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MolSieve: A Progressive Visual Analytics System for
Molecular Dynamics Simulations
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Fig. 1: A sample analysis performed in MolSieve. Two long-duration simulations of nano-particles at 750 (top) and 800 kelvins (bottom)
are shown. (1) is the Timeline View of the top trajectory before zooming. (2) shows a menu for adjusting exploratory parameters of
each trajectory. (3a) and (3b) are Super-State Views; (6a) and (6b) are their characteristic states. (4a) and (4b) are multi-variate control
charts that were dynamically added during the analysis. (5a) (green dashed outline) and (5b) are regions of interest within a Transition
Region View. (8) shows the visible extents of the 800K trajectory. (9) shows the results of using the Find similar regions button on
the transition region within the 750K simulation. (10) is the Region Comparison Widget for comparing the teal and pink super-states.
(12a) and (12b) show State Space Charts; the boxes display similarities between the two regions. (13) is a Sub-Sequence Comparison
Widget comparing the sequences (7) and (14). An analyst has found a structural change in common between the simulations: (6a), (7),
and (6b) detail the change in the 750K simulation and (11a), (14), and (11b) detail the change at the 800K simulation. (6a) and (11a)
are the same state, and (6b) and (11b) are rotations of each other.

Abstract—Molecular Dynamics (MD) simulations are ubiquitous in cutting-edge physio-chemical research. They provide critical
insights into how a physical system evolves over time given a model of interatomic interactions. Understanding a system’s evolution
is key to selecting the best candidates for new drugs, materials for manufacturing, and countless other practical applications. With
today’s technology, these simulations can encompass millions of unit transitions between discrete molecular structures, spanning up to
several milliseconds of real time. Attempting to perform a brute-force analysis with data-sets of this size is not only computationally
impractical, but would not shed light on the physically-relevant features of the data. Moreover, there is a need to analyze simulation
ensembles in order to compare similar processes in differing environments. These problems call for an approach that is analytically
transparent, computationally efficient, and flexible enough to handle the variety found in materials-based research. In order to address
these problems, we introduce MolSieve, a progressive visual analytics system that enables the comparison of multiple long-duration
simulations. Using MolSieve, analysts are able to quickly identify and compare regions of interest within immense simulations through
its combination of control charts, data-reduction techniques, and highly informative visual components. A simple programming interface
is provided which allows experts to fit MolSieve to their needs. To demonstrate the efficacy of our approach, we present two case
studies of MolSieve and report on findings from domain collaborators.

Index Terms—Molecular dynamics, time-series analysis, visual analytics

1 INTRODUCTION

Molecular dynamics (MD) simulations allow scientists to observe how
systems of atoms evolve over time using a potential energy function
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that calculates interatomic forces. Understanding the nanoscale be-
havior of matter has widespread applications, from guiding protein
mutations in bio-medical research [24] to validating the robustness of
a material in engineering contexts [32]. A large family of software
packages have been developed in order to generate MD simulations,
such as GROMACS [8] for biological simulations, LAMMPS [48] for
materials modeling, as well as countless others, e.g. [27,37]. A recently
introduced simulation management tool called ParSplice [34] has en-
abled MD simulations to span time-scales reaching into the hundreds
of thousands of nano-seconds (milliseconds), two orders of magnitude
larger than simulations typically performed with biological systems.
The time-scales ParSplice is able to simulate typically contain millions
of discrete transitions between molecular configurations. Some of these
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systems suffer from the heterogeneous energy barrier problem [34], a
prevalent issue in long MD trajectories [35, 36].

Trajectories with a heterogeneous energy barrier distribution are
difficult to analyze since relevant regions within a trajectory are buried
amongst a myriad of repetitive transitions within so-called super-states.
While calculating all of the energy paths between every state and vi-
sualizing them seems like a solution at first glance, not only are the
computational costs involved impractical, but the results generated
by this method are impossible to sift through manually. To further
compound the problem, ParSplice generates trajectories as ensembles
because MD is inherently a stochastic process; attempting to gener-
alize the behavior of a system from an individual simulation could
lead to brittle conclusions. These issues dictate the need to develop an
analysis tool that highlights the essential components of a trajectory
(i.e., its transition regions), while understating the parts of a trajectory
where there is little to no change in the structure of the system (i.e., its
super-states), as well as facilitating comparisons between trajectories.

A number of visual analytics systems enable the exploration of
molecular dynamics simulations, e.g. [11, 14, 23, 31, 51]. However,
most existing systems focus on biological simulations, which typically
do not involve the same time-scales as their inorganic counterparts,
rendering them impractical for analyzing the data-sets produced by
ParSplice. To address this gap, we worked closely with domain experts
to develop MolSieve, a visual analytics system that aggressively reduces
molecular dynamics simulations to their essential components (super-
states and transition regions) to facilitate their analysis and comparison.
To evaluate the efficacy of MolSieve, we performed two case studies
with materials science experts on data-sets from their daily workflows.
They demonstrate that our system is not only efficient in extracting
insight but is also adaptable to an expert’s needs. This work contributes:

• A novel combination of coordinated multiple views consisting of
temporal charts for examining long sequences by distinguishing
regions of interest and uninteresting regions;

• A novel state space chart for visualizing discrete temporal events
in a limited screen space while outlining their general trend;

• An efficient, scalable, and customizable progressive visual analyt-
ics system that supports analyzing large materials MD trajectory
ensembles in real-time with the aforementioned visual designs.

2 RELATED WORK

In this section, we review various methods to analyze long-duration
molecular dynamics simulations. We also discuss the visualization
techniques and analytical methods that inspired our system.

2.1 Molecular Dynamics Analysis Approaches
Many approaches exist for exploring long-duration molecular dynamics
trajectories which utilize various methods of reducing the data-set to a
size tractable for real-time analysis. We found that these approaches are
typically tailored for specific analyses of biological systems. For exam-
ple, PyContact [43] enables the exploration of non-covalent interactions
within molecular dynamics trajectories. It aims to provide access to
points of interest within the trajectory by filtering on the amount of con-
tact molecules within the simulation at any given time-step. However,
PyContact requires the calculation of every molecular contact before the
data-set can be analyzed, which can be time-consuming. VIA-MD [46]
allows the exploration of long duration biological molecular systems
through a combination of linked 2D and 3D views, which work together
to highlight events of interest in both the spatial and temporal domains.
Our proposed solution differs in locating regions of interest due to the
difference in scale – VIA-MD was tested on a biological simulation
that spanned twenty-three nano-seconds, while our case studies average
five thousand nano-seconds. To extract insights from data-sets of this
size, we developed a unique data simplification scheme based on the
internal dynamics of the simulation. To the best of our knowledge,
this simplification scheme has not yet been explored. ExaViz [14]
enables the in-situ analysis of biological molecular systems. This in-
situ approach reduces the data-set by allowing experts to decide what
portions of the trajectory are relevant before saving them for long-term

storage, which requires a tremendous amount of computing power and
tedious manual analysis. Byška et al. [11] built a focus+context visual
analytics system that tied statistical properties of simulations to their
3D renders. Building on this work, sMolBoxes [51] utilized a data-
flow model embedded in CAVER [23] to identify important snapshots
within long duration bio-molecular simulations. sMolBoxes identifies
important snapshots (states) within a trajectory by relying on domain
specific information provided by analysts, e.g., using the root-mean-
square deviation (RMSD) between states to identify abnormal structural
changes in proteins. Analysts are able to select individual parts of a
protein to track throughout the trajectory. Unfortunately, this powerful
interaction is inherently coupled with the spatial dimension of the data,
which reduces its scope to biological systems. Duran et al. [15] explore
building a similar system using traditional statistical charts and linking
them to a 3D visualization of the protein being studied. Non-biological
systems do not behave in the same manner as proteins, reducing the
effectiveness of these approaches as a general solution to identifying
regions of interest within a molecular dynamics simulation. Chae et
al. [12] used a deep learning model to reduce the dimensionality of a
molecular dynamics simulation to a 3D space for easier exploration,
using multiple views to display the original data alongside the 3D
embedding. LaSCA [49] is a visual analytics system which identifies
crystalline structures within large molecular systems in great detail;
however, the system does not support analyzing these structures within
the context of a MD trajectory. Wu et al. [54] proposed a visualization
pipeline to identify point defects in nuclear materials – as with LaSCA,
this approach does not consider the trajectory as a whole. To the best
of our knowledge, the visual analytics systems currently available do
not offer an efficient method to identify and compare analyst-defined
regions of interest within MD simulations of materials.

A number of programming tool-kits also provide solutions for MD
trajectories [10, 28, 38, 47]. However, these tool-kits cannot identify
regions of interest within a trajectory without being integrated into a
larger framework. Blindly applying these tool-kits to long simulations
without a scheme to filter and organize their output will simply produce
large bodies of data that are difficult to interpret.

2.2 Visual Analytics Methods for Time-series Exploration

In this section, we discuss several works that directly inspired views
in MolSieve. Tominski et al. [50] developed a multi-attribute temporal
view for a spatial trajectory by stacking horizon charts representing
each attribute. This stacked trajectory chart is then rendered on top
of 3D map data to facilitate a spatio-temporal analysis of the data-set.
DQNVis [52] also took a similar approach to visualize multi-variate
sequence data by stacking line charts, bar charts, and area charts on top
of each other to provide a multi-dimensional view of the behavior of a
machine learning model. Additionally, their approach provides methods
to identify and compare patterns within the trajectory using segment
mining and dynamic time warping. MolSieve does not use dynamic
time warping for comparing sequences, as the structure of a system is
far too complex to be modeled by dynamic time wrapping; instead, we
use domain-specific methods to compare analyst-defined regions. Our
approach combines the visual elements of the aforementioned systems
and uses trajectory information to generate and arrange charts based on
the detected importance of a region. SignalLens [26] uses a distorted
scale where interesting parts of an electronic signal are magnified while
uninteresting regions are minimized in their sequence view. Regardless
of the level of distortion, context is maintained, which is essential
to navigating long time-series on a screen limited by size. MolSieve
distorts the trajectory’s sequence to emphasize transition regions while
minimizing super-states. For a comprehensive review of time series
visualization techniques, we refer to Aigner et al [5].

3 ANALYTICAL TASKS, REQUIREMENTS, AND DEFINITIONS

In this section, we define tasks for MD analysis, the requirements for
an analytical tool, and domain-specific definitions.
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Fig. 2: MolSieve is designed to extract insight from MD simulations in three stages. First, an analyst uses a modal window to set the system’s
exploratory parameters. When the initial simplification completes, analyst-defined properties are mined on portions of the trajectory and progressively
rendered in a Trajectory Component. While the properties are being calculated, the analyst uses the Trajectory Component’s embedded views to
interactively identify regions of interest (T1). If no regions of interest are found, the exploratory parameters can be reconfigured. If the analyst finds a
sub-region of interest, they can select and examine it in detail using the Sub-Sequence Component and the State Detail Widget (T2). The analyst
can use the comparison interactions provided by MolSieve to explore other trajectories in the context of their new discovery (T3).

3.1 Definitions
ParSplice simulations typically generate tens to hundreds of thousands
of unique configurations of the system being simulated, with each
discrete configuration being referred to as a state. Each configuration
has its own state ID. These states contain meta-data about the system
being simulated at a given point in time, such as the positions, chemical
species, velocities, etc.,of its atoms. This meta-data can be used to
calculate properties that characterize its structure and geometry.

A trajectory is a sequence of states, and a single trajectory describes
one of the many possible ways a system can evolve. To transition be-
tween two states, the system must overcome the energy barrier between
them; therefore, state transitions that have a low energy barrier tend to
occur exponentially more frequently than state transitions associated
with larger barriers. This causes states to repeat throughout a trajectory,
since structurally similar states are easier to transition to than radically
different ones. Each transition has a discrete time-step associated with
it to organize it temporally; transitions take a variable amount of time,
but usually they usually occur in the span of hundreds of picoseconds.

The frequency of low energy transitions causes trajectories to often
get trapped in so-called super-states, subsets of states connected to-
gether by low energy barriers, separated from outside regions by high
energy barriers. Parsplice simulations tend to visit these super-states for
long periods of time before transitioning to another super-state. These
movements between super-states are referred to as transition regions,
which typically contain the most important kinetic information of a
system because it controls its long-term behavior. Transition regions
are often comparatively short compared to the time spent trapped within
super-states, while intra-super-state transitions occur very frequently.

When analyzing the structure of molecules, experts often investi-
gate the neighbors of each atom and determine the shapes that these
neighborhoods form in order to characterize a system. Mutations in
the shape and crystalline structure of a system have a strong influence
on its properties. There are seven main types of crystalline structures
commonly found in materials, and our case studies are focused around
analyzing cubic (face-centered cubic – FCC, body-centered cubic –
BCC) and icosahedral (ICO) structures as they commonly occur in
nano-particles; please refer to Misra [33] for a thorough discussion.

3.2 Analytical Tasks
We adopted an iterative design process to develop MolSieve with two
domain experts who work in computational materials science; one
of them has over twenty years of experience, and the other has more
than six. We met bi-weekly for two years, using the feedback from
these meetings to refine MolSieve’s functionality and visual design.
Through the design process, we identified a set of analytical tasks that
are essential for gaining insight into long duration molecular dynamics

simulations. Simplifying these tasks became one of the core design
objectives of MolSieve (Figure 2).
T1: Classify super-states and transition regions in individual tra-
jectories. The first step in analyzing large simulations is to identify
super-states and the transition regions that separate them, which are not
known a priori. Transition regions are critical because they control how
rapidly the system will experience significant changes that could affect
its properties. This separation reduces the data-set to a manageable size
and allows experts to concentrate their analysis on transition regions.
T2: Identify critical sub-regions, relevant patterns and motifs within
transition regions. There are a number of patterns and motifs to be
discovered within the transition regions of a trajectory. Patterns of state
transitions often signify the presence of a structural change, but they can
also be misleading due to the nature of long duration simulations, where
repeated behavior is often due to the system making rapid low-energy
transitions between states. The challenge lies in identifying patterns and
sub-regions within transition regions where meaningful changes occur
while ignoring low information density portions. The analysis of these
sub-regions is the crux of molecular dynamics research; understanding
how the structure of a material changes allows domain experts to make
decisions on whether or not to use a certain material in an engineering
application.
T3: Compare regions of interest between trajectories. MD trajectories
are generated in a stochastic manner, so it is unlikely that two trajecto-
ries will contain the same behavior and physical structures. Therefore,
there is a need to develop flexible methods that can differentiate robust
features of the dynamics that are common to many simulations.

3.3 Requirements
After identifying the primary tasks found in MD analysis, we derived
the following set of requirements for a visual analytics system.
R1: Guide the analyst to transition regions. Analysts should be
guided to regions that are most likely to reveal significant changes in a
system’s structure.
R2: Automatic calculation of analyst-defined properties. The trajec-
tory should be populated with automatically calculated properties that
can be defined by an analyst. Time should only be spent computing
properties for regions that are potentially interesting. The results should
be stored in a data-base for future use.
R3: Highlight potentially interesting sub-regions. Once the expert-
defined properties are rendered, the analyst should be guided towards
sub-regions within transition regions that potentially express a change
in the system’s behavior. While R2 focuses on calculating properties,
guided visual exploration is another crucial aspect that accelerates the

3

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


BA BA B BA CA ED GF KH G HK... ... G HK

(P1, P2, ..., Pn)
Properties

State IDs

PCCA simplification clusters each state into two clusters with cluster membership probabilities 

A 90% B 90% C 55% D 52% E 60% F 53% G 89% H 91% K 95% 

Simplification threshold 75% 

Super-State

4 Timeline View 

5 Detailed Statistical Views 

............

Property 1

Property 2

Property n

State Space Chart

Trajectory Component

Super-StateTransition Region

3

2

1

......

Super-State View
Transition Region View Transition Region View

Super-State View

State Space Chart

...... ......

Super-State View

TimeTime

property  y2

property  yn

property  y1

Fig. 3: The simplification scheme employed by MolSieve and its relation to the visual components in the system. (1) displays a portion of a sample
trajectory’s sequence, where each rectangle represents a state, the capital letter represents its state ID, and P1 to Pn represent its analyst-defined
properties. These properties are not required for the simplification and can be calculated and assigned afterward. (2) GPCCA is performed on this
sequence and it yields the maximum cluster membership probability for each state. Then, the simplification (3) is applied using an analyst-defined
threshold (75% by default). States with a maximum cluster membership probability above this percentage are rendered as super-states, and states
below are rendered as transition regions. These regions are mapped to views in a Trajectory Component which consists of the Timeline View and
statistical views. The Timeline View (4) provides temporal context for the statistical views below. Regions drawn with dashed outlines are transition
regions, while regions without outlines are super-states. The statistical views (5) are arranged temporally and split vertically into partitions, with
each partition corresponding to a single property; we include axes to indicate the relative scale for each property. Super-State Views display small
multiples of violin plots that outline the distributions of each property within a super-state. Transition Region Views are small multiples of control
charts for each property that are accompanied by a State Space Chart. These charts collaborate to describe the most frequently occurring states
within evenly divided segments; the number of states in a segment directly correlates to the number of unique states visited. Segments with large
numbers of states usually indicate a structural change is occurring.

discovery process.

R4: Select, compare, and inspect regions of interest in detail. Inte-
grating R1–3 should enable the analyst to effectively select and refine
regions of interest in a responsive manner, as well as allowing them to
inspect a set of customized properties through expressive visualizations.

R5: On-demand calculation of detailed analyses. The selection
process detailed in R4 generates sub-regions that may include states
that express behaviors of interest. Understanding their behavior requires
physically grounded analyses which can be computationally expensive.
The analyst should be able to request these analyses on demand and be
able to continue exploring the trajectory.

R6: Extensibility. An intuitive extension of R2 is the ability to define
new properties. The solution should accommodate a broad spectrum
of simulation types, enabling analysts to provide customized scripts
for calculating system-specific properties. By providing this amount
of flexibility, analysts can define properties which typically denote
changes in a system. They can then use the visualizations and interac-
tions provided by the solution to quickly identify regions of interest
based on these properties.

R7: Ease of use and performance. The analyst should be able to
easily navigate and discern patternswithin trajectories. Additionally,
the proposed solution must remain responsive during computationally
intensive tasks and progressively render partially calculated data while
waiting for results. The analyst should receive feedback regarding the
progress of complex calculations as well as any errors that may occur,
with the ability to adjust or cancel them as needed.

4 MOLSIEVE

MolSieve is a visual analytics system implemented using a FastAPI [1]
back-end, and an interface powered by D3 [9], React [2], and Redux [3].
The back-end provides a powerful method for simplifying dense MD
trajectories; its results are mapped to the views in the interface (Fig-
ure 1). The interface is designed to quickly guide analysts to potential
regions of interest within MD trajectories (T1) and provides tools to
interactively verify (T2) and compare (T3) multiple data-sets. Due to
the tremendous amount of data that needs to be processed and stored
on the fly, we designed our approach based on the progressive visual
analytics paradigm [16].

To support a wide range of simulations, MolSieve automatically
executes, stores, and renders the results of analyst-defined Python

scripts (R2, R6). This feature enables analysts to specify properties
that indicate a region of interest for the simulation they are studying.
These scripts are provided access to Atomic Simulation Environment
(ASE) [28] representations of each state, which can be leveraged to
calculate physically relevant properties of dynamic systems, e.g., the
Common Neighbor Analysis (CNA) [19] counts for atomic structures.
These n properties are calculated and assigned to each state within the
trajectory (Figure 3.1). To further accelerate the process of discovery,
these properties are calculated and rendered progressively, allowing
analysts to gather insights throughout the data-set without having to
wait for computations to finish (R7).

Background - Trajectory Simplification We used Generalized
Perron Cluster Cluster Analysis (GPCCA) [41] as implemented by
pyGPCCA [40] as the basis for MolSieve’s simplification scheme;
GPCCA is a generalization of the robust Perron Cluster Cluster Anal-
ysis (PCCA+) [13]. PCCA+ has been proven to accurately simplify
MD trajectories by clustering together groups of kinetically linked
states [20, 21]. GPCCA can be applied to simulations where transitions
are modeled as a Markov chain.

MolSieve simplifies the trajectory by dividing it into tentative transi-
tion regions and super-states. This is achieved by first running GPCCA
on the trajectory, which divides it into N dominant super-states, re-
ferred to as clusters. Here, dominant super or macro-states denote
meta-stable states, in the case of reversible dynamics, or, e.g., cyclic
states, in the case of non-reversible dynamics [39]. GPCCA assigns a
vector of N cluster membership probabilities to each individual state
which describes how strongly it belongs to each cluster (Figure 3.2).
Then, each individual state’s membership probability is compared to a
threshold set by the analyst (Figure 3.3); if its maximum membership
probability is above the threshold, it is considered part of a super-state;
otherwise, it is considered to be part of a possible transition region (i.e.,
it occurs in regions where the trajectory moves between clusters). If the
simplification threshold is set to its maximum value of 1.0, no portion
of the trajectory will be simplified, and every state will be considered a
transition region.

When initially loading a trajectory, analysts have the opportunity
to set a range for the GPCCA clusterings they are interested in, as
GPCCA is not guaranteed to yield results for all numbers of clus-
ters. The back-end uses the range to determine and return the optimal
GPCCA clustering for the trajectory and then simplifies it using the
simplification threshold. Simultaneously, analyst-defined properties (P1
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to Pn) are calculated and assigned to each state within the trajectory.
The optimal clustering may not always reveal the best possible splits

between transition regions and super-states, so analysts are free to
adjust the GPCCA cluster counts as well as the simplification threshold
within the interface. The simplification threshold is set to a default
value of 0.75 and the GPCCA clustering range to 2-20 which provides
a reasonable starting point for exploration. A simplification threshold
value of 0.75 tends to reveal sets of states that are weakly clustered,
regardless of the GPCCA cluster count. The default GPCCA clustering
range is set wide enough to ensure a clustering is found. Once a
trajectory is simplified, its results are directly mapped to MolSieve’s
Trajectory Components (Figure 3 right).

4.1 Trajectory Components
Trajectory Components adopt a focus+context approach [17] to assist
analysts in identifying regions of interest through the use of a variable
number of Transition Region and Super-State Views (Figure 2.T1).
Each trajectory belongs to a separate component, organized on the main
area of the screen. The Timeline View (Figure 3.4) provides temporal
context and a means of control for the statistical views (Figure 3.5).

Timeline View The Timeline View (Figure 3.4) displays the regions
that are currently being rendered as statistical views (Figure 3.5) and
allows experts to adjust which regions are visible to focus their analysis.
Regions are colored according to the GPCCA cluster they are assigned;
transition regions are rendered with a dashed outline and super-states
with no outline and a slightly lighter color in order to differentiate
between them. We colored the clusters with a color scheme adapted
from ColorBrewer’s [18] qualitative set. Hovering over either type
of statistical view highlights its corresponding region in the Timeline
View. Brushing the view adjusts the visible extent of the trajectory,
saturating regions that are outside of the brush’s extent and reorganiz-
ing the statistical views. Double clicking the view zooms it in on the
currently brushed region, which allows analysts to view regions that
may have been rendered too small initially. There are two additional in-
teractions provided by buttons next to each Timeline View. Clicking the

PCCA parameters button shows a menu containing two sliders that
adjust the number of GPCCA clusters and the simplification threshold
(R1). The Reset timeline button resets the Trajectory Component
to show the entire trajectory.

The detailed statistical views (Figure 3.5) are arranged in temporal
order from left to right and are drawn with a scale that exaggerates
the size of transition regions to direct the analyst’s attention (R1).
Transition regions are exaggerated because they contain details on how
the system evolved within a critical region, which demands more screen
space; meanwhile, super-states are small multiples of violin plots which
remain legible at small sizes. As a result, super-states are only offered a
maximum of 10% of the total screen space unless there are no transition
regions within the visible extents of the trajectory, in which case they
occupy the entire width of the screen. This exaggerated scale was
inspired by SignalLens [26].

Each view is bordered by the color of the cluster it is associated
with, which assists in finding transition regions between clusters. The
slices marked Property1 to Propertyn in Figure 3.5 display how views
within Trajectory Components are vertically split into partitions. Each
property is assigned a partition per trajectory, and each property is
consistently rendered with its own scale in order to facilitate compari-
son. Partitioning the views in this manner allows experts to follow the
evolution of multiple properties simultaneously.

We implemented a dynamic ranking system for each partition, which
reduces the amount of irrelevant data on the screen in order to stream-
line intra-trajectory comparisons. Properties that change dynamically
throughout a simulation are more likely to be relevant to analysts than
properties that stay constant, so each property partition is ranked verti-
cally based on the magnitude of its difference throughout the trajectory.
This difference is calculated by performing a statistical z-test between
each pair of adjacent super-states and summing them over the trajectory
to get the final score. Each set of rankings is individual to a trajectory,
as certain properties can be highly dynamic in one trajectory and stag-
nant in another. Since the data is being loaded progressively, the rank is

1

2

3

Fig. 4: The importance of being able to dynamically adjust the moving
average period for the Transition Region View. (1) has a moving average
period that is too short and contains a lot of false positives for anomalies.
(2) has a moving average period that is appropriately chosen for the
region being studied, showing only two major anomalous events within
the given time-frame. (3) has a period that is too large to capture the
interesting events occurring within the region.

calculated based on the information currently available to MolSieve. By
default, only 4 properties are loaded, but there is a Property control
button in the main toolbar to adjust the number of properties shown.

Transition Region View To aid analysts in discovering sub-regions of
interest within a transition region, we designed the Transition Region
View (Figure 3.5) to leverage control charts for detecting statistical
anomalies [45]. Each view contains a small multiple of control charts
which correspond to analyst-defined properties which work to highlight
regions that have drastic changes in value. At the bottom of each view,
a chart displays the state space within the region, which provide an
overview of the most frequently occurring states.
Control Charts Each control chart displays the moving average of a
property inside a transition region and it is colored based on the distance
of the moving average from the mean. If the moving average moves one
standard deviation above the mean, it is colored blue. If the moving
average moves one standard deviation below the mean, it is colored
orange, and if it stays within the control limits, it is colored light gray.
This coloring scheme, inspired by ColorBrewer [18], draws attention to
sequences within the transition region where a change is occurring, and
allows analysts to quickly determine what sub-regions are of special
interest, fulfilling R3 and R4. Hovering over a control chart displays a
tooltip with the current value of the property and associated time-step.

By default, the moving average time period for each control chart
is set to one tenth of the length of its Transition Region. However, if
the analyst finds that the moving average time period is not capturing
regions of interest, they can adjust the moving average time period for
all of the control charts within the view (Figure 4).
State Space Chart A state ID vs time-step pixel plot is a familiar
way of visualizing ParSplice trajectories [20]. Each time-step within
a ParSplice simulation corresponds to one state. Rendering states this
way allows analysts to quickly determine regions of interest. Through
our iterative design process, we found that rendering each state within a
transition region would lead to highly cluttered and cumbersome graphs,
since transition regions often consist of thousands of states (Figure 5
top). In order to address these issues, we devised and implemented an
aggregate version of this plot, the State Space Chart (Figure 5 bottom).

The State Space Chart highlights changes within the transition region
by splitting it into ten evenly divided segments and calculating which
states occur most frequently within each segment. To be considered part
of a segment, a state’s actual distribution value needs to be greater than
its expected value. This is defined as 1 divided by the number of unique
states within the segment; i.e., a state occurs equally likely as all of its
neighbors. Segments with many colors indicate that the simulation is
rapidly moving between many unique atomic configurations. Using the
control charts coupled with this view allows analysts to quickly estimate
the visit frequency within the region and identify sub-sequences worthy
of a detailed inspection (T1).

Transition Region View Interactions Upon hovering over a Transi-
tion Region View, a toolbar with multiple controls is displayed. The

Select sub-region button toggles a brush to select sub-regions
of interest; completing the selection generates a corresponding Sub-
Sequence component (Section 4.2; R4; Figure 6a) To facilitate making
fine-grained selections within a region, the Zoom into region button
enlarges the transition region so it occupies the entirety of the screen.
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Fig. 5: The original design (top) for state ID vs. time-step charts was
flawed, as it attempted to render a large amount of data in a small
space. States would often occlude each other, and each render would be
computationally costly, as each rectangle is an SVG element. Our final
design (bottom) underlines the behavior of a sub-region succinctly and
makes it easier to read and interpret when many states are in a region.
Note the highlighted segment, which captures the transition between two
minor repetitive sub-regions.

Super-State View Super-states revealed by the simplification al-
gorithm tend to constitute the majority of ParSplice simulations.
To maximize performance, we elected to use aggregate statistical
charts [53] when representing super-states. A Super-State View (Fig-
ures 1.3a, 1.3b, Figure 3.5) is a small multiple of violin plots that
describes the overall distribution of each property. They highlight the
evolution of each property throughout a simulation in a compact man-
ner. We originally used box-plots to display the distributions of these
properties, but we found that they were highly cluttered due to the small
amount of screen space allotted to them and they did not capture the
variance of each distribution as well as violin plots.

Each violin plot is constructed using the property values from the
so-called dominant states of the region plus a randomly selected 1%.
Dominant states within the super-state are states that occur with larger
than median frequency. Using a small randomly sampled portion of
the region provides a reasonable overview without having to compute a
prohibitive amount of data. In order to ensure that important details
about states are not hidden from analysts, we implemented a expansion
feature that allows experts to explore super-states in more detail. Double
clicking any of the control charts causes the Transition Region View to
“expand" (Figure 6b), revealing its state space and the moving averages
of its neighbors. Expansion occurs 100 time-steps at a time to avoid
loading unnecessary data.

Interactions The toolbar above all Trajectory Components provides
interactions that enhance the analyst’s ability to examine a trajectory
in detail (Figure 1, top left). Analysts are able to construct multi-
variate control charts [30] with the properties they provided by clicking
the Add multi-variate chart button which opens a modal window
(Figure 6c). These multi-variate charts (Figures 1.4a, 1.4b) are dynam-
ically added to each Transition Region View, allowing the analyst to
combine various properties to generate more powerful control charts
that highlight synchronized movements across property values that
are difficult to detect using single variable charts, fulfilling R5. The

Swap trajectory button allows analysts to swap the vertical posi-
tions of Trajectory Components to facilitate direct comparisons. The

Clear selection button allows experts to undo a selection they are
currently making if they decide they want to abort the process.

4.2 Sub-Sequence Component
Since the State Space charts within Transition Region Views only pro-
vide an overview, there is a need to look at sub-regions in more detail.
Sub-Sequence Components (Figure 2.T2) are added to the bottom of
the screen once an analyst completes a selection in a Transition Region
View using the Select sub-region button (Figure 6a). They are de-
signed to fulfill R4 and R5, as they allow experts to glean additional
insight from regions that they deem to be interesting, and correspond
to the abstract/elaborate interaction category in Yi et al. [55]. Each
Sub-Sequence Component provides a small multiple of 3D state vi-
sualizations, which serves as an overview of the structural changes
occurring within the selection. To generate the overview, we developed
a greedy search algorithm that uses the Frobenius norm (provided by
ASE [28]) of the spatial distance between all atomic coordinates. A
high distance between states indicates that they are structurally differ-
ent. The algorithm iterates over the selection and takes the distance

between the state being queried and the rest. To find states that are as
different as possible, we start at the initial state of the selection, find its
most dissimilar counterpart, and start the search again at this state until
we reach a maximum iteration count or the end of the selection.

At the bottom of each Sub-Sequence Component is a traditional
state ID vs. time-step plot of the selection’s constituent states (Figure 5
top). The Sub-Sequence Component also supports running the Nudged
Elastic Band calculation [22] using the Run NEB button. Clicking
the button (Figure 2.T2) opens a modal window that allows analysts
to adjust the parameters of the calculation and make a selection on the
sub-sequence that will be used in the calculation. The results from the
calculation are used to generate a potential energy graph which shows
the minimum energy pathways for the selection they made, fulfilling R5.
Potential energy graphs are commonly used by analysts to determine if
a sequence of states constitutes a structural change in the simulation.
An exceedingly high potential energy barrier between any two pairs of
states in the sequence followed by any number of low energy barriers,
usually indicates a transition. This is because particles are known to
move towards their lowest energy configurations.

State Detail Widget Whenever a state is clicked throughout the UI
(e.g., within State Space Charts, Sub-Sequence Components etc.), the
State Detail Widget (Figure 2.T2) is updated. It displays a static 3D
visualization of the state, inspired by guidelines outlined in Byška et
al. [11] that suggest linking 3D visualizations of a system to its prop-
erties. Additionally, a table is shown below the 3D render displaying
the properties of the state that was selected. Since states are all colored
consistently throughout the visual interface, we included a bar under
all 3D renders that displays the selected state’s color, making it easy to
visually link the state to other visualizations. The Modify 3D render
button in the trajectory toolbar allows analysts to change the way states
are rendered in 3D throughout the interface by Python scripts inside
the vis_scripts folder in the source code (R6). Experts pick the visu-
alization script they want to use with a pop-up menu that is populated
with the contents of the vis_scripts folder. Analysts are expected to
define a function that takes an OVITO [47] rendering pipeline object
as a parameter which they can modify to suit their needs. Figure 2.T2
demonstrates an example: the default view is swapped for a visualiza-
tion of crystalline structure neighborhoods where each atom is colored
according to its structural classification (see Section 3.1). Customizing
the visualization gives analysts an additional method to verify their
conclusions made from the 2D charts in MolSieve and is integral to
certain types of analyses (Section 5.2).

4.3 Comparison Widgets and Interactions
MD ensembles are practically impossible to analyze due to the amount
of data that needs to be compared. To address this, we included a variety
of comparison interactions that quantify the difference between regions
of interest from multiple trajectories (Figure 2.T3 and Figure 6).

The Compare regions/selections button allows experts to select
regions or sub-sequences they want to compare directly. When two
are selected, a Region Comparison Widget is placed at the bottom of
the screen which contains asymmetrical violin plots that compare the
distributions of each property (Figure 6d). Transition Region Views
can also be selected with this interaction, making it easy to compare
them with Super-State Views; MolSieve uses the properties from the
dominant states in transition regions to compute the distribution of each
property, allowing for a fair comparison. Comparing regions this way
reduces the cognitive load of having to look back and forth between two
distributions that are visually separated. When two Sub-Sequence Com-
ponents are selected, a Sub-Sequence Comparison Widget is generated,
which displays a state similarity heat-map (Figure 6e). State similarity
is defined as the inverse of the distance used in the 3D overview for
Sub-Sequence Components, see Section 4.2.

The Find similar regions button lets an expert select a Transition
Region View to quickly compare to all other Transition Region Views
that are currently selected using the Timeline View’s brush, which
corresponds to a Connect interaction in Yi et al. [55]. Once the selection
is complete, MolSieve computes the difference between their state
distributions and then displays the result with a tooltip rendered above
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Fig. 6: MolSieve’s unique interactions. (a) lets analysts select sub-regions of interest within a Transition Region View to create a Sub-Sequence
Component. (b) Double clicking a Transition Region View causes it to expand into its neighbors, which makes it possible to view parts of super-states
in detail. (c) allows experts to create multi-variate charts. The Compare regions/selections button can compare any Transition Region or
Super-State View by creating a Region Comparison Widget (d) which is a small multiple of asymmetrical violin plots detailing the distributions from
each selected region. The button also works with Sub-Sequence Components, creating a Sub-Sequence Comparison Widget (e) that contains
a heat-map detailing the similarities between the selections. (f) allows experts to select a single Transition Region View, which MolSieve uses to
compare with all other visible transition regions, automatically highlighting their similarity on the Timeline View. (g) recolors all of the states in the
interface according to the OPTICS clustering algorithm using analyst-defined properties.

each region (Figure 6f). This computation provides a crude preview
of similarities between two transition regions, which can be used to
narrow down which regions require an in-depth comparison.

Clicking the State clustering button clusters all of the states in
the transition regions visible on the screen based on their properties
(Figure 6g). MolSieve uses the OPTICS clustering algorithm [6] to
generate clusters to color the states by. Clustering states together based
on their properties provides a slow, but flexible method to directly
compare trajectories.

These interactions were designed to replace one of the inherent visual
features of chord diagrams in an earlier design, where regions could
be rendered as arcs on a circle and linked together based on similarity.
When we attempted to implement chord diagrams in MolSieve, we
found them to be cluttered and confusing when trying to interpret the
temporal structure of the data.

Clicking anywhere in the Super-State View updates the State Detail
Widget with the state that occurs most frequently within the region,
referred to as the region’s characteristic state. Characteristic states
describe the general properties of these regions [44]. Thus, this inter-
action allows analysts to quickly determine if any structural changes
occurred between super-states. Once a change has been identified,
analyst can seek more detailed information about the change within the
Transition Region View between the two differing super-states.

5 CASE STUDIES

We demonstrate the efficacy of MolSieve by presenting two case studies
in which we conducted pairwise analysis [7] with our domain experts
E1 and E2. The first case study involves analyzing two long-duration
trajectories of platinum nano-particles, first by determining sub-regions
in each trajectory where the particle undergoes a structural change and
then comparing them. The second case study focuses on atom vacancy
analysis, where a reference atomic configuration is compared to states
within the trajectory. In atom vacancy analyses, experts typically look
for regions within a simulation where the “missing" atoms begin to
displace in tandem.

5.1 Platinum Nano-particles
Our nano-particle expert (E1) aimed to identify and characterize sig-
nificant fluctuations in the shape of a platinum nano-particle subjected
to high temperatures. E1 began the case study by loading a simulation
of a platinum nano-particle at 750 kelvins, which consists of approx-
imately eighteen million transitions and twenty-five thousand unique
states (Table 1), with each state representing different configurations of
a nano-particle with 147 platinum atoms.

Based on a prior study of nano-particles [21], the analyst decided
that the best properties to analyze this simulation were the Common
Neighbor Analysis (CNA) [19], Ackland-Jones [4] (AJ), and Polyhedral
Template Matching [29] (PTM) atom characterization counts. These

analyses attempt to characterize the structure of a nano-particle based
on descriptors of the local environment around each component atom
and have been found to be strong indicators of transition regions. The
analyst wrote a script that used OVITO [47] to compute these properties
and loaded them into MolSieve (R2). Since it was difficult to tell
what was occurring to the nano-particle from the default 3D render,
our analyst wrote a visualization script that highlights CNA counts
within states (Figure 1.6a, 1.6b, 1.7, 1.11a, 1.11b, 1.14). The CNA
visualization script renders HCP atoms as red, ICO atoms as yellow,
and FCC atoms as green.

Identify Transition Regions (T1): E1 decided to load the trajectory
with a GPCCA clustering range of 2-20 and a simplification threshold
of 0.75. GPCCA split the trajectory into two clusters, yielding a small
red cluster in between a dominant teal cluster (Figure 1.1) which E1
zoomed in on using the Timeline View. This revealed a busy region
with many possible transitions; however, the Super-State Views showed
that the super-state distributions did not vary greatly between each other,
so the analyst increased the number of clusters to 4, hoping to reveal
more fine-grained super-states (Figure 1.2). Once the simplification
was rendered, they found that there were a number of transition regions
between super states where the ICO and HCP counts of the nano-
particle were rising (R1; (Figure 1.3a and 1.3b).

Analyze Transition Patterns (T2): The analyst added a multi-variate
control chart using the ICO counts from all three analyses to see if they
would all point towards the same regions (Figure 1.4a and 1.4b). The
analyst then found two sub-regions within a Transition Region View
where the control charts indicated that the structure of the nano-particle
changed (Figures 1.5a, 1.5b; R3).

Next, E1 clicked on the Super-state Views (Figure 1.3a, 1.3b) sur-
rounding that Transition Region View to get an understanding of how
the nano-particle changed from the first super-state to the second;
the characteristic states of each super-state are shown in Figures 1.6a
and 1.6b. Since it was difficult to tell what was occurring to the nano-
particle from the default 3D render, the analyst changed the 3D view
to highlight CNA counts. This revealed a sudden change in the ICO
count, where the two green atoms disappear in Figure 1.3a disappear.

To verify that the sudden change in ICO count was not a random
event, they double-clicked the Transition Region View to expand it.
This confirmed that the nano-particle stays in the same configuration
for some time before suddenly undergoing a drastic change in the FCC
and ICO counts. Satisfied, they made a selection in the region where
the ICO count suddenly changed from zero to one (Figure 1.5a), which
rendered a Sub-Sequence component. Then, they clicked through the
states in the Sub-Sequence Component to get a detailed look at what
was occurring to the particle (R4). This revealed that the trajectory was
undergoing a transformation (Figure 1.7) within the region the analyst
selected (Figure 1.5a); the nano-particle started the transition with two
FCC atoms (Figure 1.6a) and lost them (Figure 1.6b). They ignored the
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other sub-region where the ICO count dropped (Figure 1.5b), stating
that “This is normal behavior in simulations with a heterogeneous
energy barrier: the system tries to escape its configuration but is not able
to, causing it to change before returning to its previous configuration;
this is why I wanted to check the region on the left."

Once the transition was found, they decided to run Nudged Elastic
Band (NEB) calculations on the both ends of the suspected transition
region (R5). The NEBs confirmed that the transition to and from
the suspected transition region took a large amount of energy, thus
demonstrating that our system is a significant improvement in terms of
detecting regions of interest in large molecular dynamics simulations.

Ensemble Analysis (T3): Once the transition was confirmed, the
analyst decided to load another platinum nano-particle trajectory at
800K. E1aimed to determine if the structural changes they observed
in the particle at 750K were similar to the ones observed at 800. The
800K simulation contains thirteen million transitions and fifty-three
thousand unique states (Table 1).

Once the simulation was loaded, the analyst used a similar workflow
to determine where the transition regions occurred in the trajectory by
carefully adjusting the simplification threshold until a suitable number
of possible transition regions were displayed. Starting at the simpli-
fication threshold’s default value of 0.75 did not yield any transition
regions; however, it led the analyst to zoom into a sequence of super-
states where the ICO count was changing from zero to one. Increasing
the simplification threshold to 0.85 revealed super-states undergoing
a transition similar to the 750K trajectory (Figure 1.8). The state IDs
overlapped between the two trajectories, and many regions that con-
tained the same 4 states that the 750K simulation spent large amounts
of time in (Figure 1.12a and 1.12b; R1, R3).

The analyst then decided to click the Find similar regions button
and select the transition region they discovered in the 750K trajectory.
This revealed many regions shared a large portion of states with the se-
lection, a region which scored 12% similarity based on the set of unique
states present in each region, which can be seen on the Timeline View
(Figure 1.9) (R4). A similarity of this magnitude is significant due to the
fact that simulations are unlikely to contain the same states in a small
temporal region. They then used the Compare regions/selections
button to examine the difference in distributions between the regions
that scored highest on similarity and the original transition region they
discovered (Figure 1.10). While the region that was 12% similar did
not have the same transition characteristics, the analyst found a region
that had a similar shift in its ICO and HCP count. Moreover, when the
analyst clicked on the two Super-State Views surrounding the region,
they found that the first super-state had the same characteristic state as
the first in the previously found region, and the second super-state was
a rotation of the previous tailing super-state (Figure 1.12a, 1.12b).

While the nature of the transition was similar based on the control
charts, E1 wondered if the states were truly structurally similar, so they
went to use the State clustering button. Recoloring the states based
on their structural cluster revealed that the region shared many states,
particularly around the sub-regions where the analyst believed a transi-
tion was occurring (Figures 1.12a and 1.12b). The analyst also used
the Sub-Sequence Comparison Widget to compare the two selections
(Figure 1.13), which verified that the transitions were similar in nature
as the states were rotational analogs of each other. The combination of
these comparisons reassured the analyst in their conclusion that these
transitions were of a similar nature (R4). While not identical to the
one found in the 750K simulation, the sub-region found by the analyst
also describes how the nano-particle loses FCC atoms and gains an
ICO atom (Figure 1.14); this slight difference is to be expected due to
the fact that MD simulations are stochastic by nature. This discovery
demonstrates that our system is effective in not only detecting regions of
interest in one long-duration simulation but is also capable of detecting
similar physical occurrences in multiple simulations.

5.2 Bulk Tungsten Defect Analysis
The goal of a defect analysis is to understand the way the point defects
in a crystalline structure evolve over the course of a simulation; these
defects determine the properties of a given material. Typically, analysts

use the Wigner-Seitz cell method [56] to visualize the difference be-
tween a state in a defect simulation and a reference structure that does
not have any defects. Our analyst, who specializes in cell defects (E2),
provided a reference Tungsten lattice with 2,000 atoms, which repre-
sented a perfect, defect-free crystalline structure, as well as a Python
script from his daily workflow that compares a state and the reference
structure using the Wigner-Seitz analysis. The script they provided
outputs the defective atoms in each state and displays them, which the
analyst used as the state view for the case study, seen in the renders for
Figures 7.A and 7.B. Additionally, the analyst used the output from the
script to create three properties which described the center of mass of
the atoms that were defective (R6).

To begin the case study, the analyst loaded their scripts and a simu-
lation of a Tungsten crystalline lattice being subject to various defor-
mations at 1000 kelvin. This data-set was considerably smaller than
the nano-particle case study, having only approximately 800 transitions
and only 50 unique states (Table 1). However, the size of each state
was considerably larger, as each state represented a Tungsten lattice
with 1996 atoms.

Analyze Transition Patterns (T2): MolSieve initially classified the
entire trajectory as 3 super-states, which meant that the GPCCA sim-
plification was not useful for this data-set. This prompted E2 to set
the simplification threshold to 1.0, and rendering all of the GPCCA
clusters as transition regions, allowing the analyst to see the control
charts for each property. Once it was re-rendered, the analyst noticed
that the moving average time period for each Transition Region View
was very high, obscuring potentially interesting transitions, so they
set the moving average time period for each transition region to 10.
Once the system was configured properly, the control charts exposed re-
gions where the center of mass changed rapidly in all three dimensions.
MolSieve immediately identified diffusive transitions (Figure 7.A),
highlighting them among the numerous repetitive thermal vibrational
motions (Figure 7.B) that were composed of single vacancies moving
back and forth (R1, R3). E2 then selected several regions highlighted
by the control charts and was able to identify and follow the chain
of events for several diffuse transitions. This case study was able to
demonstrate that MolSieve is effective in finding regions of interest in
diverse analysis scenarios.

5.3 Domain Expert Feedback
To evaluate MolSieve, we conducted an hour-long semi-structured
interview session with E1 and E2. During the interview, we asked them
to compare their daily workflow to using MolSieve and solicited their
suggestions on improving the system.

A typical workflow for a molecular dynamics analyst consists of
running scripts for several days on simulation data and sifting through
states manually. They typically visualize the states in OVITO [47] and
then click frame-by-frame to get an idea of what changes the system
is going through. The greatest challenge in analyzing simulations this
way is the amount of data that needs to be processed which makes it
difficult to keep track of transitions and one’s temporal context within
the trajectory. E1, our nano-particle expert, remarked that “The overall
layout of MolSieve makes it easy to analyze these data-sets. It is very
easy to understand where you are in the trajectory, just by looking at
the Timeline View. This helps me think about what is going on in
the simulation as a whole, and I don’t feel like I have tunnel vision
while examining data." They continued their reflection on the system by
comparing the experience of examining regions of interest in MolSieve
with their daily workflow, specifically praising the 3D overview within
Sub-Sequence Components, saying that “The 3D overview [within the
Sub-Sequence Component] provides a very nice, pictorial, visual effect
that gives a preview of what the particle is going through. I don’t have
to waste time clicking back and forth between states to get an idea
of what I’m looking at." E2, our defect analysis expert, reflected on
MolSieve’s visual design by saying, “The combination of the control
charts and the aggregate state space chart make it easy to find regions
of interest within a transition region. The aggregate state chart also tells
me which regions to avoid selecting, since it’s so easy to see where the
simulation gets stuck jumping between a small set of states."
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Fig. 7: Results of the defect analysis case study. (A) Demonstrates an example of the diffusive transitions discovered within the simulation, which
are a set of unique structural changes occurring to the defective region within the Tungsten crystalline lattice. (B) Demonstrates an example of
"fluttering", where the defects within the lattice move back and forth between two configurations, one atom at a time. These kinds of transitions are
the predominant transformations occurring to the lattice throughout the trajectory. The dashed rectangles represent the colors of each state’s ID, and
demonstrate that the State Space Charts were effective in capturing the regions of interest.

The experts found that MolSieve was efficient, providing a massive
productivity increase over their accustomed workflows. E1 said, “The
system is exciting, as it takes an unimaginable amount of data and
makes it interpretable. The nano-particle simulations we examined
could take several lifetimes to sift through, and MolSieve manages to
make it look trivial, with near real-time performance." E2 added, “The
amount of data I was able to comb through with MolSieve would have
normally taken a few weeks to do, and I managed to do this in just a
few minutes," which indicates that we fulfilled R7.

The customizability of the system was a major selling point, as
E2 stated, “That is what really makes it come to life - this makes it
applicable for a wide array of applications and will save us a consid-
erable amount of time in the future." E2 continued the discussion by
suggesting that analysts should be able to customize the simplifica-
tion algorithm. This idea stems from the results of the atom vacancy
case study (Section 5.2), where the simplification algorithm failed to
produce transition regions. To get around this, E2 increased the sim-
plification threshold to include the entire trajectory. E2 warned that,
"In principle, the simplification scheme in MolSieve should work on
most data-sets but molecular dynamics simulations are often analyzed
in various modalities, some of which are not captured by dividing the
trajectory using GPCCA." Thus, allowing experts to customize how
the trajectory is simplified could make it easier to find relevant regions
for various analyses. E2 added that the distance metric used in both the
overview in the Sub-Sequence Component (Section 4.2) as well as the
heatmap in the Sub-Sequence Comparison Widget did not effectively
describe the difference between two states. This was due to the fact that
we were studying the absence of atoms within a state. To make these
comparisons more useful, they suggested that the distance functions in
MolSieve should also be customizable.

Finally, E1 felt that the MolSieve was lacking a feature for comparing
multiple individual states. We focused on comparing sub-regions within
trajectories and did not consider the importance of being able to easily
compare two or more states. The Sub-Sequence Comparison Widget
supports this to a limited extent, but E1 suggested an interaction that
could “save" states and show them on demand.

6 CONCLUSION

In this work, we present MolSieve, a visual analytics system for long-
duration molecular dynamics simulations modeled by discrete Markov
chains. Through the use of multiple coordinated visualizations powered
by a data simplification scheme unique to MD simulations, MolSieve
makes it possible to analyze previously unexplored simulation data-sets.
The comparison interactions offered by the system provide support for
analyzing simulation ensembles. Additionally, MolSieve’s Python pro-
gramming interface lets it accommodate a wide variety of simulations.
To demonstrate the effectiveness of MolSieve’s design, we analyzed
three simulations alongside our domain experts: two nano-particle sim-
ulations and one atom vacancy simulation. Table 1 provides a detailed

Simulation Generation
time (s)

Simulation
time (ns) # Timesteps # States Time to load

(cached) (s)

Total
preprocessing

time (s)

nano-pt-700 35,994 62,857.99 6,711,821 16,631 5.876 459.156
nano-pt-750 35,992 49,869.45 18,463,872 24,457 7.714 1507.284
nano-pt-800 35,993 43,152.76 13,348,978 53,018 10.489 1150.753
nano-pt-900 57,586 31,636.00 7,721,529 490,226 14.979 9172.017

tungsten 10,800 10,000.00 866 241 2.000 6.800

Table 1: Several simulations that were tested on MolSieve are presented
here. This table displays the total time it took to generate each simulation
in ParSplice, the length of time the simulation represents in nanoseconds,
the number of discrete timesteps in the simulation, the number of unique
states, the time it takes to load the simulation when cached, and how
long it takes to load each simulation.

look at the efficiency of the system.

However, it became apparent that some of its components need
to support further customization. We found that the simplification
algorithm would sometimes return many regions in a trajectory, which
led to the screen being highly cluttered. This would require the analyst
to zoom in using the Timeline View to get a better idea of the general
trend within the trajectory. This can be mitigated by reformulating the
way regions are rendered to only show large regions until the zoom
level is appropriate. We also found that some visual design elements
must be adjusted; these issues are particularly prevalent in the color
encodings of the interface. The analysts found that coloring states
by their IDs made it difficult to distinguish them from one another
once a large number of states were rendered on the screen, which we
attempted to remedy by implementing the state clustering function.
However, the state clustering function would sometimes also have color
overlap, which could be reduced by mapping the number of clusters to
a set of salient colors. Alternatively, we could explore using different
visual encodings to distinguish a large number of classes. Another
limitation is the inability to view a list of the most frequently occurring
states within a Super-State. This can be addressed by adding a widget
that shows all of the most frequently occurring states in a region.

In the future, we plan to address some of the limitations of the
system, including the cramped visual encoding space and the need
for extra customization. Providing additional support for exploring
biological simulations would be of particular interest, as this could lead
to a truly general MD region-of-interest visual analytics system. To
continue scaling, we plan to switch the rendering engine to use WebGL
instead of SVG, allowing MolSieve to take advantage of the current
innovations in consumer graphics technology. Moreover, a number of
techniques have yet to be integrated into our system - improving the 3D
rendering pipeline will allow MolSieve to support a number of novel
analyses (e.g., [25, 49, 54] and rendering techniques [42]. Future work
will also include a method to recall expert selections, a direct state
comparison view, and better 3D rendering support.
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7 SUPPLEMENTARY MATERIALS

We included a demo video that showcases the first case study
and an instruction manual for MolSieve as supplementary mate-
rial. MolSieve’s source code is available at https://github.com/
rostyhn/MolSieve.
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