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Scalable Hypergraph Visualization
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(a) Qu et al. [41] (b) Our method: intermediate scale (c) Our method: final optimized layout

Fig. 1: A paper-author hypergraph network with 786 vertices and 318 hyperedges. We first show the result of Qu et al. [41] in (a).
Using our framework, the same hypergraph is simplified before the layout optimization begins (b). Then the simplification is iteratively
reversed and the layout is refined until an optimized layout for the original hypergraph is recovered in (c).

Abstract—Hypergraph visualization has many applications in network data analysis. Recently, a polygon-based representation
for hypergraphs has been proposed with demonstrated benefits. However, the polygon-based layout often suffers from excessive
self-intersections when the input dataset is relatively large. In this paper, we propose a framework in which the hypergraph is iteratively
simplified through a set of atomic operations. Then, the layout of the simplest hypergraph is optimized and used as the foundation for a
reverse process that brings the simplest hypergraph back to the original one, but with an improved layout. At the core of our approach
is the set of atomic simplification operations and an operation priority measure to guide the simplification process. In addition, we
introduce necessary definitions and conditions for hypergraph planarity within the polygon representation. We extend our approach
to handle simultaneous simplification and layout optimization for both the hypergraph and its dual. We demonstrate the utility of our
approach with datasets from a number of real-world applications.

Index Terms—Hypergraph visualization, scalable visualization, polygon layout, hypergraph embedding, primal-dual visualization

1 INTRODUCTION

Hypergraphs are a generalization of graph data structures consisting
of a set of vertices and a family of hyperedges. A hyperedge joins
any number of n ≥ 1 vertices and provides a natural way to represent
polyadic (multi-sided) relationships [40]. Hypergraphs can be thought
of as networks of polyadic relationships and have many applications
in social sciences, biology, computer science, and engineering where
such relationships are prevalent [4].

Hypergraph visualization has seen many advances in recent
decades [4] with a focus on finding a proper visual metaphor for repre-
senting hyperedges (polyadic relationships) to facilitate a number of
common analysis tasks. Qu et al. [40] introduce a visual metaphor in
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which each hyperedge takes the form of a 2D polygon in the plane,
whose vertices encode the members of the underlying polyadic rela-
tionship. This representation allows the cardinality of a hyperedge
(number of vertices) to be easily understood. For example, a paper-
author hypergraph dataset, in which each vertex represents an author
and each hyperedge a research paper, can be visualized with the poly-
gon metaphor to easily communicate the number of co-authors for
each publication (Figure 1). Qu et al. [41] also develop an optimiza-
tion framework that can automatically generate a high-quality polygon
layout for a hypergraph with tens of hyperedges based on a set of visu-
alization design principles that they identify. Recognizing the duality
between the vertices and the hyperedges in a hypergraph, they augment
their optimization framework to simultaneously generate high-quality
layouts for the input hypergraph and its dual hypergraph in which the
roles of the vertices and hyperedges are reversed.

However, scalability presents a major challenge to their approach for
large hypergraph datasets, which can have hundreds or thousands of ver-
tices and hyperedges. With a relatively large dataset, their optimization
process can be trapped at local minima, producing suboptimal layouts
with excessive overlaps between polygons (Figure 1 (a)). To address
this challenge, we introduce a new polygon-based layout optimization
framework in which a complex hypergraph is automatically simplified
by iteratively applying a set of atomic simplification operations that
we have identified. The simplification process terminates when one
or more user-specified criteria are met. Next, we generate a polygon
layout for the simplified hypergraph using a version of the optimization
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(a) (b) (c)

Fig. 2: A hypergraph with a planar König representation (a) is plane
embeddable when the regions can be represented by arbitrary shapes
as in Zykov’s representation (b). However, with the additional requirement
of polygon convexity (c), the hypergraph has unavoidable overlaps using
the polygon representation [41].

method of Qu et al. [41] which we modify to make efficient use of
their optimization energy terms. From there, our framework iteratively
inverts the simplification operations until the input hypergraph is re-
covered. Each time a simplification is inverted, the layout is locally
optimized over a neighborhood immediately surrounding the location
of the operation. Our framework (Figure 1 (c)) leads to an improved
final layout of the original hypergraph compared to the framework
of Qu et al. [41] (Figure 1 (a)). We extend our framework to handle
simultaneous layout optimization of the hypergraph and its dual hyper-
graph, taking advantage of the fact that our atomic operations naturally
simplify both hypergraphs. This is demonstrated in one of our case
study examples in Section 6 (Figure 9). During the simplification step,
the order of atomic operations is determined by a priority measure
which we design to reduce the amount of overlap among polygons
and preserve local structures such as high-degree and centrally located
elements in the visualization.

As the polygon-based metaphor requires all polygons to be convex,
a hypergraph may not be plane-embeddable even when it is planar
(Figure 2). That is, the requirement of convexity greatly reduces the set
of hypergraphs that can be mapped to the plane without self-overlap in
the regions representing the hyperedges. We investigate this issue and
introduce a new notion of hypergraph planarity with convex polygons.
Being able to detect subsets of non-planar hyperedges allows us to save
time on attempting to remove overlaps between such hyperedges.

Our framework exceeds the performance of [41] for hypergraph
datasets with more than 1000 elements in terms of reducing polygon
overlaps which is crucial to visual clarity. To enable our priority-guided
simplification, we also introduce a new vertex and hyperedge based
statistic called adjacency factor which correlates to non-planar sub-
hypergraphs.

We demonstrate the utility of our framework with two applications:
(1) a paper-author collaboration network and (2) a network of inter-
national trade agreements. To evaluate the effectiveness of our layout
framework, we conduct a user survey where participants have com-
pleted analysis tasks using our final optimized layouts as well as a few
scales of simplification. We utilize eye-tracking technology to study
participants’ exploration of our visualizations while they answered
task-driven questions. The preliminary results suggest that our new
layout method allowed the survey participants to perform the tasks with
relatively high accuracy.

We make the following contributions to hypergraph visualization:

1. A novel multi-scale optimization framework for generating high-
quality polygon-based visualizations of hypergraphs with thou-
sands of vertices and hyperedges.

2. A novel priority-guided hypergraph simplification method which
is the first to operate on both vertices and hyperedges.

3. A set of atomic simplification operations which can simplify a
hypergraph and its dual hypergraph simultaneously.

4. A new definition for hypergraph planarity within the polygon
visualization metaphor.

2 RELATED WORK

In this section, we review past research in graph and hypergraph visual-
ization that is most relevant to our work.

2.1 Hypergraph Visualization

Hypergraph visualization has been well explored during recent
decades [4]. Much of this research has focused on identifying the
visual representation of hyperedges, such as matrices [32, 35, 45, 55],
bipartite graphs [3, 17, 52], and metro lines [18, 27, 56]. Region-based
visual metaphors derived from Euler and Venn diagrams [39,43,48,51],
represent sets (hyperedges) as closed regions whose overlaps indicate
the intersections of their corresponding sets. The vertices in the hy-
pergraph are often not explicitly shown, such as [43]. More recent
approaches explicitly represent set elements (vertices) by drawing them
as points inside the corresponding regions [3, 5, 42, 46, 47]. As pointed
out in [41], placing the vertices inside the regions can make it difficult
to identify the cardinality of the hyperedges. Instead, Zykov [57] re-
stricts vertex placement to the boundaries of the regions. Qu et al. [40]
represent each hyperedge as a polygon so the vertices of the hyperedge
are also the vertices of the polygon. Unlike Zykoy’s approach where
the region can take arbitrary shapes, Qu et al. [40] require the polygons
to be as close to regular as possible and thus convex. With this rep-
resentation, identifying the cardinality of a hyperedge is the same as
recognizing the cardinality of the corresponding polygon. Qu et al. [41]
identify a number of design principles for polygon-based hypergraph
drawings and develop an automatic layout optimization system based
on these principles.

However, the objective functions used in [41] are not convex, thus
leading to local minimums that make the final hypergraph layouts
suboptimal, especially for large datasets. In addition, some of the
hypergraphs cannot be embedded in the plane without overlaps using
the polygon representation, even when they are plane embeddable
if the hyperedges are represented by arbitrary (possibly non-convex)
shapes. In this paper, we introduce a new multi-scale optimization
framework that can lead to improved hypergraph layouts compared
to those from [41]. Furthermore, we introduce the notion of polygon
planarity, which can save on computation attempting to remove overlaps
among hyperedges that are inevitable due to the polygon convexity
requirement.

2.2 Graph and Hypergraph Simplification

Techniques for reducing complexity in graphs have been well studied
and provide numerous advantages for improving graph-based algorithm
efficiency and graph visualization. Depending on the application, it may
be more valuable to reduce the number of graph vertices (coarsening),
or the number of edges (sparsification) [9].

Graph sparsification algorithms have been studied extensively and
two main categories of graph sparsifiers have arisen: cut sparsifiers
and spectral sparsifiers. We review only the most relevant works here.
Benczúr and Karger [6] introduce cut sparsifiers which approximate
every cut in a weighted graph to an arbitrarily small multiplicative
error. Spielman and Teng [50] introduce the stronger notion of spectral
sparsifiers which approximate the Laplacian quadratic form of the graph
to an arbitrarily small multiplicative error.

Graph coarsening has been primarily used to construct multi-level
graph frameworks for graph partitioning problems. Such frame-
works transform an input graph G0 into a sequence of smaller graphs
G1,G2, ...,Gn such that each level in the sequence contains fewer ver-
tices than the previous graph. This is usually accomplished through a
graph coarsening scheme in which a set of vertices in Gi is merged into a
single multi-node in the next coarser level Gi+1. Identifying appropriate
vertex sets for merging has followed two main approaches: vertex pair
matching [11, 24, 31] and vertex grouping based on some graph-based
statistics such as high connectivity or affinity [14, 19, 21, 22, 25, 44].

Several frameworks combine graph sparsification with multi-level
coarsening to reduce the number of vertices and edges in a graph. Imre
et al. [25] perform sparsification and coarsening in two separate phases
of their algorithm while Bravo-Hermsdorff and Gunderson [9] present a
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Fig. 3: A primal hypergraph (left) and its dual (right). The neighborhood
of a vertex in the primal hypergraph (left: the orange dot) corresponds to
the neighborhood of its dual hyperedge in the dual hypergraph (right: the
orange triangle).

unified framework that incorporates vertex deletion, vertex contraction,
edge deletion, and edge contraction.

Hypergraph sparsification is less studied but has been gaining trac-
tion in recent years. Cut sparsifier algorithms have been extended to hy-
pergraphs with near-linear time complexities [12,33], and most recently
with a sub-linear time complexity [13]. The notion of the Laplacian for
undirected hypergraphs is introduced by Louis [38], which has recently
been used to design algorithms for producing linear hypergraph spectral
sparcifiers [29, 49].

Multi-level coarsening has also been extended to hypergraph par-
titioning [2, 15, 23, 30]. Alpert et al. [2] first convert the hypergraph
to a graph by replacing each hyperedge with a graph clique and ap-
plying existing graph coarsening schemes. Karypis et al. [30] develop
a coarsening scheme that acts directly on the hypergraph in which
vertices belonging to selected hyperedges are merged together. More
recent applications of hypergraph coarsening have presented distributed
hypergraph partitioners using parallel versions of the multi-level tech-
nique [16, 28, 54].

To our knowledge, we are the first to present a unified hypergraph
simplification framework that operates on both hypergraph vertices and
hyperedges. In addition, we introduce the notion of polygon planarity
for hypergraphs and develop a simplification priority function that aims
to preserve structures in the hypergraphs as well as reduce unnecessary
polygon overlaps.

3 BACKGROUND AND NOTATIONS

Following the terminology of Berge [7] and Bretto [10], a hypergraph
H = ⟨V,E⟩ on a finite set of n vertices V is defined by a family of m
hyperedges E. A hyperedge e ∈ E contains a non-empty subset of
vertices Ve ⊆ V which we say are incident to e and adjacent to each
other. Similarly, a vertex v ∈V is contained by a subset of hyperedges
Ev ⊆ E which we say are incident to v and adjacent to each other. Let
Ee denote the set of hyperedges adjacent to e and Vv the set of vertices
adjacent to v. H is complete if all vertices in V are adjacent to each other
and linear if |Ve ∩V f | ≤ 1 for all e ̸= f ∈ E. H is connected if there
exists an alternating sequence of vertices and hyperedges connecting
each pair of distinct vertices in H. The hypergraphs we consider in
this paper are assumed to be connected unless otherwise specified.
Consistent with [41], we define the degree of a vertex v as deg(v) = |Ev|
and the cardinality of a hyperedge e as card(e) = |Ve|. Notice that
the traditional notion of a graph is simply a hypergraph where every
hyperedge has cardinality two.

The dual hypergraph H ′ = ⟨V ′,E ′⟩ of H is obtained by swapping
the roles of vertices and hyperedges in H. For convenience, we call
the original hypergraph H the primal hypergraph. More precisely,
each element v ∈V corresponds to a unique element v′ ∈ E ′ and each
element e ∈ E corresponds to a unique element e′ ∈V ′. Furthermore,
the incidence and adjacency relationships of corresponding elements
in the primal and dual hypergraphs are identical. This means that
the degree of a vertex v ∈ V is the same as the cardinality of the
corresponding hyperedge v′ ∈ E ′ and vice versa. Thus, the dual of a
linear hypergraph is also linear [7].

For a set of vertices A ⊆V and a set of hyperedges J ⊆ E, Berge [7]
defines the sub-hypergraph induced by A and the partial hypergraph
generated by J as respectively,

HA = ⟨A,{e∩A | e ∈ E, e∩A ̸=∅}⟩ and HJ = ⟨VJ ⊆V, J⟩.

(a) (b) (c)

Fig. 4: Examples of avoidable overlaps in layouts of hypergraphs that
have a convex polygon representation. In (a), un-twisting the layout
would require making one of the polygons temporarily irregular, so the
optimization halts before overlap can be resolved. In (b) and (c), there
is not enough angular space around the central vertex for all the hyper-
edges to be drawn as regular polygons. In (b), the overlap minimization
objective is compromised. In (c), the regularity maximization objective is
compromised.

For a vertex v ∈ V , we call the partial hypergraph generated by the
hyperedges incident to v, HEv , with vertex set Vv ∪{v} the neighbor-
hood of v. We define the neighborhood of a hyperedge e ∈ E to be
the sub-hypergraph induced by the vertices incident to e, HVe . In other
words, the neighborhood of a vertex or hyperedge simply consists of
all its incident and adjacent elements (Figure 3).

For a hypergraph H = ⟨V,E⟩, the König representation
K(H) = (X ∪Y,D) is a bipartite graph with vertices x ∈ X for every
hypergraph vertex v ∈V and vertices y ∈ Y for every hyperedge e ∈ E.
Vertices x ∈ X and y ∈Y form an edge (x,y) ∈ D only if the hypergraph
vertex corresponding to x and the hyperedge corresponding to y are
incident in H. The hypergraph H is Zykov planar if K(H) is a planar
graph.

4 HYPERGRAPH SIMPLIFICATION

In this section, we describe the building blocks of our multi-scale
hypergraph layout optimization framework: (1) the set of atomic hyper-
graph simplification operations and (2) a number of terms used in our
simplification objectives.

4.1 Atomic Operations
Two guiding principles for generating high-quality polygon layouts
of hypergraphs are to maximize the regularity of each polygon and
minimize overlap between the polygons [41]. As such, non-planar
hypergraphs are difficult to handle through optimization since their
polygon layouts contain necessary overlap leading to local minima in
the optimization space. Non-planar sub-hypergraphs tend to appear in
clusters of hyperedges that share common vertices and are also caused
by structures analogous to K5 and K3,3 from graph theory. Certain
structures in planar hypergraphs are also prone to overlaps, such as
high-degree vertices that do not have enough angular space around them
to draw each of their incident hyperedges as non-overlapping regular
polygons. In these situations, a conflict between overlap minimization
and regularity maximization makes optimization more difficult and
requires that one or both of these objectives be compromised in the
final results (Figure 4). A core idea behind our multi-scale layout
optimization approach is to use simplification to reduce the challenging
configurations in both planar and non-planar portions of the input
hypergraph and avoid optimization that terminates prematurely. To
achieve this, we present a set of hypergraph simplification operations
specifically designed to eliminate these challenging configurations.

We identify four atomic operations for simplifying a hypergraph H:
1. Vertex removal: a vertex is removed from H.
2. Hyperedge removal: a hyperedge is removed from H.
3. Vertex merger: a pair of adjacent vertices are combined into a

single vertex whose set of incident hyperedges is the union of the
two inputs.

4. Hyperedge merger: a pair of adjacent hyperedges are merged into
a single hyperedge whose set of incident vertices is the union of
the two inputs.

3



The vertex removal and hyperedge removal operations form a primal-
dual pair in the sense that applying one to the primal hypergraph is
equivalent to applying the other to the dual hypergraph (Figure 5 (a,b)).
The vertex merger and hyperedge merger operations similarly form a
primal-dual pair (Figure 5 (c,d)). We define the footprint of an operation
O to be the union of the neighborhoods of its operand elements. For
example, if O merges two vertices u,v ∈ V (H), the footprint of O is
given by HO = ⟨Vu ∪Vv,Eu ∪Ev⟩.

Each atomic simplification operation has a corresponding inverse
operation:

1. Vertex addition: a removed vertex is added back into H.
2. Hyperedge addition: a removed hyperedge is added back into H.
3. Vertex split: a merged vertex is split into two vertices with one or

more common hyperedges.
4. Hyperedge split: a merged hyperedge is split into two hyperedges

that contain one or more common vertices.
These inverse operations are used to reverse simplification and similarly
form primal-dual pairs.

A sequence of atomic simplification operations {O1,O2, . . . ,On}
on a hypergraph H defines a sequence of simplified scales
{H0,H1,H2, . . . ,Hn} where H0 = H and Hi = Oi(Hi−1). Here Oi(∗)
denotes applying operation Oi to a hypergraph. In this multi-scale rep-
resentation, we call H0 the input or original scale, each Hi = ⟨Vi,Ei⟩
(0 < i ≤ n) the i-th simplified scale, and Hn the coarsest simplified
scale. Given the nature of our atomic operations, each simplified
scale is smaller than the previous scale, i.e., |V (Hi)|+ |E(Hi)| >
|V (Hi+1)|+ |E(Hi+1)|. By defining a prioritized sequence of atomic
operations, we can construct a multi-scale representation where the
size or number of non-planar sub-hypergraphs is reduced at each scale.
In such a representation, it is generally easier to optimize the polygon
layouts of successive simplified scales. This observation is central
to our multi-scale layout optimization framework where we start by
optimizing the coarsest simplified scale and handle the non-planar
sub-hypergraphs on a localized basis while reversing simplification.

4.2 Simplification Objectives
Numerous vertex and hyperedge based statistics could be used to guide
the prioritization of atomic operations to achieve a variety of sim-
plification objectives. We consider three statistics for this purpose:
vertex degree and hyperedge cardinality, betweenness centrality, and
adjacency factor. Vertex degree and hyperedge cardinality are straight-
forward to compute based on the incidence relationships present in the
hypergraph. Since the incidence relationships are identical between
corresponding primal and dual hypergraph elements, the degree of a
primal vertex is the same as the cardinality of its dual hyperedge and
vice versa. By computing both vertex degree and hyperedge cardinality,
we account for the primal and dual hypergraphs simultaneously. Ver-
tex degree gives us an estimate of how much angular space is needed
around the vertex for its incident polygons, and hyperedge cardinality
gives us an estimate of how much area each hyperedge requires in an
optimized polygon layout. As such, simplifying high-degree vertices
and high-cardinality hyperedges can leave more space in the layout for
neighboring elements and potentially reduce avoidable polygon over-
laps. However, simplifying high-degree vertices and high-cardinality
hyperedges may not be appropriate if they have an important semantic
meaning in the underlying dataset.

Betweenness centrality quantifies the proportion of shortest paths
passing through a given vertex or hyperedge. Let σst = σts denote the
number of shortest paths between s, t ∈V , where σss = 1 by convention.
Let σst(v) denote the number of shortest paths from s to t passing
through v ∈V . Then the betweenness centrality for v is given by

CB(v) = ∑
s ̸=v̸=t∈V

σst(v)
σst

.

We compute the betweenness centrality of vertices and hyperedges
simultaneously by applying the algorithm of Brandes [8] to the König
graph K(H). To avoid an explicit summation in the betweenness cen-
trality computation of each element, Brandes’ algorithm leverages a

Primal Dual Primal Dual

(a) (b) (c) (d)

Fig. 5: The four atomic simplification operations. (a) A vertex removal in
the primal hypergraph corresponds to (b) a hyperedge removal in the dual
hypergraph. (c) A vertex merger in the primal hypergraph corresponds to
(d) a hyperedge merger in the dual hypergraph.

recursive relationship for partial sums. Their algorithm is able to ac-
cumulate partial sums over a single depth-first search and return the
betweenness centralities of each vertex. Avoiding simplification of
elements with high betweenness centrality can be used to preserve
the path structure in the input hypergraph and to preserve path-related
features such as hypergraph cycles.

We define a new statistic, adjacency factor, to measure the volume
of connections between a given vertex or hyperedge and its adjacent
elements. It is an extension of adjacency as defined by Bretto [10] for
their construction of a hypergraph adjacency matrix. Bretto defines
the adjacency between a pair of vertices u,v ∈ V , u ̸= v as auv =
|{e ∈ E : u,v ∈ Ve}|. Adjacency relationships are identical between
corresponding primal and dual elements, so it is natural to consider the
adjacency between a pair of hyperedges e, f ∈ E as being equal to the
adjacency of their dual vertices e′, f ′ ∈V ′, i.e., ae f = ae′ f ′ . We define
the adjacency factor of a vertex v ∈V and a hyperedge e ∈ E as

Adj(v) = ∑
u∈V,u ̸=v

at
uv, Adj(e) = ∑

f∈E, f ̸=e
at

e f ,

where t ≥ 0 is used to adjust the influence of vertex pairs with multiple
shared hyperedges and hyperedge pairs with multiple shared vertices.
Notice that setting t = 0 simply gives the number of vertices adjacent to
v, i.e. |Vv|. Setting t > 0 results in a larger adjacency factor for vertices
having high adjacency with their neighbors. We discuss the ideal value
for t in the next section, in conjugation of the planarity issue of polygon
representations of hypergraphs.

4.2.1 Polygon Planarity
A graph is planar, i.e. an edge crossing-free embedding can be found,
if and only if it does not contain a subdivision of the complete graph
K5 or complete bipartite graph K3,3 [34].

Recall that a hypergraph H is Zykov planar if its König representa-
tion K(H) is a planar graph (Section 3). This definition of planarity
assumes that hyperedges can be represented as arbitrary closed regions.
However, when requiring that the regions be drawn as near-regular
polygons, as in [40, 41], Zykov’s definition is insufficient. This moti-
vates a new definition for hypergraph planarity for the (near-regular)
polygon representation:

Definition 1. A convex polygon representation is a drawing of a
hypergraph in the plane where each hyperedge is represented as a
strictly convex polygon such that the area of intersection between each
pair of polygons is zero.

We say that a hypergraph is convex polygon planar if it admits
a convex polygon representation. We have identified four forbidden
sub-hypergraphs that are Zykov planar but lack a convex polygon
representation. We begin by defining an n-adjacent cluster as the
partial hypergraph induced by a set of hyperedges J ⊆ E which contain
a set of vertices X ⊆V , |X |= n≥ 2, where each hyperedge in J contains
all of the vertices in X , that is, vi ∈ e j for all vi ∈ X and e j ∈ J. Our first
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(a) (b) (c) (d)

Fig. 6: Examples of the four forbidden sub-hypergraphs in the polygon
visualization metaphor: (a) 3-adjacent hyperedge cluster of 2 hyperedges,
(b) 2-adjacent hyperedge cluster of 3 hyperedges, (c) strangled vertex,
(d) strangled hyperedge. Notice that (b) is the dual of (a) and (d) is the
dual of (c).

forbidden sub-hypergraph is a 3-adjacent cluster of two hyperedges
(Figure 6 (a)), and the second is a 2-adjacent cluster of three hyperedges
(Figure 6 (b)). Notice that these sub-hypergraphs are a primal-dual
pair: if one appears in the primal view, the other appears in the dual
view among the corresponding dual elements. Our third forbidden
sub-hypergraph is the neighborhood of a vertex v where a proper subset
of its incident hyperedges and adjacent vertices form a cycle of length
n ≥ 3 (Figure 6 (c)). The fourth is the neighborhood of a hyperedge e
where a proper subset of its incident vertices and adjacent hyperedges
form a cycle of size n ≥ 3 (Figure 6 (d)). These sub-hypergraphs also
form a primal-dual pair. We refer to these forbidden sub-hypergraphs
as containing a strangled vertex or strangled hyperedge respectively.

Theorem 2. Let H be a Zykov planar hypergraph. Then H has a
convex polygon representation if and only if it does not contain any of
the following as a sub-hypergraph:

(a) A 3-adjacent cluster of 2 hyperedges,
(b) A 2-adjacent cluster of 3 hyperedges,
(c) A strangled vertex,
(d) A strangled hyperedge.

We refer the reader to Appendix A for a proof of Theorem 2. Since
the forbidden sub-hypergraphs form primal-dual pairs, we further claim
that a hypergraph H has a convex polygon representation if and only if
its dual hypergraph H ′ has a convex polygon representation.

We refer to polygon overlaps occurring in a polygon layout of a
hypergraph that has a convex polygon representation as avoidable over-
laps (Figure 4). Otherwise, such overlaps are unavoidable overlaps.
Note that forbidden sub-hypergraphs are the simplest examples of un-
avoidable polygon overlaps. While a 3-adjacent cluster of 5 hyperedges
clearly involves more hyperedge overlaps, it also necessarily contains a
3-adjacent cluster of 2 hyperedges.

Our atomic operations are specifically designed to enable eliminat-
ing forbidden sub-hypergraphs. Notice that each of the examples in
Figure 6 can be converted to a hypergraph with a convex polygon rep-
resentation using a single vertex or hyperedge operation. We find a
good correlation between forbidden sub-hypergraphs (Figure 7) and
our adjacency factor when t = 2. Given this correlation, simplifying
elements with high adjacency factor can reduce the number and size of
non-convex polygon planar sub-hypergraphs.

5 SCALABLE OPTIMIZATION FRAMEWORK

In this section, we detail our multi-scale polygon layout optimization
framework which consists of two iterative processes: iterative simplifi-
cation, and iterative layout refinement. The goal of the simplification
process is to construct a sequence of simplified scales from an input
hypergraph H such that each successive scale contains fewer areas of
potential polygon overlap, either unavoidable overlaps caused by for-
bidden sub-hypergraphs or avoidable overlaps caused by a lack of space
around high-degree vertices and high-cardinality hyperedges. Either
type of polygon overlap can lead to challenges in layout optimization
and significant visual clutter in the layouts of large hypergraphs, so we
address both simultaneously during simplification. Once the sequence

Fig. 7: Hypergraph elements colored according to adjacency factor. The
two regions drawn in dark blue indicate elements with high adjacency
factor and both correspond to forbidden sub-hypergraphs.

of simplified scales {H0,H1, . . . ,Hn} is generated, the goal of the iter-
ative layout refinement process is to produce a high-quality polygon
layout for each scale. We achieve this by first optimizing the layout
of the coarsest scale Hn, then iteratively inverting simplification oper-
ations and locally refining the layout of intermediate scales until the
original scale is recovered.

5.1 Simplification Operation Generation
We initially generate removal operations for every vertex and hyperedge
in H0, and merger operations between every pair of adjacent vertices
and hyperedges. Notice that removing a vertex or hyperedge arbitrarily
has the potential to make a hypergraph disconnected. To avoid this,
we constrain the legality of removal operations. For a hyperedge e at
the current hypergraph scale, we mark its removal operation as illegal
if it would make a pair of vertices u,v ∈ e non-adjacent. Otherwise,
we mark it as legal. Similarly, a vertex removal operation is marked
illegal if it makes any pair of incident hyperedges non-adjacent. By
allowing only legal removal operations, our simplification ensures that
the hypergraph remains connected in each simplified scale. We also
constrain the legality of merger operations to avoid simplifying portions
of the hypergraph that are already linear. For a pair of hyperedges e, f
at the current hypergraph scale, we mark their merger operation as legal
if their adjacency ae f ≥ 2 and illegal otherwise. For a pair of vertices
u,v in the current hypergraph scale, we mark their merger operation
as legal if their adjacency auv ≥ 2 and illegal otherwise. After the
legality of each generated operation has been determined, we place the
legal operations in a priority queue keyed on a simplification priority
measure.

Our operation priority measure consists of three terms based on the
following statistics: vertex degree (hyperedge cardinality), adjacency
factor, and betweenness centrality. As discussed in Section 4.2.1, adja-
cency factor is correlated to the presence of a forbidden sub-hypergraph.
Instead of trivially deleting or collapsing forbidden sub-hypergraphs,
we use a term based on adjacency factor to promote simplifying sub-
hypergraphs until they have a convex polygon representation (Figure 8
(c)). We use the term based on vertex degree and hyperedge cardinality
to promote reducing the space required by high-degree vertices and
large hyperedges in the polygon layouts of simplified scales. This can
help to reduce avoidable polygon overlaps (Figure 8 (b)). Finally, we
use the term based on betweenness centrality to promote preserving
centrally located elements that are relevant to the path structure of the
input hypergraph (Figure 8 (d)). By combining these terms, we are able
to generate simplified scales with reduced visual clutter in areas with
the most polygon overlaps, while also retaining the relative polygon
sizes and core connectivity of the hypergraph (Figure 8 (e))

To normalize the distributions of each statistic, we also require the
global minimum and maximum values of the input hypergraph H0 (and
its dual H ′

0) for vertex degree and hyperedge cardinality, dmin,dmax,
hyperedge adjacency factor, amin,amax, and betweenness centrality,
bmax,bmin. Given an atomic simplification operation O, the final priority
measure is a weighted sum of our three terms given by

P(O)= α

(
d̂O−dmin

dmax−dmin

)
+β

(
āO−amin

amax−amin

)
+ γ

(
bmax− b̄O

bmax−bmin

)
.

(1)
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(a) Input hypergraph (b) α = 1, β = 0, γ = 0 (c) α = 0, β = 1, γ = 0 (d) α = 0, β = 0, γ = 1 (e) α = 0.4, β = 0.4, γ = 0.2

Fig. 8: A paper-author network with 260 vertices and 83 hyperedges is simplified with our system using different values for the weight parameters
α,β ,γ in Equation (1). In (b), only the term targeting high-degree vertices and high-cardinality hyperedges is used, requiring 220 atomic operations to
make the hypergraph linear. Many of the polygons in this layout have been simplified to digons, making it difficult to determine the relative sizes of
the hyperedges in the original data. In (c), only the term targeting elements with high adjacency factor is used, requiring 103 atomic operations to
make the hypergraph linear. The relative sizes of the hyperedges are more accurately maintained, but the visualization still contains many avoidable
polygon overlaps, especially around high-degree vertices. In (d), only the term preserving elements with high betweenness centrality is used,
requiring 304 atomic operations to make the hypergraph linear. Most of the information on vertex degree and hyperedge cardinality is lost in this
visualization. We can however see evidence of three hypergraph cycles which are not apparent in the other simplifications. In (e), all three terms
are used, requiring 135 simplification operations to make the hypergraph linear. This priority weighting scheme and visualization preserves some
information on relative hyperedge sizes and also reduces visual clutter around high-degree vertices.

Here we use āO to denote the adjacency factor of the removed el-
ement in the case of a removal operation, and the average adjacency
factor of the merged elements in the case of a merger operation. Sim-
ilarly, b̄O denotes the average betweenness centrality of the operand
elements. We use d̂O to denote the maximum vertex degree or hyper-
edge cardinality in the footprint of O (Section 5.1). That is,

d̂O = max
{

max
v∈V (HO)

{
deg(v)

}
, max
e∈E(HO)

{
card(e)

}}
. (2)

This helps to simplify elements surrounding a high-degree vertex in-
stead of removing or merging the high-degree vertex itself as demon-
strated in Figure 8 (b).

We compute betweenness centralities once for the input hypergraph
H0 and use these values for the entire simplification process. This is
because we aim to preserve the path structure of the input hypergraph,
not the path structure of the previous simplified scale. This also avoids
having to recompute betweenness centrality which can be costly. We do
however update vertex degrees, hyperedge cardinalities, and adjacency
factors after the application of each operation.

5.2 Iterative Simplification
At this stage, our priority queue only contains operations that can
legally be applied to the input hypergraph H0 with the highest priority
operations at the front. Our framework proceeds to iteratively simplify
H0 by popping operations from the priority queue and applying them.
We apply simplification iteratively to accommodate changes in legality
or priority that any operation can incur. With each iteration, the priority
queue is re-sorted to keep the highest priority operations at the front.
When a legal vertex removal is performed, the vertex is removed from
each of its containing hyperedges, reducing their cardinality by one, and
subsequently deleted. The process is similar for a hyperedge removal.
When a pair of vertices u,v ∈V are merged through a legal operation,
we first update v to include all the hyperedges incident to u and then
remove u from the hypergraph. We call u the removed vertex and v the
retained vertex. The process for hyperedge-based mergers is identical
except that the roles of vertices and hyperedges are reversed.

When an operation O is applied, the operands, legality, and priority
of operations on elements in the footprint of O may need to be updated.
In addition, merger operations have the potential of making previously
nonadjacent elements adjacent, making them eligible for merging. After
O is applied and the appropriate updates made, a record of the operation
is added to a stack data structure containing applied operations eligible
for future reversal. When the footprint of each operation is relatively
small, the necessary updates can be completed efficiently. If O removes
an element r ∈V ∪E, any merger operations involving r become invalid

and are removed from the priority queue. For each element s ̸= r in the
footprint of O, any operation involving s must have its priority updated
since the incidence and adjacency relationships within its footprint will
have changed. In addition, the legality of the removal operation on s
must be revisited since the connectivity within its footprint will have
changed. If any previously illegal operation is found to be legal its
priority is recalculated and the operation is added to the queue. If any
previously legal operation is found to be illegal, it is removed from the
priority queue.

If O merges an element r ∈ V ∪E into t ∈ V ∪E, the removal op-
eration on r becomes invalid and is removed from the priority queue.
Similar to a removal operation, for each element s /∈ {r, t} in the foot-
print of O, any operation involving s must have its priority updated, and
if it is a removal operation, its legality must be revisited. Furthermore,
if a merger operation exists between s and r, the reference to r is re-
placed with a reference to t. Finally, if a pair of elements s1,s2 /∈ {r, t}
in the footprint of O become newly adjacent, we initialize a new merger
operation between them, calculate the priority of the operation, and add
it to the priority queue.

We provide several options for defining the coarsest simplified scale
Hn. The user can set a target number for the vertices or hyperedges
in Hn, or specify that simplification terminates as soon as the hyper-
graph becomes linear or is free of forbidden sub-hypergraphs. Once
a termination criterion has been met, the stack of applied operations
{On,On−1, . . . ,O1} records the operations in the reverse order of how
they were applied.

5.3 Simplification Reversal and Layout Optimization

Once the coarsest hypergraph scale Hn has been reached, we construct
the dual hypergraph H ′

n (if used), and apply a modified version of the
automatic polygon layout framework of Qu et al. [41]. Their objective
function for layout optimization includes five energy terms: polygon
regularity energy, polygon area energy, polygon separation energy,
polygon intersection regularity energy, and primal-dual coordination
energy. They minimize this objective function by iteratively adjusting
vertex locations in the primal and dual hypergraphs using an L-BFGS
quasi-Newton solver [37]. Instead of minimizing each of these energies
simultaneously, our modified version starts with a separation phase
which uses only the polygon separation energy and primal-dual coordi-
nation energy, followed by a regularity phase that incorporates all five
energy terms including the polygon regularity, area, and intersection
regularity energies.

The purpose of the separation phase is to unravel any avoidable
overlaps present in the initial layout of Hn (i.e. to separate crossing
paths or twisted cycles). Qu et al. [41] define the separation energy

6



To appear in IEEE Transactions on Visualization and Computer Graphics

between a pair of polygons as a function of the difference between
their current separation and the minimum acceptable separation if the
polygons are assumed to be regular. That is, given two polygons
Γ1,Γ2, the separation energy between them is given by EPS(Γ1,Γ2) =
f (d(Γ1,Γ2)− d0(|Γ1|, |Γ2|)) [41]. Here d(Γ1,Γ2) is the current dis-
tance between polygon centroids and d0(|Γ1|, |Γ2|) = ρ|Γ1|+ρ|Γ2|+db
is determined by the circumradii of regular polygons with cardinalities
|Γ1| and |Γ2|, and a constant buffer distance db. Since we do not opti-
mize polygon regularity during the separation phase, we alter d0 to be
determined by the buffer distance and current radii of Γ1 and Γ2:

d0(|Γ1|, |Γ2|) =
1
2

(
max

u,v∈Γ1
d(u,v)+ max

u,v∈Γ2
d(u,v)

)
+db. (3)

In the regularity phase of the layout optimization for Hn, we re-
use the objective function of [41]. However, instead of using the
cardinalities of the hyperedges in Hn for polygon area and separation
energy calculations, we use the corresponding cardinalities saved from
the original scale H0. This helps to ensure that enough space is reserved
for elements that are reintroduced during iterative layout refinement.

Once the layout of the coarsest scale Hn (and H ′
n) has been opti-

mized, we enter an iterative process in which the applied simplification
operations are reversed and the layout is refined. During each iteration,
the operation at the top of the stack of recorded operations Oi is popped,
and its inverse operation O−1

i is applied to the current hypergraph scale
Hi. The corresponding inverse operation is applied to the dual of the
current hypergraph scale, H ′

i . Whenever a vertex addition is applied to
the primal hypergraph, the new vertex is positioned so that it aligns with
the center of the corresponding new hyperedge in the dual hypergraph.
The same is true when a vertex split is applied to the primal hypergraph:
the split vertices are aligned with the centers of their counterparts in
the dual hypergraph. We then optimize the positions of vertices inside
the footprint of O (in both primal and dual) while keeping all other
vertices fixed. The polygon locations in the fixed portion of the layout
are still used in the separation energy computation, but the remaining
energies are only computed over the footprint of O. Confining the
layout optimization to the local operation footprint in this way has two
benefits: it speeds up the gradient and line search computations used
with the L-BFGS solver and helps promote consistent vertex locations
between simplified scales.

6 CASE STUDIES

We apply our framework to two real-world cases: a network of interna-
tional trade agreements, and a paper-author collaboration network.

Figure 9 shows a network of international regional trade agreements
(RTAs) in force as of May 2022 retrieved from the World Trade Organi-
zation Regional Trade Agreements Database [1]. The dataset excludes
bilateral trade agreements as well as trade agreements where one of
the parties is itself an RTA. The largest RTA contains 36 participating
nations and the largest number of trade agreements that a single nation
participates in is 8. In the visualizations, we show both the primal and
dual polygon layouts for the original scale (Figure 9 (a,c)) and one of
the simplified scales (Figure 9 (b,d)). In the primal layouts, RTAs are
drawn as polygons with incident vertices representing their participat-
ing nations. In the dual layouts, the nations are drawn as polygons and
trade agreements as vertices. In the bottom left of the original scale
primal layout (Figure 9 (a)), we see a large pink polygon with many
degree-1 vertices. This polygon represents a trade agreement between
island nations in the Caribbean with small services-based economies.
We observe that many of the other nations participating in only one RTA
have relatively small economies. These nations are easier to see in the
dual visualization where they are drawn as monogons with a distinctive
water-drop shape. In the original scale primal layout (Figure 9 (a)), the
overlapping polygons in the center of the visualization make it difficult
to tell which trade agreement has the most participants. In the dual
layout (Figure 9 (c)), we can more clearly see a vertex in the center of
the visualization with a particularly high degree. This vertex represents
the Global System of Trade Preferences among Developing Countries
(GSTP) which is the largest RTA in our dataset. In the simplified scale

(a)

(b)

(c)

(d)

Fig. 9: Primal and dual visualizations of regional trade agreements and
their participating nations. (a) Input primal layout. (b) Simplified primal
layout. (c) Input dual layout. (d) Simplified dual layout.

(a) (b) (c)

Fig. 10: A paper-author hypergraph dataset containing 1008 vertices
and 429 hyperedges (a) is simplified with our framework down to the
coarsest allowable scale H1214 (c) and the layout is optimized. Then the
simplification is iteratively reversed, and the layout is refined at each
intermediate scale, an example of which is shown in (b), until the original
scale H0 is reached.

(Figure 9 (b,d)), we can see clusters of overlapping polygons in both
the primal and dual layouts which indicate different trade blocs. In the
upper right of the simplified layouts, we can see a cluster containing
nations in Eastern Europe. In both the simplified and original scales, we
can observe that this cluster is connected to the rest of the hypergraph
through a single path, indicating that the trade bloc in Eastern Europe
is somewhat isolated in the global economy.

Figure 10 shows the largest connected subset of publications in
IEEE Transactions on Visualization and Computer Graphics (TVCG)
from 2015 to 2017 retrieved from the DBLP database [36]. In these
visualizations, each polygon represents a published paper whose in-
cident vertices represent its authors. Appendix B shows an enlarged
version of this figure. The dataset contains a total of 1008 vertices and
429 hyperedges with a maximum vertex degree of 17 and a maximum
hyperedge cardinality of 20. Figure 10 shows an optimized layout of
the original scale (a) as well as the coarsest simplified scale (c) and
one intermediate scale (b) generated by our framework. Each of these
scales can be used to inspect different aspects of data. In the original
scale (Figure 10 (a)), we can easily see which papers have the largest
number of authors by looking for the largest polygons. We can also see
that these papers have numerous authors with only one publication in
the dataset. Many such papers concern domain-specific visualization
techniques, so we speculate that they may include domain experts as
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coauthors. For example, the large pink polygon in the top left cor-
ner represents a paper on visualizations of concepts from special and
general relativity and includes a team of both computer graphics and
astrophysics researchers. Another polygon in the bottom left corner rep-
resents a paper on interactive visualizations for prostate cancer health
risk communication and includes coauthors from computer graphics as
well as medical professionals. With the optimized layout of the original
scale, we can see that areas with the most polygon overlap contain a
forbidden sub-hypergraph or a particularly high degree vertex. In the
context of the paper-author network, forbidden sub-hypergraphs like
n-adjacent clusters indicate a set of authors who collaborate on multi-
ple papers. Such clusters could represent organized research groups
that collaborate frequently on a series of papers. High-degree vertices
represent authors with many publications who are likely experienced
researchers and academic advisors.

In the coarsest simplified scale (Figure 10 (c)), we can see several
cycle structures among the remaining authors and publications. Where
the cycles are small and tangled, we can infer that there is a significant
amount of inter-collaboration between the corresponding researchers
in the community. Where the cycles are larger and more spread out,
there may be less inter-collaboration and more inclusion of experts
from other disciplines. In the intermediate simplified scale (Figure 10
(b)), we can clearly see branching sub-tree structures along the right
side of the visualization. The ends of such branching structures may
represent unique subtopics or specific domain applications that are
somewhat removed from the main research topics in the journal. For
example, the small grouping of polygons at the center-right of the
intermediate simplified scale contains the only papers in the dataset
studying visualizations of cerebral blood flow in aneurysms.

7 EYE TRACKING SURVEY

We conducted a preliminary user survey among 12 graduate and under-
graduate university students to evaluate the usability of our visualiza-
tions. We designed the survey to analyze how participants interact with
our visualizations when presented with both primal and dual layouts
as well as the layouts of several simplified scales. The survey was
conducted in person and involved the use of eye-tracking hardware
to monitor participants’ exploration of the visualizations. The survey
included visualizations of our international trade agreement dataset
from Section 6, as well as two paper-author collaboration networks
retrieved from Isenberg et al.’s openly available Vispubdata dataset [26].
Their dataset contains information on IEEE Visualization publications
from 1990-2021. The first of these datasets, shown in Figure 1, consists
of a connected subset of publications containing the keywords “flow”,
“graph”, and “machine learning”, while the second consists of the largest
connected subset of papers from the InfoVis and SciVis tracks of the
IEEE Visualization journal. For each dataset, we asked two questions
requiring participants to analyze different properties of specific hyper-
graph elements. In addition to recording participant responses, we also
tracked participant gaze fixation points as they completed each ques-
tion. We used a Gazepoint GP3 HD 150Hz eye tracking system with a
reported accuracy of 0.5-1.0◦ [20]. The eye tracking for each survey
trial was conducted in a controlled lab environment with a 24-inch
1920x1200p 144Hz monitor.

For the trade agreement dataset, participants were presented with
the original scale visualizations of the primal and dual hypergraph
layouts generated by our framework (Figure 9 (a,c)). The first question
asked participants to count the trade agreements involving five or more
countries that only participate in one trade agreement. The second
question asked participants to count the number of trade agreements
that a specific country participates in. Participants answered the first
question with 66.7% accuracy and the second question with 83.3%
accuracy. Participants who answered the questions correctly spent an
average of 58.1% viewing the dual while participants who answered
incorrectly spent an average of 22.3% of their time viewing the dual
(Figure 11). This points to the value of including both the primal and
dual layouts for simple analysis tasks.

For the first paper-author dataset (containing 786 vertices and 318
hyperedges), participants were presented with both primal and dual

Fig. 11: Gaze fixation paths of two participants answering the same
question for the trade agreement dataset in our user survey. The partici-
pant with the gaze path on the left did not study the dual hypergraph and
answered the question incorrectly. The participant with the gaze path on
the right studied both the primal and dual hypergraph visualizations and
answered the question correctly. Enlarged versions of these plots are
available in Appendix C.

Fig. 12: Gaze fixation timeline of a participant answering a question
in our user survey. The vertical axis indicates different regions on the
participant’s screen, including the question text and visualization scales.
The horizontal axis represents the time in seconds that a participant
spent on the question. The vertical lines in the plot indicate when the
participant selected an answer. The blue lines indicate a correct answer
and the red lines indicate an incorrect answer. An enlarged version of
this plot is available in Appendix D.

layouts of the original hypergraph scale and two simplified scales gen-
erated by our framework. The first question for this dataset asked
participants to count polygons of a particular color incident to a spe-
cific high-degree vertex. The second question asked them to count the
number of distinct paths between a pair of vertices. Participants an-
swered the first question with 91.7% accuracy and the second question
with 50.0% accuracy. However, not all participants used the simplified
scale layouts. Participants who used the simplified scales answered the
first question with 100% accuracy and the second question with 66.7%
accuracy. Participants who did not use the simplified scales answered
the first question with 75.0% accuracy and the second question with
0% accuracy. On average, participants spent less time viewing the
simplified scales than the original scale, however, the participants did
not necessarily find the original scale visualization more useful. For
example, Figure 12 shows a participant who spent most of their time
studying the original scale layouts but was able to arrive at the correct
answer soon after viewing the second simplified scale.

For the second paper-author dataset (containing 1878 vertices and
966 hyperedges), participants were presented with the primal layout of
the original hypergraph scale and two simplified scales generated by
our framework. We did not include the dual layouts because the primal
layout required the entirety of the user’s screen to be viewed clearly.
The first question asked participants to identify the highest degree ver-
tex in the visualization, and the second question asked them to count
the length of the shortest path between two hyperedges. Participants an-
swered the first question with 91.7% accuracy and the second question
with 66.7% accuracy. All participants used the simplified scale layouts
for both questions. On average, participants spent 21.3% of their time
viewing the original scale layout, 27.3% of their time viewing the first
simplified scale, and 51.4% of their time viewing the second simplified
scale. The increased time spent viewing the simplified scales along
with a combined accuracy of 79.2% suggests that participants were
able to effectively use the simplified scale visualizations.
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Table 1: Comparison of polygon layout optimization methods on paper-author datasets. Each dataset is collected from the DBLP database [36] and
consists of a maximal connected subset of publications in the specified year range from the given IEEE journals: Transactions on Robotics (TOR),
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Transactions on Visualization and Computer Graphics (TVCG), Transactions on
Human-Machine Systems (THMS), Transactions on Learning Technology (TLT), Transactions on Education (TOE), Transactions on Haptics (TOH),
Transactions on Cybernetics (TOC). The first six datasets are the same as those used in [41]. Note that our method leads to much improvement in
terms of fewer avoidable overlaps than the method of Qu et al. [41].

Dataset Qu et al. [41] Ours

forbidden execution pairwise sum pairwise execution pairwise sum pairwise
description |V | |H| sub-hypergraphs time (s) overlap count overlap area time (s) overlap count overlap area

TOR (2015-2020) 22 11 1 0.05 4 1.48 0.02 1 0.42
TPAMI (2015) 77 24 6 0.42 60 29.11 0.43 15 5.63

TPAMI (2013-2014) 93 42 2 0.93 61 7.70 0.56 13 2.12
TOR (2015-2020) 146 56 8 2.48 92 25.29 2.09 30 7.88

TPAMI (2013-2015) 314 126 12 20.15 156 37.01 14.17 62 15.18
TOR (2013-2020) 527 232 37 61.08 422 98.12 63.07 154 37.12

TVCG (2015-2017) 1008 429 113† 45.19* 6366 3806.36 687.14 3119 1297.50
THMS, TLT, TOE, TOH

(2013-2023) 1754 635 265† 1917.49* 6125 4598.78 4570.77 2895 1154.67

TPAMI (2013-2020) 2054 947 364† 219.92* 22113 17331.60 8583.15 8877 3666.70
TOC (2022) 3047 1000 172† 4518.35 5566 3497.09 13156.90 2510 863.64

† Datasets also contain unavoidable overlaps due to K5 and K3,3 sub-hypergraphs.
* Layout optimization did not converge and terminated early.

8 PERFORMANCE EVALUATION

Our framework leverages simplification operations that generally have
small, localized footprints. However, if the input hypergraph is com-
plete, where all the vertices are adjacent to each other, the local footprint
of an operation can include the entire hypergraph. This represents the
worst-case scenario for the computational complexity of our framework.
For a hypergraph H = ⟨V,E⟩, recall that n = |V | and m = |E|. Our
framework first identifies all possible removal operations for vertices
and hyperedges, and all merger operations between pairs of adjacent
elements, requiring O((n+m)2) time and generating O((n+m)2) op-
erations. Our operation priority function (Equation (1)) computes a
maximum over the footprint of each operation. In the worst case, the
footprint of an operation contains n+m elements, so ranking the op-
erations by priority requires O((n+m)3) time for computation and
O((n+m)2) log((n+m)2)) time for sorting. Iterative simplification
also requires updating the local footprint of each applied operation,
adding O((n+m)3) complexity. Our notation here uses n and m from
the original hypergraph scale even though the number of vertices and
hyperedges is reduced by a constant factor in each iteration. Alto-
gether, our framework’s simplification process requires O((n+m)3)
time. However, the running time of our framework is dominated by
the iterative optimization process. Qu et al. [41] report that their lay-
out optimization method has a lower bound ω((n+m)4). Since our
iterative optimization process uses a modified version of their method,
we also have a lower bound of ω((n+m)4). Each iterative layout
refinement then has a lower bound of this form relative to the size of the
corresponding operation footprint. Hypergraphs for most practical use
cases are far from complete, so operation footprints are smaller than
n+m. Our testing on real datasets, shown in Table 1, indicates that the
execution time of our full framework is less than the theoretical bounds.
Table 1 compares our method to that of [41] on datasets with tens to
thousands of elements. These datasets also vary in complexity with
respect to the number of unavoidable overlaps they contain. We mea-
sure this complexity using the number of forbidden sub-hypergraphs in
each dataset. For each method, we display execution time as well as
the number of pairwise polygon overlaps and sum of pairwise overlap
areas in the optimized layouts.

9 CONCLUSION AND FUTURE WORK

The main contribution of our work is a multi-scale framework for
producing high-quality polygon visualizations of hypergraphs. Our
framework features a novel top-down iterative simplification process
followed by a bottom-up layout optimization process. To our knowl-
edge, it is the first time that hypergraph simplification has been used

specifically for layout optimization. Unlike previous work which fo-
cuses on either hyperedge-based sparsification or vertex-based coars-
ening, we introduce a set of atomic hypergraph simplification oper-
ations including both hyperedge and vertex-based operations. Our
simplification process is guided by a custom operation priority measure
which includes terms for multiple objectives: reducing visual clutter
around high-degree vertices, eliminating non-planar sub-hypergraphs,
and preserving hypergraph path structures. Additionally, our system
is designed to handle primal and dual hypergraphs simultaneously and
maintain consistency between them throughout the layout optimization
process. We also introduce new and necessary theory on planarity for
convex polygon drawings of hypergraphs. This includes a new criterion
for convex polygon representations akin to Kuratowski’s Theorem for
planar graphs [34].

A major challenge that remains for our layout optimization frame-
work is its time complexity. While our framework can handle large
datasets, the execution time is constrained by an ω((n+m)4) lower
bound from the quasi-Newton optimization solver. We plan to continue
exploring techniques to enhance the speed of our technique includ-
ing different possibilities for layout initialization, pre-processing, and
employing more efficient optimization solvers.

Our simplification system is designed for hypergraphs that are Zykov
planar but lack a convex polygon representation according to our defi-
nition. We do not directly address the large class of hypergraphs that
are non-planar because they contain structures analogous to K5 and
K3,3. Furthermore, while our atomic simplification operations can be
constrained to ensure the preservation of local connections, they do not
consider global topological structures in the hypergraph. We plan to
investigate topology-aware simplification methods to handle a larger
class of non-planar hypergraphs and create multi-scale representations
of hypergraphs that preserve their topological properties.

Preliminary results from our user survey and case studies suggest
that the simplified scales used in our layout optimization process can
also be used for pattern recognition in hypergraph visualizations. As
such, we also plan to pursue multi-scale hypergraph representations
that are focused on preserving visual structures in simplified scales. We
hope to apply such a visualization system to domains like biology and
medicine where interaction networks play an important role, and engi-
neering simulation ensembles where numerous intertwined parameters
influence simulation results.
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mair, J. Chen, T. Möller, and J. Stasko. vispubdata.org: A metadata
collection about IEEE visualization (VIS) publications. IEEE Transac-
tions on Visualization and Computer Graphics, 23(9):2199–2206, Sept.
2017. doi: 10.1109/TVCG.2016.2615308

[27] B. Jacobsen, M. Wallinger, S. Kobourov, and M. Nöllenburg. Metrosets:
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A CONVEX POLYGON PLANARITY

Here we present a proof of our planarity criterion for convex polygon
drawings of hypergraphs (Theorem 2 from the main paper), which is
inspired by Kuratowski’s Theorem that states that a graph is planar
if and only if it does not contain a subdivision of the complete graph
K5 or complete bipartite graph K3,3 [34]. Similarly, Theorem 2 states
that a hypergraph has a convex polygon representation if and only if
it does not contain one of our forbidden sub-hypergraphs described in
Section 4.2.1 (Figure 6) of the main paper.

Our proof requires three intermediate results: (1) the definition of
a new graph representation corresponding to some polygon drawing
of the hypergraph which we call the face triangulation graph, (2) a
verification that the face triangulation graph meets the criteria of a
convex representation provided by Thomassen [53], and (3) a proof
that any articulation vertices in the hypergraph must appear on some
face boundary of a convex polygon representation.

We first define connectedness and articulation vertices for hyper-
graphs as well as facial cycles in graph drawings. A graph is connected
if there exists a path between every pair of distinct vertices. Connected-
ness for hypergraphs is defined similarly (see Bretto [10]). A graph is
said to be biconnected if it does not contain any articulation vertices.
An articulation vertex (also called cut-vertex) is a vertex whose removal
makes the graph disconnected. We define biconnected hypergraphs
and articulation vertices for hypergraphs in the same way. From here,
it is natural to consider a biconnected component of a hypergraph: a
maximal set of vertices X ∈V such that the sub-hypergraph induced by
X is biconnected. Note that the graph consisting of a single edge and
its two endpoint vertices is considered a biconnected graph. Similarly,
we consider any hypergraph containing a single hyperedge and its inci-
dent vertices to be a biconnected hypergraph. Biconnected graphs and
hypergraphs are central to our definition of the face triangulation graph
and our first criterion for hypergraph convex polygon planarity. A face
in a planar drawing of a graph is a region in the plane bounded by a
set of vertices and edges. The unbounded region outside of the planar
drawing is counted as the exterior face. The boundary of each interior
face defines an interior facial cycle, and the exterior face defines the
exterior facial cycle. We similarly define a face in a planar polygon
drawing of a hypergraph as a region in the plane not covered by a
hyperedge that is bounded by a set of vertices and polygon sides.

Our first claim regarding convex polygon representations requires a
new definition for the face triangulation graph of a polygon drawing
for a biconnected hypergraph. Let H = ⟨V,E⟩ be a biconnected, Zykov
planar hypergraph. Then the König graph K(H) = (X ,Y,D) is a planar
graph (Section 4.2.1). Recall that K(H) is a bipartite graph containing
a vertex x ∈ X for each hypergraph vertex v ∈V and a vertex y ∈ Y for
each hyperedge e ∈ E where (x,y)∈ D if the corresponding hypergraph
elements v and e are incident in H. Let H have a polygon drawing
determined by some planar representation of K(H) where each vertex
v ∈ V has the same location in the plane as its corresponding vertex
x ∈ X (Figure 13 (a,b)). Let the vertices of each hyperedge polygon
be ordered according to their angular coordinates relative to the cor-
responding vertex y ∈ Y . With this polygon drawing of H, the face
triangulation graph T (H) is constructed by the following procedure:

Procedure 3.

1. Let T (H) include all the vertices of H.
2. For two vertices u,v ∈ V , let (u,v) be an edge in T (H) if (u,v)

form the side of a polygon in the drawing of H.
3. Let {F1,F2, . . .} be the interior facial cycles in our current con-

struction of T (H) that correspond to a hypergraph face in the
drawing of H (Figure 13 (b)).

4. For each interior facial cycle Fi, add a vertex ci located in the
interior of Fi and edges (ci,v) for each vertex v ∈ V (Fi) (Fig-
ure 13 (c)).

With this definition, our goal is to show that the face triangulation
graph has a planar drawing with convex facial cycles only for a specific
class of hypergraphs. Thomassen [53] provides a characterization for
such graph drawings which they term convex representations.

(a) Drawing of König graph K(H).

(b) Drawing of hypergraph H.

(c) Interior facial cycles {F1,F2}.

(d) Face triangulation graph T (H).

Fig. 13: Construction of the face triangulation graph from a planar poly-
gon drawing of a hypergraph.

Theorem 4 (Thomassen [53]). Let G be a biconnected planar
graph and let S be a cycle which is the face boundary of some plane
representation of G. Let Σ be a convex polygon representing S. Then Σ

can be extended into a convex representation of G if and only if
(i) each vertex x in G−V (S) of degree at least 3 is joined to S by

three paths that are disjoint except for x,
(ii) each cycle which is edge-disjoint from S has at least three vertices

of degree at least 3, and
(iii) no S-component has all its vertices of attachment on a path of S

corresponding to a straight line segment of Σ.

For our polygon layouts of hypergraphs, we require that each hyper-
edge be drawn as a strictly convex polygon. Thus, we are interested
in the case where the face triangulation graph has strictly facial cycles.
Thomassen notes that if Σ is restricted to being strictly convex, condi-
tion (iii) becomes redundant. Thomassen also notes that every vertex
x ∈V (G)\V (S) with degree 2 must be on a straight line segment in any
convex representation of G. It follows that the faces whose boundaries
include x are not strictly convex. Thus, if we require that every face
boundary be strictly convex, Thomassen’s Theorem is reduced to the
following:

Theorem 5 (Strictly Convex Representations of Graphs). Let G
be a biconnected planar graph and let S be a cycle which is the face
boundary of some plane representation of G. Let Σ be a strictly convex
polygon representing S. Then Σ can be extended into a strictly convex
representation of G if and only if each vertex x in G−V (S) is joined to
S by three paths that are disjoint except for x.
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The proof of Theorem 5 follows from the proof of Thomassen’s
Theorem provided in [53]. These theorems on convex representations
of graphs motivate an extension to convex polygon representations of
hypergraphs. We use the face triangulation graph T (H) to connect
these theories on graph drawing to hypergraph polygon drawings. First,
we must specify the conditions under which a face triangulation graph
meets the prerequisites for Theorem 5.

Lemma 6. If the polygon drawing of H corresponds to a plane repre-
sentation of K(H), then the face triangulation graph T (H) is a planar
graph.

Proof. Since the König graph K(H) = (X ,Y,D) is planar, we know
that it does not contain a subgraph homeomorphic to K5 or K33. Let
us augment K(H) by adding an edge (u,v) for every u,v ∈ X such that
(u,v) forms the side of a polygon drawing of H. This augmentation
cannot create a subgraph homeomorphic to K33 since it does not add
any bipartite edges. Notice that each hyperedge in H now corresponds
to a wheel subgraph in K(H) which is a planar graph. Since no edges
are added between vertices in Y , it follows that a subgraph homeomor-
phic to K5 cannot contain a vertex y ∈ Y as a non-subdivision vertex.
Further, each edge added between a pair of vertices u,v ∈ X can already
be obtained in K(H) by smoothing their common adjacent vertex in
Y . Thus, our augmentation of K(H) does not affect its planarity. Now
let us further augment K(H) by removing all the vertices in X and all
the edges in D. Then we are left with only the vertices corresponding
to hypergraph vertices in H and edges corresponding to the sides of
polygons in the drawing of H. Clearly, this does not affect the pla-
narity of K(H). We can now obtain the face triangulation graph T (H)
by triangulating each interior face of the augmented graph K(H) that
corresponds to a hypergraph face in the drawing of H. Since an interior
face is a bounded region, it follows that we can place the new vertex
inside the bounded region and add edges according to step 4 of Proce-
dure 3 without introducing any edge crossings. Thus, our construction
of T (H) is a planar graph.

Lemma 7. If the polygon drawing of H corresponds to a plane rep-
resentation of K(H), then the face triangulation graph T (H) is bicon-
nected.

Proof. Each hyperedge in e ∈ E(H) is replaced by a cycle Ce in T (H)
following the sides of the corresponding polygon in the drawing of H.
Each cycle Ce defines a biconnected subgraph of T (H). Since H is
biconnected by assumption, it follows that the union of all cycles Ce
for e ∈ E(H) is also biconnected.

We now have the appropriate conditions to make the connection be-
tween Theorem 5 and convex polygon representations of hypergraphs.

Theorem 8. Let H be a biconnected, Zykov planar hypergraph. Then
H has a convex polygon representation if and only if it has a face
triangulation graph T (H) with a strictly convex representation.

Proof. We first show that if H has a face triangulation graph with a
strictly convex representation, then it has a convex polygon representa-
tion. Suppose there is a drawing of H such that the face triangulation
graph T (H) has a strictly convex representation. By the construction of
T (H), each hyperedge in H corresponds to a strictly convex facial cycle
in the drawing of T (H). It follows that if we draw each hyperedge in
H as a polygon following the corresponding facial cycle in T (H), we
can obtain a convex polygon representation of H.

Now we show that if H has a convex polygon representation, then
it has a face triangulation graph with a strictly convex representation.
Suppose that H has a convex polygon representation. Let T (H) be
constructed from this representation of H according to Procedure 3. By
Lemmas 6 and 7, we have that T (H) is planar and biconnected. Let
T (H) be drawn according to the convex polygon representation of H,
and let S be the exterior facial cycle of this drawing. Let Σ be a convex
polygon representing S. Then by Theorem 5, Σ can be extended to a
graph isomorphic to T (H) with strictly convex facial cycles if and only

(a) (b) (c)

(d)

Fig. 14: Illustration of our argument for the proof of Theorem 8. In (a), we
illustrate the subgraph X in the face triangulation graph which is joined to
the exterior face S through two vertices u and v. In (b), we illustrate the
faces F1,F2 enclosing X . In (c) we illustrate how the triangulation of F2
connects X to a vertex w on F2 through the triangulation vertex c2. In (d)
we illustrate how we construct a path from X to S through a sequence of
face triangulations (c1

2,w
1,c2

2,w
2, . . . ,cn

2,w
n) that does not include u or v.

if each vertex x ∈ T (H)−V (S) is joined to S by three paths that are
disjoint except for x. Let x ∈ T (H)−V (S). Since T (H) is biconnected,
there must be at least two vertex-disjoint paths from x to V (S). In the
following paragraphs, we prove that x is joined to S through at least
three disjoint paths by contradiction.

Suppose there are two vertices u,v ∈ T (H) such that every path
from x to V (S) includes u or v. This implies that if u and v were re-
moved, T (H) would become disconnected, and x would be in a separate
connected component from S. Let X be the connected component of
T (H) containing x when u and v are removed. Let Eu,Ev be the sets
of edges between u and V (X), and v and V (X) respectively (Figure 14
(a)). With T (H) drawn according to the convex polygon representation
of H, it must be that X is drawn in the interior of S. It follows that
X is enclosed by two faces F1 and F2 in the drawing of T (H) whose
boundaries contain u and v (Figure 14 (b)). Notice that F1 and F2 can-
not both correspond to strictly convex polygons in the convex polygon
representation of H since such polygons would necessarily share a side
(u,v). This configuration would preclude X from being incident to both
F1 and F2 while also being enclosed by F1 and F2. So, it must be that
either F1, F2, or both are faces in the drawing of T (H) that correspond
to a hypergraph face in a convex polygon representation of H.

Consider the case where F1 corresponds to a polygon in the convex
polygon representation of H and F2 does not. In order for F2 to be drawn
as a simple polygon, which must be the case since our drawing of T (H)
is planar, it must be that the boundary of F2 contains at least one vertex
w ̸= u,v, w /∈V (X) (Figure 14 (b)). Similarly, in the case where neither
F1 nor F2 correspond to a polygon in the convex polygon representation
of H, it must be that the boundary of either F1 or F2 contains at least
one vertex w ̸= u,v, w /∈V (X). Without loss of generality, suppose that
F2 does not correspond to a polygon in the convex representation of H,
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and that the boundary of F2 contains such a vertex w ̸= u,v, w /∈V (X).
In this case, the construction of T (H) would have added a vertex c2 to
the interior of F2 and edges (c2,y) for every vertex y on the boundary
of F2. Then X would be connected to the vertex w through a path
containing w which contradicts our observation that w /∈ X (Figure 14
(c)).

We can apply the same argument to an updated subgraph X and
new faces F1 and F2 enclosing X . In this way, we can grow X with a
sequence of vertices (w1,w2, . . . ,wn) until wn is a vertex on S, which
is possible assuming H and T (H) are finite (Figure 14 (d)). Thus, we
have shown that there must exist a path from x to wn ∈V (S) that does
not contain the vertices u or v. This contradicts our assumption that
every path from x to S passes through u or v. Therefore, each vertex
x ∈ T (H)−V (S) is joined to S by three paths that are disjoint except
for x, and Σ can be extended to a strictly convex representation of T (H)
by Theorem 5.

We also wish to consider convex polygon planarity for hypergraphs
that are not biconnected. To do this, we must address the placement
of articulation vertices between biconnected hypergraph components,
requiring the following lemma.

Lemma 9. Let H be a hypergraph with exterior face S and interior
faces R = {F1,F2, . . . ,Fn} for some convex polygon representation of H.
Then H also has convex polygon representations for each face Fi ∈ R
such that Fi is the exterior face and R−Fi +S are the interior faces.

This lemma can be proven in a similar manner to Theorem 8. Now
we can extend Theorem 8 to a more general class of connected hyper-
graphs if we consider each biconnected component individually.

Theorem 10. Let H be a Zykov planar hypergraph with k biconnected
components. Let {B1,B2, . . . ,Bk} be the sub-hypergraphs induced by
the k biconnected components V (Bi) ⊆ V (H). Then H has a convex
polygon representation if and only if each sub-hypergraph Bi has a
convex polygon representation where every vertex x ∈ V (Bi) that is
also an articulation vertex of H is located on a face boundary of some
convex polygon representation of Bi.

Proof. To prove Theorem 10 in the forward direction, suppose that
each sub-hypergraph Bi has a convex polygon representation where
every vertex x ∈V (Bi) that is also an articulation vertex of H is located
on a face boundary of the convex polygon representation of Bi. Then
we can construct a convex polygon representation for H by starting
with the convex polygon representation of Bi. Now consider a sub-
hypergraph B j incident to Bi through the articulation vertex x ∈V (H).
By Lemma 9, B j has a convex polygon representation where the face
boundary containing x is the exterior face boundary. It follows that
we can draw B j with this representation inside the face in Bi whose
boundary contains x without introducing any polygon intersections
(Figure 15). We can repeat this process until each of the biconnected
sub-hypergraphs is drawn with an appropriate convex polygon repre-
sentation.

To prove Theorem 10 in the reverse direction, suppose that H has a
convex polygon representation. Clearly, a convex polygon representa-
tion of any sub-hypergraph B can be obtained by removing the vertices
and hyperedges not in B from the convex polygon representation of H.
Let x be an articulation in H belonging to biconnected sub-hypergraphs
Bi and B j. To reach a contradiction, suppose that x is not located on a
face boundary of some convex polygon representation of Bi. Lemma 9
implies that x is not located on a face boundary for any convex poly-
gon representation of Bi. It follows that if Bi is drawn with a convex
polygon representation, there must be some intersection between a
pair of hyperedge polygons ei ∈ E(Bi) and e j ∈ E(B j) incident to the
articulation vertex x. This contradicts our assumption that H has a
convex polygon representation.

Finally, we restate our main result for convex polygon representa-
tions of hypergraphs.

Fig. 15: Two biconnected sub-hypergraphs Bi and B j incident through an
articulation vertex x can be drawn without intersection if x is on a face
boundary of both sub-hypergraphs.

Theorem 11. (Theorem 2 from the main paper:) Let H be a Zykov
planar hypergraph. Then H has a convex polygon representation if and
only if it does not contain any of the following as a sub-hypergraph:

(a) A 3-adjacent cluster of 2 hyperedges,
(b) A 2-adjacent cluster of 3 hyperedges,
(c) A strangled vertex,
(d) A strangled hyperedge.

Proof. =⇒ We prove the contrapositive statement: If H does not have
a convex polygon representation, then it contains one of the forbidden
sub-hypergraphs. By Theorem 10, H does not have a convex polygon
representation if the sub-hypergraph induced by one of its biconnected
components does not have a convex polygon representation. Let B
represent such a biconnected sub-hypergraph. Then by Theorems 8
and 5, it must be that every face triangulation graph T (B) drawn with
exterior face boundary S contains a vertex x ∈ T (B)−V (S) joined to
S by fewer than three paths that are disjoint except for x. Without
loss of generality, let T (B) and S represent the drawing of the face
triangulation graph of B containing the fewest such vertices x.

Consider the case where all of the face boundaries containing x
represent hyperedges in B. If x is on exactly two such face boundaries,
it must be that the corresponding hyperedges in B share at least 3
common vertices including x. This matches the definition of a 3-
adjacent cluster of 2 hyperedges (Figure 16 (a)). If x is on more than
two such boundaries, it follows that x is adjacent to at least three other
vertices. At least one of these adjacent vertices, call it vertex y, must
also be joined to S by fewer than three disjoint paths, otherwise, x
would be joined to S by three disjoint paths. Without loss of generality,
we can consider vertex y instead of vertex x, which may be contained
in a different set of face boundaries, and could fall under one of the
other following cases.

Now consider the case where x is on a face boundary that neither
represents a hyperedge in H nor corresponds to a part of a hypergraph
face in B. It follows that in the polygon drawing of B, x is positioned in
the interior of some hyperedge polygon. This indicates the existence of
a 2-adjacent hyperedge cluster of 3 hyperedges in B (Figure 16 (b)).

Now consider the case where x is on a face boundary corresponding
to part of a hypergraph face in B. Then x is either one of the face
triangulation vertices c from step 4 of Procedure 3, or is adjacent
to such a vertex. If it is the latter, it follows that the adjacent face
triangulation vertex c is also joined to S by fewer than three disjoint
paths. Without loss of generality, assume that x = c. Then x is the
central vertex of a wheel subgraph W in T (B). Since x is adjacent to
every other vertex in W , it follows that W is joined to the rest of T (B)
by fewer than three disjoint paths. This configuration corresponds to a
strangled hyperedge in B (Figure 16 (c)).

Thus, we have accounted for all possible configurations of x, all
of which indicate the existence of a forbidden sub-hypergraph in the
biconnected sub-hypergraph B. Theorem 10 further implies that H does
not have a convex polygon representation if it contains an articulation
vertex x such that x does not appear on a face boundary of any con-
vex polygon representation of some sub-hypergraph B induced by a
biconnected component of H containing x. Then the hyperedges that

14



To appear in IEEE Transactions on Visualization and Computer Graphics

(a) 3-adjacent cluster of 2 hyperedges

(b) 2-adjacent cluster of 3 hyperedges

(c) Strangled hyperedge

Fig. 16: Forbidden sub-hypergraphs (middle) drawn according to a plane
embedding of their König graphs (left) and their corresponding face
triangulation graphs (right). The vertices highlighted in orange have
fewer than 3 disjoint paths to the exterior face boundary.

are incident to x in B completely surround x in every convex polygon
representation of B. This can only be possible if the hyperedges inci-
dent to x in B form a cycle in B− x. This matches the definition of a
strangled vertex sub-hypergraph (Figure 6 (c) from the main paper).

⇐= We prove the contrapositive statement: if H contains any of
the forbidden sub-hypergraphs, it does not have a convex polygon
representation. First, consider the case where H contains a 3-adjacent
cluster of 2 hyperedges. When embedded in the plane, the three shared
vertices in the 3-adjacent cluster must either form a triangle or be
colinear. If they form a triangle, the intersection of two convex polygons
containing the vertices must at least equal the area of the triangle. If the
vertices are colinear, then the polygons containing them are not strictly
convex. Thus, H does not have a convex polygon representation.

Now consider the case where H contains a 2-adjacent cluster of 3
hyperedges. Then the locations of the two shared vertices in the cluster
define a line splitting the plane into two half-planes. Let {e1,e2,e3} be
the three hyperedges in the cluster. Without loss of generality, e1 can
be drawn with its remaining vertices in one half plane, and e2 can be
drawn with its remaining vertices in the other half plane, and there is no
intersection between the polygons for e1 and e2. For e3 to be drawn as a
convex polygon, its remaining vertices must be drawn in one half plane
or the other, so it must have a nonzero intersection with the polygon
for e1 or e2, and H does not have a convex polygon representation.

Now consider the case where H contains a strangled vertex x∈V (H).
Let C be the cycle among a proper subset of the vertices adjacent and
hyperedges incident to x. If the vertices V (C) are positioned in the plane
such that their convex hull does not match their order in the cycle, it
must be that the cycle crosses over itself and the drawing is non-planar.
Otherwise, if x is located outside the convex hull of V (C), it must be
that one or more of the hyperedges in E(C) have polygons crossing the
interior and boundary of the convex hull, so the drawing is non-planar.
If x is located inside the convex hull of V (C), it follows that if each
hyperedge in E(C) is drawn as a convex polygon, the interior of the
hull is completely tiled by these polygons. Thus, any other hyperedge
polygon incident to x must intersect with one of the hyperedge polygons

in E(C), so H does not have a convex polygon representation.
Now consider the case where H contains a strangled hyperedge

e ∈ E(H). Let C be the cycle among a proper subset of the vertices
incident and hyperedges adjacent to e. If the vertices V (C) are located
such that their convex hull does not match their order in the cycle, it
must be that the cycle crosses over itself and the drawing is non-planar.
Otherwise, if a vertex x incident to e but not in V (C) is drawn inside
the convex hull of V (C), it follows that e cannot be drawn as a strictly
convex polygon. If x is drawn outside the convex hull of V (C), it
follows that the drawing of e has nonzero intersection with at least
one hyperedge polygon in E(C), so H does not have a convex polygon
representation.

B PAPER-AUTHOR RESULTS

Figure 17: An enlarged version of Figure 10 from the main paper.
A paper-author hypergraph dataset containing 1008 vertices and 429
hyperedges (a) is simplified with our framework down to the coarsest
allowable scale H1214 (c) and the layout is optimized. Then the simplifi-
cation is iteratively reversed, and the layout refined at each intermediate
scale, an example of which is shown in (b), until the original scale H0
is reached.

C EYE TRACKING GAZE PATHS

Figure 18: An enlarged version of Figure 11 from the main paper. Gaze
fixation paths of two participants answering the same question for the
trade agreement dataset in our user survey. The participant with the
gaze path on the left did not study the dual hypergraph and answered
the question incorrectly. The participant with the gaze path on the
right studied both the primal and dual hypergraph visualizations and
answered the question correctly.

D EYE TRACKING FIXATION TIMELINES

Figure 19: An enlarged version of Figure 12 from the main paper.
Gaze fixation timelines of two participants answering a question in
our user survey. The vertical axis indicates different regions on the
participant’s screen, including the question text and visualization scales.
The horizontal axis represents the time in seconds that a participant
spent on the question. The vertical lines in the plot indicate when the
participant selected an answer. The blue lines indicate a correct answer
and the red lines indicate an incorrect answer.
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(a) Original Scale

(b) Intermediate Simplified Scale

(c) Coarsest Simplified Scale

Fig. 17: Enlarged versions of the images in Figure 10 from the main paper. Final optimized layout of the original scale (a), coarsest simplified scale
(c), and one intermediate simplified scale (b) for a paper-author hypergraph dataset.
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Fig. 18: Enlarged versions of the images in Figure 11 from the main paper. Gaze fixation paths of two user survey participants.

Fig. 19: Enlarged versions of the images in Figure 12 from the main paper. Gaze fixation timelines of two user survey participants.
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