment.

To enhance exploratory visualization and accelerate iso-surface com-
putation we leveraged a GPU-based, parallel implementation of March-
ing Cubes. We assign a dedicated thread to each voxel, resulting in
smooth threshold modification and efficient triangle generation.

4.3 MeTABrush
A potential issue for MeTAPoint is that it requires users to carefully
adjust the contact point—the input position has a direct impact on
the selection result, including the target and threshold. Consequently,
it may be challenging for MeTAPoint to select a part of a filament



(a) (b) (c) (d)

Fig. 3: MeTABrush: (a) the user draws a 3D stroke (red); (b) the stroke
points (red) are extracted; by following the direction of gradient (blue
arrow), we identify the local maximum points (blue); (c) we construct
a tunnel-like volume (yellow dotted region) based on the MaxLine with
the radius R; Vinit is derived (blue dotted line); (d) the final selection.

in a complex dataset, which is a common task, e. g., in astronomical
exploration. In our elicitation study, we observed that users usually
want to brush the points following the dominant branch or create a
helix in 3D space to separate the target points from the noisy context
(Fig. 13(c)). While their input may not be precise, their selection intent
is clear from the input. To address this need, we propose our second
selection technique, MeTABrush, which infers users’ intention using
the entire input path, adjusts the position of the input stroke, and then
provides a precise selection—without being limited by imprecise input,
non-homogeneous features, or complex structures.

With MeTABrush, the user can brush a stroke along the target fil-
ament particles in 3D space (Fig. 3(a)). We then take a sample of
points r(s) = {r(s0),r(s1), ...r(sn)} on the input stroke and follow the
direction of gradient from each point (Fig. 3(b)) like before. This
process yields a set of destinations, that is, local maximum points
r(m) = {r(m0),r(m1), ...,r(mt )} of the density field; note that n may not
equal t. Next, we connect successive pairs of destinations r(mi) and
r(mi+1) to obtain the path P (indicated as MaxLine below) as follows:

P : x ∈ R+ 7→ R3,P(0) = r(mi),P(end) = r(mi+1),

P′(x) =
∇ f (P(x))

∥∇ f (P(x))∥
+2

(P(mi+1)−P(x))
∥(P(mi+1)−P(x))∥

,
(1)

With this process we connect all local maximum points following
roughly the direction of the gradient, while also smoothing the MaxLine
P. Based on P, we construct a tunnel-like shape T (region circled by
the yellow dotted line in Fig. 3(c)) that extends along the MaxLine with
a pre-defined radius of R (represented by the size of the input marker,
which can be adjusted by the user later). We then identify all particles
whose destinations, following the direction of the gradient, fall within
T , using the algorithm we detail in Sec. 4.5. We thus identify the set of
the potential target particles J, which we indicate by the blue dotted line
in Fig. 3(c). Next, for each potential target particle j ∈ J, we consider
the ellipsoid with semi-axes ℓ( j)

x , ℓ( j)
y , and ℓ

( j)
z , which are the smoothing

lengths along x,y,z of the jth particle (Appx. B has more details on
smoothing length and density estimation). We further combine these
ellipsoids into an initial volume of interest Vinit in the data box B that
covers the whole data:

Vinit = {r |r ∈ B, ∃ j ∈ J, ∥r(r; j)∥ ≤ 1}, (2)

where r(r; j)
k = (rk − r( j)

k )/ℓ
( j)
k along the kth direction (k = x,y,z), and

∥r∥ denotes the Euclidean norm of the vector r.
Next, we calculate the initial density threshold ρ0 by as the arithmetic

mean of the density of all the grid-nodes inside Vinit. Through Marching
Cubes we obtain the iso-surface inside Vinit. We then obtain the volumes
inside of the iso-surface and select the volumes that contain a segment
of the MaxLine, which means that the selected volumes should contain
at least one local maximum point r(mi) on the MaxLine. We regard
these volumes as the initial selection volumes V. In addition, users are
able to adjust the density threshold post-selection via the VR controller.
They can modify the threshold in a range of [ρ0/16,16ρ0], mapping
with the function ρs = 2sρ0 with s ∈ [−4,4]. When s is adjusted, we
thus recompute the scalar quantity for all grid-nodes inside Vinit with
ρ0 replaced by ρs and obtain the iso-surface using Marching Cubes.

4.4 MeTAPaint
In our elicitation study, we observed users trying to select regular points
shapes. These strategies allowed users to depict the geometric features

(a) (b) (c)

Fig. 4: MeTAPaint: (a) the user draws a 3D stroke (red) near the
black cluster, some parts of the input are located near the gray one;
(b) the stroke is split into multiple points (red), which flow towards
local density maxima (blue and gray points) along the direction of the
gradient; (c) the black cluster is selected since it receives most seeds.

of their target accurately. The provided input, however, was inherently
imprecise. To address this issue, we thus introduce MeTAPaint, a
technique that interprets the 3D path of a drawn selection stroke and
selects the candidate cluster that best fits the drawn stroke.

With MeTAPaint, the user brushes a target cluster with a 3D stroke
(Fig. 4(a)). We first identify the initial density threshold ρ0 by sampling
the density of the grid-nodes surrounding the input stroke. We define a
tunnel-like region T that extends along the input stroke with a radius of
(ℓx + ℓy + ℓz)/3, where ℓx, ℓy, ℓz are the smoothing lengths along x,y,z,
respectively ( [63,64]). We then calculate the initial threshold ρ0 as the
arithmetic mean of the grid-nodes’ density r(n) within T , given by

ρ0 =
1

NT

NT

∑
n=1

ρ(r(n)), (3)

where NT is the number of the nodes in T . Then we take a sam-
ple of points {r(s0),r(s1), ...r(sn)} on the input stroke and follow
the direction of gradient from each point to obtain the destinations
{r(m0),r(m1), ...,r(mt )} (Fig. 4(b)), as we did in MeTABrush. We then
count the number of r(si) that contribute to each r(m j), and find r(mmax),
that is, the destination for the most stroke points r(si). Using Marching
Cubes, we obtain the iso-surface with density ρ0, and the correspond-
ing enclosed volumes. Finally, we regard the volume containing the
destination r(mmax) as the initial selection volume V (Fig. 4(c)). The
post-selection threshold adjustment follows the same procedures as we
described for MeTABrush. Note that MeTAPaint selects the cluster that
is most heavily brushed by the input stroke, meaning that users only
need to brush on or around the geometric features of their target, and
the intended single cluster gets selected.

4.5 Local maximum point extraction

To increase input precision, in all MeTACAST methods, we adjust the
positions of the input point/stroke by extracting local maxima. For a
smooth density field ρ : R3 → R, a point r is a local maximum of ρ , if

∇ρ(r) = 0 and λ1 < 0, (4)

where λ1 is the largest among all the eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn
of the Hessian of ρ at r. To follow the user input point r(s) along the
direction of the gradient of ρ and find the local maximum point r(m)

for the density field, we define the path P as

P : t ∈ R+ 7→ R3, P(0) = r(s), P′(t) = ∇ρ(P(t)). (5)

We take r(m) as the destination of the path P, that is, r(m) = dest(P) =
limt→∞ P(t). According to Morse theory [24], for a smooth function
with a non-degenerate Hessian matrix, the path P converges to a local
maximum except in the case when r(s) is located on the stable manifold
of a saddle or is a minimum of the density field.

Given a position P(t) along the path P, we compute P(t +δ t) along
the direction of ∇ρ(P(t)), which is calculated by linear interpolation
from the values of ρ at the closest grid-nodes to P(t), obtained in
Appx. B. Finally, we obtain the local maximum point rm = dest(P) at
the end of the path P. In the case where the user’s input is a stroke, we
compute the destination points for all the sample points on the stroke
with a parallel algorithm to increase computation speed. We report on
details on the system’s performance in Table 1 in Appx. C.
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Fig. 5: Datasets we used in our study: (a) Disk, (b) Rings, (c) Shell, (d)
Strings, and (e–g) Filaments.

5 USER STUDY

We conducted a controlled experiment to evaluate the performance
of the MeTACAST methods in identifying various target structures
with uniform or non-uniform density and shape. We compared our
three MeTACAST methods to a conventional, region-based method, to
which we refer as Baseline. We directly derived the Baseline method
based on Touching the Cloud [36], a technique designed for selecting
particles within the region where the user brushes using 3D input in a
VR environment. We compared all methods based on the accuracy and
time taken for particle selection. We pre-registered the user study plan,
our analysis code, and our result prediction at osf.io/dvj9n.

5.1 Study Design
Participants. We recruited 32 unpaid participants (17 male, 15 female)
from the local university, 18–33 years old (M=23.1, SD=2.8), all of
whom reported to be right-handed. Among them, 15 use VR at least
once per week, 14 at least once per year, and 3 had never used VR
devices before. Furthermore, 18 participants had obtained a Bachelor’s
degree or higher. They all had normal or corrected-to-normal vision
and were able to distinguish clearly the colors used in our application.

Apparatus. We used Valve Index [9], a PC-based VR head-moun-
ted display (HMD; 1440 × 1600 resolution per eye, 108° field of view,
90 Hz refresh rate). We carried out the study on a PC (Intel Core™ i9,
3.5GHz, 64GB RAM, GeForce RTX3090, 24 GB video memory).

Datasets. All datasets in our study (Fig. 5) have target (yellow) and
interfering particles (blue). We designed or selected these datasets to
have different features that made the selection of targets challenging:
Disk: This dataset (Fig. 5a) exhibits a gradual decrease in density from

its center towards the periphery. The high-density area around the
center is the target region.

Rings: This dataset (Fig. 5b) consists of two half rings with uniform
density, positioned perpendicular to each other with a slight gap
between them. The target area comprises a portion of each ring.

Shell: This dataset (Fig. 5c) comprises a half-ball of interfering parti-
cles that are partially surrounded by a semispherical shell of par-
ticles. Both structures have uniform densities and are in close
proximity. The semispherical shell is the target structure.

Strings: This dataset (Fig. 5d) comprises two string-like structures
with non-uniform density. The outer string wraps around the central
string and exhibits variations in both density and perimeter along
itself. We asked participants to select the outer string.

Filaments: The Millennium-II data subset [51] (Fig. 5e) is a complex
network of filaments that connect high-density clusters. We chose
this real-world data to represent a realistic scenario in astronomy.
Unlike the other datasets, we showed the target filaments only for
two seconds, to give the participants a general sense of their 3D loca-
tion and structure. This way we wanted to see what crucial features
participants found important and how our methods supported their
selections. To avoid a learning effect we thus asked participants to
select three distinct filaments in each condition (Fig. 5(e–g)).

Task and Procedure. We asked participants to select the yellow
and to avoid the blue particles, and to complete the tasks as fast and
as precise as possible. We split the study into four tasks (T1–T4)
with explicit goals and one task (T5) with an implicit goal. During
the explicit goal tasks, which used the datasets Disk (Fig. 5a), Rings
(Fig. 5b), Shell (Fig. 5c), and Strings (Fig. 5d), the target particles
remained highlighted in yellow until they were selected, after which all
selected particles turned red. For each combination of trial and dataset,
we chose a unique starting orientation, which changed between trials

but which we used for all participants. In the implicit goal task (with
dataset Filaments, Fig. 5e) we showed the yellow target particles to
participants for only 2 seconds, giving them a limited period to perceive
their location and structure. We allowed them, however, to inspect the
target particles as many times as needed for an additional 2 seconds
each time but did not allow them to make any selections during this
time. Once participants had gained a general understanding of the
target particles (e. g., location, structure, context, etc.), we asked them
to select the ones that possessed “important features” based on their
judgment. With this task we aimed to explore the possibility that, by
employing context- and target-aware techniques, users could rely on a
general understanding of these “important features” when identifying
target points, without them continuously being visible.

To prepare participants for the actual study, we first familiarized them
with the selection techniques by practicing with additional training data.
During the training trials, we instructed the participants to perform
the selection using VR controllers and allowed them to take as much
time as needed. In the actual study, however, we instructed them to
complete their selection tasks with both speed and accuracy but did
not inform them if or when they had achieved the selection goal. We
provided two possible selection modes: union and subtraction. As
Yu et al. [63, 64] had previously discussed, subtraction is best done
using region-based techniques, not with structure-aware ones. We
thus implemented subtraction with the Baseline technique in all trials.
Participants could use the VR joystick to adjust the density threshold
and use the VR button to adjust the size of the input marker. In addition,
we provided undo and redo functions as well as a reset to the initial
unselected state. The whole study lasted ≈ 90 minutes. Following each
technique, we requested that the participants evaluate their workload
and fatigue levels using NASA’s Task Load Index (TLX) [25]. After
completing all trials, we asked them to indicate which technique they
preferred for each dataset and to provide their reasoning.

Design. For the explicit goal tasks with the first four datasets, we
counter-balanced the order for the methods and datasets. For a given
participant with a specific PID, where ID is unique and ∈ [0,15] (the
first batch of 16 participants), we presented the datasets in the same
order for each method. We counter-balanced the dataset order using
a Latin square as “(PID / 4) mod 4” and the method order as “PID
mod 4”. We repeated the Latin square order for the second batch of
16 participants. In summary, we had 32 participant × 4 methods × 4
datasets × 3 repetitions = 1536 trials. For the implicit goal tasks with
the last dataset (Filaments), we used the same order for the three ROIs
across all methods, but counter-balanced the method order. In the end,
we had 32 participants × 4 methods × 3 cases = 384 trials.

Measures and Analysis. To reduce the impact of the learning effect,
we excluded the first repetition of each dataset × method pairs. This
left us with 1280 trials. Since NHST has been criticized for analyzing
experimental data [3, 15, 18, 19], and APA recommends alternative
approaches [56], we report results using estimation techniques with
effect sizes and confidence intervals rather than p-value statistics.

Accuracy. Similar to Yu et al. [63, 64], we calculated two distinct
accuracy scores, F1 and MCC (Matthews correlation coefficient), to
compare the accuracy of our techniques. The accuracy scores for both
cases are based on the identification of true positives (TP, # of correctly
selected particles, false positives (FP, # of incorrectly selected particles),
and false negatives (FN, # of target particles that were not selected).
F1 is calculated as F1 = 2 · (P ·R)/(P+R), where P = T P/(T P+FP)
and R = T P/(T P+FN). While the F1 score provides a measure of the
harmonic mean of the precision, it does not consider the true negatives
(TN,# of correctly unselected particles) rate. Thus, we also used MCC
as our second error metric which is calculated as:

MCC =
T P ·T N −FP ·FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
.

The accuracy scores for both cases are normalized. We computed
means and 95% bootstrap confidence intervals (CIs; all n = 32).

Completion Time. We analyzed the completion time data using
exact CIs on log-transformed data (all n = 32). We report means thus
as geometric means and express comparisons between means as ratios.

https://osf.io/dvj9n/?view_only=07cae591f59944499691047101aecfef


Fig. 6: The predicted results are determined by analyzing the data
features and the principle of the selection methods: red (relatively good
performance), blue (relatively poor performance).

5.2 Hypotheses
As we designed the three MeTACAST techniques to be adaptable to
specific selection intents it is reasonable to expect that their performance
varies depending on the given scenario. To anticipate the results of
our study, we analyzed the data features and made predictions (Fig. 6)
based on each technique’s principles. Based on these pre-registered
(osf.io/dvj9n) predictions we formulated the following hypotheses:
H1 MeTACAST adjusts the input toward the local density maximum.

All MeTACAST techniques would thus be more accurate than the
non-adjusting, region-based Baseline.

H2 Since we explicitly designed MeTABrush for filament-like struc-
tures, its completion time and accuracy would be better than that
of other techniques for the Filaments datasets, especially when the
target is part of a filament with varying density and shape.

H3 We designed MeTAPoint and MeTAPaint for selecting complete
sub-structures with simple, minimum input, so they would be
generally faster than other methods for selecting whole clusters.

H4 Technique preference would depend on the dataset characteristics.
In general, for filament-like datasets, participants would prefer
MeTABrush and Baseline, while for individual shapes they would
prefer MeTAPoint and MeTAPaint.

5.3 Results—Explicit goal tasks: T1 to T4
As we designed MeTACAST based on different selection strategies and
to be able to deal with various datasets, the analysis of the selection
effectiveness based on overall completion time and accuracy may not
offer a complete picture of their capabilities. We thus discuss the results
for the four synthetic datasets and one real-world dataset separately and
provide the overall completion time/accuracy results in Appx. D.

Table 2 in Appx. D displays the average task completion times and
two accuracy scores for each dataset and technique. For F1, 1 indicates
perfect performance, while 0 represents the worst possible result. For
MCC, a score of 1 indicates perfect performance, while −1 represents
the worst performance. Mean completion times and 95% confidence
intervals for each technique are shown in Fig. 7, while we provide the
figure for the accuracy scores for each dataset in Appx. D. We now
focus on the statistical results for each dataset based on our hypotheses.
Disk: Given that the target area is part of the high-density region, which
has varying density and shape, we predicted that the MeTAPoint and
MeTAPaint methods would outperform the MeTABrush (designed for
filament-like structures) and Baseline (region-based) methods. This is
because both MeTAPoint and MeTAPaint facilitate an easy initial se-
lection and refinement of results through density threshold adjustments.
From the results, we can see MeTAPoint and MeTAPaint were much
faster than Baseline and MeTABrush, and Baseline was less accurate
than the other methods, which aligns with our prediction.

Rings: As the target area was part of two rings with uniform density
and shape, we predicted that both MeTABrush and Baseline would out-
perform MeTAPoint and MeTAPaint, which were designed to select the
entire component and change the overall selection based on the density
threshold. We saw that MeTABrush and Baseline were indeed faster.
The accuracy scores for all methods are equivalent as we predicted.

Shell: For the Shell dataset, the target cluster is a complete com-
ponent. We thus predicted that MeTAPaint and MeTAPoint would be
more effective and that MeTAPoint may be slightly slower than MeTA-
Paint since its density threshold is determined by the input location.
Due to occlusion, however, users may not have precise control over the
density adjustment. Our results show that both MeTAPoint and MeTA-
Paint were indeed faster than the other two methods, with a substantial
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Fig. 7: The geometric mean completion times in seconds for each
selection technique in T1 to T5; (a): Disk, (b): Rings, (c): Shell, (d):
Strings, (e): Filaments. Error bars show 95% confidence intervals (CIs).
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Fig. 8: Pairwise completion time ratio in T5. Error bars: 95% CIs.

difference in average completion time. MeTAPoint was slightly slower
than MeTAPaint. These results align with our prediction. In addition,
our findings indicate that Baseline is the least accurate method.

Strings: Based on the non-uniform density and shape of the target
cluster, we predicted that all MeTACAST methods would perform better
than the Baseline. We also expected that MeTAPaint and MeTAPoint,
requiring minimal input, would be faster than MeTABrush. Although
the target was filament-like, MeTABrush may not be as effective as the
other two as it would require participants to brush the whole ROI. Our
results show that the MeTACAST methods were both faster and more
accurate than Baseline. In addition, MeTABrush was much slower than
MeTAPaint and MeTAPoint, which we expected. Moreover, our results
show that Baseline was again the least accurate method.

5.4 Results—Implicit goal task: T5
T5 was a more high-level selection task where participants could only
view the features of the target cluster within a short period and make
selections based on their understanding of the key data features. In
addition to analyzing accuracy and completion time, we were interested
in how often participants required to re-check the targets and how
our selection strategies supported them in making selections based on
data features. We predicted that MeTABrush would outperform other
methods since it was specifically designed for filament-like structures in
a noisy environment. The results showed that T5 had a lower accuracy
level compared to T1 to T4, while MeTABrush showed considerably
higher accuracy (Fig. 9) compared to the other methods. Both Baseline
and MeTABrush techniques had a shorter mean completion time than
MeTAPoint and MeTAPaint (Fig. 7(e)), with a small difference. We
further provide pairwise ratios of completion times of the MeTACAST
techniques in Fig. 8. We observed that MeTABrush took only about
0.86–1.44× longer than Baseline. MeTAPoint took about 1.04–1.64×
longer, and MeTAPaint took about 1.00–1.42× longer than MeTABrush.
Although the filament-based and region-based methods were slightly
faster in selecting filament-like structures in the noisy background, the
difference was not as substantial as predicted. Overall, we have strong
evidence that MeTABrush outperforms other methods in this task.

In conclusion, as noticed in most tasks except T5 (Filaments, which
also requires user understanding about the data feature), Baseline was
the least accurate technique. Therefore, we can partially support H1.
For the filament datasets (Rings, Strings, and Filaments), the results
indicate that MeTABrush was faster than other techniques only in the
Rings dataset. However, it is important to note that, for the Strings
dataset where the whole string needs to be selected, MeTAPoint and
MeTAPaint were faster. In the case of the Filaments task, MeTABrush

https://osf.io/dvj9n
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Fig. 11: User workload and performance, T5. Error bars: 95% CIs.

took about 0.86–1.44× longer than Baseline, but it was substantially
faster than other techniques. Yet, MeTABrush showed considerably
higher accuracy than other techniques. While we can partially support
H2, the results thus highlight the importance of MeTABrush in selecting
filament-like structures. For the tasks in which the whole dataset needs
to be selected (Shell, Strings), MeTAPaint and MeTAPoint outperform
other methods. Thus, we support H3.
5.5 Results—User workload and preference
Workload. After analyzing the data, we found strong evidence that
participants felt more efficient, less frustrated, less time-pressured, and
needed less mental effort when using MeTAPaint and MeTAPoint in
T1–T4, as shown in Fig. 10. These findings align with the participants’
overall completion times, which indicates that their subjective expe-
riences match their actual performance for these methods. However,
for the more complex T5 we saw that MeTABrush was the most effec-
tive method, as it led to higher performance, less frustration, less time
pressure, and less physical and mental effort. In addition, participants
experienced higher mental and physical effort when using Baseline and
felt more frustrated when using MeTAPoint and MeTAPaint in T5.
Preference. After analyzing the techniques’ rank across all datasets
(T1 to T5) shown in Appx. D, we observe a correlation between the
participant preference and their actual performance. Specifically, for the
Disk and Shell datasets, the participants demonstrated a similar pattern
in the ranking of the selection techniques (MeTAPaint > MeTAPoint
> MeTABrush > Baseline). Interestingly, for the two filament-like
datasets, Rings and Filaments, most participants preferred Baseline and
MeTABrush, while MeTAPaint and MeTAPoint were ranked higher for
the Strings dataset. We believe that this observation may be because
participants were required to select the entire string, which can be
achieved more easily with MeTAPaint that allows for a large selection
with minimal input. Based on these results, we support H4.

During the study, we closely observed how participants used each
technique to select particles. Our observations revealed that participants
demonstrated a clear understanding of the methods’ designs and effec-
tively employed strategies to complete the tasks. For example, some
participants intentionally brushed a stroke outside of the semispheri-
cal shell to ensure that the input stroke remained far away from the
half-ball of interfering particles. They made this adjustment with the
understanding that the position of the input stroke would be adjusted
to align with the shell. In addition, the Baseline technique was also

appropriately employed in the study, aligning with its intended design.
To further explore the impact of participants’ level of VR fluency,

we conducted a separate analysis of task performance on two groups.
We provide and discuss the comparison results in Appx. E.

6 DISCUSSION

There are several insightful discussion points that we can derive from
our experimental results, as we describe next. We also examine MeTA-
CAST within the broader context of existing state-of-the-art selection
methods, to derive general design guidelines for spatial selection.

6.1 Selection scenarios
Different selection strategies showed clear advantages in dealing with
different data characteristics and situations. When choosing a data
selection technique, therefore, we need to consider various factors, such
as data features, selection requirements, and interaction environment.

Target and Context Awareness. The MeTACAST techniques are
both target- and context-aware, taking into account various data features
during the selection process such as position, structure, and density
distribution to realize the user’s intention based on their input. MeTA-
Point identifies the cluster nearest to the user’s pointing location and
dynamically adjusts or switches selections based on ongoing input.
MeTABrush analyzes the user’s input stroke and infers their intention
by identifying the primary filament branch close to the path. Finally,
MeTAPaint selects targets based on how the user perceives the structure
and distinguishes them from the surrounding context. These strategies
are well-suited for data selection in immersive environments due to
their inherent flexibility, which enables users to focus fully on the data
features without separating input location from data position.

Density- vs. Region-based Control. Our results partially support
H1: MeTACAST techniques are generally more accurate than the re-
gion-based Baseline, except in T5 where the Baseline method was
slightly more accurate than MeTAPoint and MeTAPaint—but the differ-
ence was minor. In T5, MeTABrush was the second fastest technique
(after Baseline), and some participants preferred the region-based in-
teraction when they had limited time to see the target filaments. T5
required participants to rapidly identify features of the target filaments
(position, density). Here, if participants were able to quickly recall the
target’s location, the region-based method offers a straightforward way
to complete the task. This observation also explains why some partici-
pants ranked Baseline highly in this task, despite being aware that their
performance would not be good with this method. Nonetheless, for this
dataset, MeTABrush—which considers both the position and density
distribution in the selection process—demonstrated clear advantages in
terms of accuracy, completion time, and user preference.

Target Shape. Our findings strongly support the notion that dif-
ferent selection strategies are well-adapted to distinct target shapes.
Specifically, MeTAPoint and MeTAPaint demonstrated substantially
faster performance for Shell and Disk, whereas MeTABrush and Base-
line exhibited advantages in selecting filament-like structures such as
Rings and Filaments. It is important, however, to note that complex
data environments typically involve multiple factors, making it chal-
lenging to determine the optimal selection method based on a single
data feature alone. For instance, although MeTABrush is ideal for
filament-like structures, it was not consistently the fastest method in
such tasks (e. g., Strings). This is primarily due to the fact that, in the
Strings task, participants had to brush the entire string with MeTABrush
and Baseline, while MeTAPaint and MeTAPoint require only minimal
painting/pointing on or around the target string.

Partial Selection. In general, our results provide strong evidence
to support H3: MeTAPoint and MeTAPaint are faster than the two
brushing techniques in selecting whole components such as for Disk
and Shell, in particular when the target is well-separated from other
clusters. This also limits, however, their use when multiple clusters or
a subset of cluster are required to be selected (e. g., Filaments)—then
MeTABrush and region-based techniques are better.

Occlusion. Three datasets had complex occlusion features: Shell
(partially surrounded half-ball), Strings (wrapped inner string), and
Filaments (comprising many small details). Therefore, participants had



to avoid mistakenly selecting interfering particles from other clusters.
Our results show that for Shell and Strings, MeTAPaint and MeTAPoint
were faster than MeTABrush and Baseline, and MeTAPaint was slightly
faster than MeTAPoint. The main reason is that in these two tasks, the
whole cluster needs to be selected. As long as the user can recognize
the partial area of the target cluster, they can accurately and quickly
select the entire cluster. A reason why MeTAPoint was slightly slower
than MeTAPaint may be that we derive the threshold of MeTAPoint
from the density at the input position. Participants thus needed to be
careful when dragging the controller. In contrast, the Filaments task
was particularly challenging for MeTAPaint and MeTAPoint since they
treated clusters as individual objects. Future work could explore how to
use MeTAPaint and MeTAPoint to identify specific internal structures
such as the half-ball (Shell) and inner string (Strings) in situations
where the user lacks a complete understanding of the target object.

6.2 Comparison of existing spatial selection techniques

Target- and context-aware techniques are especially important in three
situations: first, when the user is unfamiliar with the dataset’s structure
and features; second, when occlusion and perception distortion impede
the user’s ability to see, judge, or reach the target, or when they need
to trace the target’s border carefully; and third, when the user has a
clear idea about the target and expects to use a simple and fast input
to select it. We compared MeTACAST with existing spatial selection
techniques’ characteristics (summarized in Table 4 in Appx. F) and
now discuss their pros and cons under various situations, to offer design
guidelines and suggest appropriate methods for different scenarios.

Previous taxonomies have categorized spatial selection techniques
according to various factors such as targets (e. g., object, ROI) [47],
input strategies and degree of freedom of the input [2], and the users’
level of control during the selection process [7]. In our own work we
emphasized different aspects of spatial selection, including data charac-
teristics, selection requirements (such as the selection basis and target
shape), selection strategies (such as metaphor and selection strategy),
and the users’ level of control (including precision demand and post-
adjustment). Note that the required level of input precision depends on
the user’s desired level of control and the level of performance needed
for the selection. For instance, precise input (2D or 3D) could always be
required (high), it could be imprecise or incomplete (low), or imprecise
input could be allowed but may cause inaccurate results (medium). To
narrow our focus, we only focus on spatial selection where the user
specifies a region in space in which the targets are located.

Partial Selection and Interaction Metaphor. An important ques-
tion is to examine how whole or partial selection intents relate to the
chosen interaction metaphor. It would be interesting to investigate, for
instance, whether the lasso approach is an effective method for making
partial selections. The lasso approach is indeed the most widely used
approach for defining selection ranges for multiple targets or partial
selection on 2D surfaces (e. g., CylinderSelection, CloudLasso [63],
SpaceCast [64], LassoNet [12], Hybrid AR selection [48], and Tangible
brush [7]). A potential approach for defining/extending the selection
range in 3D is through extrusion using mobile devices, as in Hybrid
AR selection [48] and Tangible Brush [7]. 3D brushing provides a
direct and intuitive way for users to make partial selections in 3D, as
demonstrated in techniques such as Touching the cloud [36], Fiducial-
Based Tangible [22], Neuron Tracing [42], and MeTABrush. Unlike the
lasso or extrusion, however, the selection range for 3D brushing is not
always clear. Designers thus need to consider specific data features and
selection contexts when developing such techniques. In contrast to for
single-object selection, Raycasting is a less commonly used approach
for making partial spatial selections—defining the selection range in
3D through a ray can be challenging. Other possibilities for defining a
3D range include using tangible devices such as Embodied Axes [13],
which can achieve partial selection in all dimensions.

Selection Strategy and Precision Needs. Our suggestion for spatial
selections is to allow users to express the selection intent in their own
way, and then employ selection heuristics that take all relevant input
information and data characteristics into account to provide an initial
result. Manual selections [7, 13, 22, 36, 43, 48] always require a high

input precision, thus increase the users’ physical and mental work-
load. Several semi-automatic methods are available for context-aware
selection on 2D surfaces ([12, 44, 58, 63, 64]) and 3D space (MeTA-
CAST, [29, 40, 42]), specifically designed to consider users’ intention
and data characteristics. They significantly enhance selection accuracy
and efficiency, while also reducing the users’ physical workload.

Partial Selection and Selection Strategy and Precision Needs.
Following the previous point, a more focused question needs to inves-
tigate if the needs for whole or partial selection increase the demand
for input precision, leading to greater mental and physical workload.
In addition, it would be interesting to explore how selection strategies
can mitigate these challenges. We thus focus on selection techniques
that have low input precision needs. One scenario is that, for selecting
single clusters, users may not need to provide a precise or complete
input. The whole target cluster can be selected with a short/incomplete
stroke (MeTAPaint, Volume Catcher [44], TraceCast [64]) or a single
click (MeTAPoint, PointCast [64], WYSIWYP [58]). Another scenario
is that, for selecting a target subset, users may not need to define a
precise selection range. The intended selection can, e. g., be made
through a complete stroke in LassoNet [12]. Yet there are two powerful
3D brushing methods do not require a selection range but still precisely
select the intended partial target: MeTABrush and Neuron Tracing [42].

6.3 Limitations
As with most work, ours too has some limitations. First, for MeTABrush
we currently use a pre-defined range and search for particles that flow
into this range by following the gradient direction. While adjusting this
range (spatial adjust) and adjusting the density threshold (density adjust)
are both possible, it may cause confusion for users. A more reliable
approach would be to compute these parameters automatically based on
the data distribution, edge, or topological structures. Second, MeTA-
CAST is currently designed for handheld or table-size visualization, and
may not be suitable for room-size settings. In such environments users
may face difficulties in accurately estimating the density distribution
and identifying dense clusters if they are located within them. Third,
MeTACAST methods are density-based methods which perform well
when variations in density distribution are visible. When users encounter
difficulties, however, in distinguishing data features, such as when the
density remains consistent across the entire point cloud, shape-based
techniques may be more suitable choices. Last, it is important to note
that our interaction technique design requires 6DOF input devices.

7 CONCLUSION

We presented a family of spatial 3D data selection methods, MeTA-
CAST (MeTAPoint, MeTABrush, and MeTAPaint), for VR environ-
ments. With MeTACAST, users can explore immersive 3D spaces and
select data in their preferred way such as pointing, brushing, or draw-
ing. We demonstrated MeTACAST for particle data and density as the
measure, yet it can work also with volumetric data and any other scalar
field. The basic idea behind our techniques is that users select visually
interesting or important locations that contain key information (e. g.,
density distribution, geometric shape, and position) that causes the fea-
ture to be visible. As such, two aspects are essential. First, we need to
understand the data and determine what is considered key information
or what should attract a user’s attention. This aspect involves analyz-
ing the data features and seeking the expertise of domain specialists
to determine the data characteristics and what they are trying to find.
Second, we need to understand the users and how they behave when
encountering key information. To accomplish this part, think-aloud
studies are effective to collect user behavior and their intentions.

Our target- and context-aware methods can then infer user intentions
from their input, which means that more input can provide more infor-
mation about the goal. 3D immersive environments thus offer greater
flexibility than 2D projection-based approaches, allowing users to flex-
ibly interact with data and seamlessly integrate their actions across
modalities. By incorporating information from various modalities (e. g.,
head and eye movements; path, direction, and speed of input; gestures;
user location) more sophisticated target- and context-aware methods
can be developed for complex data exploration.
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MeTACAST: Target- and Context-aware Spatial Selection in VR
Appendix

In this appendix we provide additional tables, plots, and charts that show data beyond the material that we could include in the main paper due to
space limitations or because it was not essential for explaining our approach. For access to the source code, application, datasets, and analysis
scripts used in this work, please refer to osf.io/dvj9n and to github.com/LixiangZhao98/MeTACAST.

A ADDITIONAL ILLUSTRATIONS FROM THE ELICITATION STUDY

Fig. 12 shows a visual representation of the visual presentation size
concepts that we used in the study in Sec. 3, while Fig. 13 shows the
four datasets we used in this experiment.

Fig. 12: Three visualization sizes: (a) hand, (b) table, and (c) room
size.

(a) (b)

(c) (d)

Fig. 13: User input trajectories in selecting four point cloud datasets
employed in the think-aloud study: (a) Clusters; (b) N-body Simulation;
(c) Filament; (d) Complex geometries.

B DENSITY ESTIMATION

We used the same density estimation method as Yu et al. [63, 64]. For
efficiency reasons we implemented it on the GPU. We define a box B
covering the point cloud data and divide the space into a 100 × 100 × 100
grid. For each direction k = x,y,z, we define the smoothing length

ℓk = 2(P(80)
k −P(20)

k )/ logN (6)

where N is the particle count in the box B and P(q)
j is coordinate k’s q-th

percentile value. For the ith grid-node at position r(i), we compute the
density ρ(r(i)) using the modified Breiman kernel density estimation
with a finite-support adaptive Epanechnikov kernel [20], given by a

ρ(r(i)) =
15

8πN ∑
j

1

ℓ
( j)
x ℓ

( j)
y ℓ

( j)
z

E(∥r( j;i)∥), (7)

with
r( j;i)

k = (r( j)
k − r(i)k )/ℓ

( j)
k (8)
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Fig. 14: The overall (T1 to T4) geometric means of completion time
for each selection technique. Error bars: 95% CIs.
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Fig. 15: The overall (T1 to T4) pairwise ratio of completion time. Error
bars show 95% confidence intervals (CIs).

where r( j) is the position of the jth particle and ℓ
( j)
k are the smoothing

lengths of the jth particle along the kth direction (k = x,y,z) generated
from the pilot density calculation [63, 64]. The Epanechnikov kernel
E(x) is given by

E(x) =
{

1− x2, |x|< 1,
0, |x| ≥ 1. (9)

The density field of the data is pre-computed offline and the selection
geometry construction with Marching Cubes is performed on GPU.

C SYSTEM PERFORMANCE

We have tested the performance of the MeTACAST with Unity on Intel
Core™ i9, GeForce RTX3090. Table 1 shows the performance of the
MeTACAST, including point cloud dataset sizes, the performance of
density estimation, selection algorithm and geometry construction.

Table 1: MeTACAST performance. Times are in seconds.

Dataset
Particle

Size
Density

Estimation (offline)
Selection
Algorithm

Marching
Cubes

Fig. 1(left) 76k 0.38 0.06 0.005
Fig. 1(mid) 442k 3.47 1.69 0.008
Fig. 1(right) 146k 0.80 0.17 0.009

D ADDITIONAL RESULT DATA FROM THE STUDY

The following tables and graphs show additional results from the exper-
iment we described in Sec. 5. Table 2 shows all mean task completion
times, accuracy scores, and their corresponding 95% confidence inter-
vals for T1 to T5. Table 3 shows the overall mean task completion
times, accuracy scores, and their corresponding 95% confidence inter-
vals. Fig. 14 shows the overall geometric means of completion time
for each technique and Fig. 15 shows the pairwise ratio of completion
times for T1–T4. Fig. 16 and 17 show the overall accuracy scores for
T1–T4. Fig. 18–27 show the accuracy results per dataset. Fig. 28 shows
the rank across all datasets (Disk, Rings, Shell, Strings, Filaments):
MeTAPaint (Pa), MeTAPoint (Po), MeTABrush (Br), Baseline (Ba).

https://osf.io/dvj9n/
https://github.com/LixiangZhao98/MeTACAST


Table 2: The mean task completion times, accuracy scores, and their
corresponding 95% confidence intervals for T1 to T5.

Technique Time 95% CI F1 95% CI MCC 95% CI

D
is

k

MeTAPoint 11s [9,13] .95 [.94,.96] .93 [.91,.95]
MeTABrush 42s [35,50] .92 [.90,.94] .88 [.85,.91]
MeTAPaint 10s [8,11] .96 [.93,.97] .95 [.92,.96]
Baseline 37s [30,46] .88 [.84,.89] .82 [.78,.83]

R
in

gs

MeTAPoint 38s [32,45] .97 [.96,.97] .95 [.94,.96]
MeTABrush 17s [14,21] .97 [.96,.98] .96 [.94,.97]
MeTAPaint 40s [32,50] .96 [.94,.97] .94 [.92,.96]
Baseline 27s [21,33] .96 [.93,.97] .94 [.91,.96]

Sh
el

l

MeTAPoint 11s [9,14] .97 [.96,.98] .95 [.92,.97]
MeTABrush 58s [49,67] .97 [.96,.97] .94 [.92,.95]
MeTAPaint 8s [6,11] .99 [.97,.99] .98 [.96,.99]
Baseline 62s [51,76] .92 [.82,.96] .88 [.79,.92]

St
ri

ng
s MeTAPoint 14s [11,17] .99 [.98,.99] .97 [96,.98]

MeTABrush 40s [34,46] .99 [.98,.99] .97 [.95,.98]
MeTAPaint 12s [10,16] .98 [.97,.99] .97 [.95,.98]
Baseline 63s [51,77] .96 [.88,.98] .93 [.86,.96]

Fi
la

m
en

ts MeTAPoint 43s [35,54] .69 [.65,.72] .69 [.65,.72]
MeTABrush 33s [28,38] .87 [.85,.90] .88 [.85,.90]
MeTAPaint 39s [32,47] .66 [.59,.69] .66 [.60,.70]
Baseline 29s [23,36] .69 [.64,.72] .70 [.66,.73]

Table 3: The overall (T1 to T4) mean task completion times, accuracy
scores, and their corresponding 95% confidence intervals.

Technique Time CI FI CI MCC CI

MeTAPoint 16s [14,19] .97 [.96,.98] .95 [.94,.96]
MeTABrush 36s [31,41] .96 [.96,.97] .94 [.93,.95]
MeTAPaint 14s [12,17] .97 [.96,.98] .96 [.95,.97]

Baseline 44s [37,54] .93 [.87,.95] .89 [.83,.92]
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Fig. 16: The overall (T1 to T4) F1 score. Error bars: 95% CIs.
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Fig. 17: The overall (T1 to T4) MCC score. Error bars: 95% CIs.
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Fig. 18: The F1 score for T1 (Disk). Error bars: 95% CIs.
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Fig. 19: The MCC score for T1 (Disk). Error bars: 95% CIs.
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Fig. 20: The F1 score for T2 (Rings). Error bars: 95% CIs.
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Fig. 21: The MCC score for T2 (Rings). Error bars: 95% CIs.
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Fig. 22: The F1 score for T3 (Shell). Error bars: 95% CIs.
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Fig. 23: The MCC score for T3 (Shell). Error bars: 95% CIs.
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Fig. 24: The F1 score for T4 (Strings). Error bars: 95% CIs.
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Fig. 25: The MCC score for T4 (Strings). Error bars: 95% CIs.
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Fig. 26: The F1 score for T5 (Filaments). Error bars: 95% CIs.
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Fig. 27: The MCC score for T5 (Filaments). Error bars: 95% CIs.
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Fig. 28: User preference for techniques with each dataset.
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Fig. 29: The geometric mean completion times in seconds for T1 (Disk).
VR users (black), non-experts (gray). Error bars: 95% CIs.
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Fig. 30: The geometric mean completion times in seconds for T2
(Rings). VR users (black), non-experts (gray). Error bars: 95% CIs.
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Fig. 31: The geometric mean completion times in seconds for T3
(Shell). VR users (black), non-experts (gray). Error bars: 95% CIs.
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Fig. 32: The geometric mean completion times in seconds for T4
(Strings). VR users (black), non-experts (gray). Error bars: 95% CIs.

E COMPARISON OF TASK PERFORMANCE BETWEEN TWO USER
GROUPS

We further conducted a separate analysis of task performance, taking
into consideration the participants’ level of VR fluency. We divided the
participants into two groups: 15 VR users (weekly experience) and 17
non-experts (yearly experience and novices). Overall, our comparison
revealed that both groups exhibited comparable task performance with
MeTACAST methods. However, with Baseline method, both groups
were equally fast in the Disk and Rings tasks. In the Shell and Strings
tasks, which have more complex occlusion features as indicated in
Fig. 6, VR users were slower than non-experts. On the other hand,
VR users were faster in the most challenging task, Filaments. We
assume that VR users were slower in the complex tasks due to the
higher demands of task completion, but they had better direction sense
in VR environment and were able achieve better performance in the task
which requires a good sense of data location and structure. This finding
also indicates that task performance with MeTACAST is independent of
the influence of VR experience—even novice users are able to achieve
similar performance to VR users, thanks to the intuitive and effective
design of the selection techniques. The following graphs show task
performance results for the two groups (black: VR users, gray: non-
experts). Fig. 29–33 show the geometric means of completion times for
each technique per dataset, and Fig. 34–43 show the accuracy results
per dataset, comparing the two user groups.

F COMPARISON OF EXISTING SPATIAL SELECTION TECH-
NIQUES

Table 4 shows an overview of spatial selection techniques for 3D data
focusing on data characteristics, selection requirements (such as the
selection basis and target shape), selection strategies (such as metaphor
and selection strategy), and users’ level of control (including precision
demand and post-adjustment), as described in Sec. 6.2.
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Fig. 33: The geometric mean completion times in seconds for T5
(Filaments). VR users (black), non-experts (gray). Error bars: 95%
CIs.
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Fig. 34: The F1 score for T1 (Disk). VR users (black), non-experts
(gray). Error bars: 95% CIs.
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Fig. 35: The MCC score for T1 (Disk). VR users (black), non-experts
(gray). Error bars: 95% CIs.
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Fig. 36: The F1 score for T2 (Rings). VR users (black), non-experts
(gray). Error bars: 95% CIs.
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Fig. 37: The MCC score for T2 (Rings). VR users (black), non-experts
(gray). Error bars: 95% CIs.
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Fig. 38: The F1 score for T3 (Shell). VR users (black), non-experts
(gray). Error bars: 95% CIs.
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Fig. 39: The MCC score for T3 (Shell). VR users (black), non-experts
(gray). Error bars: 95% CIs.
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Table 4: An overview of spatial selection techniques for 3D data.

technique data type
selection
basis whole / partial selection strategy

precision
needs metaphor shape adjustment

Cylinder Selection [37, 38] ROI region whole / partial semi-autom., 2D high lasso no control
Cloudlasso [63] point cloud / scalar value whole / partial semi-autom., 2D medium lasso threshold adjust
SpaceCAST [64] point cloud / scalar value whole / partial semi-autom., 2D medium lasso threshold adjust
Volume Catcher [44] scalar value whole semi-autom., 2D low lasso no control
TraceCAST [64] point cloud / scalar value whole semi-autom., 2D low lasso threshold adjust
PointCAST [64] point cloud / scalar value whole semi-autom., 2D low raycasting threshold adjust
LassoNet [12] point cloud deep learning whole / partial semi-autom., 2D low lasso no control
WYSIWYP [58] scalar value none semi-autom., 2D low raycasting no need to control
Slicing Volume [43] point cloud region partial manual high raycasting region adjust
Hybrid AR selection [48] point cloud / scalar region partial manual high lasso + extrusion no control
TangibleBrush [7] point cloud / scalar region partial manual high lasso + extrusion no control
Touching the cloud [36] point cloud region partial manual high brush region adjust
Embodied Axes [13] ROI region whole / partial manual high tangible (box) region adjust
Fiducial-Based Tangible [22] tensor region partial manual high brush no control
Live-Wire [40] scalar value partial semi-autom., 3D medium seed points no control
Lightweight Tangible [29] vector value whole semi-autom., 3D medium tangible (orien.) no control
Neuron Tracing [42] scalar value partial semi-autom., 3D low brush no control
MeTAPoint (this paper) point cloud / scalar value whole semi-autom., 3D low point + drag threshold adjust
MeTABrush (this paper) point cloud / scalar value whole / partial semi-autom., 3D low brush threshold adjust
MeTAPaint (this paper) point cloud / scalar value whole semi-autom., 3D low brush threshold adjust
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Fig. 40: The F1 score for T4 (Strings). VR users (black), non-experts
(gray). Error bars: 95% CIs.

MeTAPoint

MeTABrush

MeTAPaint

Baseline

St
rin

gs

0.00 0.25 0.50 0.75 1.00
MCC score

Fig. 41: The MCC score for T4 (Strings). VR users (black), non-experts
(gray). Error bars: 95% CIs.
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Fig. 42: The F1 score for T5 (Filaments). VR users (black), non-experts
(gray). Error bars: 95% CIs.
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Fig. 43: The MCC score for T5 (Filaments). VR users (black), non-
experts (gray). Error bars: 95% CIs.

the permission to be used here. We also make them available under
the Creative Commons Attribution 4.0 International (cb CC BY 4.0)
license and share them at osf.io/dvj9n.
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