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Performance Capture from Multi-View Video Animatable Virtual Human

Figure 1: We learn a freely animatable virtual human from a sequence of textured meshes captured in a multi-camera studio.

Abstract—We propose a novel representation of virtual humans for highly realistic real-time animation and rendering in 3D applications.
We learn pose dependent appearance and geometry from highly accurate dynamic mesh sequences obtained from state-of-the-
art multiview-video reconstruction. Learning pose-dependent appearance and geometry from mesh sequences poses significant
challenges, as it requires the network to learn the intricate shape and articulated motion of a human body. However, statistical body
models like SMPL provide valuable a-priori knowledge which we leverage in order to constrain the dimension of the search space,
enabling more efficient and targeted learning and to define pose-dependency. Instead of directly learning absolute pose-dependent
geometry, we learn the difference between the observed geometry and the fitted SMPL model. This allows us to encode both
pose-dependent appearance and geometry in the consistent UV space of the SMPL model. This approach not only ensures a high
level of realism but also facilitates streamlined processing and rendering of virtual humans in real-time scenarios.

1 INTRODUCTION

The use of immersive media is rapidly increasing in many industries, for
example, in education & training, gaming, and multimedia, but also for
therapeutic purposes, e.g., psychotherapy or rehabilitation. The digital
modeling of humans holds enormous potential for the development of
innovative applications in extended reality (XR), as human models can
be used as natural and intuitive interfaces. Modeling and rendering
virtual humans in a photo-realistic way is extremely important, as
humans are very sensitive to the complex appearance of human bodies
and their faces. Further, in XR environments, interactivity plays an
important role. The impact and applicability of human models increases
significantly with the quality of natural characteristics that can be
integrated into the model.

To get towards photorealism in the rendering, the recorded virtual
human should appear in a high level of detail. This is possible by lever-
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aging free viewpoint video, a technology where a person is recorded
in a studio with dozens of high-resolution video cameras. The multi-
camera recording is processed into a sequence of textured dynamic
meshes. This sequence allows rendering the recorded performance
in XR from different viewpoints in a high level of detail. A major
drawback is that these mesh sequences cannot be freely animated, as
they are confined by their mesh topology. Thus, interactivity is very
limited.

Animatability and interactivity can be introduced by leveraging the
high flexibility of a computer graphics (CG) template mesh [6], for
example SMPL [17]. The use of SMPL is a well-proven approach
to represent the animation of digital humans but offers low geometric
detail even when fitted to real data. We propose to learn pose-dependent
appearance and geometry directly from high quality dynamic mesh
sequences capturing human performances in the SMPL UV-space in
order to facilitate real-time animation.

In this work, we present a novel approach to learning animatable
representations of virtual humans from free-viewpoint video data. Our
method requires capturing the subject’s 3D geometry and texture in
high resolution in different poses. The captured data is used to learn a
representation of a digital human avatar, which can be rendered in novel
poses using standard computer graphics techniques. More specifically,
we fit SMPL parameters to the data and learn pose-dependent texture
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Fig. 2. The four images on the left show a reconstructed model from a performance capture in a fixed pose (St ), the shadow model (MS
t ), the

registered (MR
t ) model with the projected texture and finally the added displacement map. This process leaves artifacts in the texture c, and the

computed displacement d is noisy when re-applied. The two images on the right depict the animatable representation with texture c′ and displacement
d′, which we can synthesize in novel poses. Here, rendered in the same pose as the captured frame to allow for direct visual comparison. It is
apparent that the neural network has learned to synthesize texture c′ and displacement d′ without the artifacts seen in the projection, while keeping
many of the details of the capture.

and geometry from the original data in the SMPL uv space. For this,
we project the texture from the captured meshes to the posed SMPL
mesh and represent the geometry as displacement maps between the
model and the scan. Thereby, we transfer the details of the capture
to the SMPL uv space in a pose-dependent way and train a model to
reproduce these details for novel poses. The original capture and our
learned animatable model are contrasted in Figure 1.

The resulting standard computer graphics model (a textured mesh
and displacement map) can directly be used in standard virtual and
augmented reality (VR/AR) applications without the need for a special
rendering code. Our models offer high geometric detail and photo-
realistic texture, boosting the immersiveness of XR applications with
virtual humans, e.g. in VR education scenarios with a detail-rich teacher
model.

We introduce a new representation of animatable virtual humans
based on SMPL with learned pose-dependent details trained on perfor-
mance capture data. We contribute an automatic pipeline to:

• find correspondences between fitted SMPL meshes and perfor-
mance capture scans,

• project textures from the scans onto the SMPL meshes, and

• store geometric offsets from the correspondences in displacement
maps.

We propose a network architecture that learns to synthesize texture and
displacement from a given pose. Our approach results in animatable
models with detail-rich texture and geometry that can be rendered into
novel poses and can be directly integrated into standard XR applica-
tions.

2 RELATED WORK

Creating virtual humans is an active area of research. Multiple different
approaches exist, that yield rendered images of humans with varying
levels of detail, depending on the model that was chosen to represent the
character. Classical computer graphics methods are often extended with
trained neural networks (as in this work). Recently, implicit models
have become popular, which represent the characters or scenes with
signed-distance functions (SDFs) or Neural Radiance Fields (NeRF).

The simplicity of the problem modelling of these methods is very
attractive, but their results often have limited resolution. The ray-
based rendering methods of NeRFs are quite expensive to compute,
which often makes real-time rendering untenable. Furthermore, the
integration of ray-based rendering schemes is not straightforward in
traditional graphics pipelines that are used to build XR experiences,
such as Unity [11].

In this section, we look at different approaches to virtual human
representation, and how they compare to our ideas: SMPLpix [24]
builds a neural rendering pipeline, where colors attached to SMPL
vertices are fed into a neural rasterizer that produces the final image
output. Surface Motion Capture Animation Synthesis [4] focuses on
creating motion graphs, the appearance is modelled as Eigen textures,
decomposing the texture sequences using linear PCA. We build upon
this idea by learning the feature cube of textures, which is decoded by
a network into the final texture.

DEMEA [31] encodes a mesh using graph convolutions on a mesh
hierarchy, but ignores appearance. Tex2Shape [2] builds full human
body geometry from a single image. Deep4D [25] decodes a skeletal
motion into geometry and texture. This is similar to our idea, but
we chose to represent geometry in the uv space, to achieve higher
geometric detail in the results. In X-Avatar [28], points are sampled in
deformed space per body part, with part-specific deformer networks
finding them in canonical space. An occupancy network provides the
final geometry, and a neural texture field predicts the output color.

Pixel Codec Avatars [18] is a deep generative model of 3D human
face, which combines a decoder of spatially varying features with a
rendering-adaptive per-pixel decoder, integrating them into a dense
surface representation for human heads. Another head-only method
are Neural Head Avatars [10], which similarly to our method predicts
vertex offsets from an underlying mesh and synthesizes view- and
expression-dependent textures.

Several approaches have been taken to construct dynamic humans
with NeRFs [15] [29] [8] [33] [22] [36]. Most similar to this work may
be Surface-Aligned NeRFs [35], which work with a correspondence
matching approach similar to this work. But their feature space is fixed
for the model, and the rendering is orders of magnitude off of being
real-time capable. NeRF rendering can be sped up by storing features
in hash tables and reducing network sizes [20]. This approach is
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starting to be applied to animate humans [13], but resolutions (512x512)
and frame rates (15 fps) are insufficient for real-time XR experiences.
HDHumans [12] provide great quality renderings, but train for 10 days,
and rendering a single image takes 12 seconds.

Neural Human Video Rendering [16] encodes pose-dependent de-
tails in normal maps and, similar to this work, synthesized partial
dynamic textures, but require a refinement network to produce the final
output. Generalizable Neural Performers [32] combine ray-casting and
sampling from target views. In HumanGAN [26], virtual humans are
directly synthesized in 2D space, without requiring 3D models.

AvatarRex [37] are able to provide real-time animation and rendering
through a compositional avatar representation, where body parts are
again separately modeled. Their core body representation is using
structured local implicit fields, with their bespoke rendering pipeline
allowing for state of the art results in quality and speed.

When a temporal sequence of textured meshes has been constructed
from multi-view cameras, the amount of data storage is reduced by at
least an order of magnitude, as the duplicate information from the mul-
tiple views is condensed into the textured surface mesh. We argue that
this is a good starting point to build real-world applications, compared
to the listed works above, which mostly work with the camera inputs.

3 LEARNING A POSE-DEPENDENT REPRESENTATION IN UV
SPACE

In this section, we explain our approach to learn an animatable virtual
human representation. We capture a person in a volumetric studio,
yielding textured mesh sequences showing the person in a variety of
poses with high detail in geometry and texture. A single scan, St , is
shown on the left in Figure 2. We fit the popular SMPL human body
model [17] to the individual frames, yielding SMPL shape parameters
per sequence and SMPL pose parameters per frame (see MS

t in Figure
2). The SMPL meshes cannot capture all details from the multi-view
video data, but yield a temporally consistent representation. The main
idea of our approach is to learn all pose-dependent details in texture
and geometry from the performance capture in the SMPL uv space. For
this purpose, we further move the surface of the model mesh to match
the scan’s surface (see Figure 2). We then project the captured textures
onto the SMPL mesh and calculate displacement maps between the
SMPL mesh surface and the scan data. Finally, we train a network
that learns a mapping between pose and texture/displacement maps and
is able to reproduce them for novel poses with a high level of detail.
These are displayed in the same figure after the divider.

In the following sections, we will specify how we map visual details
from the textured mesh sequence into the uv space of the template
SMPL mesh (shadow mesh), and then train a decoder network to
synthesize pose-dependent details in texture and geometry.

3.1 Input data
Input to our method is a performance capture of a single person, i.e.,
a temporal sequence of textured meshes. In our experiments, the
characters have been recorded in a volumetric studio with 32 high-
definition RGB video cameras, and have been processed into mesh
sequences with the pipeline described in [27].

The mesh topology of the scans changes roughly every second,
and with it the texture coordinates of the meshes. Thus, points in
neighboring frames that have similar 3D positions may render in the
same way, but may map to completely different uv coordinates in
texture space. Our idea is to learn a pose-dependent appearance. To
allow the network to focus on the appearance changes without having
to learn the temporal mapping changes of the uv coordinates, we create
a dataset of consistent uv maps by transferring the texture data from the
non-consistent textured meshes to a consistent model. For the human
representation in this work, we chose the popular SMPL model, which
is widely supported and has been proven to support similar use cases
well.

First, we estimate the parameters of the SMPL model to fit it as
closely as possible to the scans. Different methods exist to estimate
temporally consistent model parameters over performance captures,
such as a modified smplify-X [38], PIXIE [7] and EasyMocap [1]. As

the performance captures consist of thousands of frames per take (at 25
fps), we need a method that is fast to compute per frame, robust, and
requires little manual oversight and editing. Our data was processed
with a variant of EasyMocap, which we extended with an additional
loss term representing the average 3D distance between the fitted SMPL
shadow mesh surface and the surface of the scan mesh. In the optimiza-
tion process, we ensure that the SMPL shape parameters β for each
identity are shared for all recorded frames. This will later allow us to
make the model solely dependent on the pose of the person, while the
shape remains fixed.

From the performance capture and model fitting, we thus have a set
of global shape parameters β , and for each frame at time t:

• St : the scan, as a textured mesh

• global position (translation, rotation, and scale) of SMPL body
model

• θt : SMPL pose parameters, 23 joints with 3 axis angles each.

3.2 Shadow models: Mapping to SMPL uv-space
Given joint and shape parameters θt , β , as well as the global position
for the input data, we can create fitted SMPL meshes MS

t for each
frame. These SMPL meshes are fitted in shape and pose to match the
surface of the scan as closely as the SMPL model allows, shadowing
it, thus we call the fitted SMPL models shadow models. We use the
shadow models to create a consistent representation by mapping all
details from the performance capture into the shadow uv map, i.e. the
highly detailed textures as well as the geometry details represented as
displacement map between the model meshes and the scans. In the
following, we describe, how the details from the scans are mapped onto
the uv space of the shadow mesh.

3.2.1 Pairwise mesh registration
Due to temporal changes in the geometry of the body and the clothing,
a considerable offset between the surfaces of the shadow model mesh
MS

t and the scan St is likely to remain. To close this gap, we perform
a pairwise mesh registration between the shadow mesh and the scan
in order to further move the model surface closer to the scan. This
is implemented as an optimization process that moves the vertices of
the shadow model MS

t , with a vertex-to-surface loss towards St and
Laplacian regularization, using the algorithm of [19]. The surface of
the registered shadow mesh MR

t is closer to the surface of the scan St
than the original model MS

t , improving the quality of the following
correspondence finding step.

3.2.2 Establishing uv correspondences
The mesh registration process has pulled the surfaces closer by finding
correspondences between the model vertices and the scan surface. The
goal of the following step is to (i) map the color values from the texture
of the scan St onto the model mesh and (ii) store the offset between the
surfaces in a displacement map in the same space as the texture color.
To achieve this, we require correspondences at a higher resolution on
the surface at texel level.

There are multiple challenges for finding correct correspondences on
texel level: neither mesh is completely wrapping the other, as the two
surfaces may intersect. Either geometry may also contain parts that are
missing from the other candidate, resulting in surface points without a
correct correspondence. The performance capture processing may also
have introduced small artifacts in geometry and texture. Given these
conditions, the texture baking problem is challenging. Experiments
with established texture baking algorithms from the 3D rendering soft-
ware Blender [5] did not yield results that the authors deemed adequate.

Thus, we implemented the following custom algorithm: First, we
create query points in 3D from each valid texel ui of MR

t in uv. We chose
a resolution of 1024 by 1024 pixels, thus i = 1, . . . ,10242. We map the
uv coordinates ui of the texel to the surface of the mesh, retrieving its
coordinates ri

t ∈ R3.
We cast two rays from ri

t towards the scan St , one in normal direction
of the model surface, and one in negative normal direction. This
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Fig. 3. The content from a textured mesh sequence is projected onto a shadow model. The resulting textures, correspondence confidence map,
displacement map and surface visibility score are used to train a network to synthesize this data, given a specific pose. In the network, the pose
is encoded into a latent space, which selects features from a feature cuboid, which are then successively upsampled into full-size texture and
displacement maps.

produces zero, one or two match candidates, when these rays hit the
surface of St . Then we compute whether the normal of the query points
is in the same hemisphere as the normal at the target surfaces, producing
a positive normal match, or not, producing a negative normal match. If
all matches have the same normal match polarity, we select the match
with the smallest distance. If the matches have opposite polarity, we
prefer the positive match, unless its distance is more than twice that of
the negative match.

The normal matching helps disambiguate between match candidates
in areas like fingers, where there may be two close matches with nearly
opposing normals. Thus ideally, we’d enforce the normal matching for
all cases. But due to geometric artifacts from the way the scans are
created in the capture pipeline, the topology of the scan may not match
in all places (e.g. in inner structures like armpits). While the trade-off
limit of twice the distance was chosen manually, its impact of possible
mismatches will be reduced by the confidence map (see Section 3.2.4).

3.2.3 Texture baking and displacement computation

For all queries of ri
t that have a match xi

t on the surface of St , we
now retrieve the color of the scan at this point from its high-resolution
texture, and store it as ci

t in the texture of the shadow model at ui.

The original shadow mesh MS
t shares its texture space with MR

t , thus
for each query point ri

t we can compute a twin at si
t : the point on the

surface of the shadow mesh with the same texture coordinate. We now
store the signed distance di

t = xi
t − si

t ∈ R3 in a displacement map at ui.
For simplicity in data handling, we store the displacement map d as
floating-point values, to retain the full spatial resolution. In the future,
an encoding scheme for the displacement map could be reviewed that
uses fewer bits per sample, to reduce the overall storage size, which
has not been a concern in this work.

Next, we fill in the texels that are defined in the texture map, but
where we could not find matches. The infilling is performed in im-
age space, using an inpainting technique based on the fast marching
method [30] with radius = 3, implemented in the OpenCV library [9].
Additionally, we fill in the values of the uv map that were not set, either
because no correspondence was found, or because no triangle maps
values there, to produce a smooth output image. Finally, not all areas in
the texture are defined, some are empty. To reduce artifacts from inter-
polation at border values of undefined regions when retrieving values
from the various textures, we also infill the undefined texel values with
the same infilling algorithm as described above.

3.2.4 Confidence map
Although the two surfaces have been brought together as close as
possible, there will remain parts of the mesh surfaces where the shadow
mesh cannot find a true correspondence in the scan, and will find a
false match. When training a network on this data, we want it to focus
on the correct matches, and ignore false ones. To record an estimation
of the correspondence match quality, we compute a confidence map
as follows. At each texel, we compute a confidence score, which is a
multiplication of four scores covering different aspects of the problem:

First, we consider the visibility of the surface. The color information
on the scan surface can only be correct if the texel has been seen by
the cameras in the volumetric capture studio. However, we have no
information about the cameras and their position in space. Instead,
we estimate how well evenly spaced virtual camera positions would
capture each surface point.

We compute the visibility vi
t of scan texels, by self-intersecting with

the scan. We cast 64 evenly distributed rays over the hemisphere above
the surface around the surface normal. Then, we count how many
of the rays self-intersect with the scan and divide by the number of
samples. A lower number of self-intersection implies a higher visibility,
thus a higher confidence, that the point was seen by one or multiple
cameras in the studio: v = 0.0 denotes that all samples self-intersected,
that the surface lies within the model. v = 1.0 denotes that none of
the queries found intersections, and the surface points outward. We
compute this visibility value for the centroid of each face of the mesh,
then we average the values from the face onto its vertices. To get a value
for each texel, we use the barycentric interpolation from the values at
the vertices.

With this visibility map, we can identify which parts of the scan have
texture values that are likely to be incorrect, and should not be use as
training examples. Equally important is to identify the inner structure
of the model mesh: these inner structures should not find a match on
the outside surface of the scan, to not be pulled out from inside the
body to its surface. Thus, we compute wi

t , by sampling in the same way
over the surface of the registered model mesh.

A high distance between the scan and the model is another aspect
that implies a low confidence in the match. We compute the inverse
normalized scan distance δ i

t by clipping the distance values from the
correspondence match to 1

50 th of the diagonal of the fit extents, and
inverting and normalizing the value so that 0 describes a high distance,
and 1 no distance between the surfaces.

As the last component, we compute a score for the match of the
normals, nmst , by taking the dot product between the normal of the
query point on the surface of the registered mesh ni

t and the normal of
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the corresponding point on the scan surface mi
t . We scale them so that a

perfect match delivers a value of 1, and opposite normals show a value
of 0:

nmsi
t =

(ni
t ·mi

t)+1
2

(1)

The final confidence value κ combines the visibility of the points
on the scan (the query target, vi

t ) and the registered mesh (the query
source, wi

t ), the distance of the match δt , and the normal surface align-
ment between source and target nmst for the frame at time t. Full
confidence in the match is denoted by κ = 1, while κ = 0 points to the
correspondence search having failed.

κ
i
t = vi

t ∗wi
t ∗δ

i
t ∗nmsi

t (2)

3.3 Training a generative model for virtual characters
Given the baked textures and displacement maps in uv texture space
of the SMPL model, we can build a network that learns to synthesize
these textures and displacements, given the fitted pose that was used
to generate the model geometry. An overview of the whole synthesis
process is given in Figure 3.

The network takes the (23x3) joint angles θt as the input. To pro-
vide continuity of values at −π,π , we encode each angle value α as
(sin(α),cos(α)). This encoded pose of 138 = 23∗3∗2 values is fed
into a small MLP with a single hidden layer of size 256, to map the
pose into a latent pose space of size 1024. The latent pose then joins
a number of learned 2D feature layers together, forming the initial
feature cuboid of size (32x32x1024). The content of the feature maps
is learned at training time.

The feature cuboid is convolved with a double convolution with a
kernel of size (3x3), followed by a batch norm and ReLU activation,
similar to the U-Net architecture [34]. Then the layer is upsampled
with a transposed convolution of kernel size 2 and stride 2, doubling
resolution and halving the feature layers. This is continued until the
resolution of 10242 px is reached. A final layer convolves the remaining
feature dimension into RGB = 3 layers. The color values are fed
through a final tanh activation function to map them to the [0,1] range.

Replacing the transposed convolution for the upsampling step with
a bilinear upsampling followed by a 2D convolution with kernel size
1 to halve the number of layers was found to produce slightly sharper
results. To allow the widest compatibility (which becomes helpful
when building live demos), the bilinear upsampling was dropped, as it
is not supported by popular runtimes (see discussion in section 3.5).

This autodecoder structure is duplicated, once for the texture synthe-
sis, and once for the displacement map synthesis. The two networks
start from the same feature cuboid, but their convolution weights differ.
The size of the latent pose code, the number of initial feature layers
and their initial size can be adjusted to produce either small networks
that compute fast but may lack some detail in the output, or highly
detailed networks that take more computational budget. The effect of
the various sizes is investigated in section 4.2.

For both texture and displacement map, we use the mean square
error between ground truth and the result from the network. Each stage
that contributes to generating the training data – performance capture,
semantic body model fitting, texture projection from correspondences –
may introduce visual artifacts, as for example some parts of the body
cannot be seen by any camera for a given pose. To avoid having the
network learn from incorrect data, we mask the RGB loss of the texture
map with the confidence map κt computed alongside the projected
texture. As the confidence map contains a term that encodes the inverse
distance, we cannot use it to mask the displacement loss. Instead, we
use just the visibility term of registered mesh wi

t , so that inner structures
(such as the armpit) of the model will not get pulled to the outer
surface. We further remove displacement outliers (from mismatches
in the correspondence finding algorithm), where points on the scan are
more than 5 cm away from the surface of the registered model mesh
in any axis. This limit was determined by surveying a histogram of
displacement values, and holds well for all sequences processed for
this work. As the displacement is computed and synthesized for the
posed mesh, the actual displacement values may be much higher, as

long as the pairwise mesh registration algorithm was able to pull the
mesh onto the scan within 5 cm of each axis.

The final training loss is the sum of the masked texture and displace-
ment losses.

3.4 Training pose selection
Longer captured sequences can contain frames where the person is not
fully reconstructed. This may occur when the person moves over the
limit of the area that is captured by the multi-camera system. As these
broken frames contain no useful texture or geometry data, we discard
them if their κt <

130
255 .

Fig. 4. Selecting performance capture frames by pose variance

A short performance capture of 5 minutes will contain 7500 frames
(at a frame rate of 25 fps). In many of these frames, the person recorded
may be standing around in a default pose, waiting for instructions. To
reduce the training time of the network, it is useful to remove frames
showing the same pose over and over again. To sample f interesting
frames with high variance in the pose (with e.g., f = 100) from our
sample set of around 10,000 frames per character, we implement a
selection algorithm that clusters all poses into f k-means clusters of the
cosines of the joint angle values. For each cluster, we select the frame
that is closest to the cluster’s center. This provides a selection of poses
with high variance from the training set, while ignoring very similar
frames, which would not provide additional benefit to the training data.
The first few samples of this sampling mechanism of the Sarah dataset
with more than 10,000 frames can be seen in Figure 4.

Our approach weighs the impact on the pose of all joints equally
in the sampling. A more traditional approach would be to use the
keyframes from one of the input cameras, but this might bias for move-
ments that provide larger changes (legs), not covering smaller joints
(like fingers). The topology or texture keyframes from the performance
capture do not yield any information, as they are spaced at equal inter-
vals in some of our datasets.

3.5 Rendering
Once a network has been trained, we can use it to synthesize the
animatable virtual human in new poses. The application or experience
will request a character for an SMPL pose θ , which is the input to the
network. Running the inference with the trained model parameters,
the network produces a texture c′ and displacement map d′ for the
given pose. We apply the pose θ to build the SMPL mesh M′ in the
same shape β that was used while training the model. The texture c′
is then applied to the model. In our offline experiments, we apply the
displacement map by subdividing the faces of the SMPL mesh twice
and then moving the resulting vertices by the values retrieved from the
d′. When integrating the network in a live demo, the results should
be rendered with a displacement shader for performance reasons, and
could leverage hardware tessellation to render a smoother silhouette.

To enable integration in XR applications, we designed the network
to allow exporting it in an interchangeable format. The network can be
exported from PyTorch [23] (which we use for training) in the ONNX
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Fig. 5. Performance capture frames versus animatable virtual human
(AVH) in a grabbing (left two images) and a stop position (right to images).

format [3] and used for inference via the Barracuda plugin in Unity
scenes. As we have chosen to use the standard SMPL model which
does not represent finger joints individually, finger shape is not well-
represented in the displacement maps. It improves the visual rendering
quality to mask out the finger values in the displacement maps.

4 RESULTS

4.1 Qualitative Evaluation
We train an animatable human model for each actor with f = 100
frames selected by their pose variance from the roughly 11,000 frames
recorded with the actors Sarah and Johnny, respectively. Both actors
perform a variety of different actions to ensure pose variety for building
models for interactive use cases. Each actor was recorded in four
different takes focusing on specific movements:

• upper body movement, arm, and head rotations,
• lower body movement and walking,
• grabbing, pointing and waving,
• talking, including hand gestures.

We disregard how the character’s facial expressions are rendered, as
they are not dependent on the pose of the body, and thus should be
animated using face-specific algorithms, such as [21].

In Figure 5, we compare a recorded performance capture with our
rendered animatable virtual human (AVH). We show that our animat-
able model is able to exactly reproduce each of the shown poses, a
grabbing pose and a stop pose. Most notably, our approach to use a
displacement map enables our AVH model to render creases and edges
of the clothing correctly, e.g., at the edge between shirt and jeans. Fur-
thermore, the displacement map ensures that the head shape matches
the corresponding volumetric video. Although our pose dependent tex-
ture is not as sharp as in the performance capture, our model provides
animatability, while the original capture is fixed at recording time. We
still achieve high detail such as facial hair, color changes in the jeans as
well as the fine lines of the check shirt. A shortcoming of the underlying
body model is that it includes toes, which in our case lead to artifacts
as our actors wear shoes. In the supplementary video, we demonstrate
how the model behaves under animation, comparing one character to
the recorded sequence and showing the other character synthesized in
novel poses, that were unseen during training. The test subjects wear
casual, but somewhat tightly fitting clothing, which works well for our
approach. Subjects wearing looser clothing, which moves more than
5 cm away from the body under movement, would not be able to be
correctly represented in our model.

4.2 Metrics and Ablations
We train our models on two Ampere A100 GPUs with 40 GB of RAM.
We run each experiment (listed in Table 1) for 500 epochs, with f = 100
training frames and 10 validation frames. Depending on the selected

Table 1. Feature cuboid size ( f c) vs. latent pose space (latent), best
configuration highlighted for each metric

f c latent params loss (·10−3) time (min) f ps

16 512 4.8 M 2.56 32 97
16 2048 73.8 M 2.66 47 45

32 1024 19.5 M 2.37 45 49

64 128 877 K 3.02 32 103
64 512 6.8 M 2.46 43 52

128 256 5.4 M 2.59 42 57

features and thus the model size, the training time varies between 30-50
min. We use the Adam optimizer [14] with default β = (0.9,0.999).
Learning rate lr = 0.00131 and batch size b = 8 were found by tuning
before starting further experiments. We use exponential learning rate
decay to speed up convergence with γ = 0.99 determined empirically.

Following the learning rate experiments, we conducted experiments
on feature space size. Here, we focused on the feature cuboid size and
the latent pose space. Table 1 shows the tested network configurations.
Alongside the feature cuboid size ( f c), and latent pose size (latent),
we recorded the resulting number of parameters (params), the final
validation loss (loss), and the training time (time). Lastly, we also
measured the inference frame rate ( f ps, in frames per second) for each
model on a single A100 GPU. We found that a larger feature space leads
to better training performance but does not improve the validation loss
and thus fails to improve the generalization performance. In terms of
speed ( f ps), all models are feasible to run in real-time; smaller models
tend to increase the frame rate. As the final validation loss is lowest for
f c = 32 and latent = 1024, we continue using these parameters. In our
final experiment, we investigated the influence of the hidden layer size
in the MLP, setting it to 128, 256, and 512 respectively. Results showed
that the hidden layer size does not influence the overall performance
significantly; we kept it at 256.

5 CONCLUSION, LIMITATIONS & FUTURE WORK

We have presented a method for building animatable virtual humans
from free-viewpoint video recordings, by baking textures from the
capture onto shadow meshes, and then training a neural network to
synthesize texture and displacement maps.

We have evaluated our work with a dataset recorded for educational
XR applications. We have demonstrated that an animatable character
can be automatically created from a few minutes of performance cap-
ture, without requiring any intervention by a human artist or designer.

The resulting animatable virtual human can be synthesized from
new poses at interactive frame rates. The textured meshes with a dis-
placement that are synthesized can be rendered in a common computer
graphics pipeline.

Our approach yields highly realistic animatable models. Still, some
limitations remain: The AVH is based on the topology of the SMPL
model. Large deviations from the model topology (the person holding
props, or garments like skirts) are not directly supported in such an
approach. However, we demonstrate the synthesis of pose-dependent
displacement maps in this work. Some NeRF-based human models
learn static features in an SMPL texture space, which is then used during
their ray-based implicit rendering method. It could be an opportunity to
leverage our method to build a pose-dependent feature space for NeRF
rendering. Also, methods that build a neural re-rendering on top of a
rendered SMPL model could benefit from our approach similarly. We
are excited to follow up this work by applying either idea.

The training time of less than an hour allows it to be well-integrated
into a performance capture pipeline, which usually has a much longer
runtime to produce the data. The results of our approach could be
improved in future by ensuring that the network produces similar values
at both sides of a texture border. The network size may be reduced by
sharing early layers in the displacement and texture synthesis. It would
be worth investigating how to disentangle pose and time space.
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