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Class-constrained t-SNE: Combining Data Features and Class
Probabilities

Linhao Meng , Stef van den Elzen , Nicola Pezzotti , and Anna Vilanova

Abstract—Data features and class probabilities are two main perspectives when, e.g., evaluating model results and identifying
problematic items. Class probabilities represent the likelihood that each instance belongs to a particular class, which can be produced
by probabilistic classifiers or even human labeling with uncertainty. Since both perspectives are multi-dimensional data, dimensionality
reduction (DR) techniques are commonly used to extract informative characteristics from them. However, existing methods either focus
solely on the data feature perspective or rely on class probability estimates to guide the DR process. In contrast to previous work
where separate views are linked to conduct the analysis, we propose a novel approach, class-constrained t-SNE, that combines data
features and class probabilities in the same DR result. Specifically, we combine them by balancing two corresponding components
in a cost function to optimize the positions of data points and iconic representation of classes – class landmarks. Furthermore, an
interactive user-adjustable parameter balances these two components so that users can focus on the weighted perspectives of interest
and also empowers a smooth visual transition between varying perspectives to preserve the mental map. We illustrate its application
potential in model evaluation and visual-interactive labeling. A comparative analysis is performed to evaluate the DR results.

Index Terms—Dimensionality reduction, t-distributed stochastic neighbor embedding, constraint integration

1 INTRODUCTION

Classifiers are the most widely used machine learning models in fields
such as finance, business, and healthcare. Developers make efforts to
analyze classifiers to understand model behavior and identify poten-
tial problems during model development. Common model-agnostic
strategies for examining classifiers involve analyzing data features, clas-
sification results, and the relationship between the two. Both data are
bound to the same individual instances, implying that each instance
encompasses its feature values and corresponding classification result.
The classification result generally refers to the class label assigned to
the instance. Of particular focus in our work are the class probabilities
conveying the likelihood of instances belonging to each class. Class
probabilities provide a more detailed evaluation of the classifier’s per-
formance than simple labels or summary performance measures and
enable users to assess model behavior [41].

Since both data features and class probabilities are multi-
dimensional, multi-dimensional data visualization techniques such as
parallel coordinate plot, scatterplot matrix, or dimensionality reduction
(DR) can be applied. Typically, data features and class probabilities
are visualized in separate views connected by brushing and linking
techniques. User interaction is often required to gain a complete under-
standing of their relationship. While it is possible to encode informa-
tion from the other perspective as different visual channels in a single
view [42], this approach may only capture a limited aspect of the other
high-dimensional space. As each channel only encodes one variable or
aspect of the high dimensional space, it can not provide a complete and
accurate representation of the relationship between the two spaces.

Similar problems to classifier analysis can be found in document
analysis where topic modeling results are typically visualized and
analyzed with data features [29,59]. Topic modeling is a technique that
discovers the underlying topics within a collection of documents and
represents each document as a weighted combination of these topics.
Probabilistic methods are often used, producing non-negative weights
representing the probabilities of a document belonging to each related
topic. Such probability data can also come from user labeling with
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uncertainty. Therefore, the problem in our study can be defined as
analyzing two high-dimensional spaces of the same elements, where
one space is the data features, and the other represents the probabilities
of belonging to certain entities or classes.

In contrast to previous work where multiple views are linked, in
this work, we aim to merge both perspectives (i.e., data features and
class probabilities) such that we can leverage both perspectives in
one view. Both data feature structure and class probability structure
are combined and displayed in a position-encoded manner. The data
feature structure refers to instance similarity in data feature values. It is
frequently visualized using general DR methods as shown in Fig. 1a.
For the class probability structure, the between-instance similarities
based on class probabilities matter, but also the relationship between
instances and the classes. As a result, general DR methods that only
preserve between-instance similarity are insufficient. Seifert and Lex
have proposed the class radial visualization [47] designed to display the
relationship between instances and classes. The iconic representations
of classes are displayed equally distributed around the perimeter of
a circle. Instances are placed inside the circle based on their class
probabilities, as depicted in Fig. 1b. The order and distribution of the
iconic representations of classes have a significant influence on the
visualization result and its interpretation. For example, it is not always
clear among which classes the model is confused. In Fig. 1b, for data
points in the center, it is unclear whether the model is confused between
classes G and Y or among all classes. This ambiguity problem becomes
more severe as the number of classes increases.

Drawing inspiration from above projection methods, we use position
proximity between data points to express data feature similarity. Posi-
tion proximity between data points and iconic representation of classes
named class landmarks conveys class probabilities. The ultimate place-
ment of data points is determined by the tradeoff between preserving
the data feature structure (Fig. 1c-1) or the class probability structure
(Fig. 1c-3). By striking a balance between these two structures, we
attain a merged projection result (Fig. 1c-2) that reveals patterns derived
from the combination of data feature and class probability perspectives.
Additionally, our method relieves the ambiguity problem by optimizing
the positions of class landmarks in 2D space such that well-separated
classes are drawn apart to mitigate data point overlap. As a result, the
position proximity of class landmarks reflects class confusion.

The combination of data feature structure and class probability struc-
ture yields several advantages: (1) The merged projection result en-
hances visual cluster interpretability with class information compared
to the one solely based on data feature values. The significant data
feature structure manifested as every main visual cluster is preserved.
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Fig. 1: A demonstration of DR results based on a single or combined
perspective of data feature and class probability where data points are
colored by predicted classes. (a) Data feature projection shows data
feature characteristics by applying standard distance-based DR to data
feature values. (b) Class radial visualization is employed to reveal
probability-based model performance. (c) Class-constrained t-SNE
enables the combination of data features and class probabilities.

Within each cluster, for example, in Fig. 1c-I, data points are arranged
so that those with higher probabilities are more likely to be closer to
the corresponding class landmark. Furthermore, clusters with the same
predicted class are pulled towards the class landmark, as depicted in
Fig. 1c-IV. (2) Incorporating class probability information improves
the group separation inside visual clusters, where instances are difficult
to distinguish solely based on data feature structure, as demonstrated
in Fig. 1c-III. This impact is reminiscent of previous work using label
information to improve the visual quality of projection results [15, 39].
However, our method goes beyond simply placing instances of the
same class clustered together by leveraging class probability informa-
tion and direct forces between class landmarks and data points to drag
the most uncertain instances toward the borderline between different
class groups. (3) The outliers, mainly a small number of instances
unrepresentative of both perspectives or whose data feature similarities
and class memberships conflict (e.g., Fig. 1c-II), are pushed out from
the main visual clusters. These instances generally are worthy of further
examination, such as in model analysis.

The main contribution of this work lies in a dimensionality reduction-
based method, i.e., class-constrained t-SNE (as demonstrated in Fig. 1c),
which has been implemented by imposing constraints upon the t-
Distributed Stochastic Neighbor Embedding (t-SNE) algorithm. This
method aims to combine and compare data feature structure and class
probability structure to reveal the relationship between data features
and class probabilities. Since both structures are displayed using posi-
tion encoding, we can combine them by balancing two corresponding
components in a cost function to optimize the positions of instances
and class landmarks. Although coarse structures of both perspectives
are considered by minimizing the cost function, it induces unavoidable
interference when combining them. To alleviate this issue, we introduce
an interactive user-adjustable parameter α to balance the two structures
so that users can focus on the weighted perspectives of interest. Mean-
while, our method empowers a smooth continuous visual transition
between varying perspectives to preserve the mental map. It assists
in tracing instances and facilitates the comparison among different
projection results. We validate our method using several datasets and
demonstrate its effectiveness in classifier performance and document
topic analysis. We conduct a qualitative and quantitative comparative
analysis with a baseline method to evaluate its superiority. Additionally,
we showcase its potential application in a visual-interactive labeling
scenario, where adapting the structure balance parameter during model

evolution enhances instance selection and labeling.

2 BACKGROUND

This section provides a brief introduction to the t-SNE algorithm, which
is necessary to comprehend our approach.

t-SNE, as a nonlinear dimensionality reduction algorithm, is widely
used for high-dimensional data visualization. It functions by preserv-
ing the neighborhood relationships between data points in the high-
dimensional space when mapping them to a lower-dimensional space.
To achieve that, t-SNE transforms the distance matrix between all data
points in the high-dimensional space into a symmetric joint probability
distribution P. Likewise, a joint probability distribution Q is computed
based on distances between the corresponding low-dimensional points.
P,Q ∈ Rn×n measure the pairwise similarities of data points in the
high and low dimensional space, where n is the number of data points.
The goal is to let Q match P by iteratively optimizing the positions
of low-dimensional points. This optimization process is achieved by
minimizing the cost function C that measures the difference between P
and Q using Kullback–Leibler (KL) divergence:

C = KL(P||Q) =
n

∑
i

n

∑
j, j ̸=i

pi j ln
pi j

qi j
. (1)

Here pi j indicates the similarity of data points xi and x j in the high-
dimensional space. pi j is derived from the conditional probability p j|i
and pi| j . p j|i represents the probability that x j is picked as neighbor of
xi based on a Gaussian probability density function centered at xi with
variance σi. The variance σi is determined by the perplexity parameter,
which is the effective number of nearest neighbors considered when
defining the neighborhood Gaussian probability density per point xi.
Mathematically, pi j is defined as:

pi j =
p j|i + pi| j

2n
, where p j|i =

exp(−||xi − x j||2/2σ2
i )

∑k ̸=i exp(−||xi − xk||2/2σ2
i )

. (2)

In the low-dimensional space, a Student t-distribution with a single
degree of freedom is used to convert distances into probabilities. Given
the corresponding low-dimensional points yi and y j, qi j describes the
similarity of them given by

qi j =
(1+ ||yi − y j||2)−1

∑k ̸=l(1+ ||yk − yl ||2)−1 . (3)

Details on t-SNE can be found in the original paper by Van der
Maaten and Hinton [53] or other relevant sources [8, 51]. In our work,
we employ the original t-SNE algorithm to reveal data feature structure.
Simultaneously, we augment the cost function by introducing another
component to incorporate class probability structure. Balancing these
two components enables the combination of both structures. Details of
our method are discussed in Sec. 4.

3 RELATED WORK

In this section, we review previous work about visualization solutions
for data features or class probabilities separately, followed by visual-
ization methods concerning the combination. Finally, existing works
regarding adding constraints into t-SNE are discussed in Sec. 3.3.

3.1 Visualizing Data Feature or Class Probability
Data feature vectors are commonly multi-dimensional data. Multiclass
probabilities are multi-dimensional data as well, with each class con-
sidered one dimension. Popular multi-dimensional data visualization
methods use parallel coordinate plots (PCP) and scatterplot matrices
(SPLOM). Some work [11, 13] apply PCP to show pairwise feature
correlations. However, it is difficult to discern instance distribution
for each class when applying PCP to class probabilities. To alleviate
this issue, Chae et al. [10] and Ren et al. [41] align binning boxes with
parallel coordinates to enrich the class-level performance information.
Another standard method to deal with multi-dimensional data is to allow
interactive selection of displayed dimensions in scatterplots [20, 43].
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While the techniques mentioned above visualize the values for each
dimension and can display pairwise dimension relationships, it remains
challenging to infer the relationships between instances across multi-
ple dimensions. Conversely, DR-based visualization methods project
instances onto a 2D space and generate a layout where similarities
between instances derived from multiple dimensions can be identified
directly based on their spatial proximity [44]. Therefore, DR-based
visualization methods are widely used to present overall data distri-
bution and similarity characteristics of data feature values in model
analysis tasks [34, 36, 49]. However, to reveal class probability struc-
ture, it is important to indicate how each instance relates to each class.
DR methods that only consider preserving the distances or similarities
between pairwise instances based on class probabilities do not comply.
Benefiting from a radial spring-based projection mechanism, RadViz
visualization [23] shows advantages in revealing relationships between
instances and dimensions by the proximity of data points to the dimen-
sion anchors. Inspired by it, Seifert and Lex [46, 47] develop a class
radial visualization for analyzing classification results and further apply
it in interactive labeling tasks. However, as discussed before, the ambi-
guity problem remains and exacerbates with more class dimensions. In
contrast, this problem can be alleviated by modifying the position of
class anchors during the projection process [26, 32].

3.2 Combining Data Feature and Class Probability
Existing visualization works commonly utilize separate views and link
them through interactions to facilitate analysis from both data feature
and class probability perspectives [19,24]. Most offer fine-grained anal-
ysis at the instance or subset level from the selected primary perspective
while displaying aggregated statistics from the other perspective [1,60].
Some works support fine-grained analysis and instance selection from
both perspectives. One conventional method involves using a projection
view that indicates data feature structure alongside a scatterplot where
one axis encodes class probabilities [22, 58]. However, with only two
axes of a scatterplot, it can encode the class probabilities of at most two
classes, which is insufficient for a multiclass scenario. Separate views
require user interactions to examine the same instances from different
perspectives of data features and class probabilities so that users can
gain an overall understanding of instance attribution in data feature
structure and class probability space.

There are several previous works aiming to achieve the combina-
tion of two perspectives in a single view. ModelTracker [2] aligns
instance squares on a horizontal axis according to prediction scores
and connects the nearest neighbors in the feature space by lines when
hovering over an instance square. It does not provide an overview of
data feature structure and cannot easily be extended to multi-class cases.
Schneider et al. [43] use the X axis to encode classification probability
and the Y axis to encode the attribute value of one selected feature or
instance similarity in a scatterplot. Since this approach only considers
the biggest probability prediction for each instance, it is incapable of
revealing class confusion derived from probability information among
all classes. Instead of using class probabilities, some work [12, 37] has
incorporated class membership information directly into data feature
similarity by perturbing the data feature distance matrix. They build
a neighbor-joining tree or generate DR results based on whether or
not instances belong to the same class. However, these methods only
consider the class consistency of the instances but not the relationship
between instances and specific classes reflected by class probabilities.
Our work explores the combination of the data feature and class proba-
bility perspectives in one view. We use dimensionality reduction as the
backbone of the visualization, which to the best of our knowledge, has
yet to be explored in previous work.

3.3 Integrating Constraints into t-SNE
The major objectives of integrating constraints into t-SNE in existing
work are (1) improving the stability of projection results, (2) incorpo-
rating additional information to enhance embedding quality, and (3)
accommodating specific layout requirements. The first objective is
commonly achieved by the fixed point constraint. It can be done by
fixing the positions of some anchor points and performing iterative

optimization of other points [28, 29, 56]. This method is typically used
to maintain view consistency when the user interacts with a projection
view. Another version of the fixed point constraint is to add an extra
loss term to generate consistent projections for the temporal evolution
of the same observations [40]. The loss restricts relative positions
between the identical points of adjacent time frames. To accomplish
the second objective, additional information, such as class labels, is
utilized to enforce proximity constraints among data points, bringing
points of the same class closer and increasing the separation between
points of different classes. Constraints can be applied during the com-
putation of the (dis)similarity matrix [15, 21] or included in the cost
function [14, 54]. Likewise, in the domain of topic modeling, Top-
icLens [29] and UTOPIAN [12] enhance the visual clarity of topic
modeling results by adjusting pairwise distances between document
representations in accordance with their membership in topic clusters
when using t-SNE.

Our goal extends beyond utilizing class labels to enhance class
separation among data points. Instead, we aim to impose constraints on
the proximity between data points and class landmarks, which accords
with the third objective. The "landmark" concept can be found in
some previous work [3, 16] where a subset of the data is chosen as
"landmark points" to guide the projection of other data points. However,
in our work, each class landmark represents one dimension of the
data in terms of class probabilities. A typical example of meeting
specific layout requirements can be found in Liu et al.’s work [33]. By
introducing class constraint arcs as class representations in a circular-
based layout, instance uncertainty (crowdsourced label consistency)
is reflected by relative positions between instance points and class
arcs. Meanwhile, the most uncertain ones are pushed into the circular
center. To achieve this layout, an additional component is added to
the original t-SNE cost function, which transforms the constraint of
revealing crowdsourced label information into another KL function.
Nevertheless, since positions of class constraint arcs are fixed in the
circular layout, the projection result has a similar ambiguity issue as
in RadViz. Additionally, it cannot directly present which classes are
more likely to be confused. Our approach also employs weighted
KL divergences in the cost function to combine and balance different
components. However, rather than relying on static class arcs, we
use iconic representations – class landmarks – whose positions are
concurrently optimized with data points. This innovative technique
alleviates the shortcomings associated with fixed layouts.

4 CLASS-CONSTRAINED T-SNE
Class-constrained t-SNE is a DR-based method that combines the data
feature and class probability perspectives in the projection result. In this
section, we start by clarifying the objectives and requirements of our
method. Then we present the method itself, which adapts the original
t-SNE method to display the data feature structure while incorporating
class probabilities as constraints to reveal the class probability structure.

4.1 Goal Analysis
DR methods reduce the dimensionality of the original data features
and facilitate the visualization of salient structures, which we refer to
as the data feature structure. Additional information such as labels,
external features, or user feedback can adapt the low-dimensional
representations to the users’ needs by integrating constraints into DR
methods [55]. One way to incorporate class probabilities for the same
instances is to treat them as additional features added to the original
data feature space, which will directly perturb the pairwise instance
similarity or distance matrix [37, 39]. Likewise, we can incorporate
a constraint into the original DR cost function to boost the clustering
of data points with similar class probabilities [9]. A naive approach
would be linearly combining two KL functions. The first KL function
is the original t-SNE cost function for the data feature space. The
second KL function is an additional one, designed in a similar manner
but employing pairwise class probability similarity of data points as
the input. However, this method hides the correlation between data
features and class probabilities. In addition, the relationship between
instances and the classes themselves is ignored when converting class
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Table 1: Visual patterns when combining data features and class probabilities.

Feature(f) + Probability(p) = Combination(c) Description

P1 C C A cluster (f) with the same class C (p) retains in (c)

P2 C C Two clusters (f) with the same class C (p) get closer in (c)

P3 OC OC Two clusters (f) with high-probability classes C and O (p) retain in (c)

P4 C OC O
Two clusters (f) with classes C and O but with uncertain instances in
between (p) get closer in (c)

P5 OC C O
A cluster with low class mixing (f) and high-probability for classes C and O
(p) get separated in (c)

P6 C O C O
A cluster with low class mixing (f) and uncertain instances in between for
classes C and O (p) slightly get separated in (c)

P7 OC C O
A cluster with high class mixing (f) and high-probability for classes C and
O (p) generate borderline in (c)

P8 C OC O
A cluster with high class mixing (f) and uncertain instances in between for
classes C and O (p) generate unclear borderline in (c)

P9 C O C O
Two clusters (f) primarily with classes C and O (p) retains in (c). Few
instances classified as C (p) but in another cluster (f) are drawn towards the
cluster of class C (c).

P10 C O C O
Two clusters (f) with classes C and O respectively (p) retains in (c). Few
instances in the cluster of class O (f) and classified as O but with low
probabilities (p) are slightly pushed away from the original cluster(c).

probabilities to the similarities among instances. Thus the class-level
information that can be presented is limited.

As an alternative, class probabilities indicate similarities between
instances and classes. We expect this relationship to be reflected in the
DR results. Therefore, in this work, the goal we aim at is combining
and exhibiting two components in the projection result. One component
is the data feature structure reflected by pairwise instance similarity
based on data feature values. The other is the class probability structure
derived from the relationship between instances and classes.

In the projection results using t-SNE, data feature structure is man-
ifested by the clustering of data points that share similar data feature
values. To better present class probability structure, we introduce the
iconic representations of classes – class landmarks as extra points in the
low dimensional space. The use of class landmarks enables the identi-
fication of class probabilities based on the proximity of data points to
these class landmarks. Furthermore, the proximity between the class
landmarks indicates the confusions between the classes, as reflected in
the class probabilities.

We expect that when combining these two structures, specific visual
patterns (P1-10) will emerge, as summarized in Tab. 1. P1 and P2
refer to scenarios where one or more clusters share the same class. In
the combined projection result, these clusters are retained around their
corresponding class landmarks, while the positions of data points are
adjusted according to their class probabilities. Specifically, instances
with higher probabilities are relocated nearer to the class landmark. P3
and P4 illustrate situations where distinct visual clusters are assigned
as different classes. In P3, the classes are well separated with high
probabilities, while in P4, the classes are not well separated, with
instances of relatively low probabilities interspersed. In P5-8, classes
cannot be distinguished directly in the original data feature space,
resulting in instances of mixed classes within a single visual cluster.
When combined with class probability information, the inner structure
of the cluster is expected to emerge, with borderlines generated between
data points of different classes. Data points at the borderlines are the
most confused between the classes. However, the degree to which data
points of different classes are separated within the cluster depends on
their degree of certainty in the class probability space and the degree
of separation in the original data feature space. This is illustrated in
P5-7 and P8, which show how clear or unclear borderlines can result
from these factors. P9 show outliers whose data feature pattern and
class result conflict. In this case, the outliers are pushed away from the

original cluster. In P10, the data feature pattern appears to align with
the class result. But a few instances within the cluster exhibit relatively
low probabilities compared to the rest in that cluster. As a result, these
instances are slightly pushed away from the original cluster. Note
that the combination patterns, as observed, do not accurately reflect a
single perspective. Therefore, a flexible transformation that transitions
seamlessly from one perspective to another would be required. In the
following subsection, we propose the method we expect to produce the
results defined above.

4.2 Method
Given a data set X = {x1,x2, ...,xn} where xi is a multi-dimensional
feature vector and n is the number of instances, and a corresponding
m-class probability result T = {(t11, t12, ..., t1m), ...,(tn1, tn2, ..., tnm)}
where tiu is the probability of xi belonging to class u, we aim to con-
vert X into two-dimensional data Y = {y1,y2, ...,yn} displayed in a
scatterplot which satisfies our goal as defined above.

To represent the data feature structure, we propose using the con-
ventional t-SNE optimization approach to preserve neighborhoods and
cluster structures. To reveal class probabilities in the two-dimensional
map, we introduce m class landmarks in the two-dimensional space
V = {v1,v2, ...,vm} where each vu denotes the position of one class
landmark, the iconic representation of class u. The high-dimensional
representation of a class landmark in terms of class probabilities is one
of the unit vectors E = {e1,e2, ...,em}. Each unit vector represents a
specific dimension in the m-dimensional space. Position proximity
between data points Y and class landmarks V reflects class probability
information. Specifically, data points more certain to be one class are
closer to the corresponding class landmark than the others. Data points
confused by two or a few classes are drawn toward the borderlines
between the corresponding class clusters.

To achieve the above hypothesis, we introduce two cost functions,
denoted as f c1 and f c2, for optimizing the projection results to rep-
resent the data feature structure and the class probability structure,
respectively. These cost functions are specifically designed to capture
the distinct characteristics of each structure given by

f c1 = KL(Pd ||Qd), (4)

f c2 =
1
n

n

∑
i=1

(KL(Pc
i ||Qc

i )+λ ·D), D =
1
m

m

∑
u=1

pc
iu · ||yi − vu||2. (5)
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f c1 is the same as Eq. (1) used in the original t-SNE method.
Pd ,Qd ∈ Rn×n are joint probability distributions that measure pairwise
similarities of data points in the high-dimensional data feature space
and low-dimensional space, which have been formulated in Sec. 2.

f c2 enforces the position proximity between data points and class
landmarks based on class probabilities. Pc

i and Qc
i are m-dimensional

vectors. Pc
i measures the similarities of xi and m classes in the high-

dimensional space. pc
iu ∈ Pc

i , the probability that xi belongs to class u,
is drawn from the class probability result T as

pc
iu= ti · eu = tiu, u = 1,2, ...,m. (6)

For the 2D counterparts yi and V of xi and m classes, we use a prob-
ability distribution Qc

i to model the similarities of data point yi and
class landmarks V . We define the probability qc

iu ∈ Qc
i measuring the

similarity between data point yi and class landmark vu in the 2D map
as

qc
iu =

(1+ ||yi − vu||2)−1

∑
m
s=1(1+ ||yi − vs||2)−1 . (7)

We aim to find the 2D representations yi and V of instance xi and classes,
which minimizes the mismatch between Pc

i and Qc
i . Since Pc

i and Qc
i

are probability distributions, we also use KL divergence KL(Pc
i ||Qc

i ) to
measure the faithfulness that using Qc

i to model Pc
i . By minimizing the

sum of KL divergences over all instances, we aim to obtain a layout of
all data points and class landmarks, revealing the relationship between
instances and classes.

Inspired by t-SNE, we use the heavy-tailed Student t-distribution to
convert distances between data points and class landmarks to probabil-
ities when calculating Qc. It allows moderate class probability to be
modeled by a relatively large distance, eliminating the unwanted force
between data points and less likely class landmarks and giving more
space between class landmarks to show the data points confused by
certain classes in the map. To maintain consistency in the variance of
the probability distribution used to calculate Qd , we also use a single
degree of freedom, as demonstrated to be appropriate for 2D embed-
dings [51], when calculating Qc. It is worth noting that while the degree
of freedom for t-SNE is adjustable, using the same setting for both Qd

and Qc contributes to a fair and unbiased representation of the resulting
embedding when combining the two structures.

By minimizing KL(Pc
i ||Qc

i ), we ensure the position proximity be-
tween data point yi and all class landmarks V reflect class probability
of xi. However, in some cases, infinite possible yi could satisfy the min-
imization requirement. For example, for xi with an equal probability
of 0.5 for two classes, any two-dimensional map yi ending up on the
perpendicular bisector of the corresponding class landmarks satisfies
this probability constraint. To relieve this issue, we add a distance
penalty D in f c2 to ensure there is only one optimal value for yi, which
is the midpoint of the two class landmarks in the above example. As
a result, we ensure a stable two-dimensional map can be attained as
an optimal solution. This distance penalty is weighted by a parameter
λ > 0.

Note that f c1 only constrains the relative distances between data
points, while f c2 constrains the relative distances between data points
and class landmarks. f c2 can be minimized by optimizing the positions
of data points, class landmarks, or both. In other words, the positions of
data points are affected by the optimization of both f c1 and f c2. The
amount of influence of different perspectives depends on how much
weight we put on them. In contrast, positions of class landmarks can
always be optimized to minimize f c2 no matter where data points are.
Therefore, we define the cost functions Cd for optimizing instance
representations Y and Cc for optimizing class landmarks V as

Cd = (1−α) · f c1 +α · f c2, (8)
Cc = f c2. (9)

The positions of data points are a tradeoff between two objectives f c1
and f c2 balanced by the parameter α ∈ [0,1]. We make this parameter
configurable, enabling users to manipulate it and focus on the weighted
perspectives of interest.

Algorithm 1: Class-constrained t-SNE
Data: data set X = {x1,x2, ...,xn}, class probability

T = {(t11, t12, ..., t1m), ...,(tn1, tn2, ..., tnm)}, structure
balance parameter α , distance penalty weight λ ,
perplexity Perp, number of iterations K, learning rate η ,
momentum µ(k).

Result: 2D data representation Y , 2D class landmarks V .
begin

compute pairwise data affinities Pd with Perp (using
Eq. (2));

compute data class affinities Pc (using Eq. (6));
Initialize Y and V from N(0,10−4I);
for k=1 to K do

compute pairwise 2D data affinities Qd (using Eq. (3));
compute 2D data class affinities Qc (using Eq. (7));
set Y (k) = Y (k−1)+η

∂Cd
∂Y +µ(k)(Y (k−1)−Y (k−2));

set V (k) =V (k−1)+ ηm
n

∂Cc
∂V +µ(k)(V (k−1)−V (k−2));

end
end

yv1

v2

v3

i

(a) Forces on data point yi

v1

v2

v3

(b) Forces on class landmark v1

Fig. 2: Illustration of using force to interpret the gradient. Grey points
denote data points, and each circle labeled as vi is one class landmark.

4.3 Optimization
We use a similar optimization method as proposed by Van der Maaten
and Hinton [53]. The algorithm is described in Algorithm 1. The
minimization of cost functions is achieved by gradient descent. The
gradients are computed as

∂Cd

∂yi
= (1−α) · ∂ f c1

∂yi
+α · ∂ f c2

∂yi
,

∂ f c1

∂yi
= 4∑

j
(pd

i j −qd
i j)(yi − y j)Zi j,

∂ f c2

∂yi
=

2
n ∑

u
((pc

iu −qc
iu)(yi − vu)Ziu +

λ

m
pc

iu(yi − vu)),

∂Cc

∂vu
=

2
n ∑

j
((pc

ju −qc
ju)(vu − y j)Z ju +

λ

m
pc

ju(vu − y j)),

where Zi j = (1+ ||yi − y j||2)−1 and Ziu = (1+ ||yi − vu||2)−1.

∂Cd/∂yi can be interpreted as the weighted resultant force exerted on
the data point yi by all other data points and class landmarks. As shown
in Fig. 2a, we illustrate these forces in grey forces from other data
points (∂ f c1/∂yi) and class hue encoded forces from class landmarks
(∂ f c2/∂yi). Each individual force acts to repel or attract the point
mainly based on their distance in the 2D space and the difference
between the target probability and the probability derived from the 2D
embeddings. Similarly, the gradient of Cc with respect to the class
landmark vu (∂Cc/∂vu) can be interpreted as the force exerted on the
class landmark vu by all data points, as exemplified in Fig. 2b.

We simultaneously optimize the positions of 2D data points and
class landmarks as a key feature of our method. By minimizing Cd
to optimize the positions of data points regarding class landmarks as
fixed and Cc to optimize the positions of class landmarks regarding
data points as fixed, we can find the 2D representation of data points
and class landmarks that preserves a weighted perspective of the data
feature structure and class probability structure. Importantly, by opti-
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Fig. 3: Projection results of a synthetic dataset with various α values using our method (top) and a baseline method (bottom).

Fig. 4: Projection results of a synthetic dataset with various λ values (α = 1).

mizing class landmarks’ position V , we alleviate the ambiguity caused
by the fixed layout in the class radial visualization [47]. Meanwhile, the
final layout of class landmarks reflects class confusion. Furthermore, by
gradually adjusting α and initializing the optimization process with the
previous DR result and no early exaggeration, we implement a smooth
transition from displaying a single structure to combining both struc-
tures and then transitioning to displaying the other structure. It assists
in preserving the mental map when tracing instances among various
DR results and facilitates the comparison of different perspectives.

The most computationally expensive part of the original t-SNE
method is the computation of the pairwise similarities between all
pairs of data points. It typically requires O(n2) operations, where n is
the number of data points. Some studies have proposed alternative ap-
proaches that achieve a time complexity of O(nlogn) [52], or O(n) [38].
Besides that, our method has the additional computation of the similar-
ity between data points and class landmarks. It has a time complexity
of O(nm) where m is the number of classes. Given the limited number
of classes, the computation efficiency of class-constrained t-SNE is
primarily constrained by the size of the dataset.

5 EXPERIMENTS

In this section, we present the results of multiple exemplary experiments
to illustrate the functioning of our method. We investigate the influence
on DR results of the value of structure balance parameter α and distance
penalty weight λ . We utilize a synthetic dataset initially, followed by
two real-world datasets – one for classifier analysis and the other for
document topic analysis. All data points in the figures are color-coded
based on their highest class probabilities rather than true labels.

5.1 A Synthetic Example
We generate a synthetic dataset to validate our method and illustrate
the produced visual patterns. This 10D dataset primarily comprises
five Gaussian clusters labeled as four classes. Two clusters, each with
100 instances and very close centers, are labeled 0 and 1, respectively.
Additionally, two clusters, each comprising 50 instances, are given the

label 3, while the remaining cluster, containing 100 instances, is labeled
2. A few points are generated as noise points, which have similar vector
values to clusters labeled 3 but are labeled 0. To train our model, we
used 70% of the data with a random forest model, which achieved
an accuracy of 84% on the test dataset. Subsequently, we applied the
model to generate class probabilities for the entire dataset.

Figure 3 (top) shows the projection results using class-constrained t-
SNE with five α values ranging from 0 to 1 with step 0.25 and λ = 0.5.
All the projection results were obtained by initializing the algorithm
with the preceding projection result, except for the first one of α = 0
with random initialization. This helps to provide a smooth transition
between continuous changes of α . The projection result of α = 0
reveals the data feature structure exclusively. The observed cluster
patterns largely align with our data generation process. The projection
result of α = 1 shows the class probability structure. Four clusters
correspond to four classes, each guided by the corresponding class
landmark. The position proximity of class landmarks reflects class
confusion. Classes 2 and 3 are distinguishable from other classes,
while classes 0 and 1 are relatively confused with each other. Data
points are placed based on their class probabilities, in which those with
high probabilities are closer to their corresponding class landmarks.
Plenty of data points between class landmarks 0 and 1 explain the class
confusion between classes 0 and 1. When α equals 0.5, the combined
visual patterns emerge. The clusters primarily associated with classes
2 and 3 can be attributed to P1 and P2 in Tab. 1, respectively. The
ambiguous boundary between classes 0 and 1 is consistent with P8. The
identification of outliers denoted as I, which are located within clusters
associated with class 3 in the data feature structure but classified as
class 0, is indicative of P9. Similarly, the presence of the outlier II,
which is not representative of class 2 in the data feature structure, is
another example of P9. The outlier III, which is not clearly discernible
in the data feature structure, corresponds to P10.

We also use this synthetic dataset to assess the impact of distance
penalty weight λ . Focusing on the solely class probability-based pro-
jection, fixing α to 1, we performed multiple runs of our algorithm with
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Fig. 5: Projection results of two datasets with three α values using our method (top) and a baseline method (bottom).

varying λ values and random initialization. The results are presented
in Fig. 4. Our findings reveal that the distance penalty is inadequately
enforced when λ is too small, such as λ < 0.1. Consequently, some
data points shoot far away, making the result challenging to interpret.
Conversely, when λ exceeds a certain threshold, such as when λ > 8,
the distance penalty becomes dominant, causing all data points to be
drawn towards a single line. Overall, there is a broad range of values
for which λ gives good results. However, the threshold from which dra-
matic change happens can differ for different class probability data. We
suggest a default setting between 0.1 to 0.5, which yields satisfactory
results in our experiments.

5.2 Classifier Analysis
In this experiment, we present the results of using the Fashion MNIST
dataset [57] to test our method and demonstrate its application in clas-
sifier analysis. The Fashion MNIST dataset is composed of grayscale
images of 28x28 pixels. For this study, a total of 4000 images were
selected, ensuring an equal distribution among ten classes, including T-
shirts, trousers, pullovers, etc. We further split the selected images into
2800 training and 1200 test samples. A convolutional neural network
(CNN) classifier was trained using the training samples, achieving an
accuracy of 85% on the test samples. To obtain class probabilities that
better reflect the inherent uncertainty, we apply Monte Carlo dropout
(MC-Dropout) method [18] into our CNN model. Then we applied
class-constrained t-SNE to all 4000 samples, using both probability-
based classification results and pixel-based feature values. The DR
outputs with three α values are shown in Fig. 5a (top).

It is observed that the class probability structure (α = 1) is roughly
consistent with the data feature structure (α = 0), indicated by similar
layouts of class landmarks and the degree of separation between class
clusters in both structures. When α = 0.5, two structures equally con-
tribute to the combined projection result, which leads to enhanced visual
separation among the classes of “shirt,” “coat,” “t-shirt,” “dress,” and
“pullover” while mostly preserving the inner structure (P8). Further-
more, instances that exhibit conflict between data feature similarities

α = 1α = 0.5

α = 0

Fig. 6: Instances whose data feature similarities and model results
conflict are pushed towards the intermediate regions between the main
clusters using our method when α = 0.5.

and model results are pushed out of the main clusters. For example,
the circled blue points in Fig. 6 are not located in the main cluster of
class “trouser” (P9). When changing α to 0, we observe that these data
points are distributed dispersedly in the data feature structure, indicat-
ing that they are not representative of class “trouser” in terms of feature
values. However, these points have high probabilities of belonging to
the class “trouser,” as shown when α = 1. Further checking of the orig-
inal images confirms that the model correctly classifies these instances.
Furthermore, the circled green point is classified as “dress,” but it is
actually of class “trouser,” which accords with its data feature similarity
(P9). From the above example, we can see that examining instances
whose data feature similarities and model results largely conflict is
beneficial to examine model performance and identify problematic
cases. However, identifying these data points from a single perspective
projection or two perspective projections side by side as presented in
Embedding Comparator [7], can be challenging due to their dispersion
in the data feature structure or concealment among highly certain data
points in the class probability structure. The combination presented
by our method pulls out these instances from the main clusters and
makes them easier to be identified. With the help of animation between
projection results of different α values, users can understand how data
features and class probabilities relate to each other.

5.3 Document Topic Analysis

The second dataset we use to illustrate our method is the IEEE VIS
publication dataset [25]. We extracted the abstracts and keywords
from 3430 publications and removed frequently occurring words such
as “visualization” and “analysis.” Next, we applied Latent Dirichlet
Allocation [6] to extract eight topics and calculate the probability of
each paper belonging to each topic. To transform the textual data into
a computable format suitable for measuring paper similarity, we used
doc2vec [31] to generate 100D vectors. These vectors, along with the
topic probabilities, were then used as inputs for class-constrained t-
SNE. As depicted in Fig. 5b (top), α was gradually increased to achieve
a smooth transformation of DR outputs from displaying data feature
structure (α = 0) to class/topic probability structure (α = 1).

Unlike the data feature structure of the Fashion MNIST dataset man-
ifested as clearly separated visual clusters, the projection result of the
100D document embeddings implies a relatively continuous manifold
rather than discrete clusters. The topic probability structure also sug-
gests it with a big blob meaning that the data is difficult to partition
into distinct topics. However, from the class landmark and data point
layout in both structures, we can still see a separation between infovis
papers with topics of keywords - “graph,” “model,” “document,” and
“uncertainty” and scivis papers with topics of keywords - “field,” “flow,”
“volume,” and “surface.” When combining these two structures with
α = 0.5, although there are no clear borderlines between topic clusters
(P8), we can infer the coherence of topics by observing the coherence
of topic clusters in the projection view. Specifically, blue-colored and
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α = 0.75graph tree

multivariate multidimensional

α = 0.5

Fig. 7: Two clusters with the same topic but different data feature
characteristics remain when α = 0.5 and merge when α = 0.75.

red-colored data points with topics of “uncertainty” and “document”
are relatively scattered and mixed with pink-colored and green-colored
data points with topics of “model” and “graph,” implying potentially
low coherence of them. An interesting finding is two separate clusters
for the topic of “graph” as shown in Fig. 7 when α = 0.5 (P2). Ex-
amination of the corresponding papers in them reveals that papers in
one cluster are more about “graph” and “tree,” while the other one is
associated with “multivariate” and “multidimensional.” Splitting this
topic into two sub-topics may provide a more coherent representation
of the underlying concepts. Note that when increasing α to 0.75, the
inner clusters of this topic are not preserved anymore.

6 COMPARATIVE EVALUATION

To further validate our method, we conduct a comparative analysis
with the naive method as baseline presented in Sec. 4.1 and evaluate
them with projection quality metrics. The projection results using the
baseline method are displayed in Fig. 3 (bottom) and Fig. 5 (bottom).

Quality Metrics. To evaluate the projection results, we select three
quality metrics, i.e., trustworthiness (Mt ), continuity (Mc), and Class
Consistency Measure (CCM). Mt and Mc have values in [0,1], with 1
being the best. Mt [27] evaluates whether k nearest neighbors of points
in the projection space are also close in the original space. Conversely,
Mc [27] measures whether the neighborhoods of k points in the original
space are maintained in the projection. Since our method uses position
proximity between data points to only express data feature similarity,
we use Mt and Mc to evaluate the preservation of data feature structure
when changing α . In line with previous study [17], we choose k = 7 for
our evaluation. CCM [50] (also called distance consistency (DSC) [48])
assesses the ability of the projection to faithfully convey the class struc-
ture, with values in [0,1] and 0 being the best. From the perspective of
human perception of class separation, it is expected that the distance
from a point to its corresponding class centroid should be minimal
compared to distances to other class centroids. CCM quantifies the pro-
portion of points that violates this centroid distance measure. Although
the class structure measured by CCM is not identical to the class proba-
bility structure our method tries to preserve, CCM is demonstrated as
an effective measure for visual separation of classes in scatterplots [45].

Results. By analyzing the DR results as shown in Fig. 3 and Fig. 5,
we can conclude by comparing our method with the baseline method.
First, the global class relationship in our method is reflected by the
proximity between class landmarks and is enhanced with increased α .
As shown in Fig. 3 (top), when α = 1, the class landmark of class 3
is farther to class 1 than class 2, implying classes 1 and 3 are more
distinguishable than classes 1 and 2. However, in Fig. 3 (bottom), the
green points of class 3 are closer to the yellow points of class 1 than
the red points of class 2 since global class information is not preserved
in the baseline method. Second, as stated before, the class probability
relationship between instances and classes is indicated by the proximity
between data points and class landmarks, while the baseline method
only considers the relationship between data points. Last, the data
points whose data feature and class information conflict are more dis-
cernible when two structures are combined using our method. When
α = 0.5, outliers II and III in Fig. 3 (top) are indiscernible in Fig. 3
(bottom). Similar properties can be seen in Fig. 5. Quality metric
results for the three datasets are displayed in Fig. 8. When mixing the
data feature structure with the class probability structure, our method
generally preserves the data feature structure better, implied by higher
Mt and Mc. As expected, our method shows better visual separation
with α increasing.

Fig. 8: Quality metrics of our method and the baseline method.

7 USE SCENARIO

In this use scenario, we will show how class-constrained t-SNE pro-
duces DR results which can serve as a guide for annotators in selecting
instances to label during the visual-interactive labeling (VIL) process.

VIL refers to the process in which human annotators manually select
and assign labels to data in a collaborative, iterative manner with the
help of a visual interface [5]. Typically data is projected into 2D space
and visualized as a scatterplot for user interaction. During the labeling
process, a classification model is trained and updated iteratively based
on the newly labeled data, the classification results of which can serve
as guidance for instance selection. Once the model is well-trained, it
can be utilized to generate labels for unlabeled or new data. Bernard
et al. [4] present a ULoP (Upper Limit of Performance) strategy for
instance selection which is demonstrated as a quasi-optimal strategy
for labeling data. They generalize this ULoP strategy into three phases.
The initial phase focuses on capturing cluster structures and obtaining
a uniform sampling of the feature space. The following phase aims to
capture the coarse shapes of all classes. The final phase deals with the
refinement of poorly-separated classes and outliers. This whole process
aligns with the broader conversion from selecting instances based on
data feature structure when no data is labeled and the model is untrained
to gradually refining the model more based on the model result. If this
transformation is directly reflected by the projection result, users can
easily select instances while adhering to this strategy. Class-constrained
t-SNE has the potential to support such transformation.

For this use scenario, we developed a visual interface to support
human labeling. To make the labeling process manageable, we use the
easy-to-understand MNIST data set representing handwritten 0-9 digits,
commonly used in VIL-related studies. 2000 images are designated
for labeling and model training, and 1000 images are allocated for
evaluating model accuracy. Each of the ten classes is equally repre-
sented in training and test data. A multi-layer perceptron of one hidden
layer is employed for incremental classification. Upon reaching a point
where annotators deem they have adequately labeled the data based
on the visual patterns apparent in the current DR result, the newly
labeled data will be used to update the model. The class probabilities
– softmax outputs of the updated model – will then be utilized in the
class-constrained t-SNE to update the DR result, which yields new
visual patterns for the next iteration of labeling. In order to accomplish
the gradual transformation of DR outcomes from data feature structure
to class probability structure, we set α = (test_acc)2. When the model
is not well trained, its result is unreliable, reflected by the low test accu-
racy. In our setting, images with identical classes can be labeled with
one labeling operation if selected rather than labeling them individually.
Thus it is preferable that images with very similar feature values, which
highly likely belong to the same class, are clustered together in the
resulting DR to facilitate selecting them all together. This is why we en-
large the weight of the data feature structure by using α = (test_acc)2

rather than α = test_acc.
Initially, no instance is labeled, and the model is untrained. Then α

is set to 0, thereby solely preserving the data feature structure in the DR
result. After preliminary labeling based on visual clusters in the data
feature structure, the labeled data is utilized for training the classifier,
resulting in a 74% accuracy on the test dataset. The class probabilities
derived from this classifier are then utilized to generate a DR result
with class-constrained t-SNE. From the dispersion of classes in the
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Fig. 9: Projection results of MNIST dataset after each model update during the VIL process using class-constrained t-SNE. Images correspond to
the selected data points in the circle. The size of class landmarks encodes the number of labeled instances for the corresponding classes.

resulting projection (Fig. 9a), one can see that data points of different
classes do not generate clear clusters. To enhance the coarse shapes of
classes, we select the central part of each class – the instances around
the class landmarks – for labeling, such as Fig. 9I. These instances are
regarded as representative of class 3 by the model. Confirming their
labels facilitates the classifier’s ability to capture the coarse shapes of
this class. Following labeling all the classes’ central parts, we update
the model based on newly labeled instances, which results in 80% test
accuracy. As seen in Fig. 9b, clusters of different classes become more
condensed, although most class clusters are not well-separated. To
refine these poorly-separated classes, we select and label the data points
at the boundary of the class clusters, e.g., Fig. 9II. After this iteration,
the test accuracy increases to 85%. The class clusters are refined to
exhibit clear separation, as displayed in Fig. 9c. We can further refine
class separation by labeling instances at the boundary of class clusters
as shown in Fig. 9III. Besides, there are mainly outliers scattered in
the projection result, representing instances that are difficult for the
model to classify or have distinct data feature values. After another two
iterations of labeling, we fine-tune the classifier with the newly labeled
instances, resulting in an improved test accuracy of 87%. The class
separations in the resulting DR result (Fig. 9d) are further enhanced
based on the new class probabilities. Subsequent fine-tuning should
focus on labeling outliers, as well as the unlabeled instances that are
close to misclassified instances, whose labeling may help correct the
wrong classification since they are similar in the data feature values.

In this VIL scenario, our method generates DR results based on
class probabilities of the incrementally updated model, which directly
reflect model evolution and show visual patterns that facilitate instance
selection and labeling in different phases following the ULoP strategy.
This approach transforms the labeling process into a visual objective,
with the aim of enhancing the differentiation of class clusters.

8 DISCUSSION

This section presents the limitations of our method and proposes av-
enues for further investigation, encompassing considerations about
domain, algorithm, representation, and application.

Domain. In our method, the class probabilities of each instance
always sum up to one, ensuring the explainability of class informa-
tion based on the position proximity between data points and class
landmarks. This is the primary assumption for our class probability
input. Therefore, softmax outputs used in Sec. 7 are qualified as in-
put of our method, although it tends to overestimate model certainty.
Probabilistic models or calibration methods are recommended if more
reliable uncertainty estimates are required. However, in the context
of multi-label classification, the probabilities assigned for a single in-
stance may not sum up to one. This deviation from our assumption
challenges the ability to interpret the positions of data points in relation
to the class probabilities. As a result, our method is not suitable for
multi-label datasets. Moreover, our current implementation does not
directly support a semi-supervised setting, which requires a nontrivial
extension to ensure a balanced treatment of data points with or without
class probabilities. As this is not the focus of our work, we leave it as
future work to adapt our method for a semi-supervised setting.

Algorithm. Our method initializes the optimization process with the
previous projection result to achieve a smooth visual transition between
continuous and varying perspectives. However, different initializa-
tions may impact the optimization process and result in suboptimal
projection results. Nevertheless, a balance has to be achieved between
possibly suboptimal results and seamless animation to preserve the
mental map and aid in the continual perspective-based tracking of
instances. Therefore, seamless animation may compensate for the
potential shortcomings of suboptimal outcomes. Furthermore, users
can always initiate the projection with a random initial position if they
hold a particular weighted perspective of interest. In the current im-
plementation, 2D embeddings are initialized randomly from Gaussian
distributions. There are alternative options to initialize data points, e.g.,
using PCA [30], which we did not explore in this study. Additionally,
our proposed method for integrating class probability information has
the potential for adaptation to other DR techniques that employ an ex-
plicit loss function and necessitate iterative optimization of data points,
e.g., UMAP [35]. However, considering the variations in loss functions
employed, how to adapt it to different DR methods requires further
exploration, which we leave as future research.

Representation. Introducing class landmarks in the DR process en-
ables displaying the relationship between instances and classes. These
class landmarks as iconic representations of classes or other items can
be further encoded to enrich information related to these entities. For
example, to display the distribution of keywords associated with each
topic in topic modeling, class landmarks can be replaced by bar charts.

Application. This paper mainly presents a method to combine data
features and class probabilities. We illustrate it through experiments
that mainly focus on classification or topic analysis. However, our
method can potentially extend to be applied to other domains. For ex-
ample, recommender systems model the likelihood of users interacting
with particular items based on their past behavior. Our method can aid
such analysis by allowing the examination of user similarity and the
relationship between users and items.

9 CONCLUSION

In this paper, we propose class-constrained t-SNE, a DR-based visu-
alization method that combines the data feature structure and class
probability structure in one projection view. Users can control the
balance between the two structures. Class-constrained t-SNE also fa-
cilitates the comparison of the two structures by providing a smooth
transformation from one structure to the other. The experiments illus-
trate that our approach improves the interpretability of the projection
results from the class viewpoint. Moreover, generated visual patterns
can facilitate classifier and document topic analysis, where data features
and class probabilities are generally analyzed together. A comparative
analysis with a baseline method further demonstrates the superior-
ity of our method. Additionally, we present a VIL use scenario to
illustrate its utility. Our current class-constrained t-SNE implemen-
tation is an adaptation of traditional t-SNE, which is available from
https://github.com/alicelh/class-constrained-t-SNE. Future work should
consider accelerating our method by integrating it with accelerated
variants of t-SNE, such as Barnes-Hut t-SNE [52].
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A EXPERIMENT RESULTS

The projection results of the Fashion MNIST and VIS publication
datasets with five continuous and varying α values using our method
and the baseline method are shown in Fig. 10 and Fig. 11.

B VISUAL LABELING INTERFACE

We develop a visual interface for supporting human labeling in the
visual-interactive labeling (VIL) use scenario as shown in Fig. 12.

Initially, no instance is labeled, and the model is untrained. Then α

is set to 0, thereby solely preserving the data feature structure in the
DR result. In this initial phase, adhering to the ULoP (Upper Limit
of Performance) strategy, selecting compact clusters for labeling is
preferable, wherein instances are more likely to belong to the same
class. In the region where data points of different classes are mixed,
we select subclusters uniformly to ensure that the selected data points
equally spread in the DR results, as exemplified in Fig. 12 where a
small subcluster of class 4 is selected and labeled.

11

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://doi.org/10.2312/eurovisshort.20161164
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/VISUAL.2000.885740
https://doi.org/10.1109/VDS.2017.8573444
https://doi.org/10.1109/VDS.2017.8573444
https://doi.org/10.1117/12.697879
https://doi.org/10.1111/cgf.12632
https://doi.org/10.1111/cgf.12632
https://doi.org/10.1109/ICDMW.2010.181
https://doi.org/10.1109/IV.2009.45
https://doi.org/10.1111/j.1467-8659.2009.01467.x
https://doi.org/10.1145/3313831.3376866
https://doi.org/10.1145/1842993.1843002
https://doi.org/10.1109/IJCNN52387.2021.9534470
https://doi.org/10.1109/TAI.2022.3204734
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/PacificVis.2019.00025
https://doi.org/10.1016/j.visinf.2017.01.005
https://doi.org/10.1109/TVCG.2018.2864499


Fig. 10: Projection results of the Fashion MNIST with various α values using our method (top) and a baseline method (bottom).

Fig. 11: Projection results of the VIS publication dataset with various α values using our method (top) and a baseline method (bottom).

Fig. 12: The visual interface to support human labeling. Unlabeled data points are shown as circles, and labeled data points are shown as triangles.
The filling color represents the predicted class, while the border color encodes the labeled class. The filling color is black when the model is
untrained at the beginning.
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