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Fig. 1: In a simulated stress tensor field inside an O-ring, a linear region ((b): green) is sandwiched between two planar regions ((a)
and (c): orange), which reflects the fact that compressive stress has been applied to the boundary of the O-ring. The innermost
planar region (c) contains a single degenerate loop of the wedge type that travels inside the O-ring twice ((f): the yellow loop),
indicating the existence of an equilibrium of uniaxial compression of material at the core of the O-ring. On the other hand, the linear
region (b) contains a trisector loop ((e): the blue loop), where material is being pushed away in several directions, and a wedge loop
((d): the green loop), where material extension is constrained by the boundary of the O-ring. In addition, the two degenerate loops
form a link due to the non-uniformity and periodicity in the stress at the boundary. The topological features (regions and degenerate
curves) along with the interactions among them are encoded in the topological graph (right) that we introduce in this paper.

Abstract— There have been recent advances in the analysis and visualization of 3D symmetric tensor fields, with a focus on the robust
extraction of tensor field topology. However, topological features such as degenerate curves and neutral surfaces do not live in isolation.
Instead, they intriguingly interact with each other. In this paper, we introduce the notion of topological graph for 3D symmetric tensor
fields to facilitate global topological analysis of such fields. The nodes of the graph include degenerate curves and regions bounded
by neutral surfaces in the domain. The edges in the graph denote the adjacency information between the regions and degenerate
curves. In addition, we observe that a degenerate curve can be a loop and even a knot and that two degenerate curves (whether in
the same region or not) can form a link. We provide a definition and theoretical analysis of individual degenerate curves in order to
help understand why knots and links may occur. Moreover, we differentiate between wedges and trisectors, thus making the analysis
more detailed about degenerate curves. We incorporate this information into the topological graph. Such a graph can not only reveal
the global structure in a 3D symmetric tensor field but also allow two symmetric tensor fields to be compared. We demonstrate our
approach by applying it to solid mechanics and material science data sets.

Index Terms—Tensor field visualization, 3D symmetric tensor fields, global tensor field topology, topological graphs, degenerate
curves, neutral surfaces, wedges and trisectors

1 INTRODUCTION

Tensor fields are widely used in solid mechanics and material science.
In these domains, the topological features of the stress tensor field have
explicit physical meanings. For example, degenerate curves represent
uniaxial extension and compression while neutral surfaces represent
pure shear [7].

There have been some recent advances in the topological analysis
and visualization of 3D symmetric tensor fields [22, 24, 26, 36, 37],
which not only introduce the topology of such fields but also provide
robust algorithms to extract individual topological features.
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However, topological features in a tensor field do not live in isolation.
Instead, there are intricate relationships among degenerate curves and
neutral surfaces. For example, a degenerate curve can form a loop and
even a knot. Two degenerate curves can form a link (see Figure 1 for
examples). In addition, neutral surfaces can divide the domain into
regions, inside each of which the stress tensor field has a uniform behav-
ior of either extension-dominant (linearity) or compression-dominant
(planarity). A region can contain degenerate curves and other regions in
its interior, thus having a complicated topological structure (Figure 1).

In this paper, we introduce a topological graph for 3D symmetric
tensor fields (Figure 1: right). The nodes of the graph consist of degen-
erate curves as well as uniformly linear regions (extension-dominant)
and uniformly planar regions (compression-dominant). An edge in
the graph can indicate a pair of adjacent regions, a region containing
a degenerate curve, or a pair of linked degenerate curves. In addi-
tion, unlike scalar fields whose topological features consist of isolated
points, in 3D tensor fields the topology includes both curves (degen-
erate curves) and volumes (regions). Thus, a topological feature can
have a non-trivial topology, such as a knotted degenerate curve and a
region that contains multiple air bubbles (other regions). Consequently,
we compute a number of characteristics such as the knottiness of a
degenerate curve (Writhe number) and the homology of a region (Betti
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Fig. 2: The components of our topological graph. Cyan and yellow
squares represent linear and planar regions, respectively, with their
Betti numbers written inside. A pair of adjacent planar and linear
regions are connected by an edge in the graph. The rectangular glyph
on an edge indicates that one of the regions in the pair is inside the
other region. Degenerate curves are the second type of nodes in the
graph, represented as circular rings (open for open curves and closed
for closed curves). Their Writhe numbers are computed and visualized.
The linking numbers between linked pairs of degenerate curves are also
included in the visualization.

numbers). Similarly, an edge in the graph can also indicate a rather
complicated relationship between two nodes, such as the linking of
two degenerate curves. We compute the linking number for such an
edge. Figure 2 provides a more detailed annotation of this graph. The
definition of Betti numbers is given in Section 4, and the definitions of
the Writhe number, the linking number, and the Jones polynomials are
given in Section 5.

Our topological graph provides a holistic view of the topological
features in the field, leading to insight that is difficult to obtain by
analyzing individual features in isolation. As an example, Figure 1
shows the topological features of the stress tensor field inside an O-ring
simulation data using existing topology-driven visualization approaches
(Figure 1 (left)). While it is clear from the visualization that there
are degenerate curves and neutral surfaces, it is difficult to see why
the degenerate curves appear in these locations. The topology of the
neutral surface is also hard to discern from the visualization. With our
topological graph (Figure 1: right), we see a linear region (cyan square)
sandwiched by two planar regions (yellow squares). By selecting their
nodes in the graph, we can see the actual regions (Figure 1 (a)-(c)). It
can be observed that, as the boundary force pushes the material towards
the core of the O-ring, there is a linear region ((b): green region)
that indicates extension. This extension in the material leads to strong
compression at the core of the O-ring ((c): the yellow region), where the
compressed material has nowhere to go. Consequently, an equilibrium
of uniaxial compression appears in the form of a degenerate curve ((f):
yellow). Due to the presence of a compression load everywhere on
the boundary, the equilibrium cannot reach the boundary, thus forcing
the degenerate curve into a loop. In addition, the three-fold rotational
symmetry in the boundary loading condition, a global property, is
captured by the shapes of the two degenerate curves ((d) and (e)) in the
linear region (b: region) as well as the six crossing points between the
two linked curves. Such global analysis is difficult to obtain by only
considering individual degenerate curves and neutral surfaces.

Our topological graph also allows two tensor fields to be compared,
such as the stress tensor fields in the O-ring given two different bound-
ary loading conditions (Figure 3). The middle column shows the
degenerate curves and neutral surfaces extracted using existing tech-
niques [24, 26]. Notice that the visualizations of the two fields look
similar. However, their topological graphs show both similarities and
differences. On the one hand, both fields contain a linear region (green
squares in the graphs) which contains four degenerate loops. Further-
more, the four degenerate curves are linked with the same linking
numbers, and one of the loops is a trefoil knot. This indicates that,
despite the difference in the magnitude of the loading conditions for
the two scenarios, the stress at the core of the O-ring does not differ
significantly. On the other hand, the field in (a) has three compression-
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Fig. 3: This figure compares two stress tensor fields where the boundary
load for (b) is 7% higher than that for (a). The right column shows the
boundary of the compression-dominant regions (yellow squares in the
graphs).
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Fig. 4: The linear wedge curve ((a): green) and the linear trisector curve
((a): blue) allow us to identify the places where the materials are being
pushed out (near the trisector curve) and where the materials are being
pushed into a dead-end (near the wedge curve). Not differentiating
trisectors from wedges (b) makes this insight unavailable and can lead
to incomplete interpretation.

dominant regions, all of which are contractible. In contrast, the field in
(b), which has a larger load, has the three regions merged into one and
is no longer contractible. This indicates that compression area on the
boundary is much larger due to the increased load.

With topological graphs, global analysis of tensor fields is enabled
which has the potential of shedding new insight to domain scientists
than showing only the visualizations (Figure 1 (left) and Figure 3
(middle)).

Another important aspect of this paper is the differentiation of wedge-
type degenerate points from trisector-type degenerate points in 3D
symmetric tensor fields. Since their introduction in the early 2000s by
Zheng et al. [38], there has been relatively little additional research on
the topic and application to engineering data. Most research focuses
on the linearity/planarity aspect of degenerate points. However, such
an approach can lead to incomplete or misleading interpretation of the
data. For example, as shown Figure 4 (a), the linear trisector loop (the
blue loop) is close to the maximal compression force on the boundary,
where material is pushed away, and the wedge loop (the green loop)
is close to the minimal compression force on the boundary, where the
material flows to but is stopped by the O-ring (thus a dead-end). In
Figure 4 (b), the wedge/trisector classification is unaccounted for, and
it is no longer clear why two linear degenerate loops (green) appear
there and how they relate to each other.

Enabled by the wedge/trisector differentiation, we consider two O-
ring simulation scenarios (Figure 5). In (a), the load has a constant
magnitude on the boundary, which leads to a single degenerate loop
(green) that is the equilibrium in the stress tensor field. When the load’s
magnitude becomes anisotropic but periodic (b), additional degenerate
loops appear that include both wedge curves (green) and trisector curves
(blue). It is interesting to observe that on each cross section of the O-
ring, there are either 4 wedges and 3 trisectors (b.1), or 3 wedges and
2 trisectors (b.2). The difference between the number of wedges and
the number of trisectors is one. This seems to suggest that the total
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Fig. 5: In an O-ring simulation scenario where the magnitude of the
load is constant on the boundary (a), there is a single degenerate loop at
the core of the O-ring. When the magnitude of the load at the boundary
becomes anisotropic, additional degenerate curves results. Yet, on each
cut plane (e.g., b.1 and b.2), the difference between the number of
wedge points and the number of trisector points is 1, which is the same
as the field in (a).

tensor index on the intersection between each cut plane and the O-ring
is constant in this case. We hypothesize that tensor field topology is
constrained by the boundary loading condition as well as the topology
of the O-ring, similar to the Poincaré-Hopf theorem that states the
total singularity index of a vector field is determined by the Euler
characteristic of the domain. Such insight cannot be achieved by only
considering individual topological features and without differentiating
between wedges and trisectors.

To evaluate the effectiveness of the topological graph as well as the
additional characterization of wedge/trisector degenerate points, we
apply these ideas to a number of simulation data sets with applications
in solid mechanics and material science. To summarize, in this paper
we make the following contributions:

• We introduce the notion of topological graphs for 3D symmetric
tensor fields.

• As part of the graph we introduce new topological features such
as linear regions and planar regions, which are nodes in the graph.
We also propose to measure the complexity of these regions by
computing their homology in the form of Betti numbers.

• We observe that degenerate curves can be knotted and be linked to
each other. This information is captured by computing the curve
characteristics such as the Writhe numbers and Jones polynomi-
als.

• We advocate the addition of the wedge/trisector classification
of degenerate curves to physical interpretations. Furthermore,
we introduce the index of degenerate curves that can be used to
differentiate between wedges and trisectors.

2 RELATED WORK

Tensor field visualization is an important area of research that has seen
waves of advances over the past decades [3, 17]. Topology-driven anal-
ysis and visualization of tensor fields have found many applications
in understanding solid and fluid mechanics data as well as material
science. Inspired by the use of vector field topology in fluid dynam-
ics, Delmarcelle and Hesselink [9] introduce the notion of tensor field
topology of 2D symmetric tensor fields in terms of degenerate tensors
with repeating eigenvalues. To further understand the topological fea-
tures, Leeuw and van Liere [8] propose a topological graph with the
relationship of the degenerate points. Jankowai et al. [14] introduce
a diagram of the degenerate points with a tree structure based on the
robustness of a tensor field near the degenerate points.

The concept of the tensor field topology of 2D symmetric tensor
fields is extended to 3D symmetric tensor fields by Hesselink et al. [12],
with a focus on understanding the behaviors of tensor fields near triple
degenerate points, where the tensor field has a value of a multiple

of the identity tensor. Later, using dimensionality analysis, Zheng
and Pang [36] point out that triple degenerate points are structurally
unstable as they can disappear under an arbitrarily small perturbation
to the tensor field. Given the instability in triple degenerate points,
Zheng and Pang define the topology of a 3D symmetric tensor field
in terms of double degenerate points, where the tensor field has two
equal eigenvalues (repeating) and a third, distinct eigenvalue (non-
repeating). Such features not only are structurally stable but also form
curves. Zheng et al. [37] extract degenerate curves by using numeric
methods on the levelsets of a degree-six discriminant. Improving on this
technique, Tricoche et al. [31] point out that degenerate curves are part
of the ridge and valley lines of a tensor invariant, tensor mode. Thus,
they extract degenerate curves more robustly by reusing techniques for
extracting ridge and valley lines. Palacios et al. [21] identify a number
of degenerate curve editing operations for 3D symmetric tensor fields.

Palacios et al. [22] introduce the notion of neutral tensors and in-
corporate neutral surfaces into tensor field topology. Roy et al. [26]
provide a parameterization for the set of degenerate tensors and a pa-
rameterization for the set of neutral tensors in a 3D piecewise linear
tensor field, which they use to robustly extract degenerate curves and
neutral surfaces at any given accuracy. Qu et al. [24] extend these
parameterizations to seamlessly and robustly extract mode surfaces (an
extension of degenerate curves and neutral surfaces).

Despite these advances, the understanding of 3D symmetric tensor
field topology is still rather fragmented in that the topology is treated as
a collection of isolated curves and surfaces. Relatively little attention is
given to the topological structure of individual objects (e.g., whether a
degenerate curve is a loop and forms a knot) and the interactions among
these objects (e.g., whether two degenerate curves form a link). We
address these with a topological graph that provides a more complete
and global picture of the tensor fields, to be described next.

In their pioneering research, Zheng et al. [38] define the notions
of wedges and trisectors for 3D symmetric tensor fields. They show
that near a degenerate point, the projection of the tensor field onto the
repeating plane at the point exhibit 2D degenerate point patterns such
as wedges and trisectors. They further point out that between the wedge
segments and trisector segments along a degenerate curve are transition
points whose dominant eigenvectors are perpendicular to the tangent
of the degenerate curve. Since then, there has been relatively little
follow-up research on wedges/trisectors for visualization applications
to engineering datasets. Zhang et al. [33] study the physical meanings
of wedges and trisectors in 2D symmetric tensor fields. In this paper,
we address the issue by studying how the wedge/trisector classification
can aid both local and global 3D tensor field analysis.

3D linear tensor fields are the simplest tensor fields as the tensor
values are linear with respect to the coordinates. There has been some
exploration on the topology of such fields, including the findings that
there are at most four degenerate curves [35] and at most eight transition
points [34] in such fields.

There has been work on using a topological graph for 2D vector
fields and tensor fields, such as the Morse Connection Graphs for
vector fields [5] and the eigenvalue graphs and eigenvector graphs
for 2D asymmetric tensor fields [18]. Tao et al. [29] apply graph
analysis techniques from information visualization to flow visualization
by introducing the notion of semantic flow graphs. The nodes of
the graphs can be the aggregations of streamlines, regions of certain
characteristics, and singularities in the field. In our work, we focus on
topological features in the field such as degenerate curves and regions
bounded by neutral surfaces. Hyperstreamlines are not part of the graph.
In addition, each such feature is given its own node in the graph.

3 MATHEMATICAL BACKGROUND

We first review relevant concepts and results regarding 3D symmetric
tensor field topology [22, 24, 26, 36, 37]. A 3D symmetric tensor has
three real-valued eigenvalues: (i) the major eigenvalue (the largest),
(ii) the medium eigenvalue, and (iii) the minor eigenvalue (the smallest).
Eigenvectors corresponding to the major eigenvalue are referred to as
the major eigenvectors. We can also define medium eigenvectors and
minor eigenvectors in a similar fashion.



The sum of the eigenvalues is the trace of the tensor, while the
product of the eigenvalues is the determinant. Treating the eigenvalues
as a vector, its vector magnitude is used to define the magnitude of the
original tensor, which is the Frobenius norm of the tensor. Given a
tensor T , its trace is denoted by trace(T ), its determinant by |T |, and
its magnitude ∥T∥.

A tensor T can be uniquely decomposed into the sum of D, a multiple
of the identity tensor, and A, a symmetric tensor with a zero trace. Here,
A is referred to as the deviator of T . Note that T and A have the
same set of eigenvectors. That is, a vector v is an eigenvector of T if
and only if v is an eigenvector of A. Consequently, when discussing
topological properties of a tensor field where eigenvector analysis is
the central theme, it is usually sufficient to focus on its deviator A. For
example, the mode of a tensor T is defined in terms of the magnitude
and determinant of its deviator as µ(T ) = 3

√
6 |A|
||A||3 .

The modes of 3D symmetric tensors have a range of [−1,1]. When
µ(T )> 0, the deviator A, whose eigenvalues sum to zero, has one posi-
tive eigenvalue and two negative eigenvalues. The positive eigenvalue,
i.e., the major eigenvalue, is referred to as the dominant eigenvalue [24].
The major eigenvectors are referred to as the dominant eigenvectors. In
solid mechanics, this case corresponds to a volume-preserving defor-
mation with two principal axes of compression (negative eigenvalues)
and one principal axis of extension (positive eigenvalue). Such tensors
are referred to as linear tensors. When µ(T ) = 1, the two negative
eigenvalues are equal, indicating isotropic compression in the plane per-
pendicular to the principal axis of extension (eigenvector corresponding
to the positive eigenvalue). Note that a tensor with at least two equal
eigenvalues is referred to as being a degenerate tensor. Thus, a tensor
of mode 1 is a linear degenerate tensor, which corresponds to uniaxial
extension in solid mechanics [7]. Similarly, when µ(T )< 0, the devia-
tor has two positive eigenvalues and one negative eigenvalue, indicating
two principal axes of extension and one principal axis of compression.
Such tensors are referred to as planar tensors. The negative eigenvalue,
i.e., the minor eigenvalue, is the dominant eigenvalue in this case. Con-
sequently, the minor eigenvectors are the dominant eigenvectors. When
µ(T ) =−1, T is a planar degenerate tensor and corresponds to uniaxial
compression in solid mechanics [7]. When µ(T ) = 0, its deviator A
has one positive eigenvalue, one zero eigenvalue, and one negative
eigenvalue that has the same magnitude as the positive eigenvalue. In
this case, T is referred to as being a neutral tensor. In solid mechanics,
a neutral tensor corresponds to pure shear [7].

A tensor field is a tensor-valued function over its domain. The
topology of a tensor field consists of its degenerate points (where the
tensor value is a degenerate tensor) and neutral points (where the tensor
value is a neutral tensor). Under structurally stable conditions, the
set of degenerate points forms curves (degenerate curves), and the
set of neutral points forms surfaces (neutral surfaces). Figure 6 (a)
shows a tensor field with its degenerate curves (the colored curves) and
neutral surfaces (chartreuse). Along a degenerate curve, the degenerate
points are either all linear (green or blue) or all planar (yellow or red).
We refer to this as the linearity/planarity classification of degenerate
points. Note that the neutral surface divides the domain into linear
regions, where linear degenerate curves reside, and planar regions,
where planar degenerate curves reside. Between degenerate curves
and neutral surfaces are mode surfaces (Figure 6 (a): the cyan and
orange surfaces), which are the isosurfaces of the tensor mode. A linear
region is thus a connected component of the union of all positive mode
surfaces, and a planar region is a connected component of the union of
all negative mode surfaces.

In addition to the linearity/planarity classification, a degenerate point
can be further classified based on the tensor index of the tensor field
projected onto the repeating plane, i.e., the plane perpendicular to the
dominant eigenvector at the degenerate point. A degenerate point in a
3D symmetric tensor field is referred to as a wedge if the same point
is a wedge in the projected 2D tensor field (Figure 6 (b): the plane
intersecting the yellow curve segment). Similarly, a trisector degenerate
point in the 3D tensor field is also a trisector degenerate point in the 2D
projected tensor field onto the repeating plane (Figure 6 (b): the plane

(a) (b)
Fig. 6: Degenerate curves ((a): the colored curves) and neutral surfaces
((a): the chartreuse surface) are both special mode surfaces. Additional
mode surfaces (orange and cyan surfaces) occur between topological
features. Along a degenerate curve (b), the projected tensor fields onto
the repeating planes show 2D degenerate patterns such as the wedge
(the plane intersecting the yellow curve segment) and the trisector (the
plane intersecting the red curve segment).

intersecting the red curve segment). The wedge/trisector classification
along a degenerate curve is not always the same. The points between
a wedge segment and a trisector segment along a degenerate curve
((Figure 6 (b): between yellow and red segments or between green
and blue segments) are referred to as the transition points. Combining
the two classifications, a degenerate point can be classified as a linear
wedge (green), a linear trisector (blue), a planar wedge (yellow), a
planar trisector (red), a linear transition point (between green and
blue segments), or a planar transition point (between yellow and red
segments).

4 TOPOLOGICAL GRAPHS

In this section, we provide more detail on the various components of our
topological graph as well as the motivation behind our visual design.

4.1 Regions of Uniform Linearity/Planarity
When crossing from a linear region into the planar region via the neu-
tral surface, the dominant eigenvector field switches from the major
eigenvector field to the minor eigenvector field, with discontinuity. Con-
sequently, we consider a decomposition of the domain into connected
regions of purely linear tensor behaviors and purely planar tensor be-
haviors. Any pair of adjacent regions must consist of one linear region
and one planar region, separated by the neutral surface.

Linear regions and planar regions have vastly different physical
behaviors, and their interplay is a reflection and direct result of the
boundary condition of the simulation, the shape of the domain, and
the distribution of the material. A large linear region may have many
small pockets of planar regions inside. In solid mechanics, this can
indicate a nonuniform distribution of material deformation behavior.
To quantify whether this nonuniform material behavior could affect
product life is of prominent interest to design engineers. A planar
region may border a linear region through multiple sheets of neutral
surfaces, indicating the complex topology of the computational domain
such as a mechanical part with multiple handles. Each such region
can have complex geometric and topological structures as shown in
Figure 2. These structures reflect the behaviors of the underlying tensor
fields, which we wish to capture. One measure for the topological
complexity of a region R is its homology [15], which consists of a
family of groups {Hi(R)∥i ∈ Z, i ≥ 0}. Geometrically speaking, each
generator of Hi(R) represents an i-dimensional hole in R. The first Betti
number, β1, is the number of one-dimensional holes in R, while the
second Betti number, β2, is the number of two-dimensional holes, or
voids, in R. One can think of the two-dimensional holes as air bubbles
trapped by R. That is, each air bubble region has only one neighbor,
which is R itself. Note that each void in R is itself a region of uniform
linearity/planarity. Furthermore, if R is a linear region, then each void
trapped by R must be a planar region and vice versa. Therefore, β2
highlights the adjacency interaction between linear regions and planar
regions.

The larger the Betti numbers, the more complicated the geometry is
for the region as well as more interactions with other regions. Figure 2



shows an example in which the domain is a solid torus and there are
three regions, two of which are planar (orange) and one linear (green).
The innermost region is planar, which also has the shape of a solid torus.
Such a shape has no two-dimensional holes, i.e., β2 = 0, and a single
one-dimensional hole (the meridian of the torus), i.e., β1 = 1. The
outermost region (Figure 2(a)) is a thin layer of planar region β1 = 4.
The linear region (Figure 2(b)) is bounded from inside by the innermost
planar region and from outside by the boundary of the domain and
the thin planar region. It has one bubble inside (the innermost planar
region) and two one-dimensional holes (one due to the smaller torus
and one due to the hole in the domain itself). Thus, β2 = 1 and β1 = 2.

4.2 Indices and Network of Degenerate Curves
A degenerate curve can be an open curve, i.e., touches the boundary of
the domain, or a closed loop. Moreover, degenerate curves do not live
in isolation for 3D symmetric tensor fields. This is in sharp contrast
to the 2D case, in which the set of degenerate points is isolated under
structurally stable conditions. Each degenerate point in 2D tensor fields
can be measured in terms of its tensor index [32] defined as follows:
when traveling along a loop enclosing the degenerate point in a coun-
terclockwise fashion, the unit major eigenvector field along the loop
also covers a circle (the Gauss circle) a number of times in which the
number, a multiple of 1

2 , is the tensor index. The fundamental degener-
ate points include wedges (index 1

2 ) and trisectors (index − 1
2 ). Note

that the sign refers to whether the unit eigenvector field travels along
the Gauss circle counterclockwise (wedges) or clockwise (trisectors).

The set of degenerate points can be complicated for a 3D tensor field.
For example, a degenerate curve can be a loop and even form a knot.
Furthermore, two degenerate loops can be linked even when they belong
to different regions. To better understand the relationships among
the curves in the degenerate curve network, we define a topological
characterization of degenerate curves, their indexes, in the following
paragraphs.

Let R be a topological disk without self-intersections such that there
are no degenerate points on its boundary ∂R (the circles in Figure 7
(a-b)). We consider the right-handed frames formed by the unit major
eigenvector v1, the medium eigenvector v2, and the minor eigenvector
v3 of the tensor fields on ∂R. Note that at each point p where the
eigenvectors are well-defined, i.e., not a degenerate point, there are
four ways of selecting a right-handed frame from the eigenvectors. Let
f0(p) = (v1,v2,v3) be one such frame. Then f1(p) = (v1,−v2,−v3),
f2(p) = (−v1,v2,−v3), and f3(p) = (−v1,−v2,v3) are the other
choices of such frames (Figure 7 (left)). Let rm (0 ≤ m ≤ 3) be the 3D
rotation that maps the X-axis to the major eigenvector in fm(p), the
Y -axis to the medium eigenvector, and the Z-axis to the minor eigen-
vector (Figure 7 (left)). Using the matrix representation, fm(p) can be
expressed as a special orthogonal matrix rm. Define rx, ry, and rz as
the 180◦ rotation around the X-, Y -, and Z-axis, respectively. Then we
have

r1 = r0rx (1)
r2 = r0ry (2)
r3 = r0rz (3)

We choose p0 ∈ ∂R and travel along ∂R for one round in order to
inspect the behavior of the continuous eigenframe that is initially set to
be f0(p0) (Figure 7 (a-b)). Since the tensor field is continuous over R
and there is no degenerate point on ∂R, we know that the eigenvector
fields are also continuous over ∂R. Therefore, when returning to p0
after a full boundary walk, the frame f ′(p0) must be fm(p0) for some
0 ≤ m ≤ 3. That is,

r′(p0) = r0(p0)c (4)

where c = 1, rx, ry, or rz. Note that c = r0(p0)
−1r′(p0). We can

show that c is a property of the loop ∂R as it is independent of the
choice of the initial frame at p0 (Appendix: Lemma 2), the choice
of starting point p0 ∈ ∂R (Appendix: Lemma 4), and the direction of
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Fig. 7: Given a region containing a degenerate point q0 in its interior
(the disk in (a) and (b)), the winding number of the boundary curve
(the circle in (a-b)) is the total rotation of the frames formed by the
major eigenvectors (red), medium eigenvectors (green), and minor
eigenvectors (blue). It is k when q0 is planar wedge (a) and −k when
q0 is planar trisector (b). Due to the continuity in the eigenvector fields
away from q0, after travelling one round along the circle the eigenframe
must be one of the four configurations (left).

travel (Appendix: Lemma 3). This indicates that the quantity c is a
well-defined characteristic of both the region R and its boundary ∂R.
Since c is a 3D rotation which can be represented as a unit quaternion,
we refer to its quaternion representation (which we still refer to as c) as
the winding number of R and ∂R.

We now consider a degenerate point q0 and simply-connected re-
gions R that contains it. It turns out that there is a sufficiently small
neighborhood R′ inside which any simply-connected region containing
q0 and without self-intersection has the same winding number (Ap-
pendix: Theorem 7). This winding number is i if q0 is a linear wedge,
−i if q0 is a linear trisector, k if q0 is planar wedge, and −k if q0 is
planar trisector. We thus refer to this winding number as the index of
q0, which we denote by φ(q0).

It is worth noting that in any arbitrarily small neighborhood of a
transition point, it is possible to find two loops that have opposite
winding numbers, e.g., i and −i for linear transition points.

Furthermore, we can show that the analysis can be made more
global in the following sense. Consider a region R that is free of self-
intersection and contains only one degenerate point q0 in its interior.
Then, if the normal to the surface R is nowhere perpendicular to the
dominant eigenvector field (major eigenvector in linear-dominant region
and minor eigenvector in planar-dominant region), then the winding
number of the boundary ∂R is the same as the index of the degenerate
point. (Appendix: Corollary 8).

We now consider a linear degenerate loop γ , over which the minor
eigenvectors are not defined. Consequently, the notion of winding num-
ber does not apply to γ . However, γ has a sufficiently small neighbor-
hood K that is homotopically equivalent to γ . Consider two simple non-
contracting loops η1,η2 ⊂ K and a ring ψ ⊂ K bounded by η1 and η2.
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Assume that ψ does not intersect the degenerate loop
γ . Then by using techniques similar to the one in the
proof for Corollary 8, we can show that the winding
number of the region ψ = 1, i.e., degenerate point-
free. This implies that the winding number of η1 is
equal to that of the η2. Since the choice of η1 and η2
is arbitrary, we can choose them to be arbitrarily close γ . Therefore, we
can define the winding number for γ to be that of its neighboring loops.

Note that the winding number of a degenerate loop γ is not the index
of γ . Rather, it is the index of a degenerate loop linked to γ . Suppose
that γ is the boundary of a topological disk without self-intersection.
When the winding number of γ is ±k, there must be a planar degenerate
curve ρ that intersects the topological disk. If ρ is also a degenerate
loop, then γ and ρ form a link. Similarly, when the winding number
of γ is ±i, there must be a linear degenerate curve ρ . When ρ is also a
loop, then γ and ρ also form a link. Note that γ and ρ may not be part
of the same region even when they are of the same linearity/planarity
type. In this case, their container regions have a relationship that is
different from the adjacency relationship, even when the two regions
are not adjacent.



4.3 Visual Design of Topological Graph

In this section, we provide the rationale behind the visual design of our
graph, which aims to minimize edge crossing and accentuate the nodes
and their properties.

In our topological graph, each region is represented by a node with
the shape of a square. A linear region is colored cyan and a planar
region is colored yellow. A pair of adjacent regions have their corre-
sponding nodes connected with an edge in the graph. Furthermore, if
a region is inside another region, we add a rectangular glyph on the
edge to highlight the containment relationship. Since no regions of the
same type can be adjacent to each other, we place all linear regions
(cyan squares) on one row and all planar regions (yellow squares) on
the row above. This allows the user to easily locate a region if its
linearity/planarity is known. We show the Betti numbers β1 and β2
of a region by writing their values inside the square in the graph that
corresponds to the region. To differentiate between the two values, we
show β1 next to an ellipse and β2 next to an ellipsoid. Since β2 records
the number of air bubbles (the other type of regions) inside the region,
it is always written so that it is closer to the row for the other types of
regions. That is, β2 is written in the top row of the square for linear
regions (cyan) and the bottom row for planar regions (yellow). When
β1 = β2 = 0, they are not written to make it easier to identify such
regions, which are contractible. Lastly, in our graph, we sort the nodes
by the Betti numbers and the volume of their corresponding regions
with an ascending order for the linear regions and a descending order
for the planar regions, aiming to reduce the number of crossing points
between edges in the graph.

Each degenerate curve is contained entirely inside a region of the
same linearity/planarity. In the graph (Figure 2), every degenerate
curve has its node in the graph connected by an edge to the node that
represents its container region. To reduce the number of unnecessary
crossings among this type of edges in the topological graph, all linear
degenerate curves are placed on the row below the linear regions, and
all planar degenerate curves are placed on the row above the planar
regions. Degenerate curves belonging to the same region are displayed
as a group of nodes. We sort the degenerate curves in the same region
by their Writhe numbers, the total linking numbers, and lengths. We
use closed rings and half rings to indicate degnerate loops and open
curves, respectively. On the rings, we color the linear wedge on the
curve in green, the linear trisector in blue, the planar wedge in yellow,
and the planar trisector in red. For knotted loops, the Writhe number is
enclosed inside the ring. Furthermore, when the Jones polynomial of a
degenerate loop is not a constant, we regard the degenerate loop as a
knot and add ∗ to the corresponding node. Linked degenerate curves
have an edge connecting their nodes in the graph, with the linking
number written next to the edge.

5 GRAPH CONSTRUCTION

In this section, we describe our pipeline to construct the topological
graph given a 3D tensor field. The input to our pipeline is a 3D piece-
wise linear tensor field defined on a tetrahedral mesh representing some
physical domain. The tensor values are given at the vertices in the mesh
and are linearly interpolated per tetrahedron. Such an interpolation en-
sures the continuity of the tensor field and thus its topological features
across the faces of the mesh.

Our pipeline consists of the following stages (Figure 8): (i) degen-
erate curve and neutral surface extraction, (ii) region extraction and
processing, and (iii) degenerate curve processing. We describe each of
the stages in detail next.

Degenerate Curve and Neutral Surface Extraction: We first seam-
lessly extract the degenerate curves in the field using the technique of
Roy et al. [26], which computes the set of degenerate points inside each
tetrahedron using a parameterization that maps all degenerate points
in a linear tensor field to an ellipse. Degenerate curves from adjacent
tetrahedra are then stitched together across their common boundary
faces. In addition, this technique classifies the linearity/planarity of
each degenerate curve. Additionally, we compute the wedge/trisector
classification for each sample point in the polyline representing the
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Fig. 8: The pipeline of our topological graph construction algorithm.

degenerate curve. We also mark for each degenerate curve whether it is
an open curve or a loop.

In parallel, we extract the neutral surfaces in the tensor field using
the technique of Qu et al. [24], which extracts the neutral surface from
each tet based on a parameterization that maps all neutral points in a
linear tensor field to the Projective plane with a handle attached. The
pieces from individual tets are then stitched together across the tets’
boundaries.

Region Extraction and Processing: As the regions are bounded
by neutral surfaces, we create linear regions and planar regions by
dividing each tetrahedron into sub-regions and connecting adjacent
sub-regions in neighboring tets with the same linearity or planarity.
Figure 9 illustrates the process for planar regions. For each tet, using
the neutral surfaces inside the tet and the intersection curves on the tet
faces (Figure 9 (b)), we determine the boundary surfaces of the sub-
regions by segmenting the tet faces with the intersection curves into
patches (Figure 9 (c)). We identify the linearity/planarity of each patch
based on its vertex tensor value or adjacent patches. Note the adjacent
patches must have opposite linearity/planarity classifications. We stitch
the neutral surfaces and the patches across their shared edges to create
the boundary surface of planar sub-regions (Figure 9 (d)). Inside
the boundary surface, the sub-region has uniform linearity/planarity.
Finally, we trace the planar region by finding the connected sub-regions
over the mesh (Figure 9 (e)). Linear regions are extracted in a similar
fashion. A node is created for each region in the graph and visualized
as a colored square.

Next, we go through each triangle in the neutral surface and identify
the pair of linear and planar regions on both sides. If two regions share
an open sheet of the neutral surface, they are adjacent to each other.
On the other hand, if two regions share a closed sheet of the neutral
surface, one region is inside the other region. An edge is created for
each pair of adjacent regions, while the containment relationship is
further highlighted with a rectangle on the edge in the graph.

For each region, we compute its volume using the technique in [6].
To compute the Betti numbers of the region, recall that it is a 3-manifold
in the XY Z space bounded by the neutral surfaces. Thus, β0 of a
given region R is one and βi is zero for i > 2. To compute the second
Betti number β2 of the given region R, we identify all the regions that
are adjacent to R and share a closed border with R. Such a region
is a void trapped by R and contributes one generator for the second
homological group H2 of R. Thus, β2 of R is the number of such
regions. According to [25], β1(R) = β0(R) + β2(R)− χ(R) where
χ(R) is the Euler characteristic of R. Note that β0(R) = 1 in our cases.
Since a region can be represented as a 3-simplicial complex, the Euler
characteristic of a region is defined as χ(R) = V −E +F −T where
V is the number of vertices, E the number of edges, F the number
of faces, and T the number of tets in R. However, tetrahedralizing a
region can be time-consuming. We propose an effective evaluation
of the χ(R) using the result from [30], which states that χ(M), the
Euler characteristic of a compact (n+ 1)-manifold M, is related to
χ(∂M), the Euler characteristic of its boundary ∂M, by χ(∂M) =
(1+ (−1)n)χ(M). Since our regions are compact 3-manifolds, we
have 2χ(R) = χ(∂R) where ∂R is the boundary surface of the given
region. Since ∂R consists of disjoint sheets of neutral surfaces {Si}n

i=1,
we have
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Fig. 9: This figure illustrates the extraction of planar regions. Given
the neutral surfaces of the tensor field (a), we extract the neutral curves
inside each face of the mesh (b) which we use to segment a face into
patches of uniform linearity/planarity ((c): linear patches in green and
planar patches in orange). The neutral surface and the patches in the
mesh faces are then stitched together across shared edges (d), which
form the boundary of planar regions inside each tet. These regions are
then stitched together to form the regions (e) which are the nodes in
our topological graph.

χ(R) =
1
2

χ(∂R) =
1
2

n

∑
i=1

χ(Si). (5)

Recall that the Euler characteristic of the surface Si is defined as
χ(Si) = Vi −Ei +Fi. Here, Vi is the number of vertices of Si, Ei is
the number of edges, and Fi is the number of faces. This allows us to
compute χ(R) without tetrahedralizing R.

Once β1 and β2 are computed, we visualize them for each region
using the scheme described in Section 4. Furthermore, we sort the
nodes of the planar/linear regions in ascending/descending order with
their β1’s and volumes.

Degenerate Curve Processing: To identify the container region of
a degenerate curve, we first find an intersection point p0 of the curve
with a tet face of the mesh. Note that the face may consist of more
than one patch, and the point can be inside exactly one patch. Thus,
we test whether the point is inside one of the patches in the face by
computing the winding number of the displacement vector field with
respect to the point. That is, for each point q on the boundary of the
patch, we compute the vector q− p0. When travelling along the patch
boundary once, the directional component of q− p0 must travel along
the Gauss circle an integer number of times. The number is one if and
only if the point p0 is inside the patch. Once we have identified the
patch containing p0, the region that contains the patch is then marked
as the container region for the degenerate curve.

We now identify knots and links among degenerate curves. The
Gauss linking integral is a useful measure of the extent to which a pair of
curves are linked to each other. A link diagram is a projection of a curve
network onto a 2D plane. For two closed curves, the Gauss linking
integral is an integer-valued link invariant indicating the linking number
of the link diagram formed by the two curves. For open curves, it is a
real number representing the average of half the number of crossings
over the link diagrams of all possible projection directions (i.e., the
normal vectors of 2D planes) [23]. Given two degenerate curves γ

and ρ represented as polylines, i.e., γ = {ai}n
i=1 and ρ = {b j}m

j=1, the
Gauss linking integral [1] is represented as

L (γ,ρ) =
1

4π

n

∑
i=1

m

∑
j=1

Q(ai,b j). (6)

where Q(ai,bi) is the area of the quadrangle formed by the end points
of ai and b j . For closed curves, if their Gauss linking integral is greater
than or equal to 1, then the curves are linked and we create an edge
between their corresponding nodes in the graph. Additionally, we find
that while the Gauss linking integral of two open curves is greater than
0.9, they are entangled with each other. Thus, we also add an edge for
the nodes of entangled open curves.
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Fig. 10: The rules in the recursive definition of the Jones polynomials
(a), which are invariant under the three types of Reidemeister moves
(b).

To evaluate the knottiness of a degenerate loop γ = {ai}n
i=1, we

compute its Writhe number [23] as

W (γ) =
1

2π

n

∑
i=2

∑
j<i

Q(ai,a j). (7)

While the Writhe number measures the average of the number of
crossings in all possible projections of the curve, a twisted loop such
as connecting the ends of a helix can have a high value of the Writhe
number without actually being knotted. Hence, we compute the Jones
polynomial [19] of degenerate loops to identify knots. In fact, the Jones
polynomial is defined for a collection of finite loops and can thus be
used to also test whether multiple curves are linked besides testing
whether one loop is knotted. In this paper, we apply Jones polynomials
only to knot detection and classification.

Given a set of loops Γ, it is often projected onto a plane with self-
overlaps (crossing points). Such a projection leads to a link diagram
(Figure 10: blue curves in the equations). The Jones polynomial is a
link invariant, i.e., regardless of the projection plane and thus the link
diagram. The Jones polynomial is defined in a recursive fashion, in-
volving a base case and three recursive simplification rules (Figure 10).
This simplification allows us to systematically reduce the number of
crossing points with either reconnection (Figure 10 (a-2.1 and a-2.2))
or removing an unknot which has no crossing with the rest of the curve
network (Figure 10 (a-3)). Unfortunately, as can be seen the second
simplification rule, the Jones polynomial can be the sum of O(2n) terms
where n is the number of crossing points in the link diagram. In fact,
computing the Jones polynomial of a curve network Γ is an NP-hard
problem due to the recursive nature of its definition [19].

Given this fundamental challenge, we employ the technique of Liv-
ingston [19], which further simplifies the computation process by sim-
plifying the link diagram using the Reidemeister moves (Figure 10 (b-I,
b-II, b-III)). When combined, these moves can convert a link diagram
of a curve network to any other link diagram for the same curve net-
work. Moreover, the Jones polynomials are maintained under these
moves. Livingston [19] takes advantage of this and first simplifies the
link diagram by using types I and II Reidemeister moves. Note that
only these two types of moves reduce the number of crossing points
in the link diagram. When no more Reidemeister moves are available
to further simplify the link diagram, this technique resorts back to the
simplification rules (Figure 10 (a-2.1), (a-2.2), and (a-3)). We refer our
reader to Appendix B for more detail of this technique.

Interaction: Given a complex dataset, the graph may contain tens of
regions and degenerate curves, making it difficult for domain scientists
to correlate a topological feature with its corresponding node in the
graph. To address this, an interface is available for users to explore
regions and degenerate curves in the field. By selecting the nodes
and edges in the graph, the user can see the corresponding degenerate
curve and region, two degenerate curves that are linked, or the common
boundary between a pair of adjacent regions.

6 PERFORMANCE

Our feature extraction algorithm is tested on a number of analytical
and simulation data from solid mechanics. The number of tetrahedra in
our data ranges from 780300 to 1953720. Measurements were taken
on a computer with an Intel(R) Xeon(R) E3-2124G CPU@ 3.40 GHz,
16GB of RAM, and an NVIDIA Quadro P620 GPU. The time to extract
neutral surfaces and degenerate curves averages to 10.37 seconds and



0.47 seconds, respectively. Region extraction and processing takes 2.3
seconds on average. Lastly, the average time to compute the Writhe
number and the Jones polynomial of degenerate loops and the linking
numbers of the pairs of the degenerate curves is 1.9 seconds on average.

7 APPLICATIONS

Our topological graph allows the features in a tensor field to be visual-
ized holistically. The user can interactively inspect a single feature such
as a degenerate curve and a region as well as the relationships between
two features. In addition, our topological graph allows two datasets
to be compared using their topological features instead of pointwise
comparisons. The datasets to be compared can be from a simulation
with different boundary conditions or materials. These scenarios have
applications in solid mechanics and material science.

Solid Mechanics: Given a mechanical design, it is important to test
the durability of the design under various stress conditions and detect
potential fractures under extreme stress. For example, O-rings are used
as a sealing solution by multiple industries [11]. They are squeezed
among distinct components of machines to prevent the occurrence of
fluid or gas leaks. Therefore, it is essential to numerically simulate its
behaviors under different compression. There are isotropic compression
(magnitude is constant) and anisotropic compression (magnitude varies)
under static and dynamic sealing. We consider the cases when the
anisotropy in the magnitude of the compression force is periodic both
along its circumference and in the cross-section:

u(θ ,φ) = (1−α)+α cos(pθ +qφ), (8)

where θ and φ are respectively the longitude and meridian of the surface
of the O-ring (a torus), u(θ ,φ) is the magnitude of the compression
force at the point (θ ,φ) on the torus, p and q are respectively the
periodicity of u in terms of its longitude and meridian, and α amplifies
the magnitude of anisotropy. The unit of u is Newton (N). Figure 11
shows the influence of the parameters on the compression force.

The O-ring has an internal diameter of 6.07mm and a width of
the cross section of 1.78mm. When α = 0, i.e., the purely isotropic
case, there is one linear degenerate loop in the stress tensor field (Fig-
ure 12(a)). We consider the case when p = 3 and q = 2 with increasing
α’s. Figure 12(b) shows the case when α = 0.25. The three-fold
symmetry in the deformation of the degenerate loops and the linking
number of the two loops (3) are due to the periodicity in the compres-
sion force when p = 3. Despite the compression force everywhere on
the boundary of the O-ring, there is now a thin ring of the planar region
in the middle of the torus with the Betti numbers β1 = 1 and β2 = 0.
Accordingly, the linear region now has a void (i.e., β2 = 1) due to the
planar region trapped inside. As α increases, so does the anisotropy in
the magnitude of the compression force on the boundary and the size of
the planar region around the core of the torus. Figure 12(c) shows the
case when α = 0.35, which is also the case shown in Figure 1. Notice
that in this case, the planar region has grown large enough to even host
one knotted degenerate curve inside that loops twice, indicating the
core of the O-ring is going through more compression. Notice that
when α = 0 (Figure 12 (a)), the core of the O-ring is going through
extension. The change in the stress tensor at the core is due to the
stronger anisotropy in the loading condition at the boundary of the O-
ring. Also, when α = 0.35, we observe two additional short degenerate
loops (Figure 1: the two curves labelled with “zoom in”). Given that
these loops are short and do not respect the three-fold symmetry in the
boundary load, we hypothesize that they are topological noise due to
numerical issues. Further investigation is needed to address this.

In Appendix E, we provide additional analysis of varying p and q
values systematically while keeping α constant.

Material Science: The material properties of an object have a
direct impact on its response to external stress. Concrete is a material
that is widely used in the construction of buildings and bridges, and
its durability has a direct impact on our daily life. The Poisson’s
ratio is a measure of the deformation of a material in the direction
perpendicular to loading [10] and thus can also serve as a measure for
the incompressibility of the material. For a given concrete material,

q = 1 q = 2 q = 3 q = 4
Fig. 11: We demonstrate the compression force given in Equation 8 at
the cross-section of θ = 0.
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Fig. 12: Three O-ring scenarios with varying α values under the condi-
tion p = 3 and q = 2.

due to its composition and use, the Poisson’s ratio can take on a range.
In this application, we consider concrete materials with the Poisson’s
ratios of 0.13, 0.18, and 0.24, respectively. Here, we use one cubic
block to represent a typical volume of a pile cap in the foundation of a
building.

There is compression loading on the top,
the bottom, and the sides of the block. From
the sides, we impose a sinusoidal profile for
the magnitude of the compression loading to
represent possible interaction with neighbor
blocks as illustrated in the right image. The
tensor fields and their topological graphs are
shown in Figure 13: (a) a Poisson’s ratio of
0.13, (b) a Poisson’s ratio of 0.18, and (c) a Poisson’s ratio of 0.24.
While we expect different behaviors in the stress tensor fields within
the block, we make the following observations based on the topological
graphs.

There is a linear region at the center of the block that persists for all
scenarios. We observe that in this linear region, there are degenerate
curves connecting the top and bottom faces near the center of the
domain. This is where the forces from the four sides of the block reach
a balance.

On the sides of the cube, the magnitude of the load varies, which has
three maximums and two minimums along a vertical line. The top and
middle maximums, when coupled with the minimum inbetween them,
lead to a trisector type of degenerate curve (red) near the top face of the
cube. Notice the four-way symmetry in this degenerate curve. On the
other hand, despite the maximal loading on the side of the cube near
the top, the fact that the top surface is also being pushed down leads to
a dead-end for material, namely, the wedge curve (yellow) near the top
surface. Such an observation would not be possible when the wedge
and trisector curves are not differentiated.

Furthermore, there are planar regions that are near the top and bottom
faces of the box. The regions have a hole near the loading point at
the top and bottom faces. In our graph, we show the Betti numbers
of the regions, which indicate the regions’ complexities. When the
Poisson’s ratio is 0.13, there are many smaller planar regions scattered
in the domain. When the Poisson’s ratio increases to 0.18, the material
becomes less compressible. This is confirmed by the merging of the
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Fig. 13: Three concrete materials with different Poisson’s ratios are compared in terms of the topological graphs of their stress tensor fields.
We notice that in cases (a) and (b), there are four non-trivial planar regions (yellow nodes) with positive β1 values. When the Poisson’s ratio of
the concrete increases to 0.24 (c), the four planar regions become two regions near the top and the bottom of the domain and linking between
degenerate curves appears (inside the zoom-in box).

small planar regions in the topological graph. When the Poisson’s ratio
reaches 0.24, the material becomes even more incompressible, which
is highlighted by the merging of the planar regions, which now enclose
the loading points at the top and bottom faces. In contrast, for all three
materials, there is a single linear region, highlighting the fact that the
side forces provide a stronger load than the loads at the top and bottom
faces of the block.

We provide more examples in the supplementary video. All appli-
cation examples in the paper and the video were generated using the
commercial software SIMULIA [28].

8 CONCLUSION AND FUTURE WORK

In this paper, we introduce the notion of topological graphs as a map
to the global topology of 3D symmetric tensor fields. At the core of
our approach are several observations and theoretical analyses of tensor
field topology. In particular, we define the index for each degenerate
loop and observe the existence of loops, knots, and links in the degen-
erate curves. We also provide algorithms to extract regions of uniform
linearity/planarity and advocate the use of homology as a measure of
regions’ complexities. The Writhe numbers, linking numbers, and the
Jones polynomial for knots and links are also computed using existing
algorithms, which can provide insight into the behavior of the underly-
ing tensor field. Our topological graph provides a more holistic view of
the topological structures in a tensor field and can be used to compare
tensor fields from simulations of either different boundary conditions
or different material properties. Our approach also enables the user
to select individual objects (degenerate curves and regions of uniform
linearity/planarity) for inspection even when these objects are occluded
by other objects in the field.

In addition, we differentiate between wedges and trisectors and
provide some interpretation of their physical meanings in the context
of the stress tensor in engineering applications. We demonstrate how to
use the topological graph for a global description of the tensor fields

from solid mechanics and material science.
Our graph construction can be improved in a number of regards.

For example, while we have found the use of bounding boxes for
the containment relationship between two regions is sufficient for our
datasets, the test can theoretically fail even when one of the regions
is contained inside the other. We plan to investigate more accurate
numeric methods to address this.

We consider our research one of the first steps towards a complete
global topological analysis of 3D symmetric tensor fields. As such,
there are many potential fruitful future research directions. For ex-
ample, we wish to identify all potential bifurcations involving topo-
logical features in a 3D tensor field, thus allowing the processing of
time-dependent tensor fields. Second, not all features are of equal
importance, and we plan to study a multi-scale representation of tensor
field topology similar to the one for 2D asymmetric tensor fields [16].
Highlighting where the graph is changing when a parameter (such as
the Poisson’s ratio) is varied can help improve the workflow for domain
scientists, a direction we wish to pursue. In addition, we plan to ex-
plore better layouts for our topological graphs. The fact that regions
of the same type cannot be connected has the potential of enabling
better graph layout and thus enhanced graph readability. Including
more statistics of graphs such as their Laplacian can provide additional
insight into the global topology of tensor fields, and we plan to inves-
tigate this. Finally, we plan to extend our global topology approach
to 3D asymmetric tensor fields, which have more types of topological
features [13] and thus more complicated interactions among them.
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A DEGENERATE POINT INDEX

In this section, we provide detail of our theoretical analysis on the index
of degenerate points in a 3D symmetric tensor field (Section 4.2).

Let R be a topological disk without self-intersections such that there
are no degenerate points on its boundary, ∂R (the circles in Figure 7
(a-b)). We consider the right-handed frames formed by the unit major
eigenvector v1, the medium eigenvector v2, and the minor eigenvector
v3 of the tensor fields on ∂R. There are four ways of selecting a right-
handed frame from the eigenvectors. Let f0(p) = (v1,v2,v3) be one
such frame. Then f1(p) = (v1,−v2,−v3), f2(p) = (−v1,v2,−v3), and
f3(p) = (−v1,−v2,v3) are the other choices of such frames (Figure 7
(left)). Let rm (0 ≤ m ≤ 3) be the 3D rotation that maps the X-axis to
the major eigenvector in fm(p), the Y -axis to the medium eigenvector,
and the Z-axis to the minor eigenvector (Figure 7 (left)). Define rx, ry,
and rz as the 180◦ rotation around the X-, Y -, and Z-axis, respectively.
Then we have

r1 = r0rx (9)
r2 = r0ry (10)
r3 = r0rz (11)

We choose p0 ∈ ∂R and travel along ∂R for one round in order to
inspect the behavior of the continuous eigenframe that is initially set to
be f0(p0) (Figure 7 (a-b)). Since the tensor field is continuous over R
and there is no degenerate point on ∂R, we know that the eigenvector
fields are also continuous over ∂R. Therefore, when returning to p0
after a full boundary walk, the frame f ′(p0) must be fm(p0) for some
0 ≤ m ≤ 3. That is,

r′(p0) = r0(p0)c (12)

where c = 1, rx, ry, or rz. Thus c = r0(p0)
−1r′(p0). Next, we show

that c is a curve invariant.

Lemma 1. Given the conditions above, c is independent of the coor-
dinate system for the space.

Proof. Let S and T be two right-handed orthogonal coordinate systems
(Figure 14). Let P be the change-of-basis matrix from T to S. Note
that P−1 can also be considered as the rotation that takes the coordinate
system S to the coordinate system T .

Therefore, r0,S(p0), the rotation that takes S to the eigenframe
f0(p0), is related to r0,T (p0), the rotation that takes the T to the
eigenframe f0(p0), as follows: r0,S(p0) = r0,T (p0)P−1. Similarly,
r′S(p0) = r′T (p0)P−1.

We now consider cS = (r0,S(p0))
−1r′S(p0). This is equivalent

to cS = (r0,T (p0)P−1)−1r′T (p0)P−1 = P(r0,T (p0))
−1r′T (p0)P−1 =

PcT |SP−1.
We consider the matrices corresponding to cS and cT under S. Thus,

cS|S = P|S(cT |S)P−1|S. Since P|S and P|−1
S commute, we have P|S =

P|T and P−1|S = P−1|T . Thus, we drop the subscripts and only use
P and P−1. On the other hand, cT |S = P−1(cT |T )P. Thus, cS|S =
P(cT |S)P−1 = P(P−1(cT |T )P)P−1 = cT |T .

Therefore, c is independent of the choice of the coordinate system.

Lemma 2. Given the conditions above, c is independent of the initial
frame chosen.

Proof. Assume that we have chosen fm(p0) as the initial frame where
m ̸= 0. Let p1, ... pn be a sequence of points on ∂R in the direction of
the travel such that pn = p0 (Figure 7 (a-b)). Moreover, we choose the
sample points so that at each sample point pℓ, there is a unique k0 that
minimizes d( f0(pℓ), fk(pℓ+1)), the distance between the two frames
(the angle of the minimal 3D rotation that takes the first frame to the
second frame). For convenience, we reorder the four frames at pℓ+1
such that fk0(pℓ+1) becomes f0(pℓ+1). Under the new numberings,

f0(p0)

P−1 S

r0,S

T

r0,T

Fig. 14: This figure illustrates the change of the basis of S, T , and
f0(p0).

we define sℓ+1 to be the unique rotation that takes the frame f0(pℓ) to
f0(pℓ+1). That is, sℓ = r0(pℓ+1)(r0(pℓ))−1. Note that sℓ( fm(pℓ)) =
f0(pℓ+1) for 1 ≤ m ≤ 3. Therefore,

r′m(p0) = snsn−1..s1rm(p0) = snsn−1..s1r0(p0)c = r′(p0)c (13)

Consequently, c′ = (rm(p0))
−1r′m(p0) = c−1(r0(p0))

−1r′(p0)c =

c−1cc = c. Thus, c does not depend on the choice of the initial frame.

Lemma 3. Given the conditions above, c is independent of the direc-
tion of travel along ∂R.

Proof. Assume that we have chosen f0(p0) as the initial frame. Let p1,
... pn be the sequence of points on ∂R from Lemma 2 (Figure 7 (a-b)).
Furthermore, let sℓ = r0(pℓ+1)(r0(pℓ))−1 be the unique rotation that
takes the frame f0(pℓ) to f0(pℓ+1). Then we have s−1

ℓ ( fm(pℓ+1)) =
f0(pℓ) for 1 ≤ ℓ≤ n and 0 ≤ m ≤ 3.

We now consider travelling in the opposite direction along ∂R,
that is, p0, p′1 = pn−1, ... p′n−1 = p1 and p′n = p0. Therefore,
c′ = (r0(p0))

−1s−1
n ...s−1

1 r0(p0) = ((r0(p0))
−1s1...snr0(p0))

−1 =

(r0(p0))
−1r′(p0))

−1 = c−1 = c.
Thus, c does not depend on the travel direction.

Lemma 4. Given the conditions above, c is independent of the choice
of the starting point p0.

Proof. Let p0 ̸= p′0 be two points on ∂R. Choose f0(p0) as the initial
frame. Let p1, ... pn be a sequence of points on ∂R described in
Lemma 2 (Figure 7 (a-b)). Moreover, assume that pk = p′0 for some
1 ≤ k < n. Using the process described Lemma 2, we can find f0(p′0)
such that r0(p′0) = sksk−1...s1r0(p0).

We now consider travelling starting from p′0 in the se-
quence of pk+1, ..pn−1, p0, ...pk−1, pk = p′0. Then, r′(p′0) =

sksk−1...s1sn...sk+2sk+1r0(p′0). Therefore, c′ = (r0(p′0))
−1r′(p′0) =

(sksk−1...s1r0(p′0))
−1(sksk−1...s1sn...sk+2sk+1r0(p′0)) =

(r0(p0))
−1sn...sk+1r0(p′0) = (r0(p0))

−1sn...sk+1(sk..s1r0(p0)) = c.
Therefore, c does not depend on the choice of the initial point p0.

Lemma 5. Given two topological disks R1 and R2 that intersect only
at their common boundary such that R1

⋃
R2 is still a topological disk,

the winding number of the boundary of R1
⋃

R2 is the product of the
winding numbers of R1 and R2.

Proof. Note that the boundary ∂ (R1
⋃

R2) = ∂R1
⋃

∂R2. Let p0 ∈
∂R1

⋂
∂R2 be the starting point and travel the boundary of R1

⋃
R2.

This is equivalent to traveling around the boundary of R1 and R2 once
each, passing through p0 once before returning to it a second time.
Since the quaternion of a 3D rotation from concatenating two 3D
rotations is the product of the quaternions for the two 3D rotations,
the winding number of the boundary of R1

⋃
R2 is the product of the

respective winding numbers of the boundary of R1 and the boundary of
R2.



Lemma 6. Given a 3D tensor field T (x,y,z) and R, a topological ball
on which T (x,y,z) is linear, the major eigenvector field of T (x,y,z), a
3D line field, can be turned into a 3D vector field inside R. Similarly,
if T (x,y,z) is planar on R, then the minor eigenvector field of T (x,y,z)
can be turned into a 3D vector field.

Proof. Since R is a topological ball, it is simply connected and finite.
If T (x,y,z) is linear on R, the major eigenvector field is always well-
defined in R, i.e., without singularities. Thus, it can be turned into a 3D
vector field from the result of Markus [20], which states that a 3D line
field can be turned into a 3D vector field on a simply-connected, finite
region if the line field does not have any singularities in the region. The
proof for the minor eigenvector field in planar regions is similar.

Theorem 7. Given a 3D tensor field T (x,y,z) and a point p0 (possibly
a degenerate point), there exists a small enough neighborhood R of p0
such that any topological disk inside R has the same winding number
for its boundary if the disk contains p0 but no other degenerate points of
T (x,y,z) and has no self-intersection. In this case, the winding number
is i if p0 is a linear wedge, −i if p0 is a linear trisector, k if p0 is planar
wedge, −k if p0 is planar trisector, and 1 if p0 is not a degenerate
point.

Proof. If p0 is a linear degenerate point, then there exists a neighbor-
hood R of p0 such that the major eigenvector field of T (x,y,z) can be
converted to a continuous vector field inside R without singularities
(Lemma 6). According to the Flow Box theorem [2], there exists a
region R′ ⊂ R and a diffeomorphism φ from R′ to another space F such
that the major eigenvector field (now a vector field on R′) to a constant
vector field defined on F . Without loss of generality, we can assume
that the major eigenvector at p0 has the same length as its image under
φ , i.e., a 3D rotation without scaling. Since φ is a diffeomorphism, it is
continuous. Therefore, it is possible to find an even smaller set R′′ ⊂ R′

such that the diffeomorphism φ inside R′′ can be approximated by
φ(p0) with a sufficiently small error ε. Notice that under φ , the tensor
field T ′ = φ(T (x,y,z)) is also a tensor field whose major eigenvectors
are all parallel. In addition, φ(p0) is a linear degenerate point of T ′.
Similarly, a topological disk D containing p0 will be mapped to a topo-
logical disk containing φ(p0). When ε is small enough, the winding
number of the boundary of D is the same as the winding number of
the boundary of φ(D) since φ(p0) is a 3D rotation on the eigenvectors
of the tensor field. We can further select R′′ to be small enough such
that any loop inside R′′ is close to being planar, i.e., contained in some
plane. Consequently, the image of such a loop under φ is also nearly
a planar loop. We select a point p0 and travel along the loop. Based
on Lemma 1, we can choose any coordinate system and the winding
number will not change. Thus, for simplicity, we choose the eigenframe
at the start point p0 to be coordinate system. Therefore, the quaternion
for p0 is 1. Since the major eigenvector field is constant along the loop,
the quaternions corresponding to the eigenframes along the loop have
the form w+ xi, i.e., no j and k components. Thus, when returning to
p0, the quaternion corresponding to p0 must be ±1 or ±i. When the
region R contains no singularity, the winding number is 1. Otherwise,
it is i if the singularity contained in R is a wedge or −i if the singularity
is a trisector.

Similarly, in a planar region, the winding number is 1 if the region
contains no singularity, and is k or −k if the singularity is a wedge or a
trisector, respectively.

Corollary 8. Given a 3D tensor field T (x,y,z) and a topological disk
R free of self-intersections, assume that R contains only one degenerate
point inside. If furthermore the normal to the surface R is nowhere per-
pendicular to the dominant eigenvector field, then the winding number
of the boundary ∂R is the same as the index of the degenerate point.

Proof. Given any point p in R, there exists a sufficiently small neigh-
borhood Up such that Theorem 7 is satisfied. These neighborhoods
give an open cover of R. Since R is finite and closed, any of its open
covers has a finite subcover [27]. Consequently, we can find a finite
neighborhood U1, U2, ... Um for some m > 0 such that their union

Type I Type II
Fig. 15: The two types of Reidemeister moves that can reduce the
number of crossing points in a link diagram.

covers R. In Addition, ∂R, a loop, is covered by U1, ... Um. It is
thus possible to decompose ∂R as the union of a number of closed
curves, each of which is inside one such neighborhood Uk for some
1 ≤ k ≤ m. Therefore, the winding number of ∂R is the product of
the winding numbers of each of such closed curves (Lemma 5). Since
R is nowhere perpendicular to the dominant eigenvector field, the dot
product between surface normals (chosen consistently over R) and the
dominant eigenvector field over R is either always positive or always
negative.

Since R contains only one degenerate point, we can select the closed
curves in the open cover such that the degenerate point is inside only
one topological disk bounded by the closed curves. For this curve, the
winding number is either i, −i, k, or −k while for the other closed
curves, the winding number is 1. Thus, the winding number of ∂R is
±i or ±k due to Lemma 5.

B JONES POLYNOMIAL COMPUTATION

In this section, we provide some detail on the technique of computing
the Jones polynomials [19], which we implement in our system. Recall
that Jones polynomial of a given curve network is defined in terms
of the link diagram of curve network, though it is an invariant as it
does not depend on the actual choice of the plane onto which the curve
network is projected.

As the Jones polynomial is defined recursively, computing it is an
NP-hard problem in terms of the number of crossing points in the
link diagram. Livingston [19] provides an approximation algorithm
by involving the Reidemeister moves (Figure 15), which can reduce
the number of crossing points without changing the polynomial itself.
Note that the reconnection operations in the definition of the Jones
polynomials (Figure 10 (a-2.1 and a-2.2)) of a curve network generates
two new curve networks, each of which has one fewer crossing points
than the original curve network. However, the Jones polynomials of the
two new networks are usually different from that of the original one,
hence the exponential growth of the computation time in terms of the
number of crossing points in the original curve network.

We follow closely the technique of Livingston [19]. Given a degen-
erate loop in the 3D space, we apply the principal component analysis
on the points on the loop, which gives us a new coordinate system.
We next project the curve onto the XY -plane of the new coordinate
system and ensure we have a regular projection where there are no
overlapping edges and no three points projected to the same point on
the plane [19]. If it is not a regular projection, we apply a small but
random 3D rotation to the coordinate system from the principal com-
ponent analysis. Since irregular projections are structurally unstable,
an arbitrarily small perturbation in the coordination system can usually
generate a regular projection. We then construct the link diagram by
tracing the crossings on the projected curve. Since the complexity of
the Jones polynomial computation is O(2n) for n crossing points, we
simplify the link diagram by reducing the number of crossings points
with types I and II Reidemeister moves. This involves the computation
of braid groups, and we refer our readers to [19] for more detail on
this part of the algorithm. Lastly, we compute the Jones polynomial
of the simplified curve network by applying the first and second type
of simplification rules [19]. We iteratively perform the following two
steps. First, any loop in the network free of crossing points with the rest
of the networks is removed. When no such loop exists in the remaining
network, we remove a crossing with two local reconnection. This leads
to two new networks, which are sent to the same routine to compute
their respective Jones polynomial. This recursion will eventually lead
to the Jones polynomial of the original curve network. Note that we
only compute the Jones polynomial for individual degenerate loops for
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Fig. 16: This figure shows the simulated metal hook data with either a
single-load scenario (a) or a multi-load scenario (b).

knot identification and classification, even though the computation of
the Jones polynomial of a loop may result in a curve network in the
middle of the computation due to the simplification rules. Finally, when
the Jones polynomial is not a constant, we regard the degenerate loop
as a knot and add ∗ to the corresponding node in the topological graph.

C METAL HOOK
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Metal hooks are essential to the lifting mechanism
used in construction and transportation engineer-
ing. They are often used to lift or pull different
kinds of goods that are of varying sizes and shapes.
To be able to create cost-effective designs for these
hooks, it is important to evaluate their use under
different loading conditions. Here we contrast two
types of loading conditions for the metal hook ex-
ample published in SIMULIA 2020. The first type
loads the hook from one angle that is shifted to the left from the ver-
tical direction with 1 kN and the second type adds a load pulling in
the horizontal direction with 1 kN. The latter simulates a use where
the hook carries more than one load. We note that the two scenarios
produce very different numbers of regions and degenerate curves. The
Betti numbers for the single load scenario are higher for the planar and
the linear regions. This was not expected due to the simple load and
could not be observed without the topological graph. Moreover, for the
second scenario with two loads, there is no region containment as ob-
served for the first scenario in which two planar regions each contains a
linear region. This comparison inspires more testing to corroborate the
general practice where multiple loads are sometimes applied to ensure
little rotational movement of the hook to avoid swinging or tipping.

D EIGHT PILE GROUP FOUNDATION WITH CAP

Pile groups are effective foundation structures that support buildings
or bridges [4]. Figure 17 illustrates an eight pile group. Knowing
how the load distributes and how the material deforms is important to
structure integrity evaluation and maintenance scheduling. The most
common material used for these pile groups is concrete which is of
crushed stones, sand and water. The mixing causes the concrete to
have different Poisson’s ratios; that is, a pile group may have a range
of Poisson’s ratios for its piles. Here we contrast two cases where the
variation of Poisson’s ratios is different. The first case has 0.13 for the
center 4 piles and 0.20 for the 4 piles on the ends, while the second
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Fig. 17: In this eight pile group, there is a cap that is 13.25×5.75×2.80
volume meters on top of the piles. Each pile has a diameter of 1.5
meters. The cap is attached to the piles with no movement allowed.
The ends of the piles are fixed.
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(a) Poisson’s ratio 0.13 (b) Poisson’s ratio 0.24
Fig. 18: Tensor field topology and its topological graph for the pile
cap in an eight pile group foundation. The first case (left) has its four
center piles at a lower Poisson’s ratio (0.13) and its four piles at the
ends at a higher Poisson’s ratio (0.20). The second case (right) has its
four center piles at a higher Poisson’s ratio (0.24) while maintaining
the Poisson’s ratios of the four piles at the ends at 0.20.

increases the Poisson’s ratios for the middle 4 piles to 0.24. The latter
simulates a more incompressible center than the ends and the former is
the reverse. We add a vertical load, 1000 kN, at the center top (3×3
square meters) and a small periodic loading to the sides of the pile cap.

Using the topological graphs
(Figure 18), we can observe that
there are more linear regions
representing extensions than the
planar regions representing com-
pression for the first case while
there are the same number of lin-
ear and planar regions in the second case. The Betti numbers are higher
for the regions in the first case. Conjectures such as having a more
incompressible center group, i.e., higher Poisson’s ratio for the center
piles, leads to a more uniform material behavior for the cap become
plausible; however, only extensive studies can warrant these statements.
Our topological graphs can aid in establishing these conjectures to
provide practical guidance on the pile arrangement for long-lasting
concrete foundations.

E ADDITIONAL O-RING ANALYSIS

In this section, we add some discussions on the results from varying the
periodicity of loading on the O-ring. We provide a group of examples
while varying p and q in Equation 8.

Our results are shown in Figure 19 as an array of sub-figures. Along
the vertical direction, the value of p increases and along the horizontal
direction, q increases. We first note that for high values of p and q, the
topological graphs are more complex in terms of increased number of
regions and degenerate curves. For q = 1 which is shown in the left-
most column, there is no region containment. For q = 2, a new planar
region appears for each value of p, and it resides inside the green region.
One of the straight purple edges representing the neutral surfaces is
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Fig. 19: We evaluate the compression force of p = 0,3,4, q = 1,3,4, and α = 0.3. For each scenario, we show the tensor field features on the left
and the topological graph on the right. As p increases, the number of the features such as degenerate curves increases due to the periodicity of the
compression force. On the other hand, As q increases, trisector degenerate curves start to appear. We also show the glyphs on a cross-section for
the case of p = 0 to indicate the eigenvector fields.

encoded with the glyph that shows containment. For q = 3, this planar
region starts to host a linear region, which itself contains another planar
region. The appearance of the nested regions is a direct response of
material deformation to the boundary condition change. Furthermore,
linking among linear degenerate curves starts to form. In particular, for
p = q = 3, a trefoil appears. As q increases to 4, this trefoil breaks and
many more degenerate curves appear and link. For p = q = 4, a knot
with a Writhe number 8 appears. More complex linking and knotting
behaviors are expected as p and q increase. During this deformation,
degenerate curves that are either extension or compression dominant
will intertwine with each other. The knottiness may indicate a match
of the physical domain boundary with the high stress loading spots
that enclose the same material deformation behavior entirely inside the
physical domain. In future work, we plan to continue with the exper-
iments for many more scenarios to detect patterns and mathematical
reasons.
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