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Abstract—Scene representation networks (SRNs) have been recently proposed for compression and visualization of scientific data.
However, state-of-the-art SRNs do not adapt the allocation of available network parameters to the complex features found in scientific
data, leading to a loss in reconstruction quality. We address this shortcoming with an adaptively placed multi-grid SRN (APMGSRN)
and propose a domain decomposition training and inference technique for accelerated parallel training on multi-GPU systems. We
also release an open-source neural volume rendering application that allows plug-and-play rendering with any PyTorch-based SRN.
Our proposed APMGSRN architecture uses multiple spatially adaptive feature grids that learn where to be placed within the domain
to dynamically allocate more neural network resources where error is high in the volume, improving state-of-the-art reconstruction
accuracy of SRNs for scientific data without requiring expensive octree refining, pruning, and traversal like previous adaptive models. In
our domain decomposition approach for representing large-scale data, we train an set of APMGSRNs in parallel on separate bricks
of the volume to reduce training time while avoiding overhead necessary for an out-of-core solution for volumes too large to fit in
GPU memory. After training, the lightweight SRNs are used for realtime neural volume rendering in our open-source renderer, where
arbitrary view angles and transfer functions can be explored. A copy of this paper, all code, all models used in our experiments, and all
supplemental materials and videos are available at https://github.com/skywolf829/APMGSRN.

Index Terms—Scene representation network, deep learning, scientific visualization, volume rendering

1 INTRODUCTION

Scene representation networks (SRNs) are compact neural networks
that map input coordinates to output scalar field values [15, 18, 23–25].
SRNs use a small footprint on disk (data reduction between 10 −
10000×) while being efficient to evaluate with random access. With
these benefits, SRNs have been used for compression [16, 30] and
volume rendering [30, 32] for scientific data up to sizes of 1TB.

Despite SRNs’ popularity, there are two shortcomings of current
state-of-the-art SRNs for scientific data visualization. First, the SRN ar-
chitectures used in recent approaches are not designed to adapt network
resources to more important regions, and make the inherit assump-
tion that the volume it will represent has uniform complexity, leading
to inefficient use of the network parameters in homogeneous regions
and limiting model performance. Recently proposed SRN models
have incorporated adaptive parameter allocation with spatially adaptive
quadtrees and octrees that refine on the scene’s geometry or features,
but these approaches require significant extra storage and computation
to store and search the tree structure during training [15, 17, 25, 33],
taking hours or days to fit on images with fewer degrees of freedom
than most 3D scientific data. In addition to this, the tree structure itself
is not directly learnable, so the trees are updated every set number of
iterations with an ad-hoc method while training. The tree structure
also scales poorly with dimensionality, increasing storage and com-
putation requirements exponentially as the number of dimensions or
tree depth increases. Second, existing training routines for large-scale
data are proposed for a single GPU with out-of-core sample stream-
ing [32], which introduces I/O overhead and does not take advantage
of the multiple GPUs often available on a single compute node from
the supercomputers generating the large-scale data.

In this work, we address the two limitations mentioned above with
a novel SRN model and domain decomposition training routine for
fitting large-scale data. First, we address the lack of adaptivity in state-
of-the-art SRNs for scientific data with a novel SRN architecture called
adaptively placed multi-grid SRN (APMGSRN). Instead of using trees
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as the adaptive data model in our network, APMGSRN uses a set of
spatially adaptive feature grids, shown in Figure 1, whose extents are
defined by learned transformation matrices which transform global
space into local feature space, where the grid is defined as the unit
cube [−1,1]3. To guide the grids to cover spatial regions where the
model has relatively higher error, we develop a custom feature density
loss, that calculates the relative entropy from the current feature grid
density to a target feature density, where the assumption is higher
feature density improves reconstruction (shown by other feature grid
networks [3, 25, 30, 33]). This alone is not enough to train the feature
grids though, as the density of a grid is a step function that has a gradient
of 0 everywhere. Therefore, we approximate the feature density with
a differentiable function that closely matches the step function called
a flat-top gaussian. We also develop a specific training routine for
the feature grid’s transformation matrices with delayed start and early
stopping to improve accuracy and converge quicker. Our adaptive grid
architecture does not require expensive tree searching or pruning like
other adaptive models, and dynamically allocates more neural network
resources to regions of higher error for any volume, improving state-of-
the-art SRN performance by using network parameters efficiently.

Using our APMGSRN architecture as a building block, we develop a
domain decomposition training strategy that fits a large-scale volume in
a model-parallel fashion. Our domain decomposition training approach
divides data in the volume on a grid of bricks, and trains one SRN
per block of data. The blocks of data fit in GPU memory, so there
are no inefficiencies from an out-of-core data sampling method. We
also assume that the large-scale data being fit are often generated
by machines equipped with multiple GPUs per node, so we use all
available GPUs to train multiple networks in parallel, reducing total
training time. Inference in this set of models is more complicated now,
since a search is necessary to find which model was trained on the
spatial domain for each point being queried. To accelerate inference
in a domain decomposition model, we use a hash function that maps
spatial coordinates to the hashtable entries for the correct model to use
for inference in parallel. Not only do domain decomposition models
allow fitting a 450 GB volume in under 7 minutes on 8 GPUs, but they
also increase reconstruction accuracy over a single model at the same
number of total model parameters.

In summary, our contributions are twofold:

• A novel SRN architecture called adaptively placed multi-grid SRN
(APMGSRN) with adaptive feature grids that localize trainable

ar
X

iv
:2

30
8.

02
49

4v
3 

 [
ee

ss
.I

V
] 

 6
 A

pr
 2

02
4

https://orcid.org/0000-0001-6685-615X
https://github.com/skywolf829/APMGSRN


Fig. 1: Examples of our adaptively placed feature grids fitting to volumes during training. The feature grids find volume-specific regions to cover
to maximize reconstruction accuracy. Video of evolution of grids during training available in supplemental materials.

network parameters on regions of the volume with high error
during training

• A domain decomposition training and inference strategy that
trains multiple SRNs in parallel for fitting large-scale data quicker
on capable machines

Our APMGSRN architecture and domain decomposition modelling
technique are evaluated on several scientific datasets ranging from
volumes of size 1282 × 512 (32MB to store) up to 10240× 1536×
7680 (450GB to store). We compare the reconstruction quality of our
proposed APMGSRN architecture (single model, not decomposed)
with other state-of-the-art models, and demonstrate that our adaptive
feature grids improve reconstruction quality over state-of-the-art at
similar model sizes. We further evaluate the performance of our domain
decomposition strategy by fitting two datasets that are 250 GB and 450
GB. Lastly, we evaluate the rendering performance of our proposed
model compared with other state-of-the-art SRNs in our open-source
renderer, which we release with our code to offer an easy to use, plug-
and-play, neural volume renderer for INRs trained on scientific data. We
provide all code for our model, training, and neural volume renderer on
GitHub: https://github.com/skywolf829/APMGSRN, along with
installation instructions and supplemental videos.

2 RELATED WORKS

As our method is primarily related to scene representation networks,
we review related literature covering SRN architectures and training,
examining applications in the computer vision and sci-vis domains.
Our work is part of a larger domain of research called DL4SciVis, for
which Wang and Han provide a comprehensive survey [29].

2.1 Scene representation networks
Scene representation networks, also called implicit neural represen-
tations (INRs) or coordinate networks, are networks that encode a
given scene with the weights of the neural network, such that input
coordinates are mapped to output values. In the context of computer
vision, SRNs can learn to represent images [17, 24], signed distance
functions [17, 24], or radiance fields [18, 23, 33]. In the context of sci-
entific data and visualization, SRNs have been used to model 3D scalar
fields and time-varying scalar fields [16, 30, 32]. We broadly classify
the architecture of SRN models into two categories: fully connected
and grid-based encoding.

Fully connected SRNs. Fully connected SRNs use only linear
layers with activations between them to map an input coordinate to
output value, making them slow to train and perform inference on.
SIREN [24] is a fully connected SRN with sinusoidal activations to fit
data accurately. Fourier features by Tancik et al. [27] shows that Fourier
encoding of input coordinates can help INR accuracy. NeRF [18] is a
fully connected SRN for modelling a radiance field from multi-view
images of a scene. AutoInt [14] builds on NeRF by requiring far
less model inferences during neural volume rendering compared to

Fig. 2: Comparison of our APMGSRN with other state-of-the-art mod-
els fVSRN [30] and NGP [20]. The ⊕ operator represents concatena-
tion.

NeRF by exploiting that the gradient of a SIREN network is another
SIREN network that shares the same weights as the original network.
Then the “gradient” network can be trained as a NeRF, resulting in the
original “integral” network learning the integration of colors and density
through rays in space. Lu et al. [16] use a SIREN-based architecture
with residual connections to model 3D volumetric data in a compressed
format. Höhlein et al. [7] study the capabilities of INRs for compressing
meteorlogical ensemble data. Han and Wang [6] propose CoordNet,
a single implicit model based on the residual siren architecture of Lu
et al. [16] that is used for spatiotemporal super resolution and novel
view synthesis. Tancik et al. [26] propose Block-NeRF, which uses
multiple NERF models representing disjoint subsections of blocks of a
region of San Francisco. This is similar to our approach, but models
represent geometry (learned from images) within a specified radius
from the model’s center with large overlap with other models, while
our approach divides the domain with rectangular bricks as it fits the
voxel grid representation better.

Grid-based encoding SRNs. In contrast to fully connected SRNs,
grid-based encoding SRNs move a large majority of the network pa-
rameters to an efficient encoding scheme that transforms the input
coordinates to a high-dimensional feature space. SRNs with grid-based
encoding schemes train and infer faster than their fully connected
counterparts due to the efficient encoding and limited fully connected
operations. Weiss et al. [30] create fVSRN, an SRN that models 3D sci-
entific data using a feature-grid encoder which places a low-resolution
feature grid over the data domain and interpolates within the feature
grid to obtain a feature vector for decoding. Yu et al. [33] acceler-
ate a pre-trained NeRF model with spherical harmonics and an octree
data structure for empty-space skipping, enabling realtime rendering of
NeRF models. Liu et al. [15] propose neural sparse voxel fields, which
uses a coarse 3D grid of voxels that are pruned and split at checkpoints
during training to reduce the training time of NeRF with improved
accuracy. Genova et al. [4] learn an implicit representation of a mesh
from depth images using a dense grid and many local deep implicit
functions. Takikawa et al. [25] propose NGLOD, which learns an octree
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Fig. 3: An overview of the APMGSRN architecture. In (1), a query coordinate is transformed into each of the M grid’s local coordinate systems
learned by the transformation matrices, where grid local extents are assumed to be [−1,1]3. (2), the local coordinates are used to trilinearly
interpolate within each feature grid (of resolution D×H ×W ) to obtain the corresponding feature for each grid. If the coordinate is out of bounds,
zeros are returned instead. The resulting M ·C features are concatenated into a feature vector. Steps (1) and (2) are considered the encoding
process. In step (3), the feature vector is decoded in a shallow MLP for the final output value f (x).

data structure for realtime rendering of an SRN fitting a signed-distance
function. Martel et al. [17] create an adaptive coordinate network that
uses quadtrees/octrees during training, updated by solving an integer
linear programming optimization problem every set number of itera-
tions. Chen et al. [3] use tensor (de)composition to reduce the space
complexity of 3D feature grids with their VM decomposition of a ten-
sor. Müller et al. [20] introduce hash grid encoding for neural graphics
primitives (NGP), which uses random hashing to map input coordinates
to features in a hash table at multiple levels of detail. Wu et al. [32]
use the hash grid architecture [20] to model scientific data up to 1TB in
size. Concurrent work by Wu et al. [31] uses a meta-learning approach
that predicts the network weights of a set of models of the hash grid
architecture [20] for novel view synthesis and neural volume rendering
of temporally interpolated volumes and dynamic global shadows.

Existing adaptive models such as ACORN [17], NSVF [15], and
NGLOD [25] are expensive to train, store, and require ad-hoc steps for
pruning/refining the tree data structure. Additionally, the tree-based
adaptivity only helps for scenes with static surfaces. Volumetric scien-
tific data do not generally have static surfaces, since different surfaces
arise from visualizing different isovalues. Thus, the space-skipping and
tree structures used by other methods ignore relevant regions of the
scientific data. Our approach’s adaptive feature grids do not require
surfaces to refine to, and is driven only by reconstruction error. AP-
MGSRN is conceptually an adaptive version of fVSRN that splits the
single highly-parameterized feature grid into many less-parameterized
feature grids, where each feature grid now has the ability to adjust
its transformation within the domain to focus on high-error regions.
A visual comparison of our model and two state-of-the-art models
compared with in this paper, fVSRN and NGP, is provided in Figure 2.

3 OVERVIEW

Our approach is composed of two components: (1) a novel SRN archi-
tecture called APMGSRN, and (2) a domain decomposition training
and inference method to train on large-scale data. In section 4, we
detail the APMGSRN architecture, a SRN model that adaptively learns
where multiple feature grids should be spatially located while training.
In section 5, we explain the domain decomposition approach, which
dissects a volume into a 3D grid of networks that are each trained on
their own local region.

4 ADAPTIVELY PLACED MULTI-GRID SCENE REPRESENTATION
NETWORK

Recent state-of-the-art SRNs have found that using explicitly defined
feature grids within the model reduces training and inference times [3,
20,30]. In these feature grid-based models, a feature grid is interpolated
at an input spatial coordinate to retrieve a feature vector, which is fed
through a shallow multi-layer perceptron (MLP) to obtain the final
output value. Tree structures have been added to SRN models to support

adaptive allocation of network resources for specific regions [15,17,33],
but the approaches are ad-hoc, require hours to days to train, and
have significant training/storage overhead to manage the tree structure.
Additionally, the cost of the tree structures scale exponentially as the
number of dimensions or tree depth increases.

Our method improves adaptivity within SRNs with a novel adap-
tively placed multi-grid scene representation network (APMGSRN),
depicted in Figure 3. Instead of a tree structure, APMGSRN uses a
set of multiple spatially adaptive feature grids (shown in Figure 1),
each described by a learnable transformation matrix, for coordinate
encoding before being decoded by a shallow MLP, as described in
Section 4.1. Since a basic reconstruction loss is not enough to learn the
transformation matrices properly, Section 4.2 describes our method to
learn grid positions with a feature density-based loss function. Finally,
we discuss the network training in Section 4.3. Our model gives strong
reconstruction quality even with few model parameters thanks to the
ability to transform the feature grids to fit the complexities in the data.
Since our model does not rely on a tree structure, inference remains
quick and storage costs remain low.

4.1 APMGSRN architecture
An APMGSRN is a function f (x) that maps normalized spatial coor-
dinates x ∈ [−1,1]3 to the scalar value at that location in space. The
model architecture is composed of an encoder e and decoder d such
that f (x) = d(e(x)), depicted in Figure 2 and Figure 3. Our encoder,
described in Section 4.1.1, is our adaptively placed multi-grid encoder,
and our decoder, described in Section 4.1.2, is a small fully-connected
MLP that decodes the encoded feature vector to an output value.

4.1.1 Adaptively placed multi-grid encoder
The encoder in APMGSRN contains M learnable feature grids of res-
olution D×H ×W with C channels, represented as a tensor F with
shape [M,C,D,H,W ].

Transformation to local space. In our model, the spatial extents
of the i-th feature grid is defined by a 4×4 transformation matrix Gi,
which transforms global-space coordinates to local-space coordinates
according to the following:

pl
x

pl
y

pl
z

1

=

Gi,0,0 Gi,0,1 Gi,0,2 Gi,0,3
Gi,1,0 Gi,1,1 Gi,1,2 Gi,1,3
Gi,2,0 Gi,2,1 Gi,2,2 Gi,2,3

0 0 0 1


pg

x
pg

y
pg

z
1

 , (1)

where Gi,r,c is the r-th row and c-th column of the transformation
matrix, pg

x , pg
y , pg

z is the global coordinate, and pl
x, pl

y, pl
z is the resulting

local coordinate. Conceptually, the first 3 rows and columns of Gi
are responsible for scale, rotation, and shearing of the grid, while the
4th column is responsible for translation. The grid’s local extents are



assumed to be [−1,1]3, and global coordinates for the 8 corners of a grid
can be determined by calculating the inverse of Gi and transforming
the coordinates of the local extents to global space. For shorthand, we
consider Gi(xg) to be a function mapping a 3D global coordinate xg to
the coordinate in grid i’s local space according to Equation 1.

Encoding. To encode an input global coordinate, the coordinate is
transformed into each grid’s local coordinate system via the defining
transformation matrices. Then, each 3D local coordinate xl is used to
perform trilinear interpolation within each feature grid:

ei(xl) =

{
interp(Fi,xl) if −1 ≤ xl ≤ 1
0, otherwise

(2)

where Fi is the feature grid for the i-th grid and interp(Fi,xl) performs
trilinear interpolation within Fi at point xl assuming the grid has vertices
corner-aligned at the extents of [−1,1]3. When the input coordinate
is not within the feature grid, the feature returned is 0 for each of the
expected C channels. The encoding step for a single grid as described
in Equation 2 is performed for each grid, with results concatenated
together. From global space, the encoding is calculated as:

e(xg) = e0(G0(xg))⊕ e1(G1(xg))⊕ ...⊕ eM−1(GM−1(xg)) (3)

where ⊕ is the concatenation operator. The result is a feature vector
y = e(xg) with C ·M features, where C is the number of channels and
M is the number of grids.

4.1.2 Decoding
Our decoder d is a shallow 2-layer MLP m with no bias terms used and
64 neurons per layer, which is lightweight and efficient. After each
layer besides the last layer, ReLU activation is used as a nonlinearity.
We use the Tiny-CUDA-NN package [19] for tensor-core accelerated
decoding, which reduces training time by about 10% compared to a
pure PyTorch decoder.

Scaling. Unlike other data formats that SRNs represent such as
images, radiance fields, and distance fields, scientific data values are
generally not bounded, posing a challenge for the decoder to accurately
represent the unknown data range. We tackle this with a preprocessing
step before training that identifies the minimum and maximum values
for the volume the network will represent and saving those along with
the network. Then, the decoding is calculated as d(y) = m(y) · (max−
min) + min where m is the MLP in the decoder, min is the saved
minimum value, and max is the saved maximum value. This formulation
allows us to avoid numerical issues by scaling the network output,
which results in the MLP learning to output values between 0 and 1.
More specific scaling for specific data types, such as z-score-, log-, and
exponential-scaling, is not tested in this paper and is left to future work.

4.2 Learning feature grid transformation matrices
The adaptivity of our model stems from the learnable transformations
for each feature grid in the encoder. The goal during training is to
localize feature grids on/around regions that have high error. We focus
more network parameters to those spatial regions with high error in
order to improve reconstruction quality in that region.

While the idea is intuitive, naively attempting to learn the trans-
formation matrices defining each grid is not possible using only a
reconstruction loss (such as L1 or MSE). This is a direct consequence
of our encoding (Equation 2), which returns a 0 feature if a query point
is outside of a grid. This means the only gradients that will update a
transformation matrix are from points that reside within that grid, so
high error regions outside of a feature grid will not “pull” the feature
grid toward it as desired.

To properly train the feature grid’s transformation matrices, we in-
troduce a feature density loss, which is a quantifiable and differentiable
metric for the difference between the current feature density ρ , and a
derived target feature density ρ∗. We use the term feature density to de-
scribe the average number of features (from the feature grids) that exist
per unit volume at some point in space. In this section, we will discuss
how we calculate the current feature density in a differentiable manner,

how we derive a target feature density that warps the current feature
density to increase where the error is relatively higher and decrease
where error is relatively lower, and a loss function to quantify the error
between the current and target feature density which is ultimately used
to update the transformation matrices during training.

Feature density. The simplest way to represent feature density is
by the number of grids that overlap a spatial position x. The feature
density ρ at a global location x using this formulation can be described
by the following equation:

ρ(x) =
M−1

∑
i=0

{
1 if −1 ≤ Gi(x)≤ 1
0, otherwise

, (4)

where Gi(x) is the function that transforms global coordinate x into
feature grid i’s local coordinate frame. The if statement is true when it
holds for each of the three dimensions of Gi(x). However, this approach
does not accurately represent the density of features at that point. Each
feature grid has the same resolution, but a feature grid with small
extents will have more dense features than a feature grid with near
global extents. Instead, a better feature grid formulation is:

ρ(x) =
M−1

∑
i=0

{
det(Gi,0:3,0:3) if −1 ≤ Gi(x)≤ 1
0, otherwise

, (5)

where Gi,0:3,0:3 is the top-left 3× 3 matrix of Gi representing scale,
shear, and rotation for the grid, and det(·) is the determinant of a matrix.
As the grid becomes more dense (smaller in the global domain), the
determinant above increases, representing the true feature density of
the grid.

Though an accurate description of the feature density of the encoder,
this formulation suffers from a large drawback in that there is no gra-
dient to change the transformation matrices G when a point is outside
of a grid, as the gradient of ρ will be 0 everywhere. This is a critical
component for learning the transformation matrices in our method, and
without it, the grid’s scales, translations, etc., cannot update based on
the error of points outside of their local domain.

Therefore, we use a gaussian approximation of the feature density,
which is differentiable everywhere. Specifically, we use a class of
gaussian functions called flat-top gaussians or super-gaussians. A flat-
top gaussian is the same as the normal gaussian equation with a p term
in the exponent:

g(x, p) = Aexp
(
−
(
(x−µ)2p

2σ2

))
, (6)

where A is a normalizing coefficient, x is the location, µ is the center
of the distribution, σ is the standard deviation of the distribution, and
p is the strength of the flat-top. As p increases, the function’s shape
become more box-like. See our supplemental material at the end of this
document for an example.

Using the flat-top approximation for feature density box function,
we give the final form of ρ(x) as:

ρ(x) =
M−1

∑
i=0

(
det
(
Gi,0:3,0:3

)
· exp

(
−

(
2

∑
d=0

(Gi(x)d)
2p

)))
, (7)

where Gi(x)d is the transformed coordinate in the x-, y-, and z-axis for
d = 0,1,2. Since the center of the local coordinate space is 0 and the
standard deviation is 1, the gaussian equation does not require the µ

or σ terms in the transformed space. This formulation is differentiable
everywhere, facilitating proper training. Experimentally, we find p= 10
to be strong enough to match the box shape of the feature grid without
being too strong so as to have exploding gradients on the ramps to and
from the flat-top.

Target feature density. With a way to calculate our current feature
density at an arbitrary point, we now require a target feature density
to steer toward during training. Our goal is to increase ρ(x) where the
error is relatively high and decrease ρ(x) where error is relatively low.



We formulate a target feature density for a coordinate ρ∗(x) according
to the following:

ρ
∗(x) = exp

(
h

h(x)+ ε
log(ρscaled(x)+ ε)

)
(8)

where h(x) is the model’s error at location x, h is the average model
error (in practice, the average error over a batch), ρscaled(x) is ρ(x)
divided by its sum over the set (to rescale the density between 0 and 1),
and ε is a small number to avoid dividing by zero and other numerical
issues. In language, Equation 8 will logarithmically scale the current
(scaled) feature density according to the relative error at each position.
If the error is exactly the average, then the target feature density is
unchanged with respect to ρscaled. This logarithmic scaling assures that
more importance is placed on increasing feature density in regions with
very large relative error, and decreasing feature density in regions with
very small relative error.

Feature density loss function. To quantify the difference between
the current feature density and the target feature density, we view this
as a distribution-matching problem. We calculate our feature density
loss over a set of coordinates X as

Ldensity =
1
|X | ∑

x∈X
ρ
∗(x) log

(
ρ∗(x)

ρscaled(x)

)
, (9)

where |X | is the number of coordinates in X . The loss function measures
the relative entropy from the current feature density to the target feature
density, and is also known as the Kullback–Leibler divergence (KL
divergence). This loss function provides gradients that can effectively
update the parameters of each feature grid to match the calculated target
feature density.

4.3 APMGSRN training
In this section, we cover the losses, training routine, and initialization
we use for APMGSRN.

4.3.1 Loss functions.
We use two loss functions while training - a reconstruction loss Lrec and
the density loss Ldensity described in Equation 9. The reconstruction
loss is the mean-squared error (MSE) between the model output and the
ground truth data Lrec =

1
|X | ∑x∈X ( f (x)− v(x))2, where X is a batch

of coordinates, |X | is the number of coordinates, f is the SRN, and
v(x) returns the ground truth data value at spatial position x via trilinear
interpolation.

4.3.2 Training routine.
Each training step has two parts: (1) update the feature grid and decoder
parameters using Lrec, (2) update the transformation matrices using
Ldensity. Specifically, Ldensity is the only loss providing gradients
to update the transformation matrices G, and Lrec is the only loss
providing gradients to update the feature grid values F and decoder
weights. As long as the model is training, step (1) will happen every
iteration. However, performing step (2) during each iteration would
slow down training and potentially negatively impact reconstruction
quality for reasons discussed in the following paragraphs. Therefore,
we use a few techniques to minimize the number of step (2) updates.

Delayed start. Since Ldensity is dependent on the error for the
current training iteration Lrec, the update to the transformation matrices
will be more useful when the model has already seen enough to know
where the low- and high-error regions will be. When the model begins
training, the error distribution may be random based on the network
initialization, grid initialization, and data. Therefore, we delay the
training for the transformation matrices until the rest of the network has
been briefly trained on the data so as to remove most of the noise from
initialization. We find that 500 iterations (with our learning rate and
network sizes) is enough to provide clear details about what regions
of the volume will be hard to learn, so the transformation matrices are
frozen for the first 500 iterations, and are updated according to Ldensity
after that.

Early stopping. Our formulation presents a challenge for the neural
network parameters in our APMGSRN in that if both training step (1)
and (2) occur simultaneously, the model is training to chase a moving
target. The parameters are updated from Lrec with the assumption
that the feature grids are static, but the grids are moving with each
update step (2). Fixing the feature grids as early as possible is essen-
tial for the network to fine-tune the feature grid parameters to their
location in space, as well as to reduce training time spent updating the
transformation matrices when they may have already converged.

While training the transformation matrices, we keep a running track
of Ldensity each iteration, and set an early stopping flag when the
1000-iteration moving average of Ldensity has not reduced by 0.01%.
Alternatively, if this early stopping criteria is not met after 80% of the
total training steps, we stop updating the transformation matrices in
order to allow the other network parameters to learn given fixed feature
grid positions.

A single APMGSRN model takes at most 4 minutes to train for 50k
iterations with the hyperparameters experimented with in this paper.
Often, the grids converge quickly, reducing training time to as short as
40 seconds.

4.3.3 Initialization

With feature grid positions being crucial to the performance of our
model, the initialization of the transformation matrices is a relevant
factor in training speed and model accuracy. We initialize our trans-
formation matrices to cover a near global domain with small random
shears, rotations, and translations. The diagonals of the matrices (repre-
senting the scale of the grid) are sampled from N (1,0.05), while the
remaining entries in the first three rows of the transformation matrix
are sampled from N (0,0.05). This initialization assures that each
(relevant) entry in the transformation matrix is non-zero so that it may
contribute to the final output, guaranteeing gradients can be used to
update each entry of the matrix. Additionally, the domains created with
this initialization scheme are all nearly equal to the global extents, and
so while fixed at the beginning of training (see Section 4.3.2), each
grid is initially helping learn the global domain, providing a better
approximation of which regions will be challenging to learn.

Besides our transformation matrices, we initialize our feature grids
from U (−0.0001,0.0001), encouraging near-zero initial guesses with
small randomness as following Müller et al. [20]. Our decoder network
weights are initialized following Glorot and Bengio [5].

5 DOMAIN DECOMPOSITION SCENE REPRESENTATION

It may not always be feasible to train a single model for some large-
scale data for two reasons. From one end, as training data become more
complex with higher resolutions, larger neural networks are necessary
to obtain adequate reconstruction accuracy, which means longer train-
ing times and a large model footprint on disk. As model complexity
increases, GPU memory may become a bottleneck during training or
training time becomes unacceptably long. From the other end, the
large-scale data we wish to model with an SRN may not fit within GPU
memory for efficient query in the training loop. The main CPU memory
can be used to host data and support on-demand data transfer to the
GPU for training, but is costly due to the random sampling of data
points during training. If the CPU memory also cannot support hosting
the data, then an out-of-core solution is the only option available. Both
options have been explored by Wu at al. [32].

Instead of a complicated and inefficient out-of-core sampling
method, we take a model-parallel approach to modelling a large-scale
volume. We propose that instead of a single network representing
the volume, we use a domain decomposition of models, where each
model has learned a separate brick of the volume. The models are
arranged in a grid, and do not require communication during training or
inference. We discuss the data partitioning in Section 5.1, the training
procedure in Section 5.2, and querying a set of models during inference
in Section 5.3.



5.1 Data partitioning
To partition data into bricks for one network to be trained per brick,
we use a grid of networks covering the domain. See our supplemental
material for a figure illustrating this. Ahead of training, grid resolution
I,J,K must be chosen, representing the number of networks for the
width, height, and depth of the volume, respectively. We recommend
picking an I,J,K such that the resolution of the grid assigned to each
network is roughly the same aspect ratio as the feature grids in the
model. For instance, if the feature grids are 323, choose I,J,K such
that each model is assigned a roughly cube-shaped volume.

Ghost cells. In order to mitigate boundary artifacts along adjacent
network boundaries during visualization, we experiment with the use
of a ghost layer of cells, which are cells that overlap between networks.
During data partitioning, this means that the extents of a network will
get extended by some number of ghost cells along each axis. This
solution does not guarantee that seams will be removed, but tends
to reduce the effect of them, as the networks should have less of a
difference along boundaries if they are learning beyond the actual
extent. In our experiments in Section 7.2, we test with between 1 and
16 ghost cells, for example. We discuss a more in-depth solution in our
future work, but do not go beyond ghost cells in this paper.

5.2 Domain decomposition training
To reduce the training time needed for the I ·J ·K models, we dissect the
domain and train the models in parallel across available GPUs. Since
large-scale data are often generated by powerful machines, we assume
a user is likely training on a compute node with multiple GPUs. Our
domain decomposition training routine pre-calculates the extents of
each network within the volume’s extents (including ghost cells) and
generates a list of jobs that are assigned to the available GPUs. When
a GPU finishes training, the GPU returns to the available GPUs list,
where it waits to be issued the next model to train. When a GPU begins
training, an APMGSRN model is initialized, and only the data within
its assigned extents are loaded to the GPU memory. This reduces I/O
overhead and is efficient with data formats such as NetCDF supporting
parallel file access and arbitrary cropping from disk.

Early stopping. Just as we employ early stopping to stop learning
the transformation matrices earlier during training to converge faster,
we also use early stopping on models within the domain decomposition
while training so the GPU is freed for the next model to train quicker.
We use a plateau learning rate scheduler that detects when Lrec has not
decreased by 0.01% over 500 iterations. When this is triggered, the
learning rate of the model’s parameters is reduced by a factor of 10.
When this is triggered 3 times, we finish training the model. This can
reduce training times dramatically in regions where there may be very
sparse data (down to 20 seconds per model in our experiments).

5.3 Domain decomposition inference
After training (presumably on a remote server), the neural networks
can be moved to a local workstation for visualization. Once on a
local machine, all models are loaded into GPU memory. Since each
network in the domain decomposition represents a certain spatial extent,
each global query location needs to be mapped to the correct model
for inference, so we develop a spatial hashing function for efficient
inference.

Spatial hashing function. To efficiently determine what model a
query location belongs to, we implement a spatial hashing function to
hash input 3D global coordinates to the correct index in the array of
models. We load models into an array in x-,y-,z-dimension order. With
this order in mind, we can hash input global coordinates directly to array
index. Assuming a global spatial coordinate p is in the domain [−1,1]3,

we calculate the grid index for p with i =
⌊
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2

⌋
, j =
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K pz+1
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⌋
, where ⌊·⌋ is the integer floor operation. If any dimension

of the coordinate has exactly 1.0 for an axis, then the result is an
out of bound location, so these values need to be clamped such that
i < I, j < J,k < K. Since the networks are stored in a list, the 3D i, j,k
index for the network is flattened in C-order, giving the final hash as

i+ I j+ IJk. With the correct network determined to perform inference
with, the global coordinate can be scaled to the networks local domain
for proper inference.

Our implementation loops over all networks to do evaluations for
each, but a significant speedup could be achieved with further engineer-
ing effort, as shown by Reiser et al. [23], who develop custom CUDA
code for inference within their set of networks for radiance fields. We
leave this to future work, but expect the inference time of large do-
main decomposition models to be much quicker when inference code
is written in custom CUDA code that parallelizes network evaluation.

6 NEURAL VOLUME RENDERING

For fair comparison between the models, we develop a Python/PyTorch
[21]-based neural volume renderer (included with our code on GitHub)
that supports our own APMGSRN as well as state-of-the-art models
fVSRN [30] and neural graphics primitives (NGP) using a hash-grid
encoding [20], on top of raw data volume rendering. Any PyTorch
model that can support mapping 3D coordinates to an output density
can also be plugged in with minimal reconfiguration. We favor ease
of use over raw performance with this renderer with a plug-and-play
style coding requiring minimal changes to a user’s PyTorch model,
and hope it is useful for future research on SRNs for sci-vis. Our
renderer supports arbitrary transfer function and view direction, and
uses progressive rendering to support 60+ fps rendering for immediate
feedback while panning, rotating, and zooming. We support transfer
functions exported from ParaView directly to our renderer, and interact-
ing with the scene follows the typical 3D viewer paradigm of clicking
and dragging rotating around the scene, the scroll wheel zooms, and
middle-mouse clicking and dragging pans the camera. We use 3D ren-
dering helper functions from the nerfacc Python package [10], which
provides CUDA-accelerated ray marching and compositing.

For improved interactivity, we implement a progressive rendering
scheme that renders the image in a checkerboard pattern, evaluating the
pixels in order of an image hierarchy. After each progressive rendering
pass, the in-progress image displayed on the screen is a bilinearly-
upscaled version of the current finest-available image from the image
hierarchy masked with the fully evaluated pixels. We also offer a
trade-off between interactivity and full render time with a user choice
for batch size, with large batch sizes slowing down interactivity but
speeding up full-frame render times, and vice versa for small batch
sizes. Our progressive rendering keeps GPU memory minimized and
quickly generates good approximations of the final image while offering
interactive frame rates (30-400 fps).

7 EXPERIMENTS

We perform experiments to test the training and reconstruction met-
rics of our proposed APMGSRN model in Section 7.1. Our domain
decomposition training approach is evaluated in Section 7.2. Lastly, we
visualize trained models with our renderer in Section 7.3. Our datasets
and brief descriptions are shown in Table 1.

Hyperparameters and evaluation hardware. To save
page space, model hyperparameters for each size SRN
(small/medium/large/decomposition) are available in GitHub in
the “BatchRunSettings” folder, as there are many hyperparameters to
enumerate for each architecture. For our model specifically, the number
of grids we use is either 16 or 32, the grid resolution varies from 163 to
643, and the number of features per feature grid vertex is either 1 or 2.
We find that inference speed degrades above 64 grids, and accuracy
does not improve significantly with more grids or more features per
grid to justify the increased storage cost. Grid resolution has the largest
impact on both network performance and network storage size.

Training for all models and compression tests are run on a remote
NVidia DGX system with 8 NVidia 40GB A100 GPUs, a 64-core
AMD EPYC 7742 processor, and 1TB of system memory connected
to a Lustre-based file system. Rendering evaluation is performed on
a Windows 11 PC with a NVidia 2080 Ti, a 12-core AMD Ryzen 9
3900X, and 32GB of system memory.

Baseline SRNs. Neural graphics primitives (NGP) [20] uses a hier-
archical hash grid encoding scheme that uses a random hash function



Table 1: Datasets, their size on disk (in raw, single-precision floating
point representation), and their descriptions, as well as quantitative
results for SRN models trained to represent each dataset. Training type
is either single (for single model) or an decomposition grid resolution
for our domain decomposition training approach. For domain decompo-
sition models, average training time per model is reported since models
are trained in parallel. Best performing models in one size category are
bold and underlined. Peak signal-to-noise ratio (PSNR) is given in the
data space.

Dataset Model storage size Model Training type PSNR (dB) ↑ Training time

Plume
512×1282

32 MB
Velocity magnitude of

particles in a solar
plume simulation.
Somewhat sparse.

Small - 280 KB
fVSRN single 43.924 58s
NGP single 46.713 1m 32s
APMGSRN single 48.954 52s

Medium - 4 MB
fVSRN single 49.332 57s
NGP single 50.847 1m 7s
APMGSRN single 56.327 1m 20s

Large - 64 MB

fVSRN single 52.165 1m 46s
NGP single 53.282 2m 10s
APMGSRN single 58.134 2m 25s
APMGSRN 4×1×1 58.363 56s

Nyx [1]
2563

64 MB
Log density of dark matter
in cosmological simulation.

Somewhat sparse.

Small - 280 KB
fVSRN single 29.110 55s
NGP single 28.391 1m 33s
APMGSRN single 29.424 51s

Medium - 4 MB
fVSRN single 37.022 57s
NGP single 35.142 1m 8s
APMGSRN single 37.807 1m 34s

Large - 64 MB

fVSRN single 42.092 1m 46s
NGP single 42.750 2m 10s
APMGSRN single 44.075 3m 7s
APMGSRN 2×2×2 46.118 1m 35s

Supernova
4323

403 MB
Entropy in supernova

simulation.
Somewhat sparse.

Small - 280 KB
fVSRN single 39.505 54s
NGP single 41.523 1m 29s
APMGSRN single 41.891 1m 16s

Medium - 4 MB
fVSRN single 42.697 56s
NGP single 44.811 1m 8s
APMGSRN single 46.831 1m 19s

Large - 64 MB

fVSRN single 46.271 1m 46s
NGP single 47.806 2m 32s
APMGSRN single 49.880 2m 41s
APMGSRN 2×2×2 50.644 35s

Asteroid
10003

3.73 GB
Volume fraction of asteroid

plus water fields from
simulation of an

asteroid hitting the ocean.
SciVis contest 2018 data.

Very sparse.

Small - 280 KB
fVSRN single 31.072 54s
NGP single 33.713 1m 32s
APMGSRN single 30.130 1m 43s

Medium - 4 MB
fVSRN single 33.783 54s
NGP single 39.012 1m 6s
APMGSRN single 35.799 1m 49s

Large - 64 MB

fVSRN single 39.121 1m 47s
NGP single 42.928 2m 24s
APMGSRN single 39.455 2m 49s
APMGSRN 4×4×4 43.188 45s

Isotropic [11, 22]
10243

4 GB
Velocity magnitude field

of forced isotropic
turbulence.
Not sparse.

Small - 280 KB
fVSRN single 27.379 58s
NGP single 27.007 1m 32s
APMGSRN single 27.622 55s

Medium - 4 MB
fVSRN single 31.570 58s
NGP single 30.786 1m 8s
APMGSRN single 31.825 1m 14s

Large - 64 MB

fVSRN single 36.858 1m 46s
NGP single 37.198 2m 10s
APMGSRN single 38.120 3m 23s
APMGSRN 4×4×4 41.086 57s

Rotstrat [11, 22]
40963

250 GB
Velocity magnitude of

rotating stratified
turbulence, t=4.

Not sparse.

Small - 55 MB
Medium - 183 MB

Large - 864 MB

APMGSRN
APMGSRN
APMGSRN

3×3×3
3×3×3
3×3×3

41.322
44.294
49.074

1m 3s
1m 15s
1m 58s

Channel [9, 11, 22]
7680×1568×10240

450GB
Channel flow at Reynolds

number ≈ 5200, t=10.
Not sparse.

97 MB APMGSRN 4×1×6 40.055 35s

to map spatial coordinates to hash table entries which hold feature
values. The encoding scheme allows hash collisions and copes with
them by letting the gradients average, which puts more emphasis on the
higher-error regions. Therefore, NGP benefits from very high sparsity,
where hash collisions are frequent, but a majority of the space is empty
anyway. The second model we compare with is fast volumetric scene
representation network (fVSRN) [30], which is a standard feature-grid
based SRN composed with Fourier frequency encoding [27]. The
feature grid is dense and lines up with the extents of the data. For
both comparison models, we use initialization and training routines as
suggested by the publication they were introduced in.

Training. Python 3.9 with PyTorch [21] are used for training all
networks. All models use the same fully-connected decoder from Tiny-
CUDA-NN (TCNN) [19] with 2 layers of 64 neurons, accelerated with
custom fully-fused CUDA code. NGP’s hash grid encoding [19] native
implementation from TCNN is used, and we implement fVSRN using
TCNN for high efficiency, but our own model uses PyTorch with single
precision for the multi-grid encoding. All networks are trained for
50,000 iterations or until an early stopping criteria, as discussed in
Section 4.3.2. For all models, the Adam [8] optimizer is used with

β1 = 0.9,β2 = 0.99 with a learning rate of 0.01. Our transformation
matrices use a learning rate of 0.001. Each iteration, a batch of 100,000
coordinates are sampled uniformly from [−1,1]3, and the ground truth
values are trilinearly interpolated from the volume.

7.1 Scene representation network comparison
We compare our model against two state-of-the-art scene representation
networks, neural graphics primitives (NGP) [20] and fVSRN [30], for
data reconstruction quality and training times at fixed model sizes.

Single network performance. Across results from each dataset and
network size shown in Table 1, APMGSRN is first for reconstruction
peak signal-to-noise ration (PSNR - higher is better) in all but 3 settings.
APMGSRN’s adaptivity seems most dominant in somewhat sparse data,
such as plume, Nyx, and supernova, where it outperforms other models
by 2+ dB at the largest model size. Our model underperforms against
NGP only for the asteroid dataset because of the high degree of sparsity,
which NGP excels at. Examples of learned grid positions are shown
in Figure 1, and verifies that the grids learn to migrate to regions with
complex features regardless of dataset.

Training times across models are similar, with our model being the
least performant compared to NGP and fVSRN. This is a consequence
of using a second loss function for updating our transformation ma-
trices, and more matrix operations per model forward pass due to the
transformations required before feature grid interpolation. Our multi-
grid encoding is a pure PyTorch implementation, but custom CUDA
code like that used by NGP, could improve model performance.

Fig. 4: Examples of 3 grid initializations and the effect on final grid
locations and data reconstruction PSNR. Underlying data volume ren-
dered depicts ground truth data for clarity of grid locations with respect
to the raw data.

Importance of grid initialization and grid visualization. As fea-
ture grid location in the volume is the only means of encoding coordi-
nates to a high-dimensional feature space for learning, the initialization
of the grids may affect learning quality. We experiment with grid initial-
ization with a small sized model trained on the supernova dataset. We
use three initialization techniques for the grids: (1) our recommended
initialization as described in Section 4.3.3, (2) our recommended ini-
tialization, with the grid scales increased by 20% so as to cover extra
empty space outside of the volume, (3) initializing grids at a small
scale, randomly distributed within the domain. The results of the ex-
periment are shown in Figure 4. We can see that the final grids and
reconstruction quality of the first two initialization schemes are similar,
but initializing the grids to random spots with a small scale performed
much worse. The grids that do not cover any data sitting in empty
space have near-zero gradient for changing any of the transformation
matrix parameters. A larger learning rate or a less powerful flat-top
gaussian can make up for this for some cases, but that may cause
larger-scale grids to see unstable updates to their parameters. For best
results, we recommend our default initialization of global-scale grids
with small random perturbations, but we believe there may be room for
improved performance with different differentiable approximations of
grid density for smoother learning. We recommend readers view our



supplemental material for videos of feature grids during training on
the smaller datasets experimented with, as it gives a strong intuition
for what the network is learning and how it is learning it. In the future,
other grid initialization strategies may prove useful for better learned
grid positions. Additionally, we believe that scaling up the flat-top gaus-
sian strength (starting from 1.0) during training can help situations like
our small initialization scheme, because gradients will not approach 0
rapidly for data outside the grid.

Fig. 5: Comparison of APMGSRN with TTHRESH and SZ for com-
pressing the isotropic volume (10243). Our “compression” time is the
time it takes to train the model, and our decompression time is the time
it takes to query each point in the volume.

Compression. Though data reduction is not the only intended use
case for our approach, nor is it something we design for specifically
(such as with network weight quantization for further data reduc-
tion [16]), we believe it is useful to the community to compare the
compression ability of state-of-the-art SRNs with state-of-the-art com-
pressors. We compare compression results from TTHRESH [2] and
SZ3 [12, 13, 34] with our approach in Figure 5. We do not compare
to a rendering-focused compressor such as cudaCompress [28] or a
bricked version of TTHRESH [2], as this has been done by recent
work [30] showing that its decoding is significantly slower, compres-
sion rates smaller, memory use is higher, and image quality is worse
than state-of-the-art SNRs.

As shown in Figure 5, our approach only provides a higher compres-
sion ratio than TTHRESH or SZ3 at a 10000× data reduction rate with
a reconstruction quality of under 30 dB PSNR, and is otherwise less
compressive than state-of-the-art compressors. The throughput (decom-
pression) from APMGSRN is much quicker regardless of compression
level, decoding on the order of 500 million points per second, but keep
in mind that APMGSRN is decoding on the GPU whereas SZ3 and
TTHRESH are on CPU. The largest difference between APMGSRN
and these compressors is that our approach can efficiently perform
arbitrary point evaluations, whereas SZ3 and TTHRESH both require
decompressing to the original data size before trilinear interpolation.

We also test compression on our two large datasets, rotstrat and
channel. The tested compressors take significantly longer to compress
our large-scale data, or fail to do so at all. In fact, TTHRESH and
SZ3 both run out of memory on our machine with 1TB of memory
when trying to compress the channel dataset (450GB), and TTHRESH
also runs out of memory when trying to compress the rotstrat dataset
(250GB). SZ3 successfully compresses the 250GB rotstrat data in 38
minutes, resulting in a compression ratio of 509× and a reconstruction
quality of 20.60 dB PSNR after another 14 minutes of decompression.
Both our small and medium sized (domain decomposition) models for
rotstrat (see Table 1) achieve higher PSNRs (41.32 dB and 44.29 dB)
with higher compression rates (4791× and 1432×) while only needing
to train for 34 minutes if all models are trained sequentially on 1 GPU,
or 5 minutes in parallel on 8 GPUs. Additionally, our decoding takes 3
minutes for the whole 40963 volume.

7.2 domain decomposition network evaluation
We evaluate our domain decomposition training approach on each
dataset, and show results in Table 1. Even though the smaller datasets
do not require the domain decomposition to train without memory
limitations, the domain decomposition model outperforms a single
model at the same storage size for each dataset. This is expected, as

each of the domain decomposition models will have their own decoder
and set of feature grids that may create and advantage over the single
large model. The downside of a domain decomposition model is that
training may take longer if you only have 1 GPU and train serially.

For data that cannot fit in a single GPU, such as rotstrat and channel,
our domain decomposition approach provides an efficient alternative to
an out-of-core training routine. In Table 1, we list the average training
time per model for the domain decomposition models. Our training
machine had 8 GPUs training in parallel and the total training time was
7 minutes with data I/O for rotstrat.

Fig. 6: Zoom in of volume render from identical 4× 4× 4 domain
decomposition networks trained with either 1 or 16 ghost cells. A seam
is clear with 1 ghost cell.

Effect of ghost cells. By default, our domain decomposition has 1
ghost cell for corner alignment across models. We show the effect of
increasing ghost cells within our domain decomposition models in Fig-
ure 6, which is a volume rendering of two networks - one trained with
the default of 1 ghost cell, and one with 16 ghost cells. The boundary
artifact is visible only in the render with only 1 ghost cell. However, a
significant PSNR drop of -1 dB is noticed with this increase in ghost
cells, attributed to the fact that a network in the decomposition learning
a volume of size 2883 is a 42% larger volume than the original 2563

volume learned on in the version without ghost cells. The redundancy
of learning a significant portion of the full volume in multiple networks
reduces the learning capacity of the set of networks. Since the artifacts
are fairly minor while reducing performance, we recommend using 1
or few ghost cells for general volume rendering, but 16 ghost cells for
tasks like isosurface extraction where seams can be very distracting.
We consider future work for reducing the boundary effect between
networks with a network communication scheme during training.

7.3 Neural volume rendering
In this section, we evaluate the single frame performance of neural
volume rendering. The raymarching and compositing are done with the
same code, so the timing and memory use difference is accounted for
solely by querying the SRN or raw volume data.

Our single frame rendering results are shown in Figure 7 where we
compare the render results of the large sized (64 MB on disk) models
for the supernova dataset. The reference render using the volume is
the quickest, but assumes the volume can fit in GPU memory, which is
not possible for datasets larger than 11 GB on our test machine. NGP
provides the quickest render times of the networks on our 2080Ti, as
well as the lowest memory use. fVSRN is slower likely due to the
Fourier frequency encoding. Our models are slowest to render, but have
considerably better image reconstruction shown by the higher PSNR
and structural similarity index measure (SSIM) [35]. Our approach
(single model) requires the most memory due to the transformation
to the 64 local grid spaces, requiring 64× the memory of the global
coordinates for the local space coordinates.

In Figure 8, we compare our trained “medium” sized domain de-
composition model for the 250 GB rotstrat data with a downsampled
version of the raw data with a similar storage footprint as the model. We
subsample the raw data by 11 in each dimension to create a volume that
takes 198 MB to store, which is only slightly larger than our network



Fig. 7: 10242 volume renders of Supernova data (4323) with a step
size of 1 voxel. A batch size of 223 is used during forward passes.
The reference is the raw data (308 MB), while the others are neural
representations of the data in their “large” configuration (64 MB), where
(DD) means domain decomposition. The first row of metrics listed
is render time / memory use, and the 2nd row is PSNR (dB) / SSIM.
Metrics are each for the entire image, not the zoom in.

which takes 183 MB to store. We use our renderer to generate 80002

images of each representation of the data with the same visual mapping
parameters. The image from our model achieves a significantly higher
30.70 dB PSNR compared with the render from the downsampled
data which only achieves 22.24 dB. Additionally, the neural network
captures features that are entirely missed by the subsampled data.

We include an image of our rendering application in Figure 9, but
do not discuss it in detail here. Please see supplemental materials for
a video using the tool in real-time, as well as additional qualitative
comparisons of volume renders from each model.

8 LIMITATIONS

One limitation of our model is that memory use blows up and training
speeds reduce as the number of feature grids increases. This is from the
global to local transformation, which needs to allocate memory equal to
the memory of the query coordinates times the number of feature grids,
and then perform interpolation for each of those coordinates. Further
engineering effort could reduce the overhead with custom CUDA code
or by limiting the number of grids operated on at once.

Though our neural renderer is compatible with any PyTorch model
coded in Python, the renderer is slower than what is reported by contem-
porary work [30–32]. Further optimizations to the code could improve
the rendering speed while remaining flexible for new PyTorch models
to be plugged in with ease.

9 CONCLUSION AND FUTURE WORK

In this work, we present a novel SRN called APMGSRN, a model
which excels at representing scientific data due to the adaptivity of
the model. In order to train on datasets that cannot fit in-core during
training, we propose an domain decomposition approach for training
and inference that divides the domain into separate chunks to be learned

Fig. 8: Volume renders of the original rotstrat data, our “medium”
size model representing the data, and a low resolution version of the
original data, which has been subsampled by 11 in each direction to
have a similar storage footprint as the model. Each image is rendered
at 80002 with the same visual mapping parameters. Metrics listed are
PSNR/SSIM for the entire image (not just zoomed portion).

Fig. 9: The interface for our volume renderer with a volume render of
an domain decomposition model trained on the 450GB channel dataset.
(1) The viewing area for interaction. (2) Dropdown to choose to load
a model or data (NetCDF). (3) Which model/data to load from. (4)
Colormap to use. (5) Batch size when querying the network. Larger
reduces total frame time, but requires more GPU memory and slows
down interactivity. (6) Samples per ray. (7) Resets camera view on data.
(8) Opacity transfer function editor. (9) Relative min/max for transfer
function. (10) Render statistics. (11) Save current frame button.

by multiple networks. In our evaluations, we find that our proposed
APMGSRN architecture outperforms the reconstruction performance
of other state-of-the-art models at similar model sizes in both data space
and image space. Our model cannot compress as well as state-of-the-art
compressors like TTHRESH, but achieves high compression rate with
efficient volume rendering in the compression domain without the need
to decompress to the original data’s size.

In the future, we think our adaptive feature grids can be augmented
in two ways: (1) the feature grids need not be trilinearly interpolated -
another encoding scheme, such as a hash grid from NGP, can be used
for query within each grid, (2) the feature grids could extend the time
dimension, creating 4D learnable feature grids supporting temporal
interpolation. Reducing boundary artifacts is another key direction
to improve upon to reduce distracting seams in visualizations. On
the engineering side, there are many places where optimizations can
improve efficiency, such as the multi-grid encoder or domain decompo-
sition model inference. Our approach could also work with minimal
changes to represent non-uniform grid data types, such as unstructured,
point-based, or AMR, so long as the data can return a scalar value
for an arbitrary point query. With the increasing popularity and use-
fulness of SRNs, future work to support neural volume rendering in
mature open-source software such as ParaView would greatly benefit
the visualization community.
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