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Figure 1: Expressive Talking Avatars: a New Dataset and a New Method

ABSTRACT

Stylized avatars are common virtual representations used in VR to
support interaction and communication between remote collabora-
tors. However, explicit expressions are notoriously difficult to create,
mainly because most current methods rely on geometric markers and
features modeled for human faces, not stylized avatar faces. To cope
with the challenge of emotional and expressive generating talking
avatars, we build the Emotional Talking Avatar Dataset which is a
talking-face video corpus featuring 6 different stylized characters
talking with 7 different emotions. Together with the dataset, we
also release an emotional talking avatar generation method which
enables the manipulation of emotion. We validated the effectiveness
of our dataset and our method in generating audio based puppetry
examples, including comparisons to state-of-the-art techniques and a
user study. Finally, various applications of this method are discussed
in the context of animating avatars in VR.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—HCI design and evaluation methods—User stud-
ies; Human-centered computing—Computer graphics—Graphics
systems and interfaces—Virtual reality

1 INTRODUCTION

Immersive virtual reality (VR) has been identified as one of the
key interaction technologies of the future metaverse, where users
use stylized avatars to represent themselves [28]. However, VR
head-mounted displays (HMDs) usually occlude a large part of
the user’s face [18], which rules out most existing video-driven
facial animation methods. Although existing audio-driven talking
avatar techniques have pushed the boundary of HMD-based avatar
mediated communication forward, the following problems remain
unresolved. State-of-the-art methods are able to generate lip move-
ments in perfect synchronization with the audio speech [29], but
existing methods often neglect facial emotion. However, facial ex-
pressions serve as the primary nonverbal means of communication
among human beings. A few researchers focus on the emotional

talking face generation methods that enables the manipulation of the
emotion and its intensity; however, these methods are not developed
for human faces [31, 34], not stylized character faces.

A considerable number of recent advancements in the task of talk-
ing avatar generation are deep learning based methods [34], where
data has a significant influence on performance. We argue that the
absence of a high-quality dataset for 3D rigs is the main obstacle
to achieve vivid talking avatar generation. As reviewed in the next
section, the available datasets are mainly developed for human faces,
rather than stylized characters. Aneja et al. developed stylized char-
acter datasets with cardinal expression annotations [1, 2]. However,
their dataset only includes labeled facial expressions, but not audio-
visual animation clips with mapped lip movements with audio. To
address this issue, we build the emotional talking avatar dataset, a
talking avatar animations featuring six avatars talking with seven
different emotions. We carefully selected emotionally consistent
speech texts that cover different phonemes, from existing audio-
visual human dataset. To ensure the expressiveness and naturalness
of the performed emotions, our inhouse professional animator cre-
ated animation clips in seven categories, including, anger, disgust,
fear, joy, neutral, sadness and surprise.

Together with the dataset, we presented the emotional talking
avatars specially designed for 3D stylized characters in a geometri-
cally consistent and perceptually valid way. Our method begins by
utilizing a pre-trained HuBERT model to extract features, facilitat-
ing the precise generation of rig parameters that control the mouth
region’s movements. Another emotion branch is introduced for
generating emotional displacement to the emotionless lip motions.
Through a straightforward fusion process, we create emotionally
responsive talking heads that react to both audio input and emotional
context.

We validate our dataset and our method by measuring emotional
recogonition, intensity, synchronization, & naturalness, which are
crucial factors for audience engagement. Our dataset were identi-
fied with 72% accuracy, which is comparable to the mean accuracy
rates for the human condition (videos taken from MEAD [34] with
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three intensity levels and RAVDESS [20] with ‘normal’ and ‘strong’
intensity level) at 73.9%. Results also show that our method main-
tained the same level of intensity lip sync quality, & naturalness
compared to the human condition. Additionally, results also reveal
our talking head generation method significantly improved scores
of the lip sync quality & naturalness, while maintaining the same
level of expression recognition & intensity compared to SOTA. This
research makes several contributions, as follows:

• We build a high-quality emotional talking avatar dataset, which
is the first emotional audio-visual corpus annotated for 3D rigs
of stylized characters.

• We propose an emotional talking avatar generation method that
enables the manipulation of the emotion.

• Extensive experiments validated dataset, and our expressive
avatar generation methods could be apply to future reference
in AR/VR/XR.

2 RELATED WORK

2.1 3D Avatars in Virtual Reality
Avatars are digital representations of users that may be abstract,
cartoonish, or human-like [38]. These avatars may represent a user
in a video call or a character in a video game. Depending on the use
case, avatars might be created manually by designers and character
artists, e.g. for characters in animated movies [17], or use computer
vision or other techniques to generate a digital 2D or 3D avatar
in the likeness of a user’s visual appearance [22, 23]. Different
implementations also allow for different levels of customization
of the avatar, such as facial appearance, body type, and clothing
and accessories. Avatars can also be animated to allow users to
express emotions and help users self-identify with the avatar. This is
usually achieved by rigging a skeletal system [8] which is moved by
sensing and tracking the user. This can be achieved with cameras
and computer vision [5], speech sentiment analysis, or animating
visemes through audio input.

We focus our efforts on stylized 3D characters, defined as char-
acters that no human would mistake for another person, but would
still be perceived as having human emotions and thought processes.
Our goal is to develop an approach for driving stylized character
expressions only using sensors from commodity VR hardware as
they contain microphones for audio input.

2.2 Audio Driven Facial Animation
Audiovisual speech animation can be categorized into procedural,
performance-capture, data-driven, and deep-learning techniques
[24, 40]. Procedural speech animation uses visemes, the oral shape
at the apex of a given phoneme, to solve overlaps between succes-
sive visemes, curve shapes that define attach, apex, sustain, and
decay of viseme, and mapping a given phoneme to a viseme [33].
Performance-capture speech animation is visually limited due to the
actor’s performance. It is visually limited by the actor’s performance
and is hard for an animator to edit or refine [19]. Data-driven ap-
proaches smoothly stitch pieces of facial animation data from a large
corpus, to match an input speech track using morphable etc [11].
These data-driven methods tend to be limited in scope to the data
available, and the output, similar to performance-capture, is not
animator-centric.

Recent research has shown the potential of deep learning to pro-
vide a compelling solution to automatic lip-synchronization simply
using an audio signal [3, 31, 35]. Current deep learning based meth-
ods can be broadly categorized into 2D methods and 3D methods.
For 2D methods, Zhou et al. present a new deep-learning based
architecture to predict facial landmarks, capturing both facial expres-
sions and overall head poses, from only speech signals [39]. When it

comes to 3D methods which is more related to our task, Taylor et al.
uses phonemes as an intermediate speech signal to drive coefficients
of an Active Appearance Model, representing the lower face and
jaw of a head model [32]. Edwards et al. have introduced the JALI
model to simulate different speech styles controlling the jaw and
lip parameters in a two-dimensional viseme space [10]. Zhou et al.
predicts sparsely activated viseme- and co-articulation parameters
for a FACS-rig from speech, using both phonemes and raw speech
features [40].

In particular, Chen et al. have developed a TTS data augmenta-
tion method in talking face tasks by producing augmented audio-
animation pairs with a TTS system, and solved the misalignment
problem brought by TTS audio with the introduction of soft-DTW
loss [6]. The weighted sum of HuBERT features is adopted to fully
utilize the underlying information of audio. Their method is proven
to boost the few-shot ability of a talking face system in low data
resources [6].

Inspired by the previous work developed for human faces [6],
we also utilized the pre-trained HuBERT model [13] as a feature
extractor, showcasing consistently superior performance across di-
verse downstream tasks compared to traditional handcrafted acoustic
features like MFCC. This leads to improved lip-synchronization. We
further implemented the Soft-DTW loss to effectively address po-
tential data misalignment issues.

2.3 Emotion and Expressiveness

Emotion is a factor that plays a strong role in realistic animation.
Only a few works consider it in talking face generation due to the
difficulty of producing emotion dynamics. Karras et al. animate
3D vertices of a face given a speech signal by utilizing an end-
to-end deep network consisting of a formant analysis network, an
articulation network, and a learned emotion embedding [16]. Wang
et al. collect the MEAD dataset and propose an emotional talking
face generation baseline that enables the manipulation of the emotion
and its intensity. They designed a two-branch architecture to process
the audio and emotional conditions separately. One of the branches is
responsible for mapping audio to lip movements and the other branch
is responsible for synthesizing the desired emotion on the target face.
Finally, the intermediate representations are fused in a refinement
network to render the emotional talking-face video [34]. Ji et al.
propose to decompose speech in decoupled content and emotion
spaces, and then synthesize emotion dynamics from audio [15].
Ji et al. propose the Emotion-Aware Motion Model (EAMM) to
generate one-shot emotional talking faces by involving an emotion
source video, and their methods can generate satisfactory talking
face results on arbitrary subjects with realistic emotion patterns [14].
Gururan et al. present SPACE, which uses speech and a single image
to generate high-resolution, and expressive videos with realistic head
pose, without requiring a driving video [12]. These methods animate
3D models of faces such as standard FACS-based photorealistic
avatars, whereas others directly animate raw images of human faces,
but not developed for 3D stylized characters.

Though a reliable parameterization of emotion and expression
remains elusive, the six cardinal expressions pervade stories and
face to face interactions, making them a suitable focus for educa-
tors and facial expression researchers. To guide and automate the
process of expression animation, animators and researchers turn to
FACS. For example, FACSGen allows researchers to control action
units on realistic 3D synthetic faces. However, The strict use of
anatomy-based and constrained motion by these systems limits their
generalizability to characters with different anatomy and limits their
application, because the most believable animation may require the
violation of physical laws.

Aneja et al. first looked into learning 3D stylized character ex-
pressions from humans in a perceptually-valid and geometrically-
consistent manner. They created a database FERG-DB of labeled
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facial expressions for six stylized characters. This database with
expressions is created in collaboration with facial expression artists
and initially labeled via Mechanical Turk (MT). Then, they built two
systems, DeepExpr, and ExprGen. DeepExpr takes a 2D image of
a human, and retrieves the matching stylized character expression
image, and ExprGen takes a 2D image of a human, and generates
the 3D rig parameters of a stylized character.

Built on the FERG-DB database, Pan et al. contributed a
performance-based real-time method to animate believable and ac-
curate facial expressions of 3D stylized characters [26]. Pan et al.
also introduced an audio-based facial animation approach to portray
characters in a geometrically consistent and perceptually correct way.
The lips motion and the surrounding facial areas are controlled by
the contents of the audio, and the facial dynamics are established by
category of the emotion and the intensity [25]. However, FERG-DB
database is labeled facial expressions of stylized characters, and thus
difficult to ensure accurate lip synchronization, while generating
realistic motions for the entire face with vivid emotional changes.

To tackle issues discussed above, we contribute a novel emotional
audio-visual dataset for stylized character rigs dataset with cardi-
nal expression annotations, and then a novel method to accurately
retrieve plausible character expressions from audio input only.

3 DATASET

3.1 Design Criteria

Emotion Categories We use seven emotion categories follow-
ing Aneja et al. [1, 2] (anger, disgust, fear, joy, sadness, surprise &
neutral), since there is agreement on their recognition within the
facial expression research community, and these seven expressions
occur in a wide range of intensities and can blend with each other to
create additional expressions.

Design of the Speech Corpus For audio speech content, we
follow the MEAD [34] and RAVDESS [20], which are a talking-face
video corpus featuring actors and actresses talking with different
emotions. We carefully select the sentences covering all phonemes
in each emotion category, and the sentences in each emotion category
are divided into two parts: 4 common sentences, and 7 emotion-
related sentences. We provide more details of the speech corpus in
Table 2.3.

4 METHOD

4.1 Overview

We propose a facial animation method, which involves generating
precise lip movements and expressions based on the input audio and
emotion category. Figure 3 shows an overview of the system, which
consists of three essential components. Specifically, we first employ
a pre-trained HuBERT model [13] to extract HuBERT features
and introduce a Mou Decoder to generate accurate rig parameters
related to mouth region. Next, we adopt an Audio Encoder and an
Emotion Encoder to extract audio features from MFCC and emotion
embedding, respectively. Then the features are combined and fed
in to the designed Emo decoder to predict emotional parameters,
which are further fused with lip parameters to control the 3D stylized
characters’ emotions as they speak along with the input audio. Lastly,
the vivid animations are produced by rendering process in Maya.

4.2 Architecture

Within the network architecture, there are five sub-networks: a pre-
trained HuBERT encoder Eh, a mouth decoder Dm, an audio encoder
Ea, an emo encoder Ee and a emotion decoder denoted as De.

HuBERT Encoder To make full use of the information con-
tained in the audio, we adopt a pre-trained HuBERT model to extract
features. Instead of directly taking the final embedding as the subse-
quent input [36], we predict N hidden layers, which are weighted
summed to feed into the Mon Decoder. The obtained HuBERT
feature fh can be represented as:

fh =
N

∑
i=1

(αihi) ,
N

∑
i=1

αi = 1 (1)

where hi and αi denote the ith hidden layer and corresponding
weight.

Mouth Decoder The Mouth Decoder consists of 2-layer 1D
convolutional neural network, a 2-layer BiLSTM Network. The
former is responsible for downsample the extracted HuBERT feature
from 50Hz to 25Hz, while the latter is capable of decoding the
feature into meaningful latent representation, which are further to
predict the rig parameter sequence of the lip region.

Audio Encoder Considering expression are more correlated
to the rhythm and beat instead of phonemes, we extract the Mel-
Frequency Cepstral Coefficients (MFCC) [21] aspect from the pro-
vided input audio signal, while pairing the video frames and audio
signal using a one-second temporal sliding window. Both the audio
frame sample rate and video frame rate are set at 25. Subsequently,
we apply the audio encoder, which comprises convolutional neural
networks (CNN) followed by multi-layer perceptrons (MLP), to
process the 28×12-dimensional audio features as input and obtain
the desired audio feature.

Emotion Encoder We first encode the emotion label as a one-
hot vector e and input it into the emotion encoder. The emotion
encoder utilizes a two-layer fully connected (FC) neural network
followed by a LeakyReLU activation to map the one-hot vector to
an emotion embedding. This embedding is duplicated for each time
step.

Emotion Decoder Based on the audio temporal properties, we
design the emotion decoder with a long short-term memory (LSTM)
network and a fully connected layer to map from the extracted audio
feature and emotion embeddings to the rig parameters. The LSTM
in our model is composed of three layers with 60 nodes and 100
time steps. In this way, the sequential relationship between audio
signals and rig parameters can be better captured.

4.3 Objective Functions

Formulaically, given an audio a =
{

a(1), . . . ,a(T )
}

and the input
emotion condition e, we are able to generate the predicted mouth rig
parameters ŷm =

{
ŷm

(1), . . . , ŷm
(T )

}
and expression rig parameters

ŷe =
{

ŷe
(1), . . . , ŷe

(T )
}

, respectively:

[
ŷm

(t),h(t),c(t)
]
= Dm(Eh(a

(t)), ŷm
(t−1),h(t−1),c(t−1)), (2)

[
ŷe

(t),h(t),c(t)
]
= De(Ea(a(t)),Ee(e), ŷe

(t−1),h(t−1),c(t−1)), (3)

where h(t),c(t) represent hidden state and cell state of LSTM unit
at time t respectively, and T refers to the frames of the video. Then,
we fuse the predicted parameters to obtain the final results ŷ(t):

ŷ(t) = F(ŷm
(t), ŷe

(t)), (4)
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Table 1: Description and examples for six different expressions.

Angry
Item/Part Eyebrow Eye Mouth Others

Description Inner corner pulled downward;
Lower edge of eyebrow falls;

Eyes widened;
The wider, the angrier;

Lower lid tight.

Upper lip is lifted in a sneer;
Square shape

with lots of teeth;

Upper eyelid rises;
Lower lip margin straight;

Both upper and lower teeth shown;
Example

Disgusted
Item/Part Eyebrow Eye Mouth Others

Description Entire eyebrow lowered;
Especially inner corner;

Partly squinted ;
Further compressed;

Upper lip raised
flattened in an intense sneer;

squared-off in shape

Nose wings pulled upward;
Nose creases deepened;

Upper teeth showed
Example

Fear
Item/Part Eyebrow Eye Mouth Others

Description Lifted and kinked straight up;
Pulled closer together

Opened very wide;
Often with taut;
Lower lid raised;

Opened and widened;
Upper lips tightened;
Lower lips stretched

The wider the eyes,
the more afraid.;
Teeth exposed;

Example

Happy
Item/Part Eyebrow Eye Mouth Others

Description Relaxed;
May be raised straight up;

upper lids moved downward slightly;
Lower lids tightened;

Widened with corner
pulled back toward ear;

Lips and skin around mouth follow teeth;

Steep edge of cheek;
Nose wings pulled upward;

Smooth chin;
Example

Sad
Item/Part Eyebrow Eye Mouth Others

Description
Entire brow lowered;

Lower lids raised;
Upper lid pushed;

Reduced to nearly
a single line;

The thinner, The sadder;

Rectangular Shape;
Lips straightened and thinned;
Lower lip tucked under upper;

Nose wings raised;
Cheeks tight and rounded;

Deep nasolabial fold;
Example

Surprised
Item/Part Eyebrow Eye Mouth Others

Description Eyebrows Raised;
Upper eyelid raised;

White above iris exposed;
Lower lid relaxed

Dropped open;
Oval in shape;
Protruded lips

Horizontal forehead
wrinkles created

Example
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"Lot of people will roam the streets in costumes and masks and having a ball" with anger emotion

Mery

Bonnie

Malcom

Miosha

Ray

Rose

Figure 2: Sampled frames from dataset.

To optimize the network, the L2 loss function and the Soft-DTW
loss [6]1 are established to define the task. Soft-DTW [7] refers
to Soft-Dynamic-Time-Warping, which is a variant of the vanilla
Dynamic-Time-Warping (DTW) [30]. It addresses the challenge
of non-back-propagatable gradients inherent in vanilla DTW. DTW
itself aims to optimize the alignment of sequential data and measures
their similarity. Recent studies [4, 6, 15] have highlighted DTW’s su-
perior alignment capabilities, especially with unequal sequence data.
Drawing inspiration from these findings, we integrate Soft-DTW
loss into our work to tackle potential synchronization issues between
audio and ground-truth rig parameters in our dataset. The prevalence
of synchronization challenges in existing datasets, stemming from
equipment, transmission, and storage inconsistencies, is amplified in
3D datasets due to animator errors. Therefore, leveraging Soft-DTW
loss offers notable advantages in enhancing audio-lip synchroniza-
tion compared to the conventional MSE loss, which is validated in
the following section. Also, we introduce an inter-frame continuity
loss [37] to deal with the jitter issue. Given the ground truth rig
parameter y, the total loss function L can be represented as:

L = Ea,e,y

[
(y− ŷ)2 +DTW (y, ŷ)

]
+λ1Eŷ

[
T−1

∑
t=0

(
ŷ(t+1)− ŷ(t)

)2
]

(5)
5 EVALUATION

5.1 User Study

5.1.1 Participant

We recruited 25 participants from ANONYMOUS University to
complete all conditions of this study. 20 participants were assigned
to complete task 1 and five additional participants were assigned to
complete task 2. The average age of the participants was 22 years,
ranging between 19 and 24 years old; 12 were men. They were naı̈ve
to the purposes of the experiment.

1Implementation refers to https://github.com/Moon0316/T2A

5.1.2 Material
Task 1 To evaluate our dataset, we rendered animation clips

from its 3D facial rig in the dataset, which has associated rig control
parameters. We divided our dataset into four group (see No. in
Table 2.3).

Task 2 To evaluate our method, we randomly selected 75% of
dataset to train our model & EVP [25], and used the rest of dataset
as ground true. Then, we run our method & EVP method to create
7 animation clips for primary character expression, and apply the
Multiple Character Adaptation network [25] transfer the expression
on different 5 stylized characters.

5.1.3 Design
Task 1 The experiment utilized 7 characters (Human, Mery,

Bonnie, Ray, Malcolm, Rose & Miosha) × 7 emotions (Neutral,
Anger, Sadness, Fear, Disgust, Happiness, & Surprise) × 2 sentences
(Common sentences vs. Emotion-related sentences) × 4 group of
dataset in a mixed design, with a between-subject design for , but a
within-subject design regarding characters, emotions, and tracking
methods.

Each participant took part in 98 trials to evaluate the human
expression and the 6 character expression: 7 × (7 emotions × 2
types of sentence) = 98 trials. Thus, there were 1960 trials in total.

Task 2 The experiment utilized 6 characters (Mery, Bonnie,
Ray, Malcolm, Rose & Miosha) × 7 emotions (Neutral, Anger,
Sadness, Fear, Disgust, Happiness, & Surprise) × 3 methods in a
within-subject design regarding characters, emotions, and methods.

Each participant took part in 126 trials to evaluate the generated
primary character expression, and the expression transfer results
on different 5 stylized characters 6 × (7 emotions × 3 capturing
methods) = 126 trials. Thus, there were 630 trials in total.

To avoid fatigue or carry-over effects, video clips were presented
to the participants in random order.

5.1.4 Procedure
Participants were first presented with an information sheet and asked
to sign a corresponding consent form. They were instructed to view
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Table 2: Designed speech corpus.

Common sentences read in 7 emotions
Emotion NO. Speech Corpus

All

1 Kids are talking by the door
2 Dogs are sitting by the door
3 She had your dark suit in greasy wash water all year
4 Don‘t ask me to carry an oily rag like that

Emotion-related sentences
Emotion NO. Speech Corpus

Angry

1 Right now may not be the best time for business mergers
2 You’re so preoccupied that you’ve let your faith grow dim
3 Lot of people will roam the streets in costumes and masks and having a ball
4 Then he would realize they were really things that only he himself could think

Disgust

1 Please take this dirty table cloth to the cleaners for me
2 Young children should avoid exposure to contagious diseases
3 You’re not living up to your own principles she told my discouraged people
4 Pretty soon a woman came along carrying a folded umbrella as a walking stick

Fear

1 Call an ambulance for medical assistance
2 The fish began to leap frantically on the surface of the small lake
3 We will achieve a more vivid sense of what it is by realizing what it is
4 This is a problem that goes considerably beyond questions of salary and tenure

Happy

1 The eastern coast is a place for pure pleasure and excitement
2 By that time perhaps something better can be done
3 Obviously the bridal pair has many adjustments to make to their new situation
4 His artistic accomplishments guaranteed him entry into any social gathering

Sad

1 There’s no chance now of all of us getting away
2 The diagnosis was discouraging however he was not overly worried
3 The prospect of cutting back spending is an unpleasant one for any governor
4 But the ships are very slow now and we don’t get so many sailors any more

Surprise

1 He ate four extra eggs for breakfast
2 I just saw Jim near the new archeological museum
3 He further proposed grants of an unspecified sum for experimental Hospitals
4 Properly used the present book is an excellent instrument of enlightenment

Neutral

1 The best way to learn is to solve extra problems
2 As such it was beyond politics and had no need of justification by a message
3 Keep your seats boys I just want to put some finishing touches on this thing
4 Bridges tunnels and ferries are the most common methods of river crossings

an animation clip and then asked to answer three questions:

• “Which expression did the character depict?” Participants were
asked to select one of the words: Neutral, Anger, Sadness,
Fear, Disgust, Happiness, Surprise or Other.

• “How intense was the indicated emotion depicted by the char-
acter?” Participants rated the intensity on a scale from 1 to 7,
where 1 represents a rating of “Not at all”, and 7 represents
“Extremely”.

• “Whether the lip motion sync with the speech?” Participants
rated on lip sync qualities on a scale from 1 to 7, where 1 is
not synchronized at all & 7 is synchronized extremely well.

• “How natural was the character overall?” Participants rated
attractiveness on a scale from 1 to 7, where 1 represents a
rating of “Not at all”, and 7 represents “Extremely”.

Each participant undertook one practice trial where they could
ask questions, and then undertook measured trials.

The participants were paid ANONYMOUS amount. The exper-
iment took about 30 minutes. The experiment was approved by
ANONYMOUS University Research Ethics Committee.

5.1.5 Results on datasets
For the statistical analysis, we conducted separate repeated measures
Analysis of Variances (ANOVAs) for videos, looking at the results on
recognition, intensity, synchronization, and naturalness. There were
no outliers, and the data was normally distributed for each condition
as assessed by boxplot and Shapiro–Wilk test (p > 0.05), respec-
tively. We ran Mauchly’s test for validating sphericity of the data,
and whenever it is significant, we report results with Greenhouse-
Geisser correction applied and marked with an asterisk “∗”. Post hoc
tests were conducted using the Bonferroni test for the comparison
of means.

Recognition For the recognition of emotions, responses were
converted to scores “1” (correct) or “0” (incorrect) and averaged
over stimuli repetitions.

Figure 5(a) shows that anger (M = .921,SE = .014), joy (M =
.925,SE = .019), neutral (M = .886,SE = .027), and sadness
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Figure 3: The overview of our system.
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Figure 4: Confusion matrix for perceived expression recognition (%) for seven expression classes. A = anger, D = disgust, F = fear, J = joy, N =
neutral, Sa = sadness, Su = surprise.

(M = .836,SE = .034) show high accuracy, whereas disgust (M =
.407,SE = .041) and fear (M = .375,SE = .05) are very difficult for
users to perceive. We also observed the character expression recogni-
tion accuracy could occasionally be higher than humans, this might
be because the characters have simpler geometry and stylization can
make the expressions relatively easier to perceive.

We compared average scores obtained for 7 emotions across 7
characters. We found the main effect of the character was signifi-
cant, F(6,114) = 3.215, p = .006, and the characters × emotions
interaction was also significant, F(36,684) = 3.957, p < .001. This
indicates the recognition score for different characters present differ-
ently for different emotions.

Our initial results on expression recognition shows that the main
effect of emotions was significant, F(3.79,72.003) = 53.139, p <
.001∗. Thus, we look into participants’ rating for seven expression
classes. Figure 4 shows the confusion matrix for perceived expres-
sion recognition for each expression class. In each sub-figure, for a
given row (e.g. anger), the columns represent the percentage (aver-
aged over all the perceived human anger expressions) of participants
agreeing on the corresponding expression classes.

Intensity Intensity ratings for our characters were high in gen-
eral, which is expected for exaggerated cartoon animation. Fig-
ure 5(b) shows the mean intensity ratings for 7 emotions across
7 characters. The average score over all characters for neutral
(M = 3.461,SE = .398) is significantly lower than the average score
for the rest of emotions.

We found the main effect of character, the main effect of
emotion, and characters × emotions interaction were all signif-
icant, F(1.963,37.288) = 8.515, p < .001∗, F(1.874,35.606) =
27.03, p < .001∗, and F(36,684) = 3.386, p < .001, respectively.
This indicates the intensity score for different characters present
differently for different emotions.

Synchronization & Naturalness We look at the rating on
synchronization & naturalness for 7 emotions across 7 characters
conditions. However, no statistically significant effects were found,
in terms of characters, emotions and the characters × emotions inter-
action, thus we did not include the figure results for synchronization
& naturalness.
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Figure 5: Results on datasets

5.1.6 Results on our methods

Recognition Figure 7(a) shows the comparison of average
recognition scores obtained for three generation methods across
six stylized characters. The average score over all characters for GT
(M = .786,SE = .046) and our methods (M = .743,SE = .033) are
slightly higher than the average score for the EVP (M = .619,SE =
.03). We found the main effect of the generation method was sig-
nificant, F(2,8) = 5.056, p = .038. However, Bonferroni post-hoc
comparisons did not find any significant effect among these condi-
tions.

Intensity Figure 7(b) shows the comparison of average intensity
scores obtained for three generation methods across six stylized
characters. The average score over all characters for GT (M =
5.171,SE = .603), our methods (M = 5.09,SE = .62), and EVP
(M = 5.133,SE = .668), respectively. Results revealed the main
effect of methods on intensity scores was not statistically significant,
F(1.021,4.085) = .056, p = .83∗.

Synchronization Figure 7(c) shows the mean synchronization
ratings for three generation methods across six characters. The
average score over all characters for GT (M = 5.024,SE = .703),
and our methods (M = 4.133,SE = .633) are significantly higher
than the average score for EVP (M = 1.929,SE = .347).

The main effect of the generation method was significant,
F(2,8) = 16.531, p = .001. Bonferroni post-hoc comparisons indi-
cated the mean synchronization ratings for GT and our methods are
significantly higher than EVP, p = .038 and p = .023, respectively.

Naturalness Figure 7(d) shows the mean naturalness ratings
for three generation methods across six characters. The average
score over all characters for GT (M = 4.983,SE = .681), and our
methods (M = 3.805,SE = .672) are significantly higher than the
average score for EVP (M = 2.186,SE = .411).

The main effect of the generation method was significant,
F(2,22) = 15.077, p = .002. Bonferroni post-hoc comparisons in-
dicated the mean naturalness ratings for GT and our methods are
significantly higher than EVP, p = .035 and p = .028, respectively.

Table 3: Quantitative results for comparison & ablation study.

Metric/Method EVP [25] w/o Soft-DTW w/o Emo Encoder Ours

F-RPD 0.179 0.057 0.089 0.014
M-RPD 0.094 0.029 0.037 0.005

5.2 Comparison & Ablation Study
We introduce two new metric, facial rig parameter distance (F-RPD)
and mouth rig parameter distance (M-RPD), which calculates the
distance between facial and mouth rig parameters generated by
different methods (EVP, w/o Soft-DTW, w/o Emo Encoder and
Ours) and ground truth (GT). EVP [25] tackles the same task with
our method. For ablation study, we replace Soft-DTW loss with
MSE loss, denoted as w/o Soft-DTW. w/o Emo Encoder refers to our
framework without Emo Encoder, which generates neutral talking
faces without any expressions. The results in Table 3 illustrate the
Soft-DTW loss and the emotion branch in our framework plays a
great role in performing lip-sync and expressions, respectively.

We select some frames from the videos (left: sad emotion; right:
surprised emotion) generated by ground-truth (GT), EVP [25], w/o
emo encoder(ablation study) and our method. Specifically, EVP
predicts wrong lip motions and w/o emo encoder fails to generate
vivid expressions. Our method not only produces accurate mouth
shapes, but also presents the similar expressions as GT.

6 DISCUSSION

6.1 Comparison to the State-of-the-art
Although MEAD [34] and EVP [25] tackle the similar task to our
method, we would like to emphasize our major differences and
superiority. Firstly, MEAD [34] consists of three sub-networks:
audio-to-landmarks module, neutral-to-emotion transformer and
refinement network. Such a three-stage structure is complex and
consumes more computational resources, in addition to the disconti-
nuity between the generated video frames. In contrast, we generate
the rig parameters directly from the audio and emotion label, which
is much more concise. MEAD is used in the realm of real human

8



Online Submission ID: 1970

GT

EVP

w/o Emo  
Encoder

Ours

Sadness Surprise

Figure 6: Sampled frames from ground-truth (GT), EVP [25], w/o emo encoder and our method.

GT Ours EVP0.0

0.2

0.4

0.6

0.8

1.0

Re
co

gn
iti

on

(a) Recognition

GT Ours EVP0

1

2

3

4

5

6

7

In
te

ns
ity

(b) Intensity

GT Ours EVP0

1

2

3

4

5

6

7
Sy

nc
hr

on
iza

tio
n

(c) Synchronization

GT Ours EVP0

1

2

3

4

5

6

7

Na
tu

ra
ln

es
s

(d) Naturalness

Figure 7: Results on our methods

animation, not stylized characters. EVP [25] is used for stylized
characters, which utilizes the audio-to-landmarks module in MAED
to predict landmarks which are then matched with the landmarks in
the FERG-3D-DB dataset [1], but there are two main problems: a)
there are huge domain gaps between the landmarks in such two dif-
ferent datasets, which leads to inaccuracies and error accumulation.
b) each frame needs to be be found one by one in more than 10,000
images contained in FERG-3D-DB, which is very time-consuming.
By comparison, we utilize our published dataset to perform end-to-
end prediction on rig parameters via a simple network, which greatly
speeds up the prediction generation efficiency.

6.2 Audio, Video & Text
Talking avatar generation is a typical multi-modal task involving the
creation of videos featuring characters speaking, driven by an audio
clip, a text script or a video sequence. In this paper, we introduce
an audio-visual dataset and present a system tailored for generating
talking avatars driven by audio input. Importantly, our system can
be easily adapted for text-driven or video-driven scenarios. On the
one hand, the prosperous text-to-speech (TTS) [9, 27] systems are
capable of synthesizing high-quality audio from text, which equips
our method with the necessary audio inputs for processing. On the
other hand, we aim to build an avatar-human dataset that establishes

a direct one-to-one relationship between avatars and real humans,
enabling us excel in the generation of video-driven avatars in the
future.

7 CONCLUSION

Depict characters with clear, unambiguous expressions in talking
head generation task is often neglected in previous works due to the
absence of suitable emotional audio-visual dataset for 3D rigs. We
contribute a novel high-quality Emotional Talking Avatar Dataset
providing rich and accurate affective visual and audio information
with great detail. We then developed a novel approach to facial ani-
mation combines input audio and emotional cues to achieve precise
lip movements and expressive expressions for stylized characters. In-
corporating the built Emotional Talking Avatar Dataset, our method
outperforms the SOTA emotional talking face method by apply-
ing the Soft-DTW loss, the pre-trained HuBERT feature extractor
and the emotion branch. We believe our new dataset and the new
method would benefit the community of expressive avatar animation
and can be applied in various fields such as social VR experience,
teleconferencing, visual games and storytelling.
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