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Instant Segmentation and Fitting of Excavations

in Subsurface Utility Engineering

Marco Stranner, Philipp Fleck, Dieter Schmalstieg and Clemens Arth

Figure 1: Left: top-down view of a 3D point cloud reconstruction with inaccurate SUE data visualized for different infrastructure

types as simple line strings. Middle: Segmentation results from virtual cameras (top), highlighting inaccurate (red) and aligned

(green) infrastructure data. Right: fitted 3D infrastructure model shown on a top-down view of a 3D point cloud reconstruction.

Abstract— Using augmented reality for subsurface utility engineering (SUE) has benefited from recent advances in sensing hardware,
enabling the first practical and commercial applications. However, this progress has uncovered a latent problem — the insufficient
quality of existing SUE data in terms of completeness and accuracy. In this work, we present a novel approach to automate the process
of aligning existing SUE databases with measurements taken during excavation works, with the potential to correct the deviation from
the as-planned to as-built documentation, which is still a big challenge for traditional workers at sight. Our segmentation algorithm
performs infrastructure segmentation based on the live capture of an excavation on site. Our fitting approach correlates the inferred
position and orientation with the existing digital plan and registers the as-planned model into the as-built state. Our approach is
the first to circumvent tedious postprocessing, as it corrects data online and on-site. In our experiments, we show the results of our
proposed method on both synthetic data and a set of real excavations.

Index Terms—Augmented Reality, Localization, 3D Models, Geometric Constraints, Segmentation, Infrastructure

1 Introduction

Most critical infrastructure today is buried underground, ranging from
hard piping for water, waste water, thermal heating and gas, to soft
cables for electricity and communication lines. Typically, such infras-
tructure is installed below paved roads and requires opening the surface
for operations.

In subsurface utility engineering (SUE), the discrepancy between
the as-planned and as-built is usually very noticeable. SUE generally
lacks a standardized feedback loop, which would allow construction
companies to report as-built information back into a common platform.
Therefore, information on the exact placement and orientation of the
infrastructure is mostly lost after the construction work is finished.

As a consequence, the completeness and accuracy of SUE data
is very heterogeneous, limiting the value of SUE databases for both
on-site and off-site applications.

Recent legislation in countries such as Denmark, the UK, or the
Netherlands requires excavations related to subsurface infrastructure
to be documented in a standardized way (i.e., by images, videos, laser
scans, and geo-referencing on site; see Fig. 3), providing a growing
database of corrected SUE data. Unfortunately, even with the aid of
state-of-the-art commercial visualization tools such as Trimble Sitevi-
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sion!, the data preparation process requires tedious data cleanup, which
is usually performed off-site.

During excavation work, major tasks include the identification of
existing piping and the retrieval, processing and mapping of these data
to the real world. An important goal of these activities is to prevent
damage to existing infrastructure, a frequent problem that costs billions
annually [4, 32]. Previous work shows that AR can be effectively used
to support SUE, for example, by using virtual spray paint marking or
virtual daylighting [17]. Alas, AR applications are only as useful as the
accuracy of the SUE data they use.

In this work, we propose a novel, instant approach that replaces the
manual measuring and editing task on SUE data with an automated
segmentation technique. This algorithm identifies pipes within the 3D
model and correlates the resulting pipe models with existing noisy SUE
data, such that the alignment to existing digital plans can be automated.
The outcome is reprojected into excavation space using AR for a visual
comparison between the SUE database and reality (Fig. 1). The main
contributions of this work can thereby be summarized as follows:

* A novel and efficient segmentation approach for infrastructure in
colorized 3D point cloud reconstructions on noisy, only partially
visible data

* An efficient fitting approach to align the segmentation results to
existing SUE data, existing as pure line strips only

* Mobile applicability of the approach providing real-time AR in the
field;

* An evaluation of accuracy on synthetic data and real excavation data

lhttps ://sitevision.trimble.com/
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Our approach is the first to tackle the topic of subsurface infrastructure
detection and correction in an instant, on-site and online fashion. Our
experimental results show that commercial applications could derive
significant benefit from further exploiting the proposed concept.

2 Related work

The advent of AR and easily accessible technologies for simultaneous
localization and mapping (SLAM) has brought really useful applica-
tions in SUE to life. Hansen et al. [17] demonstrate how to combine
high-precision GPS and SLAM to make subsurface infrastructure vi-
sually accessible. However, upon closer examination, two important
limitations become apparent: (i) The application is crucially dependent
on high-quality SUE data to be available. (ii) Relying on manual labor
for the registration of SUE infrastructure defeats any hopes for scalabil-
ity. The approach presented in this paper overcomes these two issues
by aligning SUE datasets with a scanned excavation model, allowing
the operator to immediately fix any deviations on site. In the remainder
of this section, we will shed light on 3D segmentation and 3D fitting
approaches and the current role of AR in SUE.

2.1 Segmentation of 3D structures

The segmentation of 3D structures, like point cloud data from pho-
togrammetry or Lidar, usually relies on classification of input areas
based on features such as normals, colors, or gradients. Since point
cloud data tend to be noisy, sparse and unorganized, not all segmenta-
tion algorithms are equally suited for such a task. Nguyen et al. [35]
present a survey of well-known algorithms, working on edges (regions
are found by detecting boundaries), regions (neighborhood informa-
tion is used to cluster similar regions), attributes (regions are clustered
based on specific characteristics of the point cloud), models (primitive
shapes are used for grouping) and graphs (a graph representation is
used for efficient search in unstructured data, e.g., to segment using
surface normals). In the following, we discuss those choices, which are
promising for infrastructure segmentation in SUE: region, model and
graph algorithms.

Model-based segmentation Due to the repetitive pipe-like struc-
ture in SUE, a model-based approach seems most suitable. RANSAC-
based algorithms such as the one by Fischer er al. [8] deliver good
segmentation results and inspire algorithms for primitive shape detec-
tion [25, 46]. Another algorithm is the slippage analysis by Gelfand
et al. [11], a model-based classification using so-called slippage shapes
such as spheres, helix, planes, cylinders, and linear extensions. A
Hough transform is commonly used for shape detection [36, 61] in 2D
images, but was also extended to 3D. Planes, cylindrical shapes [40]
and other primitives [41] can be used in a Hough transform. Kurdi
et al. [55] found that RANSAC generally outperforms Hough-based
alignment on 3D scans. Alas, in excavation works, it can be very hard
to fit cylinders to partially visible pipe-like structures, since scans of
pipes often miss the bottom half.

Region-based and graph-based segmentation Region-based
methods are an established approach, usually relying on clustering
of surface normals [7, 28, 58] or other geometric features. An octree-
based approach was presented by Vo et al. [59] using region growing
to compare similarity features like normals. KNN-trees over cylin-
drical regions were used by Lari et al. [29] to overcome inconsistent
densities and to detect planar structures. Due to the known geometric
properties of the pipes based on the planning data, the normals on a
cylindrical surface could be used for segmentation. However, noise and
reconstruction inaccuracies make such an approach impractical in SUE
tasks.

Color-based segmentation, as proposed by Strom et al. [52], is more
robust in such cases. Green et al. [14] as well as Xu et al. [63] pre-
sented approaches based on voxelization followed by spanning graph
construction. Provided enough suitable training data is available, ma-
chine learning approaches are more accurate than classical algorithms.
A good example is PointNet [42] and its extensions [15, 38, 39, 66].
However, due to the nature of how excavation work proceeds, it is very
hard to come up with generic, yet representative data to train machine

learning models. In particular, hand-labeling of the training data would
be required, which is a very costly process.

Segmentation in 2D  Some segmentation algorithms [34, 37] use
deep learning to create segmentation masks, which are then back-
projected [22] to the 3D point cloud. Such virtual views have been
used by Kundus ez al. [27] to segment 3D meshes. A rendering of
a point cloud scene in 2D can serve as an input for this type of al-
gorithms. Iannizzotto et al. [23] present such an algorithm, using an
edge-based approach on virtual views, while Kaganami et al. [24]
compare region-based and edge-detection approaches (virtual and real
views), concluding that performance strongly depends on the problem
domain. Furthermore, alternative color spaces such as HSV have been
used [6, 54].

2.2 Fitting in 3D

Our approach includes a 3D fitting algorithm used to align 3D structures,
referring to a segmented part of a 3D reconstruction and a synthetically
generated 3D structure from SUE data. Due to the importance of the
underlying problem across disciplines, many algorithms have emerged
and can be categorized mainly into the following groups: Principal com-
ponent analysis (PCA), singular value decomposition (SVD), iterative
closest point (ICP) and deep learning (DL).

PCA is traditionally used in compression and classification algo-
rithms, but it can also be used for rough registration between two point
clouds by aligning the eigenvectors of their covariance matrices [2].
Similar, SVD can be used to minimize Euclidean distances between
points, if point correspondences are available. SVD for model align-
ment was shown in several early works [21, 47]. While SVD aims to
directly solve the least-squares problem, ICP iteratively discards out-
liers to improve the result, as discussed by Besl et al. [3]. Approaches
for various scenarios using ICP emerged over time, such as point-to-
point [44], point-to-surface [31] or generalized ICP [48]. Some more
modern variants are summarized by Rusinkiewicz et al. [43]. Usually,
ICP requires a good initial alignment for accurate results and is severely
affected by noise.

More recent methods rely on deep learning, such as the work of
Li et al. [30] and the TEASER algorithm [64], which is highly robust
against outliers, however, at the costs of requiring significant amounts
of training data. We follow a different approach to balance complexity,
computational cost, accuracy and robustness. We employ a lightweight
algorithm to enable instant application on mobile hardware. Never-
theless, deep learning algorithms could potentially be used on mobile
devices in the future.

2.3 SUE data and applications

SUE workers have raised concerns about the inadequate state of doc-
umentation in the field [18, 20]. Depth information on assets is often
missing or unreliable, and companies generally do not thoroughly sur-
vey newly installed utilities. Incorrect documentation is typically only
identified after damage has occurred, as companies are not legally
obliged to report as-built information. Furthermore, documentation re-
quirements only mandate the reporting of 2D data, and there is a lack of
standardized digital formats, with many records in the form of scanned
drawings that are difficult to integrate into SUE databases. Although
several countries have implemented programs to address documentation
challenges, data accuracy and reliability remain a concern.

An example of poor infrastructure documentation is shown in Fig. 1
(left), overlaying SUE data on geo-tagged 3D reconstructions. Survey
data provided in accordance with current legislation is not always accu-
rate enough to visualize infrastructure on excavation sites. As can be
seen in Fig. 1 (center, bottom), there are significant deviations, espe-
cially in depth. Even already aligned pipes might show a displacement
in height of half the radius of the pipes, suggesting that the raw survey
measurement points on upper pipe surface are taken as pipe depth in
the documentation.

Hansen et al. [19] suggest using construction and maintenance
projects to improve documentation quality, and propose on-site docu-
mentation using photogrammetry or laser scanning, as well as utilizing
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Fig. 2: A traditional (error prone) manual surveying task to (re-)map scans to SUE data (left) and our (semi-)automated semantic linking approach
(right), using a Lidar enabled handheld device to automatically align SUE data with real infrastructure to make online information accessible.
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Fig. 3: 3D reconstructions of excavation sites from our data set, depicting the predominant use of straight pipes and T-junctions. When hard pipes
are used for water or gas, they show only sharp angles of 45°, 60°, or 90°, as shown in the bottom left image. Some reconstructions also show a
small outgoing branch, as seen in the top image. Occasionally, pipes are partially covered by dirt, as shown in the bottom row, third image.

geo-tagged 3D reconstructions for accurate mapping. Mobile hard-
ware for reconstructions and automated segmentation and alignment
algorithms should be used for data verification, mapping, or correction.

Schall er al. were among the first to show the benefits of AR in
SUE [12, 13, 45]. Hansen et al. [17] more recently described virtual
spraymarkings and virtual daylighting approaches. However, precise
localization of both the observer and the data has been a recurring chal-
lenge. Furthermore, SUE data [49, 53] have been used for localization.
A combination of SUE, GPS and IMU data served the best results [13,
16, 45, 67]. The importance of localization and data accuracy is further
underlined in Xu’s review on AR in civil engineering [62]. However, all
approaches fail to operate on inaccurate SUE data. Our work proposes
a solution to this issue.

Various hardware and software products have been released in re-
cent years: AugView? is a commercial AR solution for underground
infrastructure; vGIS® uses SUE data for visualizations, and AVUS*
focuses on reality capture and reconstructions. All these products rely
on third party surveying equipment for localization, while Trimble is
the only vendor offering an all-in-one solution, SiteVision. Compared
to the method proposed by Hansen et al. [17], all these commercial
solutions involve manual setup processes. Furthermore, they offer only
very limited ways to overcome inconsistent SUE data. A comparison
between the traditional workflow and the proposed approach is shown
in Fig. 2.

3 System overview

In the following, we briefly describe our setup. Furthermore, we quickly
describe the main problems of currently available SUE data.

3.1 Hardware

We utilize a setup similar to the one proposed by Hansen ez al. [17],
consisting of an external sensing cube for highly accurate global local-
ization combined with an iPad Pro (second-gen or later) equipped with
a Lidar sensor. Comparisons between 3D reconstructions from indus-
trial Lidar scanners and the iPad Pro showed that the mobile device can
match professional equipment in accuracy up to a range of 5 m [50,

2https ://www.augview.net/
Shttps://www.vgis.io/
4https ://www.avus.tech/

60]. The external sensing cube consists of a GNSS RTK module for
global position estimation (RTK float ; 20 cm and RTK fixed | 2 cm),
an IMU with compass for orientation estimation, and an altimeter to
compensate for errors in GPS altitude estimation. Data are transferred
via MQTT? using a mobile WIFI hotspot, while a semi-automated
routine using the kalibr® tool [9, 10] is used for one-time calibration of
the setup. This calibration is necessary for optimal accuracy; however,
it is not mission-critical given the required accuracy level of around 20
cm employed in SUE.

3.2 Software

The Unity engine and its tracking API ARFoundation is utilized to
ensure cross-platform compatibility and maintainability. A reference
space is created in the Unity scene, allowing the fusion of global and
local tracking information into a single coordinate space. This enables
geo-referenced positioning of objects within Unity software. However,
previous experiments have revealed limitations in compass-based north
estimation and in local tracking drift [51].

In order to establish the relationship of as-planned and as-built data,
these two points are crucial. Rotation errors need to be minimized
to ensure accurate alignment of SUE data, while drift must be miti-
gated to prevent visualizations from wandering within the scene. We
previously implemented a continuous drift correction that utilizes RTK-
GPS as ground truth to re-initialize the reference coordinate system
whenever the local tracking drifts too far. Furthermore, we developed a
GPS-based north estimation algorithm, derived from frequently used
approaches in robotics [5, 57, 65] using two antennae. North angles
are continuously calculated inside UTM coordinate space between
two positions in the virtual tracking space and the GPS space. The
difference of these angles can be used to rotate the local coordinate
space to the real-world north. Using this setup, we create colored point
clouds, which are automatically globally registered during capture.
Some examples can be seen in Fig. 3.

4 Semantic linking

We refer to the process of assigning correspondences from SUE data
to real-world objects such as pipes as semantic linking. Once such

5https ://mqtt.org/
6https ://github.com/ethz-asl/kalibr
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Fig. 4: Semantic Linking workflow: Initialization (yellow) begins with user-provided 3D-point input on the pipe, initializing a candidate point
queue via Birds Eye-View Rendering for pipe heading estimation. Segmentation (gray) iteratively processes candidate points until no more
remain. Each iteration dequeues a candidate point, renders images around it, and performs Image Space Segmentation within all rendered images.
Segmentation success requires at least 4 out of 6 images to yield valid results. Successful segmentation projects 2D image space results into 3D
space, producing a 3D-line (Result point, Pipe direction) for calculating subsequent candidates and saving the Result Point. Alignment (green)
retrieves 3D polyline data from a GIS database and aligns it with result 3D points via a least-squares fit.

(a) rendered input

(b) color segmentation

(c) distance transform (d) filtered (e) estimated line
Fig. 5: Main steps of segmentation in image space: (a) render image around candidate point (b) color based segmentation to mark pipe area in the
image, (c) distance transform to highlight the middle part of the tube, (d) individual filtering to detect horizontal lines, This used to eliminate

disturbance of junction parts or other noise in the color segmentation, (e) visualization of the segmentation result in the given examples. Red lines

are used for re-projection into 3D space.

correspondences are established, the operator can easily refer to items
in the SUE database and visualize assets in situ. The linking procedure
consists of three steps: First, an initialization phase obtains starting
points. Second, a segmentation step identifies potential pipes, and,
third, a fitting step determines their precise positions. Fig. 4 depicts the
three stages and their main components, as well as the information flow
and the iterative nature of our proposed algorithm.

4.1

A common approach to get an initial pose and a starting point is to let
the operator use a tablet to tap on any point on the pipe. This 3D point
is used to extract the color of the pipe and initialize the segmentation
(Fig. 4, yellow). First, we need to compute the orientation of the pipe,
such that it can be traversed efficiently. We render a birds-eye view
of the pipe at the given point using the gravity vector known from
the sensors. The sensor ensures that the upward direction is aligned
with gravity during reconstruction. Given the color of the initial point,
we perform a straight-forward HSV color segmentation, resulting in a
binary mask (Fig. 5b). We allow an empirically found color deviation
of 15% of the hue component to ensure good segmentations. By fitting
a bounding box to the mask, we find the rotation around the up-vector
(sky), which indicates the longitudinal direction of the pipe. As we may

Initialization

assume that pipes are placed horizontally, only this rotation must be set.

The selected point Cjyjs, and the corresponding direction ©,,;; are then
added to the candidate points list C (Algorithm 1, L3).

4.2 Segmentation

The segmentation of pipe-like structures is the most important part
of semantic linking. It has to overcome Lidar, photogrammetry and
excavation limitations to enable on-site applications. Fig. 4 (Gray)
and Algorithm 1 (L4-L15) depict the main steps of the segmentation
procedure which combines (Cipi, Dniz) from the initialization with a
colored point-cloud/mesh to output a line based representation of the
pipe in question. The segmentation processes candidate points C; from
the list C into result points R; which are kept in a separate list R. Every

C; with its directions ©; represents a different point on the pipe. We
use the estimated direction D; to iteratively process points along the
pipe in the longitudinal direction, allowing us to resolve branching and
curves. Therefore, the segmentation algorithm can be subdivided into
six individual steps.

The exit condition Any candidate points left?” checks if there are
any C; in C left. If so, the first is taken (in a FIFO manner, Algorithm
1, L5) and passed to the ”Render Images” step. By orbiting a virtual
camera (£30°) around the longitudinal direction D; of the pipe at the
candidate point C;, we render an image of the 3D structure every twelve
degrees, resulting in six image renderings / (Fig. 5a and Fig. 6).

The rendered images are then passed on to the ”Image Space Seg-
mentation” step, where every /; is processed. For each I;, we perform
a color segmentation to create a binary mask of the pipe-like structures
(Fig. 5b). Based on the binary mask, we perform a distance transform
(highest distance from the boundaries) to obtain the center line of the
pipe (Fig. 5¢). A simple binary filter kernel is applied to remove any
remaining outliers, resulting in an estimate of the center-line (Fig. 5d).
A 2D line fitting algorithm yields the estimated center line (Fig. Se).
We thereby obtain up to six 2D estimates of the center-line S of the
pipe. However, we require the process to return at least four valid line
estimates, otherwise, this candidate (C;) is terminated and we look for
the next one (Fig. 4, ’Segmentation Success?”’, Algorithm 1 L8).

On success, S is passed on to the ”Reproject 2D Results into 3D”
step, where the estimated center-lines are used to find the real center-
line in 3D. Due to the noisy nature of the data, the line estimates
might still be inaccurate. In order to arrive at a more reliable, but still
computationally inexpensive approach running in real-time on mobile
devices, we compute the pairwise intersection of all planes P given
by the virtual camera center (Fig. 6) and the center-line on the image
plane (Fig. 6). From the virtual camera orbiting, we have at most
six virtual camera centers and corresponding planes, yielding up to 30
intersections. Using a second order Lagrange interpolation, we estimate
the intersection line and represent it as the result point (center of the
intersection line) and corresponding directional vector (R;,D;) (Fig. 6,
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Fig. 6: Illustration of the segmentation approach. Planes (P;) are pro-
jected through the segmented pipe in the image space (S;) of rendered
images (;) around the current candidate Point (C;), resulting in their
intersection at the center of the corresponding real-world pipe (R;,9;).
Using this result, the next candidate point (C;11) can be calculated.

Algorithm 1, L10).

In contrast to a birds-eye direction, we consider a direction in 3D
space, this allows step-wise progression in all directions, also up (sky)
and down (bottom). This helps to sample around corners and junctions.
However, rapid changes in direction, such as 90° curves or junctions,
are not detected in this stage, but in a later step. The final result of this
segmentation is obtained by averaging all intersection results.

Next, the R; is added to R for later use (Fig. 4, ”Add result point™).
The tuple (R;,D;) is passed to ’Compute new candidate point”
where it is used to compute a new candidate point C; 1| = R;+D; - Wis,
where w;,, refers to the step size when walking the pipe (Fig. 6). This
allows use to follow the pipe structure and to accommodate for direc-
tional changes. Finally the loop is closed, by checking again the list
of candidate points C (Fig. 4, ”Any candidate points left?”’). Once
C becomes empty, we continue with the fitting step as described in
Sect. 4.3.

421

In this section, we give some additional details on the implementation of
the image rendering, the image-space segmentation, the optimal multi-
plane intersection, the junction detection, and the abortion criteria. In
addition, we discuss the integration with Unity. The segmentation and
alignment algorithms are implemented as a cross-platform C++ library.
It functions as a standalone tool with background rendering through
Open3D’, or it is used in conjunction with a rendering engine (e.g.,
Unity) through callbacks. When using Unity as a testbed, we have to
account for different coordinate systems and handedness. Potree® was
used to render 3D point cloud data. Synchronization between the main
thread and the segmentation thread is necessary, as cameras and image
rendering can only be served in the main thread. Image processing is
done using OpenCV. The Ceres solver [1] was used to implement the
optimization algorithm in C++ for real-time performance on mobile
devices. An example of semantic linking running on the iPad within
the Unity software is shown later in Fig. 16.

Implementation details

Why not normals? Naively, using surface normals would easily
allow to estimate center points along pipe structures, but this approach
fails on real-world noisy data. Fig. 8 depicts how challenging the
reconstruction task can get when pipe-like structures are not fully
excavated, deformed and only partially contained in the reconstruction
built from images taken from a street-level viewpoint. Pipes fade
into the surroundings and become hard to recognize from geometry
alone. Works like Maurell ez al. [33] apply the commonly used CGAL

7http ://www.open3d.org/
8https ://github.com/SFraissTU/BA_PointCloud

Algorithm 1 Segmentation

1: Input: Cj,js, colored point-cloud/mesh; Output: R
2: ®Djpir + EstimatePipeDirection( Ciyr )
3: C.AdA(Cinirs Dinir))

4: while (C.length > 0) do

5: (C;,®) < C.pop_front ()

6: I < RenderImages((C;,D;))

7: S + SegmentImages (/)

8: if S.1length > 3 then

9: P = CreatePlanes(S)
10: (Ri,®;) + IntersectPlanes(P)
11: R.add(R;)
12: Cit1 < Ri+Di*wyig
13: C.Add((Cix1,D}))
14: end if

15: end while

Pipe direction 2 The direction vector of a C; or R;
Candidate point C; A guessed point on the pipe

Candidate points C C=1[..(Ci,D:),(Ci+1,Dis1), -]

Result point R; A verified point on the pipe

Result points R R=[,Ri,Rit1,-]

Render Images I List of rendered virtual views

Segmentation Results S Estimated line per segmentation (Fig. 5)
Step size Intermediate step size to walk along the pipe

Table 1: Notation for Algorithm 1.

[56] library for shape detection of cylinders, but they only operate
on isolated geometry where major parts of the cylindrical structures
are visible. We further evaluated CGAL algorithms in Sect. 5.1. In
contrast, for reconstructing subsurface utilities, usually only a (very
noisy) portion of the structure is visible, and it can only be captured
from the street level. Our approach addresses this problem through
multi-image segmentation and projection into 3D space. The estimated
model consists of 3D points along the center of the pipe-structure,
which is used in the fitting step to precisely link to the corresponding
SUE data.

Performing the segmentation procedure in the image domain over-
comes the exhaustive 3D point matching employed in ICP-like algo-
rithms, enabling our method to operate equally well on sparse point
clouds by simply increasing the rendered point size. Image based edge
detection in RGB-D images has the same advantage.

Image rendering The resolution of the rendered images is chosen
for fast processing. Since we know approximate object sizes and can
vary the distance accordingly, using lower resolutions is more efficient,
while still delivering good segmentation results. Lower resolutions have
the additional advantage that high-frequency noise gets suppressed. We
empirically determined a resolution of 160 x 120 pixels to work best
for our purposes. We set the distance of the virtual camera to 3 —4 x the
diameter of the pipe, typically around 60 cm, and we keep a horizontal
field of view of 40°.

Longitudinal walks are sampled using steps of 10 — 20 cm, depend-
ing on the field of view, to guarantee a slight overlap. Tests with
adaptive sampling based on segmentation width yielded equivalent
results. However, it is worth noting that optimal parameter choices still
depend on the scenario and the type of excavation.

Our method to segment synthetic images effectively decouples the
segmentation algorithm from the 3D input, as we only require the 3D
structure to be rendered in color. Point-cloud density and point size
thereby have a direct impact on the rendered image. We can use the
near and far clipping plane to selectively suppress the background and
foreground during rendering. As a result, only the pipe is rendered,
helping the segmentation algorithm.

Image-space segmentation To ensure robust color segmentation,
we apply Gaussian blur (¢ = 3) to further reduce outliers and smooth
the color. Additionally, on sparse or incomplete data, morphological
operations can be applied to create a more homogeneous image. Dilate
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and erode operations help to preserve edges and close holes. Hue
thresholding in HSV color space and pixel-based region growing can
help to stabilize the segmentation results. However, the quality of
segmentation was more than sufficient within our real-world dataset,
even without these enhancements.

Optimal multi-plane intersection For every virtual camera, we
compute the plane through the camera center and the segmented line,
taking into account the rendered image properties. Planes are each
represented as a point (p;) and a normal vector (r;). The normal vec-
tor (n;) is obtained by calculating the cross product of two rays that
originate from the camera position and pass through any point on the
segmented line on the image plane (we use the leftmost and rightmost
points). In addition to the line at the intersection of two planes, a
point on the line near the cameras is required. Hence, a second step is
necessary to find this point. These two steps can be combined into a
single optimization step using Lagrange multipliers [26]. We find an
intersection point (p) that has a minimum distance to the center of two
cameras (c = (p; + p2)/2) while satisfying the condition that the point
lies on both planes. This optimization problem is characterized by an
objective function

arg min||p —c|P = (px—c)? +(py—))? +(p:—c)* (1)

subject to two constraints (Equation 2)

(p—p1) m =0, (p—p2)n=0. @)
Five linear equations are represented in matrix form in Equation 3; 4
and p are the Lagrange multipliers of the two constraints. Solving this
system of equations yields the desired point p.

2 0 0 nie no [px 2cx

0 2 0 my ny| |py 2cey

0 0 2 n; ny| |pz| = 2¢e 3)
n my n; 0 0|4 p1-ny
nmy nyy nyy 0 0] [p P22

Subsequently, the direction of the intersection line can be obtained as
the cross product of the normal vectors of the two planes. To calculate
the intersection of all up to six planes, an iterative process is applied
that involves estimating the intersection lines of pairs of planes and
then averaging them while filtering out any outliers. This is necessary
because the planes do not intersect perfectly in one line. Alternatively,
a comprehensive optimization approach can perform the intersection of
all planes in a single step. However, the integrated approach is slower.
Since it must be executed in every single segmentation step, we prefer
the sequential algorithm.

Junction detection T-junctions, cross junctions, and sharp curves
are identified in an image by analyzing the contours of the color mask.
Pixel-by-pixel analysis of the 2D border determines the type of junction
currently observed. Based on the type, we take actions like adding
a new point to the work queue for a T-junction or adjusting the walk
direction in case of a steep curve.

4.3 Fitting

We refer to fitting (Fig. 4, green) as the process of establishing the
link between the virtual data (e.g., SUE representations) and the real-
world observation. The segmentation step gives us a set of 3D points
(result points, R) representing the real pipe, and GPS lets us query
SUE data (Fig. 4, ”Retrieve GIS polyline data”). SUE data are
commonly presented as polylines?. We take advantage of the polyline
representation of the GIS data to break down the fitting problem to 3D
lines and points instead of matching complex 3D structures. Polylines
consist of points representing finite line segments; therefore, we can
define a minimization problem to align result points with line segments
of the polyline (Fig. 4, ’Fit result points to GIS data”). The result

9https ://docs.qgis.org/2.8/en/docs/gentle_gis_introduction/
vector_data.html
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Fig. 7: Generation of synthetic data using Gaussian noise on top of
SUE data for fitting evaluation.

of the minimization is a rigid 6DOF transform (Fig. 4, ’Finish”) that
aligns all line segments to the segmented points. In Equation 4, we
compute the distance (d, Equation 5) between each segmented point
pi and all transformed line segments L, where a single segment (L;)
is defined line between the startpoint (S4;) and the endpoint (Sp;) as
L; = S4;Spi, optimizing for rotation R € SO(3) and translation T using
least squares. Since we operate on real-world data, we operate on a
fixed scale.

p1 R T
sl - {0 1] [Li.i]=0 )
Pn
d— llpi L Lil|?, if base point € L; 5
min(||p; — Sai||?, |pi — Sgil|?), otherwise

To avoid expensive point-to-line pre-mapping steps, we just compute
the distance of any line segment to the given point, and return the
shortest distance — in other words, we match every p; against every
L; € L in a lightweight computation. Equation 5 decides how the
distance is being computed, since we only look into finite line segments:
If the current point p; lies within the line segment L;, we compute the
normal distance to the segment; if p; lies outside, we take the shorter
distance to one of the line segments endpoints (S4; or Sp;).

4.4 Limitations

Segmentation of pipes that are half-covered with dirt or possess similar
coloration is challenging and often leads to lower quality results. Steep
pipes that are partially outside of the clipping space can cause prob-
lems during segmentation, leading to incorrect estimates or no valid
segmentation at all. Additionally, proper initialization is crucial for a
successful segmentation, as the algorithm may fail when processing
points located at a junction or in other problematic positions. In terms
of fitting, straight pipe sections present a challenge, as no unique 6DOF
alignment is possible, leading to ambiguous solutions. However, solu-
tions are usually sufficient to create a semantic link from the SUE data
to the pipes. Finally, when only a small part of an outgoing branch is
visible, achieving proper alignment becomes problematic.

5 Evaluation

‘We evaluate the proposed semantic linking approach on real and syn-
thetic data. The real-world dataset consists of 30 reconstructed excava-
tions together with the corresponding SUE data. Fig. 3 depicts a few
examples of the dataset. Overall, it consists of ten straight segmented,
two curved segments, and 18 T-junctions, where 17/30 also contain
fire hydrants. On the downside, the real-world dataset contains errors
regarding SUE data and reconstruction artifacts.

Moreover, we generate 1.000 random samples to evaluate our point-
to-segment fitting approach. Synthetic data is generated based on the
real SUE data (depicted in Fig. 2). We take a random point on an
existing SUE position and extract all pipe information within a radius
of 6 m, matching the size of real-world excavations in our dataset.
Furthermore, we sample points along the pipe and add Gaussian noise
to simulate real input to the fitting. Lastly, we randomly displace the
SUE data to simulate a significant error, as depicted in Fig. 7.
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Fig. 8: Observed noise level on Lidar and image-based reconstructions.
Narrow viewing angles in top-down perspective cause artefacts and
impair reconstructing tube-like structures. Orange highlights the de-
formed contour of a round pipe. Using normals for segmentation or
center estimation leads to severe difficulties.

Fig. 9: CGAL results. Left image shows filtered efficient RANSAC
results using different normal thresholds (green, orange, purple). Due to
poor normal quality, different parts of the pipe fall into the segmentation
with variance of this parameter. Nevertheless, it is possible to obtain
reasonably accurate segmentations of parts of the pipe. The right Image
shows region growing result with every region colored in a different
color. Region growing does not yield usable results.

We want to evaluate segmentation and fitting both individually and
together. Therefore, we run the segmentation on the real data and
compare it to ground truth data, i.e., the aligned SUE data from the
dataset. Moreover, we use synthetic data to evaluate the fitting on
synthetic data with real-world characteristics and compare it with the
same ground truth. Lastly, we evaluate semantic linking and compare
it against the same ground truth.

Although real-world examples are limited, our evaluation provides
insight into the value of our method. While the fitting approach can be
evaluated using synthetic data in a satisfactory manner, generating good
synthetic data sets to evaluate the segmentation poses a challenge. In
general, the results achieve the targeted accuracy of < 20 cm. However,
problematic cases can arise where segmentation fails or produces poor
estimates, and the presence of a few poorly segmented points at pipe
ends can significantly impact the alignment process. Translational
results, as the more critical factor, are usually sufficient, but rotational
alignment may not be adequate for some of the real-world examples.

5.1 Comparison to other algortihms

The Computational Geometry Algorithms Library (CGAL) implements
highly sophisticated algorithms in the area of computer vision and
graphics. Algorithms for primitive fitting (e.g., cylinders) or segmen-
tation are well supported and find a broad use among the computer
science community. As already mentioned in Sect. 2, our use case
(daylighted subsurface infrastructure) is not well suited for this kind
of algorithm, which is designed to work on “more clean” data. Within
CGAL, we identify two promising algorithms!?: (a) a RANSAC based
primitive fitting to detect cylidrical shapes in 3D point-cloud data, and
(b) aregion growing implementation to segment 3D point-clouds. We
tuned the parameters of both versions to ensure the best performance
on our datasets. Both implementations require a point cloud with un-
oriented normals. This requires an additional pre-processing step to
compute the normals taking approx. 30 seconds with tools like Cloud-

10https ://www.cgal.org/index.html
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Fig. 10: Different pipe structures yield similar errors, which shows the
segmentation performance is less affected by the structure itself. Due
to the single occurrence within the curve category, it is hard to draw
conclusions from the higher error. 75% of the segmentation yield an
error below 5 cm (< 10 cm including curve), and the overall error is
smaller than 30 cm.

Fig. 11: Representative segmentation results of real-world reconstruc-
tions where blue depicts the segmented 3D points; green, the ground
truth, and red, the point-to-model distance used for evaluation.

Compare'! for metric point-cloud reconstruction spanning around 5 x 5
meters similar to Fig. 3.

A good depiction of the data our algorithm has to handle is presented
in Fig. 8. Through the narrow angles, e.g., when looking into a hole,
we get a deformed surface most of the time. Additionally, pipes are
not fully visible, and, due to the deformation, the surface normals point
into a variety of directions, making it especially hard for normal-based
algorithms.

The point clouds shown in Fig. 1 consist of 4 x 10° points, and take
3.9 seconds with our implementation on a 2015 laptop computer (i7-
7700HQ, GTX 1050, 16GB). We use this scene to illustrate differences
among the different algorithms.

CGAL: efficient RANSAC (Primitive Fitting) CGAL'’s efficient
RANSAC implementation is based on Schnabel et al. [46]. When
running with default parameters on our test point cloud, the algorithm
fails to detect any cylinders and takes 31 seconds to complete, ten times
slower than ours. Accounting for the pre-processing step (normals esti-
mation), we can add another 30 seconds to the runtime. Nevertheless,
adjusting the parameters does lead to partial pipe segmentations, as
depicted in Fig. 9, left. Three different segmentation runs are visualized
(green, orange, purple), where only the normal_threshold parameter
varies, leading to different parts of the pipe being detected. All runs
yield more than 50 cylinders, but only a few exhibit reasonable radii
to match the pipe. After filtering cylinders with inadequate radii, we
obtain estimates corresponding to small sections of the pipe. Wrong
estimates are also present, especially seen in green here. The CGAL
RANSAC implementation falls short of detecting pipes over bigger
distances. More importantly, a runtime of 30 seconds renders it unus-
able for instant use in AR applications. Tuning parameters for better
results even increases runtimes to 268, 456, and 652 seconds for three
variations shown in Fig. 9, left. The runtimes are compared in Table 2.

CGAL: Region Growing Lafrage et al. [28] is used as a reference
implementation. The algorithm primarily utilizes distances between
neighbors and angles between normal vectors for accurate primitive

11https ://www.danielgm.net/cc/
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Fig. 12: The direct comparison between results of higher (blue) and
smaller (purple) sample rate is plotted. Rotational error is shown on
the left, and translational error, on the right. A higher sample rate of
segmentation points is observed to reduce the error of the alignment
process, particularly in the rotational case. The overall results, with a
sample distance of 0.3 m, already demonstrate sufficient accuracy, with
95% of rotational alignment error being within 0.6°. The translational
alignment is similar for both sample sizes.
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Fig. 13: A higher rotational error along the main axis of the T-junction
was received due to insufficient sampling along the branch. Orange
shows the ground truth; green depicts the aligned model, and blue
shows the sampled points. The point-to-model distance was < 3 cm
and the rotational error was at 7°. All errors are below the constraints
of a real excavation use-case.

detection. Fig. 9, right, illustrates an example segmentation where the
obtained results are entirely unusable. Neither pipes nor background
can be identified for further processing. Despite attempting various
parameter adjustments, no improvements were achieved. Even if a rea-
sonable segmentation was achievable, the runtime remains a significant
drawback with this implementation. The region growing algorithm
takes 376 seconds, approx. 50 times longer than ours, not including
the additional 30 seconds spent on the pre-processing to estimate the
normals.

5.2 Segmentation evaluation

We run the presented segmentation algorithm over the full real-world
dataset and compare it with the ground truth, which is the manually
aligned GPS data. In 75% of the cases, we stay below a total error of 10
cm and, for all cases, below 30 cm. On average, we observe around 5
cm total error, where the curved scene is slightly higher at 8 cm. Since
we only have one scene of this kind, it is hard to draw conclusions
from this observation. Fig. 10 shows a good overall segmentation
performance across the dataset, including outliers. However, for a
real-world application, we perform within the bounds of a shovel width
or even better.

We observed issues when fire hydrants face towards the camera, as
they can interfere with the correct detection of branches and can also
be segmented as part of the pipe. Limiting the culling space to reduce
noise can prevent the detection of T-junctions with branches that do not
extend to the ground and cause problems with very steep pipes.

However, better reconstructed pipes with a slope of about 45° could
be perfectly segmented in another scene. To improve the segmentation
of fire hydrants, points with steep slopes relative to the previous point
are treated as outliers using a gradient threshold greater than 60°. Ad-
justable parameters allow us to overcome segmentation shortcomings
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Fig. 14: Results on real segmentation data show suitable median values.
The distribution of translational alignment errors is similar to that of
synthetic data. A median error of less than 5 cm and maximum error
of less than 20 cm is considered adequate for practical applications.
However, a few bad segmentation points at the end of pipes and a
significant number of real-world scenarios with only small exposed
parts of the outgoing branches at junctions lead to higher rotational
errors. Despite this problem, a majority of the rotation results are still
within one degree offset, which is considered accurate enough.

at sight, but especially fire hydrants can give the algorithm a hard time.
We compute the point-to-model (Fig. 11) distance for each seg-
mented 3D point using the distance function from Equation 5. The
default parameters worked for 24/30 of the real-world datasets. Ap-
plying heuristics related to the diameter of the pipe to control camera
distance and step-size, the rest of the scenes worked flawlessly.

5.3 Fitting evaluation

The 3D points in the synthetic data set were offset from the real data by
adding Gaussian noise (0 = 0.1 m). Additionally, the pipe structures
were randomly moved (£+2 m, +5° sky, +-2° north/east) to simulate
inaccurate and misaligned SUE data. Once the rigid transform is
computed, we transform the polylines and measure a pointwise distance
from the ground truth. Usually, the error is smaller than the applied
Gaussian noise, indicating good fitting results. Within the dataset, we
also find scenes with short branches (e.g., at T-junctions) that lead to
a small number of sampled points. This can cause a larger rotational
error around the long side of the junction, caused by too few samples.

The median translation error is < 5 cm, and the median rotational
error < 0.3°. The estimation error for rotation can be determined with
an accuracy of < 0.6°, and, for translation, within 15 cm. Higher
sampling rates in the segmentation improve the accuracy of the fitting
process. Outliers produce a maximum error of 5° along the pipe, due
to the horizontal nature of SUE infrastructure. We achieved three times
higher rotational accuracy with an increased sampling rate (30 — 10
cm), but only marginal improvements for translation (Fig. 12).

5.4 Semantic linking evaluation

A start-to-end evaluation of the segmentation and the fitting was per-
formed on the real dataset without the straight segments, due to the
rotational ambiguity along the longitudinal direction, resulting in 20
test scenes. We again randomly displaced the ground truth SUE data
(£2 m, £5° sky, £2° north/east) to simulate the real-world misalign-
ment of SUE data and the real-world. We found that a particular scene
caused a consistent rotational error of 7° along the x-axis, no matter
in which direction the ground truth model was shifted. The average
alignment error was 3 cm, while the ground truth displacement was 4
cm, indicating a better fit with the segmentation as with the SUE data.
Fig. 13 depicts this behavior, where inaccurate segmentation along the
short branch causes the error. We observed this behavior in a number
of other scenes as well. On large scenes (10 m length), such an error
can cause a displacement of a border region of up to 5 m. Rotational
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Fig. 15: A successfully semantically linked 7-junction on real data.
Left: SUE data as a red line strip, segmentation result in green. Right:
original SUE model in red, the corrected model in green.

errors of < 1° have negligible effect on the quality of visualizations.
In addition to the rotation component, we found that the transnational
errors remain low, even with bad segmentations — which allows on-site
use (e.g., accessing related data).

On average, the translation error across the entire dataset is < 10
cm, which is within the range of a shovel width. Fig. 14 (right) shows
the translation error where the y-axis (sky) remains < 5 cm on average
for the dataset. Taking into account the outliers in edge cases, the
error remains below 25 cm. Fig. 14 (left) shows the rotational error
< 1.5° among the dataset. The y-axis (sky) has a smaller error (< 1°)
due to the overall good orientation of SUE data and the correct north
direction estimate. On average, the rotational error stays around 1°,
which is suitable for the application scenario, but can be higher on
segmentations of the short sides of junctions. Especially problematic
are the areas where the pipe smoothly vanishes into the ground. A
T-junction example with vanishing pipes is shown in Fig. 15.

5.5 Timings

‘We found, that our prototypical implementation of the proposed seman-
tic linking algorithm is well-suited for on-site applications. Using an
Apple iPad (second generation, with Lidar), we achieved an average
virtual view rendering performance < 20 ms and a center estimation
across all views of single step < 150 ms. On average, it takes < 180 ms
for a complete step. Using an adaptive sampling size 10 — 30 cm gives
us an approximate runtime of 1 m/s. The fitting step, due to the low
number of well-selected points and the overall cost of the segmentation,
is negligible, with runtimes < 1 s. Table 2 shows details of runtime on
a laptop (i7-7700HQ, GTX 1050, 16GB) and an iPad Pro.

6 Discussion and conclusions

In this work, we propose a semantic linking algorithm using segmenta-
tion to identify pipes at open excavation sites, together with an approach
to align existing (and often displaced) as-built data precisely to the cre-

[ms] 1x 1x MultiView Total per
Device Render | Seg. Compute Time | Step
Ours

PC-pre 8 11 187 6001 313
PC 26 10 258 8155 429
IPad 19 1 142 2971 177
CGAL (PC)

Default [46] 3x10*

Tuned [46] 4% 10°

RG [28] 4x10°

Table 2: Average runtime performance over a subset 5 from our 30 real-
data scenes. pre indicates the headless mode where pre-rendered images
where used. Render indicates time taken for one virtual view; Seg., the
time for a single segmentation; MultiView Compute, the time to estimate
the center of the pipe over all virtual view (includes checking the failed
segmentations); Total Time is the complete time until convergence or
abortion, and perStep is the average time for a single segmentation.
Bottom half of the table shows average runtime of CGAL algorithms
on this subset.

Fig. 16: Semantic Linking on the iPad. (Top) The algorithm iteratively
adds new points to the work queue, until it fails in one direction and
continues in another direction, ultimately terminating when running
out of points. (Bottom) shows the final result in green.

ated results. The successful link between the real and virtual data gives
access to additional information (e.g., in information retrieval systems)
and can further be used to improve workflow efficiency in SUE tasks.
Our platform-independent library allows for the use of any rendering
engine and, therefore, easy integration. This is a key goal for a wide
range of applications, including real-time on-site applications or the de-
velopment of plugins employing background renderings for processing
software like QGIS.

We leverage virtual views to perform image-based segmentation and
estimate the center of pipe-like structures over multiple views. The
fitting algorithm takes GIS data and aligns them to the sampled pipe
structure using a least-squares optimization. The evaluations show an
accuracy of < 10 cm for the proposed segmentation approach, being
within the SUE constraints of < 20 cm. Rotation errors remain mostly
< 1°, but contain inconsistencies in a few cases. Although rotation
errors can result from bad segmentations at pipe ends, our results are
clearly usable for the translational component. Our work should also
be generalizable to other utilities. In addition to water pipes, there are
several underground utilities present, including gas pipes, television
or communication cables, sewer lines, electric lines, and occasionally
metal and concrete pipes that serve various purposes. All these utilities
use a pipe form-factor, which should make the algorithm applicable
as well. Gas pipes resemble water pipes in terms of configuration,
with the only distinction being the use of different colors. Therefore,
the approach utilized for water pipes can also be applied to gas pipes.
Similar circumstances apply to sewer lines and other metal or concrete
pipes. Larger main sewer lines, which may not be completely exposed,
can be handled, provided the color of the pipes is clearly distinguishable
from the surrounding soil.

Challenges may arise when dealing with soft telecommunication
and electricity cables, which are not as rigid and therefore tend to have
slight bends and curves. Since these cables also have a small diameter,
the segmentation process must account for shorter camera-to-cable dis-
tances. However, the segmentation of curved cables should generally
be feasible. A primary difficulty with cables lies not within the segmen-
tation process, but rather in the lack of available GIS data. No reporting
obligations exist, and the displacement of cables during backfilling
can cause discrepancies in recorded data. In addition, excavations that
uncover multiple utilities, which are laid on top of each other, can pose
challenges. Sporadic cross-over of utilities is not a problem, but more
complex scenarios may require a different approach. GIS data could
already be used during segmentation to skip non-segmentable parts that
are hidden by other pipes.

Possible improvements and extensions to the segmentation algorithm
and potential applications are worth exploring. These improvements
include investigating the cause of height estimation problems at exca-
vation borders. Moreover, we can optimize geo-referenced 3D recon-
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structions captured by excavation workers using our semantic linking
method as an offline approach, as we found that even accurate and
recently registered infrastructure data is still off, in most cases by half
the diameter of a pipe, due to the misinterpretation of geodesic measure-
ments. Our work can also support the creation of a large dataset for a
deep learning-based algorithm, which has the potential to produce fast,
accurate and domain specific results, using the automatic segmentation
as a basis for labeling training data.

To the best of our knowledge, no previous approach takes inaccurate
SUE data into account and attempts to tackle this problem. The proce-
dures currently in place in the SUE industry tend to be very static and
rely on as-planned data even if it is of insufficient quality. We believe
that our work can help modernize typical SUE work at excavation sites.
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