
Quantivine: A Visualization Approach for Large-scale
Quantum Circuit Representation and Analysis

Zhen Wen, Yihan Liu, Siwei Tan, Jieyi Chen, Minfeng Zhu, Dongming Han, Jianwei Yin, Mingliang Xu, and Wei Chen

Quantum Circuit Quantivine

C
O

S
T

h

h

h

h

rx

rx

rx

rx

C
O

S
T

rx

rx

rx

rx

C
O

S
T

rx

rx

rx

rx

C&M C&M C&M
h cp

q13

p
q25

p rx cp
q13

p
q25

p rx

Components Abstractions Context

C&M C&M C&MH C&M

q12

Placement Connectivity

Qubit Range：12 - 18 Layer Range：15 - 28

Provenance
A B

Fig. 1: Quantum circuit visualizations for a 50-qubit quantum circuit. (A) Typical quantum circuit diagram generated by Qiskit [67]. (B)
The resulting visualizations of Quantivine, including structured components, pattern abstractions, and context enhancement.

Abstract—Quantum computing is a rapidly evolving field that enables exponential speed-up over classical algorithms. At the heart of
this revolutionary technology are quantum circuits, which serve as vital tools for implementing, analyzing, and optimizing quantum
algorithms. Recent advancements in quantum computing and the increasing capability of quantum devices have led to the development
of more complex quantum circuits. However, traditional quantum circuit diagrams suffer from scalability and readability issues, which
limit the efficiency of analysis and optimization processes. In this research, we propose a novel visualization approach for large-scale
quantum circuits by adopting semantic analysis to facilitate the comprehension of quantum circuits. We first exploit meta-data
and semantic information extracted from the underlying code of quantum circuits to create component segmentations and pattern
abstractions, allowing for easier wrangling of massive circuit diagrams. We then develop Quantivine, an interactive system for exploring
and understanding quantum circuits. A series of novel circuit visualizations are designed to uncover contextual details such as qubit
provenance, parallelism, and entanglement. The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum
circuits with up to 100 qubits and a formal user evaluation with quantum experts. A free copy of this paper and all supplemental
materials are available at https://osf.io/2m9yh/?view_only=0aa1618c97244f5093cd7ce15f1431f9.

Index Terms—Quantum circuit, semantic analysis, visual abstraction, context visualization

1 INTRODUCTION

Quantum computers utilize the principles of quantum mechanics,
which have the potential to outperform classical computers in certain
tasks [56] when reaching hundreds of qubits. Most current quantum
computers perform calculations by executing quantum circuits, a com-
putation model that is employed for both representation and implemen-
tation. Emergent quantum algorithms implemented by quantum circuits
suggest exponential speedup over classical algorithms, which bene-
fits various research communities, such as finance [13], chemistry [2],
biological sciences [14], and machine learning [5, 46].

In the workflow of quantum computing [74], researchers describe
quantum circuits by programming languages or libraries, such as

• Zhen Wen, Yihan Liu, Jieyi Chen, Dongming Han and Wei Chen are with the
State Key Lab of CAD&CG, Zhejiang University. E-mail: {wen-
zhen | lyh1024 | chenjieyi_juraws | dongminghan | chenvis}@zju.edu.cn.

• Siwei Tan and Jianwei Yin are with the Advanced Computing and System
Laboratory, Zhejiang University. E-mail: siweitan@zju.edu.cn,
zjuyjw@cs.zju.edu.cn.

• Minfeng Zhu is with Zhejiang University. E-mail: minfeng_zhu@zju.edu.cn.
• Dongming Han is also with Hithink RoyalFlush Information Network Co.,

Ltd. Zhejiang, China.
• Mingliang Xu is with Zhengzhou University. E-mail:

iexumingliang@zzu.edu.cn.
• Wei Chen is the corresponding author.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Q# [66] and Qiskit [67] as shown in Fig. 2-A1. The compiler then
transforms the code into executable quantum circuits. As the original
program can not reveal the dependencies between gates, researchers
often use quantum circuit diagrams to assist in the design of quantum
algorithms. These diagrams use time-dependent representations to visu-
alize the structure and behavior of quantum circuits. Fig. 2-A2 shows a
typical diagram that depicts a quantum circuit including its fundamental
elements, i.e. quantum bits and quantum gates. Each horizontal line
in the diagram corresponds to the operation timeline of a quantum bit
(or qubit). A notation (e.g. a square box) on the timeline specifies
a quantum operation, referred to a quantum gate, that modifies the
information stored in the qubits. The execution sequence of quantum
gates follows a left-to-right order. The final information of qubits after
the operations are regarded as the circuit output, which can be sent
to other quantum circuits or transformed into classical information by
measurement. In summary, a quantum circuit diagram can explicitly
describe a quantum computation procedure.

The creation of quantum circuit diagrams typically involves two tech-
niques, i.e., hand-drawing and automatic generation. Hand-drawing
methods summarize quantum circuits and present their semantic in-
formation through visual abstractions (Fig. 2-B), whereas the manual
design and creation process is time-consuming and error-prone. Fur-
thermore, updating the diagram when the actual circuit changes is a
tedious work. On the other hand, some libraries [11, 67] offer built-in
functions for automatic visualization (Fig. 2-C), which enable efficient
and accurate circuit representation and benefits for the development of
small-scale quantum circuits. However, this technique is limited when
scaling to a large number of qubits and quantum gates.

Recent advances in quantum computers pose significant challenges
for creating clear and effective representations for quantum circuits, as

ar
X

iv
:2

30
7.

08
96

9v
1

 [
qu

an
t-

ph
]

 1
8

Ju
l 2

02
3

https://osf.io/2m9yh/?view_only=0aa1618c97244f5093cd7ce15f1431f9

circuit.x(q[0])
circuit.x(q[1])
circuit.cx(q[0],q[1])
circuit.cx(q[1],q[2])
circuit.measure(q[0])
circuit.measure(q[1])
circuit.measure(q[2])

A Typical Quantum Circuit Diagram B Hand-drawn Diagram

C Auto-generated Diagram

A1 A2

�Measurement

xX-Gate

cxCNOT-Gate

q[0]

q[1]

q[2]

cxx

x

cx

�

�

�

Fig. 2: The illustration of quantum circuit diagrams. (A) A typical quantum programming code (A1) and its corresponding quantum circuit diagram
(A2). (B) A hand-drawn quantum circuit diagram depicts the implementation of quantum PCA algorithm [49]. (C) An auto-generated diagram (using
Qiskit library [67]) visualizes a quantum circuit having 10 qubits and 306 quantum gates.

the development of quantum circuits are expanding to larger scales. A
number of institutions and universities have proposed quantum comput-
ers that can implement circuits with hundreds of qubits. Nevertheless,
the increasing number of qubits and quantum gates results in visual
clutter and overplotting when they are visualized in typical diagrams.
For instance, Fig. 2-C shows an auto-generated diagram that consists
of only 10 qubits and 306 quantum gates, which is hard to examine.
The readability of automatically generated visualizations significantly
decreases when scaling up to more than 100 qubits. Therefore, an
appropriate visualization approach is required to enable users to easily
comprehend and analyze large-scale quantum circuits.

This work thus explores how visualization techniques, such as graph
summarization [47] and visual abstraction [71], can be used for scal-
able quantum circuits. Due to the complexity in deciphering quantum
circuits, we introduce the semantic information to increase the readabil-
ity. To better support the goals of quantum researchers who frequently
develop quantum circuits, we conduct expert interviews to understand
the pain points and requirements when visualizing quantum circuits.
Inspired by findings from the interviews, we develop Quantivine1, a
quantum circuit visualization system that provides efficient visual rep-
resentations of large-scale quantum circuits and supports interactive
exploration and analysis.

Quantivine utilizes a novel pipeline that extracts latent semantics of
quantum programs to automatically visualize scalable quantum circuits
using graph summarization and visual abstraction techniques. Our
approach first collects meta-data and semantic information of the quan-
tum circuit from its underlying code. The circuit is then segmented
into components based on its semantic structure, while reorganizing it
through qubit bundling and gate grouping. We also employ a semantic-
preserving layout strategy in this process to ensure the new diagram is
clear and easy to interpret. Furthermore, we exploit semantic meanings
of the code fragments to identify repetitive patterns in the circuit, which
are subsequently presented through visual abstractions. These patterns
are summarized from a comprehensive survey on a circuit benchmark,
that covers all well-known quantum algorithms. Lastly, we design a
series of visual representations that complement contextual information
to facilitate the comprehension and analysis of the quantum circuit.

In summary, the contributions of this research include:

• We distill a list of design requirements for visualizations of large-
scale quantum circuits from expert interviews.

• We propose a novel pipeline for visualizing quantum circuits
that addresses challenges in readability and scalability with the
support of semantic information and a series of visual designs.

• We develop Quantivine, a proof-of-concept system to demonstrate
the effectiveness of our pipeline through two benchmark quantum
algorithms with up to 99 qubits and an evaluation with 10 experts.

1Quantivine is derived from "quantum circuit" and "vine," with the metaphor-
ical representation of a growing and branching plant symbolizing the system’s
ability to help users navigate the complex pathways of quantum circuits.

2 RELATED WORK

In this section, we discuss the related work in quantum circuit analysis,
semantic analysis, and visualization techniques of complex graphs.

2.1 Quantum Circuit Analysis
The quantum circuit is an important computation model of current quan-
tum computers. The increasing interest in quantum computing [56],
coupled with advancements in actual quantum devices [60], has moti-
vated research in the analysis and visualization of quantum circuits.

Quantum-Classic Difference. Although quantum circuits are made
up of bits and logical gates similar to classic circuits, they are two dif-
ferent models. Quantum circuits have unique features such as quantum
superposition and entanglement [36, 59], which are building blocks
of quantum algorithms. These features power quantum algorithms as
necessary parts of any quantum advantage that cannot be replicated in
classical circuits. As such, the research in classical circuits [37] cannot
be directly applied to quantum circuits.

Performance Analysis. Most quantum research leverages math-
ematical or logical methods during the analysis process of quantum
circuits [3, 50, 68, 75]. Besides, the network and graph theory is also
applied to quantum circuit analysis [4, 33]. Recently, VACSEN [62]
introduces visualization techniques for quantum circuit analysis, which
provides an intuitive way for users to aware noises in the computation.
These studies mainly focus on the performance of quantum circuits.

Quantum Circuit Visualization. As the growing complexity of
quantum circuits and the non-intuitive nature of quantum mechanism,
it becomes increasingly challenging to comprehend the circuits. A
number of studies have investigated visualization techniques to aid in
the comprehension of quantum computing. For example, ShorVis [70]
visualizes a quantum algorithm in terms of quantum states, circuit and
probability distribution. QuFlow [45] displays the parameter flow of
quantum circuits. GraphStateVis [53] offers visual analysis of qubit
graph states and their stabilizer. In addition, Fickler et al. [16] present
real-time visualization of quantum entanglement state through advanced
devices. Existing research focuses on visualizing qubit states, parame-
ters or quality indicators to enhance the comprehension of the circuit.
Nevertheless, these studies are limited when scaling to large quantum
circuits as the space of quantum states exponential increases.

Our work proposes a novel approach to tackle this challenge by fo-
cusing on the efficient representation of quantum circuit structure. We
combine semantic analysis and graph visualization techniques to gen-
erate visual representations for scalable circuits with high readability.
This approach provides a significant contribution towards enhancing
the comprehension of quantum circuits and facilitating circuit analysis.

2.2 Semantic Analysis of Programming Languages
Quantum circuits are commonly constructed using specific program-
ming languages [21, 35, 66], or Python toolkits [11, 67]. Researchers
have studied utilizing semantics of quantum circuits for performance
optimization and correctness verification [69,80]. But there is a scarcity
of research that employs semantics to interpret the quantum circuit.

Semantic analysis has been extensively used in the field of informa-
tion visualization to facilitate the exploration and analysis of complex
datasets. Two forms of frequently used semantic information are seman-
tic structure and semantic meanings. The semantic structure describes
internal relationship of the data, which is often used to navigate explor-
ing data or complex visualizations [1, 7, 76]. The semantic meanings,
such as keywords, are often used to characterize data samples for
efficient similarity measurements [8, 41, 77, 78] and visual represen-
tations [40, 63]. In recent years, there has been growing interest in
applying semantic analysis techniques to code representation to facili-
tate comprehension and analysis of programs. Using semantic structure
information, such as abstract syntax tree (AST), to enhance code repre-
sentation has been proven to be effective [22, 23]. Additionally, certain
studies have focused on visualizing the semantic meanings of scripts,
aiming to improve comprehension of data provenance [15, 79].

Motivated by previous studies, we attempt to utilize semantics to
enhance the representation of quantum circuits. We employ AST to
extract the semantic structure of quantum circuits from quantum pro-
grams, followed by inferring semantic meanings of code statements
that represents various patterns in the circuits. Thus, our approach
results in highly readable circuit diagrams that incorporate semantics.

2.3 Visual Representation of Graph Data
The visual representation of graph data can be classified into two
major categories: node-link diagram and matrix representation. Matrix
representation [27, 54, 58] uses an adjacency matrix to visualize a
graph and utilizes the ordering of rows and columns to highlight typical
patterns. An intuitive way for non-experts is using node-link diagram by
utilizing nodes and edges to represent topology structures [19, 29, 61].
The key issue of node-link diagram is how to place nodes, as the
positions impact the visual patterns. Various layout strategies and
methods [25, 26, 39, 73, 83] are proposed to handle different tasks
and requirements, such as force-directed layout [24, 34], hierarchical
layout [57], orthogonal layout [6, 20] and so on.

As the scale of graph data continues to grow [42], graph summariza-
tion [47] and visual abstraction techniques are employed to enhance
the readability of graph visualization [9, 28] and facilitate the analysis
of graph data. Graph summarization focuses on extracting important
information from the original graph, involving aggregation based, bit
compression based, simplification based and influence based methods.
Aggregation based methods aggregate nodes or edges into super-nodes
based on optimization function [43,48]. Bit compression based methods
minimize the number of bits in describing graphs [38, 55]. Simplifi-
cation based methods remove inessential nodes or edges to simplify
graphs [18, 64]. Influence based methods utilize high-level description
of the influence propagation to represent graphs [51,52]. Some of these
techniques may not faithfully represent the original data or introduce
complex graph theory concepts that increase the cognitive load on
users. For visual abstraction, it focuses on reducing visual complexity
of graphs. Graph motifs [12, 44] are utilized to simplify graph visual-
izations, but the motifs and glyphs involve cognitive burden in compre-
hension. In addition, customized visual abstraction techniques [71] are
employed to achieve different tasks and requirements [81, 82].

However, the aforementioned work on visual representation of graph
data is extensive and not tailored specifically to quantum circuits. Given
the specialty of quantum circuits, a simple and customized represen-
tation that is more suitable for quantum experts is required. Our work
builds upon the requirements of domain experts and provides a signifi-
cant contribution towards the exploration of utilizing graph visualiza-
tion techniques for large-scale quantum circuits.

3 APPROACH DESIGNS

In this section, we first introduce the background (Sec. 3.1), then list
the design requirements (Sec. 3.2) and our system overview (Sec. 3.3).

3.1 Background and Concepts
3.1.1 Quantum Circuit Model
Analogous to classical circuits including bits and logic gates, quantum
circuits are made up of qubits and quantum gates [56].

Qubit. In quantum computation, quantum qubits, i.e. qubits, are
basic units of information storage. A qubit is a “quantum version” of
a classical bit. Compared to the classical bit that can be either 0 or
1, a qubit can stay in a superposition state [56]. Mathematically, a
qubit state is represented as a linear combination of classical states
|ψ⟩ = α|0⟩+β |1⟩, where |0⟩ and |1⟩ represent the classical states 0
and 1, respectively. Complex parameters α and β can be configured
via the quantum operation.

Quantum gate. In a quantum circuit, operations on qubits are
specified by quantum gates. Given an initial state of multiple qubits,
each gate of the circuit operates one or more qubits, which changes
the parameters of qubits (e,g, α and β). For example, a Pauli-X-gate
can invert the state of a qubit from 0|0⟩+1|1⟩ to 1|0⟩+0|1⟩. There are
many types of quantum gates (e.g., X-gate and CNOT-gate) introduced
in [56]. In summary, all gate types can be categorized into single-
qubit gates and multi-qubit gates. A single-qubit gate only operates
one qubit, while a multi-qubit gate can operate more qubits, which
creates entanglement between qubits (correlations between parameters
of different qubits). Note that two quantum gates can be executed
simultaneously in a circuit if they do not operate the same qubit, leading
to parallelism in the qubit timelines.

3.1.2 Visual Representation of Quantum Circuit
To interpret the quantum circuit, a time-dependent diagram is widely
adopted. The creation of a quantum circuit diagram involves both glyph
representation and layout. Here we briefly introduce these concepts.

Basic glyphs. The qubits and quantum gates are represented as
glyphs in the diagram. This paper presents them in a uniform visual
representation as follows:

Qubit wire. A qubit is represented as a horizontal wire in the
diagram, and a set of parallel qubit wires forms the basis of a
quantum circuit diagram.

Single-qubit gate. A single-qubit gate is represented as a square
box placed on a qubit wire, which is labeled with the names of
gates to differentiate between distinct types of gates, such as “H”
for a Hadamard gate, “X” for a Pauli-X gate.

Multi-qubit gate. A multi-qubit gate is represented as boxes or
dots on the qubit wires, which are vertically connected. These
boxes and dots also serve as an indication of the qubit’s role as
either a target or controlled qubit. The boxes are also labeled to
reflect the specific gate type, such as “CX” for a CNOT gate.

Component gate. A component gate is a composition of multiple
other gates. It is represented as a rectangular box spanning one
or more qubit wires. The component gate is typically used to
simplify the representation of more complex gates in the diagram.

Layout. The layout provides important visual cues to help under-
stand the circuit. Each gate’s notation type corresponds to its operation
type, while its horizontal and vertical positions specify the order of
operations and the qubits being operated upon, respectively. Notations
of multiple-qubit gates connect multiple qubits, indicating potential
entanglement between qubits. The layout can be modified to meet
certain goals while keeping the circuit equivalence. Specifically, the
horizontal position of a gate can be moved forward or backward, as
long as the order of gates on each qubit remains unchanged. This work
adopts a semantic-preserving layout strategy to enhance the readability
of the circuit diagram (described in Sec. 4.2).

3.2 Design Requirements
The target users of this work are quantum researchers. Two domain
experts from university labs were involved in the entire process of
this research. In their daily work, quantum circuit diagrams are major
visualization tools to interpret quantum circuits. We conducted iterative
interviews with them to distill requirements. They propose the require-
ments for large-scale quantum circuit analysis, which can be translated
into visualization requirements below.

R1. Clarify the components of quantum circuits. When designing
quantum algorithms, it is common to use some typical sub-circuits

as components of entire circuits. Quantum researchers could easily
recognize a typical component in an isolate circuit. However, in a
complex quantum circuit that consists of numerous quantum gates, it is
challenging to identify and distinguish components from the general
quantum circuit diagram. Therefore, new diagrams should clarify the
structure of quantum circuits with multiple components.

R2. Simplify the patterns of quantum gates. Performing batch op-
erations increases the scale of quantum circuits, and results in repeated
patterns in circuit diagrams. In practice, quantum researchers need to
identify patterns in diagrams to understand the circuits. Nevertheless,
repeatedly examining patterns imposes a substantial cognitive load.
Therefore, new diagrams should reveal the patterns of quantum gates
and reduce unnecessary repetitions.

R3. Explicate the context of qubits and quantum gates. Quantum
researchers have different concerns in quantum circuit analysis, such as
qubit provenance [31], idling [10], quantum gate parallelisms [17] and
the entanglement of quantum circuits [32, 35]. These considerations
are essential for programming and debugging circuits. However, when
exploring large circuit diagrams, these contextual details become intri-
cate and challenging to comprehend. Therefore, new diagrams should
explicitly present context information, enabling the analysis of idling,
parallelism, and entanglement in quantum circuits.

R4. Adopt familiar visual designs and flexible interactions. As
our users are specialized in quantum computing, they have no experi-
ence in visual analysis. Thus, a concise and familiar design is preferred.
Also, they need flexibly-customized visualizations on demand. For
example, some users focus on the outline of the circuit, while other
users are interested in details of qubits. New diagrams should thus use
visual designs that are intuitive and familiar to quantum researchers.

3.3 System Overview
To fulfill these requirements, we design Quantivine, a proof-of-concept
system that visualizes scalable quantum circuits. Figure 3 illustrates
the architecture of the system. A novel visualization approach (Sec. 4)
is undertaken. It accepts a piece of quantum programming code, and
generates flexibly-organized quantum circuit diagrams with comprehen-
sive context information. A user interface and a series of interactions
(Sec. 5) are provided to support interactive exploring and analysis of the
quantum circuits. Quantivine is implemented as a Visual Studio Code
plugin and available at https://github.com/MeU1024/qc-vis.

Visualization Approach

Component
Segmentation

Code
Processing

Source Code Controller Visualizations

User Interface

Pattern
Abstraction

Context
Enhancement

Fig. 3: System overview. Quantivine has a four-step visualization pipeline
with a three-part interactive interface.

4 VISUALIZATION APPROACH

In this section, we present a pipeline that accepts the programming code
of quantum algorithms, and results in a series of visual representations
to reveal the components (R1), patterns (R2) and context information
(R3) of the quantum circuits (Fig. 4). The semantic structure tree of the
quantum circuit is introduced to support flexibly-customized experience
throughout the visualization pipeline (R4). To prove the concept of our
approach, we implement the proposed pipeline for the quantum circuits
that are built using Python with Qiskit toolkit.

4.1 Code Processing
To support the visualization of a quantum circuit, our pipeline first
processes its underlying code through circuit compilation, semantic
analysis, and data alignment (Fig. 4-A). This process allows us to
extract meta-data and semantic information from the circuit.

Circuit Compilation. We compile the code and extract the following
data from the quantum circuit: (1) the qubits involved in the circuit,
(2) the quantum gates applied in the circuit with their correlations to
qubits, and (3) the placements of quantum gates in the circuit which
indicate the order of execution. The above data can be translated to the
nodes, edges, and the layout of a circuit graph, which could construct a
definite quantum circuit diagram as shown in Fig. 4-A1.

Semantic Analysis. Two types of semantic information are derived
from the source code. (1) The semantic structure of the code implies
the hierarchical structure of sub-circuits. As there are sub-circuit reuses,
researchers usually define some frequently-used circuit construction
processes as functions, where each function corresponds to a specific
functionality. Thus, the source code is organized as a tree structure
where each tree node represents a function (Fig. 4-A2). We extract
this structure through an AST. (2) The semantic meanings of code
provide insights into patterns in the quantum circuit. We identify three
categories of repetitive patterns from loop statements using a rule-based
method, which are detailed in Sec. 4.3.1.

Node Alignment. We apply node alignment to establish a connec-
tion between the quantum gates and the nodes of semantic structure
tree. Applying semantic or syntactic analysis alone is insufficient to
establish a precise correspondence between gates and tree nodes. We
thus insert interrupts in the circuit compilation procedure to track the
insertion sequence of quantum gates, and link the newly-built gates
to their semantic representations along with the circuit constructing
process. Figure 4-A3 indicates the time stamp of each gate and its
corresponding tree node. As a result, all quantum gates are aligned to
the semantic tree nodes.

4.2 Component Segmentation
To incorporate R1, we present a three-step approach for breaking down
a typical quantum circuit diagram into hierarchical representations
(Fig. 4-B). Our approach draws inspiration from techniques such as
node grouping and edge bundling that are effective for graph sum-
marization [47]. Afterwards, a semantic-preserving layout strategy is
introduced to arrange the new diagram.

Quantum Gate Grouping. The semantic tree (Fig. 4-A2) is first
employed to guide the segmentation of circuit components. We label
attributes on quantum gates based on a user-customized semantic tree.
Before grouping, users can interactively fold or unfold the tree nodes
to control the level of detail (Sec. 5.2). Then, all quantum gates will
be labeled with two attributes. (1) Tree node label: Each gate will be
labeled in accord with the nearest unfolded node to which it belongs.
For example, if the tree node S1 is folded while S3 is unfolded, then
Gate1 and Gate2 would be labeled with S3. (2) Loop time label: As a
tree node may be repeated in compilation due to loops, two groups of
gates may correspond to the same tree node. We thus label each gate
with a time stamp to differentiate separated gate groups that are built
from the same function. Subsequently, the gates will be aggregated by
attributes to compose super-gates (Fig. 4-B1), analogous to a supernode
in a summarized graph. As a result, the quantum circuit is broken down
to a series of primitive and component gates.

Qubit Bundling. For a circuit with hundreds of qubits, a typical dia-
gram will display a line for each qubit, which causes massive overlaps
when displaying multi-qubit gates. An effective solution to alleviate the
problem is adopting the edge bundling technique [30] for combining
neighboring edges. However, the classic method needs to be modified
for the quantum circuit. Due to the fact that each wire represents a
distinct qubit throughout the whole circuit, solely sharing end nodes
within a local scope is not a sufficient reason to bundle two qubits
together. They may play a different role in other portions of the circuit.
Therefore, the bundled qubits must be contiguous and of the same
provenance throughout the circuit. The same provenance means these
qubits go through the same sequence of primitive or component gates.

https://github.com/MeU1024/qc-vis

cx

cx

H

H H

H

1

2 3

4 5

6

BundlingGrouping

Super-bit

S2 S1S1

B2Super-gate
S2

B1

cx

cx
S1

H

H
S1

H

H

Abbreviation

Visual Abstractions

Code Processing A

Component Segmentation B Pattern Abstraction C Context Enhancement D

S1 S2

S1S3

QC

H HH Hcx cx

1 2 3 4 5 6

A2
Source Code

def sub_circuit_h(): # S1
 for i in range(n):
 circuit.h(q[i])

def sub_circuit_cx(): # S2
 for i in range(n - 1):
 circuit.cx(q[i], q[i + 1])
 �))

A3

• Add: H-Gate[0]

• Connect: Cx-Gate[1, 2]
• Add: H-Gate[2]

• �))
• Connect: Cx-Gate[2, 3]

• Add: H-Gate[1]

A4

Completion

Gridification

Representation

�)
)

�))

�)
)

Layout

+

Bottom-up Strategy

Qubit Provenance

Parallelism Connectivity
B3

A1
Circuit Graph

Analysis
Compilation

Code Semantic Tree Repeated Semantics

Al
ig

nm
en

t

Fig. 4: The pipeline of our visualization approach comprises four stages. (A) We compile and parse the programming code to collect meta-data and
semantic information of the quantum circuit. (B) Decompose the circuit to hierarchical components with semantic structure. (C) Abstract the circuit
using visual abstractions of its patterns. (D) Enhance the contextual information with a series of visual representations.

For example, all the qubits in Fig. 4-B2 go through S1 → S2 → S1, so
they can be bundled as one super-bit.

Layout Strategy. Since the grouping and bundling process breaks
up the placements of quantum gates, we present a bottom-up layout
strategy to reorganize the placements with minimum circuit length
and maximum semantic-preserving. First, we order the sequence of
gates by their insertion time stamps (Fig. 4-A3). The time stamp of
the primitive gates has been calculated in the node alignment
process (Sec. 4.1). On this basis, the time stamp of the component
gate is retrieved from its sub-components. Secondly, we arrange the
layout referring to the semantic structure from the bottom to the top.
The gates in the same tree node are arranged in a local circuit space
following the order of their time stamp. They are laid out on the left
most idle place of its correlated qubit wires to compress the length
of circuit. If two gates are intersected at the same column, the later gate
would be moved backward. Subsequently, the local layouts of sibling
tree nodes will be concatenated while calculating layout for their parent
node. In this way, we could construct a layout from the bottom to the
top that shortens circuit length and preserves the semantic structure.

4.3 Pattern Abstraction

Quantivine abstracts patterns of quantum gates to simplify the represen-
tation of the quantum circuit (R2). The pattern of quantum gates refers
to the composition and repetition paradigm in a sub-circuit. However,
the composition of the circuit has been explicitly outlined through the
component segmentation approach (Sec. 4.2). Therefore, we focus on
visual abstractions of repeated patterns in this phase.

4.3.1 Abstraction Space

Based on a survey of 18 benchmarks of quantum algorithms and expert
interviews, we distilled common patterns and abstraction designs of
quantum circuits. The classification and visual representations for these
patterns are summarized in Fig. 5.

The statistic result demonstrates that repetitions are necessary pat-
terns in the design of scalable quantum circuits (Fig. 5-A). One obser-
vation is that researchers utilize loop statements to repeat sub-circuits
for creating scalable circuit. The repeated sub-circuits are represented
as periodic visual patterns in the general quantum circuit diagrams. We
categorize these repetitions owing to their direction, including vertical,
horizontal, and diagonal repetitions (Fig. 5-B).

Vertical Repetition describes the application of the same operation
on a sequence of qubits simultaneously. A typical instance of

vertical repetition is applying H-gates on all qubits simultaneously.

Horizontal Repetition presents a sequence of similar operations
applied continuously on a single qubit. An example of horizontal

repetition is applying a series of Rz-gates on the same qubit.
Diagonal Repetition stands for applying a sequence of end-to-end
operations on a series of qubits continuously. These gates are

shown in stages. An example of diagonal repetition is applying a series
of Cx-gates one next to another.

In abstractions, each repeated sub-circuit is regarded as a group. To
reveal the frequency and the detail of groups, we preserve the first
two sub-circuits and the last sub-circuit for each directional repetition,
whilst the intermediate units are simplified as dots.

QA
OA

VQ
C

QK
nn

QS
VM

QF
T

H
Si

m
Isi

ng
Sw

ap
 te

st
W-

st
at

e
CC De

ut
sc

hJ
Mu

lti
pl

ier
QE

C

QN
N

Qc
ou

nt
in

g

Qu
GA

N

Vertical Repetition

Diagonal Repetition
Horizontal Repetition

Benchmarks of Quantum Algorithms

Si
m

on
Sq

ua
re

 ro
ot

A B

Fig. 5: Statistics of the pattern occurrence in 18 benchmark quantum
algorithms. Three commonly repeated patterns are identified in these
algorithms: vertical, horizontal, and diagonal repetition.

4.3.2 Abstraction Method
Our abstraction method effectively abstracts the quantum circuit by
selectively highlighting only the necessary components and removing
redundant information. Figure 6 depicts an illustration of the procedure.
This method consists of the following steps:
STEP1: Gridification. We convert the quantum circuit diagram into a
series of grids. Each grid contains exactly one unit box or none. We
assign a visibility attribute to each row and column of the diagram. A
grid is considered visible if its row or column is visible. Initially, all
grids are invisible.
STEP2: Abbreviation. We identify repetitive patterns in the quantum
circuit with the support of semantic meanings extracted from the code,
and highlight their start and end parts. The covered rows and columns
are marked as visible.
STEP3: Completion. We iterate through all quantum gates and de-
termine their visibility. A quantum gate is visible if and only if its
connected qubits are all laid on visible grids.
STEP4: Representation. We render all visible gates and aggregate
contiguous idle rows and columns. Besides, we complement dot marks
in the intermediate space of abstractions to improve readability and
produce the final representation of the circuit.

�)
)

�))

�)
)

A Gridification B Abbreviation C Completion D Representation

Fig. 6: Our abstraction method consists of four steps: (A) gridification,
(B) abbreviation, (C) completion, and (D) representation.

4.4 Context Enhancement

To provide a contextual perspective of the quantum circuit (R3), we
extract contextual information from meta-data and utilize a set of visual
representations to reveal three factors of interest to domain experts.

Qubit Provenance. We design a timeline representation for reveal-
ing the provenance of each qubit (Fig. 7-A). All operations applied
on the qubit are projected onto the timeline with relative intervals pre-
served. This design enables domain experts to focus on the genealogy
of one qubit and trace the evolution across various stages of the circuit.

Placement. We propose three designs to enhance the visual repre-
sentation of the quantum circuit and provide contextual information
about the placement of quantum gates (Fig. 7-B). The enhancement
involves two aspects: Parallelism and Idle Qubit. We first augment
the circuit by incorporating color-encoded parallelism levels on the
qubit wires (Fig. 7-B1). Specifically, we assign the color red to indicate
heavy-load circuits, while blue denotes light-load circuits. In addition,
the idle spaces around each gate are highlighted to assist in the adjust-
ment of gate placement (Fig. 7-B2). The color of the highlighted area
represents the idle level. Notably, when highlighting the idle space for
one gate, the idle space of its parallel gates is also highlighted. Due to
the limitation of screen space, the extent of the idle wire is visualized
next to the end of the wires (Fig. 7-B3). The new diagram reveals the
patterns of idling and parallelism in the quantum circuit, which are
important factors in understanding and optimizing the performance of
the quantum circuit [3].

Connectivity. We employ a matrix-based design to depict the qubit
connectivity (Fig. 7-C), where a highlighted cell(i, j) indicates a direct
connection between the i-th and j-th qubits via one or multiple multi-
qubit quantum gates . Additionally, we propose a glyph-based design
to represent entanglement states. The currently entangled qubits are
assigned the same color, while the previous entangled states are visually
differentiated and reflected below. This view provides valuable insights
into the overall structure and behavior of the circuit, enabling domain
experts to make informed decisions about its optimization.

Empty Crowded

Idle Level

HA Rz Cx CxRz Ent
q4

q3 q3

q5 q5

C Connectivity

New Link

No Link

Linked

Linkage

Entangment

Pre Group

Cur Group

H

Qubit ProvenanceA

B Placement

Idle Extent
Length

Qubit
Wires

Idle Space
Low

Augmented Wire

Parallelism Level
High B1 B2

B3

Fig. 7: Visual designs of the context visualization. (A) The timeline design
for qubit provenance. (B) The augmented circuit design for quantum gate
placement. (C) The matrix design for qubit connectivity.

5 QUANTIVINE: USER INTERFACE

In this section, we introduce the user interface design of Quantivine,
which is motivated by our proposed visualization approach, including
the interface design (Sec. 5.1) and the interaction design (Sec. 5.2).

5.1 Interface Design
An overview of the Quantivine interface is shown in Fig. 8, which
consists of views (A-D) that present the results of our visualization
approach. Quantivine visualizes the quantum circuit from four aspects:

• Structure: The Structure View (Fig. 8-A) presents the semantic struc-
ture of the quantum circuit as a tree diagram. This view serves
to provide an overview of the circuit (R1) and allows for flexible
customization of the circuit visualizations (R4). The tree structure
corresponds to the semantic tree extracted from the source code
(Sec. 4.1). The branches of the tree outline the hierarchical compo-
nents and repetitive patterns of the circuit. Three interactions based
on this view are also designed and further elaborated in Sec. 5.2.

• Components: The Component View (Fig. 8-B) presents a quantum
circuit diagram in a generalized form where subsets of quantum
gates are aggregated into components. This view aims to provide
a high-level abstraction of the circuit structure, emphasizing the
modularity and reusability of the components (R1). The compo-
nents are grouped and arranged based on their execution time and
semantics, as extracted from the source code (Sec. 4.2). The users
can use interactions in the Structure View, as detailed in Sec. 5.2, to
customize the level of detail in this view (R4).

• Abstractions: The Abstraction View (Fig. 8-C) presents the patterns
of quantum gates. It aims to provide a global perspective of the
circuit, highlighting the repetitive patterns and simplifying the visual
representation (R2). Even though the Component View enables
scaling down the circuit diagram to a certain extent, it might still
take up a large space due to the numerous repeated patterns. Hence,
we identify and visually abstract such patterns using our approach
outlined in Sec. 4.3. The level of detail in this view is consistent
with the Component View.

• Context: The Context Views (Fig. 8-D1,D2, and D3) consist of three
views. The first view, D1, provides a summary of the provenance
of a qubit within a limited space. The second view, D2, depicts
the actual placement of quantum gates while visualizing contextual
idling and parallelism information. The third view, D3, displays the
matrix showing the connectivity and entanglement between qubits.
These views are designed to uncover implicit contextual information
within the quantum circuit (R3). Additionally, they are interactive
and coordinated with other views for specific analysis needs (R4).

5.2 Interactions
We implement two interactions in the Structure View to enable users to
customize the circuit diagrams (R4): folding and highlighting. Folding
allows users to fold/unfold items in the Structure View. Initially, all
items in the structure tree are collapsed, providing a high-level summary
of the circuit. Users can expand the items of interest in the tree to
explore specific components in more detail. This allows users to obtain
a more detailed view of the circuit by expanding more low-level items.
With the highlighting operation, when users select a particular tree
item in the Structure View, the corresponding gate will be highlighted
in the circuit diagrams in both the Component and Abstraction Views
(Fig. 8-B1,C1). This reduces the manual effort required to match items
between code structure and the quantum circuit, and the hierarchical
highlights provide a clear division of complex circuit diagrams.

To facilitate exploration of context information, we design a series
of interactions for the Context Views in accordance with R3. Users can
select a specific qubit in the structure view to display its provenance
(Fig. 8-D1). Clicking on the gates associated with this qubit enables
navigation to its placement within the context. In the placement view,
users can adjust the threshold of parallelism level via a scroll bar. Click-
ing on a specific column of gates shows potential adjustment places
for current parallel operations. In terms of connectivity, Quantivine
allows users to specify a component and highlight its connections and
entanglement behaviors for a more comprehensive view of the circuit.

6 USAGE SCENARIOS

In this section, we demonstrate the effectiveness of Quantivine through
two usage scenarios with domain experts. The first scenario (Sec. 6.1)

STRUCTURE VIEW Visualization: Variational Quantum Classifier

QC Diagram

Abstraction

HA

Cx CxRz

Cx CxRz

Cx CxRz

Ent

Rz

Rz

Rz

Rz

Rz

HA

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Cx CxRz

Cx CxRz

Cx CxRz

Cx CxRz

Cx CxRz

Cx CxRz

Cx CxRz

Qubit Provenance

Placement

HA Rz Cx CxRz EntQubit 4

Qubit 3 Qubit 3

Qubit 5 Qubit 5

Connectivity

Qubit 0

Qubit 7

Qubit 1

Qubit 2

Qubit 3

Qubit 4

Qubit 5

Qubit 6

Parallelism Level: Low High

Idle Space:

�

Idle Wire Extent: To Left To Right LinkNo Link

B

C

D2 D3

PA��

HA��

Ent��

� Cx

 Rz
Cx

�

|Rz|��

|Cx-Rz-Cx|��

QUANTUM GATES�

VQC��

A

� Qubit 0

QUBITS�

� Qubit 1

� Qubit 2

� Qubit 3

� Qubit 4

� Qubit 5

� Qubit 6

� Qubit 7

C
om

po
ne

nt
:

 P
ha

se
 A

dd
iti

on

#Layers: 41#Gates: 112#Qubits: 10

Threshold: 12

New Link
Entanglement Group:

cx rz cx

cx

ry

rz

rz

cx

cx

ry

rz

rz

cx

cx

ry

rz

rz

cx

cx

ry

rz

rz

Ent

HA

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Rz

Cx CxRz

Cx CxRz

Cx CxRz

Cx CxRz

Cx CxRz

Cx CxRz

Cx CxRz

PA

Ent

D1

B1

C1
|Cx-Rz-Cx|

Fig. 8: The system interface of Quantivine. The Structure View (A) presents the construction of a quantum circuit in a tree diagram including primitive
gates, component gates, and repetitive patterns. The Component View (B) provides a flexibly-organized circuit diagram with grouped component
gates. The Abstraction View (C) shows a further simplified circuit diagram according to visual abstractions of repetitive patterns. Three Context
Views reveal contextual information in the circuit, including qubit provenance (D1), gate placement (D2), and connectivity (D3).

shows the exploration of a 99-qubit quantum circuit that implements
a quantum neural network model. The second scenario (Sec. 6.2)
introduces the workflow of bug identification in a quantum algorithm.

6.1 Scenario 1 - Visual Analysis of QuGAN

Quantum Generative Adversarial Network (QuGAN) is an emerg-
ing topic of quantum machine learning [65]. However, as shown in
Fig. 9-A, the meaning of gates in a typical 99-qubit circuit diagram of
QuGAN is difficult to understand due to a lack of semantic information.

The expert E1 intends to implement QuGAN on a real quantum
computer. Thus, he is interested in exploring the functionality of each
part of the QuGAN circuit. E1 first examines the high-level struc-
ture of QuGAN in the Structure View (Fig. 9-B): the Discriminator,
Generator, and SWAP Test. After collapsing the components, the cir-
cuit diagram becomes clearer and easier to comprehend (Fig. 9-C1).
E1 then visualizes the detailed structure of the circuit. By expanding
the Discriminator and Generator components, E1 discovers that they
both consist of a Unitary component and an Entanglement component
(Fig. 9-C2). Upon further expansion, E1 finds that these components
include quantum gates that show repeated patterns. To confirm the role
of these components, E1 employs the connectivity matrix to analyze
the connections between different qubits. As such, E1 leverages the
Abstraction View to get a concise view of these patterns. In Fig. 9-C3,
the Unitary component includes a sequence of Ryy gates, connecting
qubits in a linear manner. In Fig. 9-C4, instead of Ryy gates, the Entan-
glement component involves linearly-connected CRy gates. E1 says,
“With my knowledge of quantum machine learning, now I understand
why the Discriminator and Generator have the same structure. Anal-
ogous to classical neural networks, QuGAN trains the parameters of
gates to fit the data. In the GAN framework, both the discriminator
and generator are neural networks. Thus, their two quantum versions
use the same model for simplicity.” To verify this observation, he then
highlights the Discriminator, Generator, and SWAP Test components
in the matrix view (Figure 9-C6), which shows that the qubits of the
Generator component are fully connected. “This is designed to utilize
the unique entanglement property of quantum physics to improve the
model complexity, which further improves the prediction accuracy,”

said E1. He also notices that the SWAP Test component entangles all
the qubits at the end, as shown in Fig. 9-C5, which sends the predictions
from the Generator to the Discriminator.

After grasping the detailed structure of the circuit, E1 decides to
collapse the details, keeping an overview of it as shown in Fig. 9-C1.
He then proceeds to analyze the circuit in terms of the arrangement of
qubits and quantum gates. He first selects q0, and the qubit provenance
view shows that it passes through an H-gate, a CSWAPs component,
and another H-gate (Fig. 9-C7). This provenance demonstrates that q0
is acting as a control qubit in the SWAP test. However, via Fig. 9-C8, E1
identifies a suboptimal placement of the first H-gate and the CSWAPs
component, as there is significant idle time between these operations,
which might introduce noise when executed on a quantum computer.
Therefore, he clicks on these two gates to check if it is possible to adjust
their placement. In the placement view, the visual cues show that there
is a space for the H-gate to move backwards (Fig. 9-C8). The color of
the qubit wire indicates a possible location on the left of the next gate
with a low parallelism level, which is suitable for replacing the H-gate.

6.2 Scenario 2 - Bug Detection of Quantum Multiplier

The complexity of quantum circuits makes it difficult to detect bugs at
the circuit level. The quantum multiplier, which is designed to calculate
the product of two numbers stored in qubits, is a prime example of
this complexity. Even a small-scale quantum multiplier has an intricate
structure that is arduous to grasp (Fig. 10-A).

The expert E2 is tasked with detecting bugs in a 15-qubit quantum
multiplier circuit, where the bugs are hidden within a cluttered area
of the circuit diagram (Fig. 10-A1). To accomplish this, he employs
Quantivine to visualize and explore the construction of the circuit. E2
starts by collapsing all sub-components to obtain an overview of the
circuit. After confirming the high-level structure of the circuit is correct
in the Component View, he guesses that the bugs are hidden within
more detailed structures. Thus, he drills down by expanding all com-
ponents. Despite the circuit becoming lengthy when fully expanded,
our layout strategy ensures an organized and semantically meaningful
layout (Fig. 10-B1). In this view, he notices that the composition of the
UnCarry and Sum components in the Adder is incorrect, which should

#Qubits: 99 #Gates: 343 #Layers: 102QuGAN Circuit

Structure View

Typical Diagram A

B

QuGAN Components

q0

q1-49

q50-99

H H

Discriminator

Generator

CSWAPs

Quantivine Visualizations

Discriminator
Unitary
Entanglement

CSWAPs
|CSWAP|×50

CSWAPs

×

×

×

×

×

×

Discriminator / Generator

EntanglementUnitary

CSWAPs

Unitary Entanglement

q0 H H

CSWAPs
q49

Discriminator

CSWAPs
q98

Generator

Ry

Ry

Ry

......

�

QuGAN
Discriminator

Unitary
Entanglement

SWAP Test
H-Gate
CSWAPs
H-Gate

Generator
Unitary
Entanglement

�

�

�

�

Discriminator
QuGAN

Generator
SWAP Test

H-Gate

H-Gate
CSWAPs

�

�

�

�

H
Ryy

Ryy

Ryy

H

H

H

H

......

C

C1

C7

C5

C2 C6

C8

C3 C4

Connections

Entanglement Groups

Fig. 9: Quantivine generates visualizations based on a 99-qubit QuGAN circuit (A). The structure view (B) lists the components of QuGAN. User
interactions results in visualizations from the component view (C1-2), abstraction view (C3-5) and context views (C6-8).

be composed as shown in Fig. 10-B2. Guided by the structured view
and visual cues of the circuit diagram, E2 quickly locates the bugs in
the underlying code of the circuit and effectively fixes them.

7 USER EVALUATION

In this section, we introduce our evaluation methodology (Sec. 7.1),
and report findings derived from the results (Sec. 7.2).

7.1 Methodology
To evaluate the effectiveness of our pipeline, we conducted a qualita-
tive expert evaluation using Quantivine as a technology probe. The
evaluation had two goals: firstly, to assess whether our approach is
effective in assisting users in comprehending quantum circuits, and
secondly, to evaluate the usefulness of our visual designs in the analysis
and optimization of large-scale quantum circuits.

Participants. We recruited 10 quantum researchers (P1-P10; age:
22-30) from university quantum computing laboratories. They included
undergraduates, graduates, and professors from computer science and
physics departments. All participants majored in quantum computing
with experience in developing quantum circuits (P1-P4: < 1 year, P5-P8:
1-4 years, P9-P10: > 8 years). Their most frequently used visualization
tool for quantum circuit is Qiskit. Four of them (P3-4, P6-7) focused on
small-scale circuits with up to 20 qubits, while the others had worked
on larger circuits with more than 50 qubits. We conducted online
experiments that lasted 40 to 60 minutes. Each participant received
approximately $15 at the start of the session.

Task. The participants were asked to complete three tasks using
Quantivine: a training task (T0), a depiction task (T1), and an analy-
sis task (T2). For the depiction task, we prepared a quantum circuit
with multi-level structure, and required participants to illustrate the
backbone of the circuit using the resulting visualizations from the struc-
ture, component, and abstraction views. The analysis task required
participants to use context visualizations to analyze and find potential
optimization in a quantum circuit. The training task was prepared to

cover all the features in T1 and T2. In total, we prepared six quantum
circuits that represents different quantum algorithms, respectively. Each
circuit contains 30 to 99 qubits and over 10 hierarchical components.
We also provided the participants with a document that included the
textual description and source code for the algorithms.

Procedure. The study began with the introduction (10 min) of the
study purpose, the motivation of improving quantum circuit representa-
tion, and the concepts in our proposed approach. Next, we proceeded
to the training task (T0, 15 min). We demonstrated the features of
Quantivine with a quantum circuit and asked the experts to reproduce
the process themselves. After the training, we provided the experts with
two quantum circuits for the two practical tasks (T1 and T2, 10 min
for each). We ensured that the participants were not familiar with the
circuit provided in T1 and encouraged them to learn and ask questions
about the quantum algorithms before starting the trial. For each task,
we asked the experts to depict at least two levels of structure and one
visual abstraction. Finally, the session ended with a semi-structured in-
terview (15 min) and a post-study questionnaire (5-Point Likert Scale).
Each session was run in-lab following a think-aloud protocol.

7.2 Findings
In summary, the evaluation results demonstrate a high level of user
satisfaction and effectiveness of Quantivine in supporting quantum
circuit exploration and analysis. Figure 11 illustrates the results of our
evaluation, and we provide a detailed analysis of the findings below.

Effectiveness. Participants appreciated the effectiveness of Quan-
tivine in exploring and analyzing quantum circuits (µ = 4.7, σ = 0.5).
The Structure and Component Views were particularly praised for their
ability to hierarchically outline the circuit, as well as the ability to
customize the level of detail in the views. Participants also noted the
usefulness of Abstraction View in identifying repetitive patterns, with
P8 commenting that “it’s easier to read a scalable circuit with abstrac-
tions”. Most participants believed the Context View provided effective
contextual information for circuit analysis, whilst some participants

Quantivine VisualizationQuantum Multiplier - 15 qubits

Error Area

CAdder
CAdder

Carry

Carry Uncarry

Uncarry

Carry Sum

Sum

Sum

CAdder

Carry

Carry Uncarry

Uncarry

Carry Sum

Sum

Sum

Carry

Carry Uncarry

Uncarry

Carry Sum

Sum

Sum

Corrected Composition

A

A1

B2

B1

B

Fig. 10: Quantivine wrangles a complex and unstructured quantum circuit diagram (A) into a clear and organized visualization (B) that enables users
to easily navigate and identify errors in the circuit.

Abstraction
Context

Easy to use

Easy to learn
Satisfactory
-Comprehension
Satisfactory

-Analysis

Smooth
Effective

Strongly disagree
Neutral

Strongly agree1 2 3 4 51 2 3 4 5

Overall
Component

Easy to read
Provenance
Placement

Connectivity

Effectiveness

4

0 5 10

Visual Design

0 5 10
Interaction

0 5 10

System Usability

0 5 10

Fig. 11: User evaluation results.

expressed the desire for more detailed indicators of the circuit, such as
noises and parameters (P1,P3). Overall, Quantivine was perceived as
an effective tool for reducing the complexity of circuit representation,
and was noted that “it eases the burden of interpreting circuits” (P6).

Visual Design. Participants rated Quantivine highly for its aesthetics,
clarity, and usefulness of visual encoding (µ = 4.6, σ = 0.6). They
responded that our design was visually appealing and easy to use.
Participants particularly appreciated the color-coding and highlighting
of the placement view for its “clear and intuitive perception of global
placement information” (P3). The Connectivity View received mixed
responses. While some participants were “not convinced” (P2) due to
their unfamiliarity with the matrix representation, other participants
found “it’s interesting to investigate the circuit using an adjacency
matrix” (P9) and obtained valuable insights from it. One participant,
P4, specifically noted the usefulness of the connectivity view in his
current research about the entanglement analysis of quantum circuit.

Interaction & System Usability. Participants responded positively
about the usability of Quantivine (µ = 4.7, σ = 0.5), finding it easy
to learn and use with fluent and efficient interactions (µ = 4.4, σ =
0.8). They expressed interest in using Quantivine to comprehend and
explain other quantum algorithms in the future, as well as for circuit
analysis and optimization. Furthermore, two professors appreciated for
the comprehensive views of quantum circuits provided by Quantivine,
and expressed interest in sharing the tool in their educational work,
indicating its potential to contribute to the advancement of quantum
computing education and research.

Suggestions. Some participants suggested improvements to certain
features, such as the ability to annotate and save their work within the
tool. P10 noted that the current system was targeted for the expert users,
adding direct manipulation on the diagram, and synchronization with
the source code may make it friendly to novice users. P3 commented
that he would be happy if Quantivine could additionally visualize the
state of qubits in the intermediate or final stages of the execution.

8 DISCUSSION

In this section, we reflect on our research and discuss implications for
quantum circuit visualization, followed by future work and limitations.

8.1 Implications
This study reveals implications for future quantum circuit visualization.

Benefits of semantics in quantum circuit interpretation. Our
evaluation results indicate that semantics has a promising potential for
enhancing the interpretation of quantum circuits. The user feedback
showed a highly positive response towards the semantic representation
of the circuit, which offered a new perspective of circuit visualization.
To our knowledge, this area has not yet been explored in-depth by other
researchers. This approach effectively reduces the cognitive load of
comprehending complex and scalable circuits and further facilitates
navigation and analysis tasks. Moreover, the use of semantics could
lead to the development of more advanced tools and techniques for
quantum circuit visualization and analysis in the future.

Visual representations beyond typical diagrams. Our work also
explores the potential of visual representations beyond the typical quan-

tum circuit diagrams. We involve a series of new diagrams to present
various perspectives of circuits. For example, the abstracted circuit dia-
gram allows users to analyze the circuit at various levels of abstraction,
making it easier to identify patterns and relationships between different
parts of the circuit. The augmented circuit diagram that uses color-
coding and highlighting enhances the perception of gate placement
context, which is critical for optimizing the circuit performance. These
new diagrams could be extended to other visualizations and graphical
interfaces for quantum computing, providing users with a more intuitive
and interactive way to analyze and optimize quantum circuits.

8.2 Limitations and Future Work

Although our work has shown promising results, there are several
limitations and opportunities for future research.

Scalability. Our semantic-based segmentation and abstraction ap-
proaches for quantum circuits are scalable, enabling the visualization
of larger and more complex circuits without any limitations. Our usage
scenarios and user evaluation confirm that Quantivine can efficiently
visualize quantum circuits with up to 100 qubits. The feedback from
domain experts suggests that the system’s capability covers the majority
of their research on current quantum devices. Nevertheless, as circuits
scale up to hundreds of qubits, our system encounters challenges with
interactions. The fully expanded circuits and matrix diagrams impose
overhead in terms of rendering and visual perception, thereby hindering
the interactivity of the system. Although our design of folding circuit
mitigates this issue to some extent, optimizing rendering techniques
and developing new interactions tailored to the demands of large graphs
and matrices can address it more adequately in future work.

Generalizability. Although our study focuses on semantic analysis
of Python + Qiskit code, the methodologies employed in this research
have the potential to be extended to other high-level quantum program-
ming languages. The fundamental idea involves utilizing static analysis
to deduce the structures and meanings of code snippets and then map-
ping them to dynamic compiled circuits. These semantic meanings
are derived from predefined rules, which can be expanded to encom-
pass more complicated patterns and leverage advanced deep learning
techniques for intelligent inference [72] in forthcoming research.

Potentiality. With increasing capability of the quantum circuit, its
visualization and analysis are becoming an emerging field of research.
While our work illustrates a potential pipeline of using semantic analy-
sis and visualization techniques for quantum circuit representation and
analysis, further work is needed to explore how it can be integrated
with other quantum programming and simulation tools. We believe
our work has the potential to lay the foundation for future research in
large-scale quantum circuits by making their exploration and analysis
more accessible to a wider range of researchers and practitioners.

Limitations. Our system currently supports the visualization of
static quantum circuits. Future work could focus on developing a
real-time visualization system that captures the dynamics of quantum
circuits during execution. The current system is tailored to expert users
and lacks certain features that could make it more accessible to novice
users. Future work could focus on improving the user interface and
developing features such as direct manipulation on diagrams. Further-
more, it would be beneficial to offer users the ability to define their own
grouping of quantum gates, in addition to automated methods, resulting
in a more customizable and user-centric experience.

9 CONCLUSION

This work presents a novel visualization approach for large-scale quan-
tum circuits, that produces comprehensive representations of the circuit
to fulfill the analysis requirements. The approach involves graph vi-
sualization techniques incorporated with semantic analysis, and a set
of visual designs specialized for quantum circuits. Then, we develop
Quantivine, a prototype system that allows quantum experts to interac-
tively explore and analyze scalable quantum circuits. The evaluation
results demonstrate the effectiveness of our pipeline and visual designs.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation
of China (No. 62132017). This work was also funded by Zhejiang
Pioneer (Jianbing) Project (No. 2023C01036).

REFERENCES

[1] R. Albertoni, A. Bertone, and M. D. Martino. Visualization and semantic
analysis of geographic metadata. In Proc. GIR, pp. 9–16. ACM, New York,
Nov. 2005. doi: 10.1145/1096985.1096989 3

[2] B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan. Quantum algo-
rithms for quantum chemistry and quantum materials science. Chem. Rev.,
120(22):12685–12717, Nov. 2020. doi: 10.1021/acs.chemrev.9b00829 1

[3] D. Bhattacharjee and A. Chattopadhyay. Depth-optimal quantum circuit
placement for arbitrary topologies. CoRR, abs/1703.08540, Mar. 2017.
doi: 10.48550/arXiv.1703.08540 2, 6

[4] J. Biamonte, M. Faccin, and M. De Domenico. Complex networks from
classical to quantum. Commun. Phys., 2(1):53, May 2019. doi: 10.1038/
s42005-019-0152-6 2

[5] J. D. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd. Quantum machine learning. Nat., 549(7671):195–202, Sept.
2017. doi: 10.1038/nature23474 1

[6] T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings.
Comput. Geom., 9(3):159–180, Feb. 1998. doi: 10.1016/S0925-7721(97)
00026-6 3

[7] K. Börner. Extracting and visualizing semantic structures in retrieval
results for browsing. In Proc. DL, pp. 234–235. ACM, New York, 2000.
doi: 10.1145/336597.336672 3

[8] U. Brandes and T. Willhalm. Visualization of bibliographic networks
with a reshaped landscape metaphor. In Proc. VisSym, pp. 159–164.
Eurographics Association, Eindhoven ,The Netherlands, May 2002. doi:
10.2312/VisSym/VisSym02/159-164 3

[9] W. Chen, F. Guo, D. Han, J. Pan, X. Nie, J. Xia, and X. Zhang. Structure-
based suggestive exploration: a new approach for effective exploration of
large networks. IEEE Trans. Vis. Comput. Graph., 25(1):555–565, Aug.
2018. doi: 10.1109/TVCG.2018.2865139 3

[10] P. Das, S. S. Tannu, S. Dangwal, and M. K. Qureshi. ADAPT: mitigating
idling errors in qubits via adaptive dynamical decoupling. In Proc. MICRO,
pp. 950–962. ACM, New York, 2021. doi: 10.1145/3466752.3480059 4

[11] C. Developers. Cirq. Zenodo, December 2022. doi: 10.5281/zenodo.
7465577 1, 2

[12] C. Dunne and B. Shneiderman. Motif simplification: Improving net-
work visualization readability with fan, connector, and clique glyphs. In
Proc. CHI, p. 3247–3256. ACM, New York, 2013. doi: 10.1145/2470654.
2466444 3

[13] D. J. Egger, C. Gambella, J. Marecek, S. McFaddin, M. Mevissen, R. Ray-
mond, A. Simonetto, S. Woerner, and E. Yndurain. Quantum computing
for finance: State-of-the-art and future prospects. IEEE Trans. Quantum
Eng., 1:1–24, Oct. 2020. doi: 10.1109/TQE.2020.3030314 1

[14] P. S. Emani, J. Warrell, A. Anticevic, S. Bekiranov, M. Gandal, M. J.
McConnell, G. Sapiro, A. Aspuru-Guzik, J. T. Baker, M. Bastiani, et al.
Quantum computing at the frontiers of biological sciences. Nat. Methods,
18(7):701–709, Jan. 2021. doi: 10.1038/s41592-020-01004-3 1

[15] Y. Feng, X. Wang, B. Pan, K. K. Wong, Y. Ren, S. Liu, Z. Yan, Y. Ma,
H. Qu, and W. Chen. XNLI: Explaining and diagnosing NLI-based visual
data analysis. IEEE Trans. Vis. Comput. Graph., pp. 1–14, Jan. 2023. doi:
10.1109/TVCG.2023.3240003 3

[16] R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger. Real-
time imaging of quantum entanglement. Sci. Rep., 3(1):1–5, May 2013.
doi: 10.1038/srep01914 2

[17] C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman, D. Zhu, D. Maslov,
and C. R. Monroe. Parallel entangling operations on a universal ion trap
quantum computer. Nat., 572(7769):368–372, July 2019. doi: 10.1038/
s41586-019-1427-5 4

[18] M. Ghashami, E. Liberty, and J. M. Phillips. Efficient frequent directions
algorithm for sparse matrices. In Proc. SIGKDD, pp. 845–854. ACM,
New York, 2016. doi: 10.1145/2939672.2939800 3

[19] M. Ghoniem, J.-D. Fekete, and P. Castagliola. A comparison of the
readability of graphs using node-link and matrix-based representations. In
Proc. INFOVIS, pp. 17–24. IEEE, Piscataway, 2004. doi: 10.1109/INFVIS
.2004.1 3

[20] C. Görg, P. Birke, M. Pohl, and S. Diehl. Dynamic graph drawing of
sequences of orthogonal and hierarchical graphs. In Proc. GD, pp. 228–
238. Springer, Berlin, 2005. doi: 10.1007/978-3-540-31843-9_24 3

[21] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron.
Quipper: a scalable quantum programming language. In Proc. PLDI, pp.
333–342. ACM, New York, 2013. doi: 10.1145/2499370.2462177 2

[22] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin. UniXcoder:
Unified cross-modal pre-training for code representation. In Proc. ACL, pp.
7212–7225. Association for Computational Linguistics, Dublin, Ireland,
2022. doi: 10.18653/v1/2022.acl-long.499 3

[23] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svy-
atkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain, N. Sun-
daresan, J. Yin, D. Jiang, and M. Zhou. GraphCodeBERT: Pre-training
code representations with data flow. In Proc. ICLR. OpenReview.net,
Toronto, 2021. doi: 10.48550/arXiv.2009.08366 3

[24] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-
based multilevel algorithm. In Proc. DG, pp. 285–295. Springer, Berlin,
2005. doi: 10.1007/978-3-540-31843-9_29 3

[25] S. Hachul and M. Jünger. Large-graph layout algorithms at work: An
experimental study. J. Graph Algorithms Appl., 11(21):345–369, Jan.
2007. doi: 10.7155/jgaa.00150 3

[26] H. Haleem, Y. Wang, A. Puri, S. Wadhwa, and H. Qu. Evaluating the
readability of force directed graph layouts: A deep learning approach.
IEEE Comput. Graph. Appl., 39(4):40–53, June 2019. doi: 10.1109/MCG.
2018.2881501 3

[27] D. Han, J. Pan, R. Pan, D. Zhou, N. Cao, J. He, M. Xu, and W. Chen. iNet:
visual analysis of irregular transition in multivariate dynamic networks.
Front. Comput. Sci., 16(2):1–16, Sept. 2022. doi: 10.1007/s11704-020
-0013-1 3

[28] D. Han, J. Pan, C. Xie, X. Zhao, X. Luo, and W. Chen. A visual analytics
approach for structural differences among graphs via deep learning. IEEE
Comput. Graph. Appl., 41(5):18–31, July 2021. doi: 10.1109/MCG.2021.
3097799 3

[29] D. Han, J. Pan, X. Zhao, and W. Chen. Netv. js: A web-based library
for high-efficiency visualization of large-scale graphs and networks. Vis.
Informatics, 5(1):61–66, Mar. 2021. doi: 10.1016/j.visinf.2021.01.002 3

[30] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Trans. Vis. Comput. Graph., 12(5):741–748,
Nov. 2006. doi: 10.1109/TVCG.2006.147 4

[31] Y. Huang and M. Martonosi. Statistical assertions for validating patterns
and finding bugs in quantum programs. In Proc. ISCA, pp. 541–553. ACM,
New York, 2019. doi: 10.1145/3307650.3322213 4

[32] T. Hubregtsen, J. Pichlmeier, P. Stecher, and K. Bertels. Evaluation of
parameterized quantum circuits: on the relation between classification
accuracy, expressibility, and entangling capability. Quantum Mach. Intell.,
3(1):1–19, Mar. 2021. doi: 10.1007/s42484-021-00038-w 4

[33] R. Iten, R. Moyard, T. Metger, D. Sutter, and S. Woerner. Exact and
practical pattern matching for quantum circuit optimization. ACM Trans.
Quantum Comput., 3(1):1–41, Jan. 2022. doi: 10.1145/3498325 2

[34] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian. ForceAtlas2,
a continuous graph layout algorithm for handy network visualization
designed for the gephi software. PloS one, 9(6):e98679, June 2014. doi:
10.1371/journal.pone.0098679 3

[35] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi. ScaffCC: a framework for compilation and analysis of
quantum computing programs. In Proc. CF, pp. 1–10. ACM, New York,
2014. doi: 10.1145/2597917.2597939 2, 4

[36] R. Jozsa and N. Linden. On the role of entanglement in quantum-
computational speed-up. Proc. R. Soc. Lond. A., 459(2036):2011–2032,
Aug. 2003. doi: 10.1098/rspa.2002.1097 2

[37] S. Kim, I. Woo, R. Maciejewski, D. S. Ebert, T. D. Ropp, and K. M.
Thomas. Evaluating the effectiveness of visualization techniques for
schematic diagrams in maintenance tasks. In Proc. APGV, pp. 33–40.
ACM, New York, 2010. doi: 10.1145/1836248.1836254 2

[38] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. VOG: Summarizing
and understanding large graphs. In Proc. SDM, pp. 91–99. SIAM, SIAM,
Philadelphia, USA, 2014. doi: 10.1137/1.9781611973440.11 3

[39] O.-H. Kwon and K.-L. Ma. A deep generative model for graph layout.
IEEE Trans. Vis. Comput. Graph., 26(1):665–675, Aug. 2019. doi: 10.
1109/TVCG.2019.2934396 3

[40] C. Lai, Z. Lin, R. Jiang, Y. Han, C. Liu, and X. Yuan. Automatic annotation
synchronizing with textual description for visualization. In Proc. CHI, pp.
1–13. ACM, New York, 2020. doi: 10.1145/3313831.3376443 3

https://doi.org/10.1145/1096985.1096989
https://doi.org/10.1021/acs.chemrev.9b00829
https://doi.org/10.48550/arXiv.1703.08540
https://doi.org/10.1038/s42005-019-0152-6
https://doi.org/10.1038/s42005-019-0152-6
https://doi.org/10.1038/nature23474
https://doi.org/10.1016/S0925-7721(97)00026-6
https://doi.org/10.1016/S0925-7721(97)00026-6
https://doi.org/10.1145/336597.336672
https://doi.org/10.2312/VisSym/VisSym02/159-164
https://doi.org/10.2312/VisSym/VisSym02/159-164
https://doi.org/10.1109/TVCG.2018.2865139
https://doi.org/10.1145/3466752.3480059
https://doi.org/10.5281/zenodo.7465577
https://doi.org/10.5281/zenodo.7465577
https://doi.org/10.1145/2470654.2466444
https://doi.org/10.1145/2470654.2466444
https://doi.org/10.1109/TQE.2020.3030314
https://doi.org/10.1038/s41592-020-01004-3
https://doi.org/10.1109/TVCG.2023.3240003
https://doi.org/10.1109/TVCG.2023.3240003
https://doi.org/10.1038/srep01914
https://doi.org/10.1038/s41586-019-1427-5
https://doi.org/10.1038/s41586-019-1427-5
https://doi.org/10.1145/2939672.2939800
https://doi.org/10.1109/INFVIS.2004.1
https://doi.org/10.1109/INFVIS.2004.1
https://doi.org/10.1007/978-3-540-31843-9_24
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.7155/jgaa.00150
https://doi.org/10.1109/MCG.2018.2881501
https://doi.org/10.1109/MCG.2018.2881501
https://doi.org/10.1007/s11704-020-0013-1
https://doi.org/10.1007/s11704-020-0013-1
https://doi.org/10.1109/MCG.2021.3097799
https://doi.org/10.1109/MCG.2021.3097799
https://doi.org/10.1016/j.visinf.2021.01.002
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1145/3307650.3322213
https://doi.org/10.1007/s42484-021-00038-w
https://doi.org/10.1145/3498325
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.1098/rspa.2002.1097
https://doi.org/10.1145/1836248.1836254
https://doi.org/10.1137/1.9781611973440.11
https://doi.org/10.1109/TVCG.2019.2934396
https://doi.org/10.1109/TVCG.2019.2934396
https://doi.org/10.1145/3313831.3376443

[41] T. K. Landauer, D. Laham, and M. Derr. From paragraph to graph: Latent
semantic analysis for information visualization. PNAS, 101(suppl_1):5214–
5219, Apr. 2004. doi: 10.1073/pnas.0400341101 3

[42] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxonomy
for graph visualization. In Proc. BELIV, pp. 1–5. New York, 2006. doi:
10.1145/1168149.1168168 3

[43] K. LeFevre and E. Terzi. GraSS: Graph structure summarization. In
Proc. SDM, pp. 454–465. SIAM, SIAM, Philadelphia, USA, 2010. doi: 10
.1137/1.9781611972801.40 3

[44] C. Li, G. Baciu, and Y. Wang. Module-based visualization of large-scale
graph network data. J. Vis., 20(2):205–215, May 2017. doi: 10.1007/
s12650-016-0375-5 3

[45] S. Lin, J. Hao, and L. Sun. Quflow: Visualizing parameter flow in quantum
circuits for understanding quantum computation. In Proc. SciVis, pp. 37–
41. IEEE, Piscataway, 2018. doi: 10.1109/SciVis.2018.8823602 2

[46] Y. Liu, S. Arunachalam, and K. Temme. A rigorous and robust quantum
speed-up in supervised machine learning. Nat. Phys., 17(9):1013–1017,
July 2021. doi: 10.1038/s41586-019-0980-2 1

[47] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph summarization methods
and applications: A survey. ACM Comput. Surv., 51(3), June 2018. doi:
10.1145/3186727 2, 3, 4

[48] A. Maccioni and D. J. Abadi. Scalable pattern matching over compressed
graphs via dedensification. In Proc. SIGKDD, pp. 1755–1764. ACM, New
York, 2016. doi: 10.1145/2939672.2939856 3

[49] A. Martin, B. Candelas, A. Rodríguez-Rozas, J. D. Martín-Guerrero,
X. Chen, L. Lamata, R. Orús, E. Solano, and M. Sanz. Toward pricing
financial derivatives with an IBM quantum computer. Phys. Rev. Res.,
3:013167, Feb. 2021. doi: 10.1103/PhysRevResearch.3.013167 2

[50] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne. Quantum
circuit simplification and level compaction. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., 27(3):436–444, Feb. 2008. doi: 10.1109/TCAD
.2007.911334 2

[51] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen.
Sparsification of influence networks. In Proc. SIGKDD, pp. 529–537.
ACM, New York, 2011. doi: 10.1145/2020408.2020492 3

[52] Y. Mehmood, N. Barbieri, F. Bonchi, and A. Ukkonen. CSI: Community-
level social influence analysis. In Proc. ECML PKDD, pp. 48–63. Springer,
Springer, Berlin, 2013. doi: 10.1007/978-3-642-40991-2_4 3

[53] M. Miller and D. Miller. GraphStateVis: Interactive visual analysis of
qubit graph states and their stabilizer groups. In Proc. QCE, pp. 378–384.
IEEE, Piscataway, 2021. doi: 10.1109/QCE52317.2021.00057 2

[54] C. Mueller, B. Martin, and A. Lumsdaine. A comparison of vertex ordering
algorithms for large graph visualization. In Proc. APVIS, pp. 141–148.
IEEE, IEEE, Piscataway, 2007. doi: 10.1109/APVIS.2007.329289 3

[55] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with
bounded error. In Proc. SIGMOD, pp. 419–432. ACM, New York, 2008.
doi: 10.1145/1376616.1376661 3

[56] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
Cambridge, 10th ed., 2010. doi: 10.1017/CBO9780511976667 1, 2, 3

[57] S. C. North and G. Woodhull. Online hierarchical graph drawing. In Proc.
GD, pp. 232–246. Springer, Berlin, 2002. doi: 10.1007/3-540-45848-4_19
3

[58] J. Pan, D. Han, F. Guo, D. Zhou, N. Cao, J. He, M. Xu, and W. Chen.
RCAnalyzer: visual analytics of rare categories in dynamic networks.
Front. Inf. Technol. Electron. Eng., 21(4):491–506, Apr. 2020. doi: 10.
1631/FITEE.1900310 3

[59] J. Preskill. Quantum computing and the entanglement frontier. CoRR,
Mar. 2012. doi: 10.48550/arXiv.1203.5813 2

[60] J. Preskill. Quantum computing in the NISQ era and beyond. Quantum,
2:79, Aug. 2018. doi: 10.22331/q-2018-08-06-79 2

[61] H. C. Purchase, E. Hoggan, and C. Görg. How important is the “Mental
Map”?–an empirical investigation of a dynamic graph layout algorithm.
In Proc. GD, pp. 184–195. Springer, Berlin, 2007. doi: 10.1007/978-3
-540-70904-6_19 3

[62] S. Ruan, Y. Wang, W. Jiang, Y. Mao, and Q. Guan. VACSEN: A visualiza-
tion approach for noise awareness in quantum computing. IEEE Trans. Vis.
Comput. Graph., 29(1):462–472, Jan. 2023. doi: 10.1109/TVCG.2022.
3209455 2

[63] S. Sen, A. B. Swoap, Q. Li, B. Boatman, I. N. Dippenaar, R. Gold, M. Ngo,
S. Pujol, B. Jackson, and B. J. Hecht. Cartograph: Unlocking spatial
visualization through semantic enhancement. In Proc. IUI, pp. 179–190.
ACM, New York, 2017. doi: 10.1145/3025171.3025233 3

[64] Z. Shen, K.-L. Ma, and T. Eliassi-Rad. Visual analysis of large heteroge-
neous social networks by semantic and structural abstraction. IEEE Trans.
Vis. Comput. Graph., 12(6):1427–1439, Sept. 2006. doi: 10.1109/TVCG.
2006.107 3

[65] S. A. Stein, B. Baheri, D. Chen, Y. Mao, Q. Guan, A. Li, B. Fang, and
S. Xu. QuGAN: A quantum state fidelity based generative adversarial
network. In Proc. QCE, pp. 71–81. IEEE, Piscataway, 2021. doi: 10.
1109/QCE52317.2021.00023 7

[66] K. M. Svore, A. Geller, M. Troyer, J. Azariah, C. E. Granade, B. Heim,
V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler. Q#: Enabling
scalable quantum computing and development with a high-level DSL. In
Proc. RWDSL@CGO, pp. 1–10. ACM, New York, 2018. doi: 10.1145/
3183895.3183901 1, 2

[67] A. tA v, M. S. ANIS, Abby-Mitchell, H. Abraham, AduOffei, R. Agarwal,
G. Agliardi, M. Aharoni, V. Ajith, I. Y. Akhalwaya, G. Aleksandrowicz,
et al. Qiskit: An open-source framework for quantum computing, 2021.
doi: 10.5281/zenodo.2573505 1, 2

[68] B. Tan and J. Cong. Optimal layout synthesis for quantum computing. In
Proc. ICCAD. ACM, New York, 2020. doi: 10.1145/3400302.3415620 2

[69] R. Tao, Y. Shi, J. Yao, X. Li, A. Javadi-Abhari, A. W. Cross, F. T. Chong,
and R. Gu. Giallar: push-button verification for the qiskit quantum com-
piler. In Proc. PLDI, pp. 641–656. ACM, New York, 2022. doi: 10.
1145/3519939.3523431 2

[70] Z. Tao, Y. Pan, A. Chen, and L. Wang. ShorVis: A comprehensive case
study of quantum computing visualization. In Proc. ICVRV, pp. 360–365.
IEEE, Berlin, 2017. doi: 10.1109/ICVRV.2017.00082 2

[71] I. Viola and T. Isenberg. Pondering the concept of abstraction in (illustra-
tive) visualization. IEEE Trans. Vis. Comput. Graph., 24(9):2573–2588,
Sept. 2018. doi: 10.1109/TVCG.2017.2747545 2, 3

[72] X. Wang, Z. Wu, W. Huang, Y. Wei, Z. Huang, M. Xu, and W. Chen.
VIS+AI: integrating visualization with artificial intelligence for efficient
data analysis. Frontiers Comput. Sci., 17(6):176709, June 2023. doi: 10.
1007/s11704-023-2691-y 9

[73] Y. Wang, Z. Bai, Z. Lin, X. Dong, Y. Feng, J. Pan, and W. Chen. G6: A
web-based library for graph visualization. Vis. Informatics, 5(4):49–55,
Dec. 2021. doi: 10.1016/j.visinf.2021.12.003 3

[74] B. Weder, U. Breitenbücher, F. Leymann, and K. Wild. Integrating quan-
tum computing into workflow modeling and execution. In Proc. UCC, pp.
279–291. IEEE, Piscataway, 2020. doi: 10.1109/UCC48980.2020.00046
1

[75] M. Weiden, J. Kalloor, J. Kubiatowicz, E. Younis, and C. Iancu. Wide
quantum circuit optimization with topology aware synthesis. In Proc.
QCS, pp. 1–11. IEEE, Piscataway, 2022. doi: 10.1109/QCS56647.2022.
00006 2

[76] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving
navigation cues with embedded visualizations. IEEE Trans. Vis. Comput.
Graph., 13(6):1129–1136, Nov. 2007. doi: 10.1109/TVCG.2007.70589 3

[77] Y. Wu, T. Provan, F. Wei, S. Liu, and K. Ma. Semantic-preserving word
clouds by seam carving. Comput. Graph. Forum, 30(3):741–750, June
2011. doi: 10.1111/j.1467-8659.2011.01923.x 3

[78] X. Xie, X. Cai, J. Zhou, N. Cao, and Y. Wu. A semantic-based method
for visualizing large image collections. IEEE Trans. Vis. Comput. Graph.,
25(7):2362–2377, July 2019. doi: 10.1109/TVCG.2018.2835485 3

[79] K. Xiong, S. Fu, G. Ding, Z. Luo, R. Yu, W. Chen, H. Bao, and Y. Wu.
Visualizing the scripts of data wrangling with SOMNUS. IEEE Trans. Vis.
Comput. Graph., pp. 1–1, Jan. 2022. doi: 10.1109/TVCG.2022.3144975
3

[80] M. Xu, Z. Li, O. Padon, S. Lin, J. Pointing, A. Hirth, H. Ma, J. Palsberg,
A. Aiken, U. A. Acar, and Z. Jia. Quartz: superoptimization of quantum
circuits. In Proc. PLDI, pp. 625–640. ACM, New York, 2022. doi: 10.
1145/3519939.3523433 2

[81] Y. Zhao, L. Ge, H. Xie, G. Bai, Z. Zhang, Q. Wei, Y. Lin, Y. Liu, and
F. Zhou. ASTF: visual abstractions of time-varying patterns in radio
signals. IEEE Trans. Vis. Comput. Graph., 29(1):214–224, Jan. 2023. doi:
10.1109/TVCG.2022.3209469 3

[82] Z. Zhou, L. Meng, C. Tang, Y. Zhao, Z. Guo, M. Hu, and W. Chen.
Visual abstraction of large scale geospatial origin-destination movement
data. IEEE Trans. Vis. Comput. Graph., 25(1):43–53, Jan. 2019. doi: 10.
1109/TVCG.2018.2864503 3

[83] M. Zhu, W. Chen, Y. Hu, Y. Hou, L. Liu, and K. Zhang. DRGraph: An
efficient graph layout algorithm for large-scale graphs by dimensionality
reduction. IEEE Trans. Vis. Comput. Graph., 27(2):1666–1676, Dec. 2020.
doi: 10.1109/TVCG.2020.3030447 3

https://doi.org/10.1073/pnas.0400341101
https://doi.org/10.1145/1168149.1168168
https://doi.org/10.1145/1168149.1168168
https://doi.org/10.1137/1.9781611972801.40
https://doi.org/10.1137/1.9781611972801.40
https://doi.org/10.1007/s12650-016-0375-5
https://doi.org/10.1007/s12650-016-0375-5
https://doi.org/10.1109/SciVis.2018.8823602
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1145/3186727
https://doi.org/10.1145/3186727
https://doi.org/10.1145/2939672.2939856
https://doi.org/10.1103/PhysRevResearch.3.013167
https://doi.org/10.1109/TCAD.2007.911334
https://doi.org/10.1109/TCAD.2007.911334
https://doi.org/10.1145/2020408.2020492
https://doi.org/10.1007/978-3-642-40991-2_4
https://doi.org/10.1109/QCE52317.2021.00057
https://doi.org/10.1109/APVIS.2007.329289
https://doi.org/10.1145/1376616.1376661
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/3-540-45848-4_19
https://doi.org/10.1631/FITEE.1900310
https://doi.org/10.1631/FITEE.1900310
https://doi.org/10.48550/arXiv.1203.5813
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/978-3-540-70904-6_19
https://doi.org/10.1007/978-3-540-70904-6_19
https://doi.org/10.1109/TVCG.2022.3209455
https://doi.org/10.1109/TVCG.2022.3209455
https://doi.org/10.1145/3025171.3025233
https://doi.org/10.1109/TVCG.2006.107
https://doi.org/10.1109/TVCG.2006.107
https://doi.org/10.1109/QCE52317.2021.00023
https://doi.org/10.1109/QCE52317.2021.00023
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1145/3400302.3415620
https://doi.org/10.1145/3519939.3523431
https://doi.org/10.1145/3519939.3523431
https://doi.org/10.1109/ICVRV.2017.00082
https://doi.org/10.1109/TVCG.2017.2747545
https://doi.org/10.1007/s11704-023-2691-y
https://doi.org/10.1007/s11704-023-2691-y
https://doi.org/10.1016/j.visinf.2021.12.003
https://doi.org/10.1109/UCC48980.2020.00046
https://doi.org/10.1109/QCS56647.2022.00006
https://doi.org/10.1109/QCS56647.2022.00006
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1111/j.1467-8659.2011.01923.x
https://doi.org/10.1109/TVCG.2018.2835485
https://doi.org/10.1109/TVCG.2022.3144975
https://doi.org/10.1145/3519939.3523433
https://doi.org/10.1145/3519939.3523433
https://doi.org/10.1109/TVCG.2022.3209469
https://doi.org/10.1109/TVCG.2022.3209469
https://doi.org/10.1109/TVCG.2018.2864503
https://doi.org/10.1109/TVCG.2018.2864503
https://doi.org/10.1109/TVCG.2020.3030447

	Introduction
	Related Work
	Quantum Circuit Analysis
	Semantic Analysis of Programming Languages
	Visual Representation of Graph Data

	Approach Designs
	Background and Concepts
	Quantum Circuit Model
	Visual Representation of Quantum Circuit

	Design Requirements
	System Overview

	Visualization Approach
	Code Processing
	Component Segmentation
	Pattern Abstraction
	Abstraction Space
	Abstraction Method

	Context Enhancement

	Quantivine: User Interface
	Interface Design
	Interactions

	Usage Scenarios
	Scenario 1 - Visual Analysis of QuGAN
	Scenario 2 - Bug Detection of Quantum Multiplier

	User Evaluation
	Methodology
	Findings

	Discussion
	Implications
	Limitations and Future Work

	Conclusion

