
230 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Microarchitecture-Level Power Management
Anoop Iyer, Member, IEEE,and Diana Marculescu, Member, IEEE

Abstract—In this paper, we present a strategy for run-time
profiling to optimize the configuration of a superscalar micro-
processor dynamically so as to save power with minimum-per-
formance penalty. The configuration of the processor is changed
according to the parallelism and power profile of the running
application. To identify the optimal configuration, additional
hardware with minimal overhead is used to detect the parts of
the running application which have good potential for energy
savings. Experiments on some benchmark programs show good
savings in total energy consumption; we have observed a mean
decrease of 18% in average power, and 9% in total energy. Our
proposed approach can be used for energy-aware computing in
either portable applications or in desktop environments where
power density is becoming a concern. This approach can also be
incorporated in power-management strategies like advanced con-
figuration and power interface (ACPI) as a replacement for classic
thermal management schemes such as static-clock throttling .
Our approach is shown to be better than static-throttling methods
presently used in power management.

Index Terms—Energy aware computing, power management,
resource scaling, voltage scaling.

I. INTRODUCTION

POWER dissipation in microprocessors is becoming an im-
portant concern for designers because of two factors: 1) the

market for mobile and embedded systems is expanding at a rapid
rate and in such systems, battery life is important and power is
at a premium and 2) complex designs and large on-chip caches
present in modern chips require thermal-management strategies
to prevent the chip from overheating; this is true not only for mo-
bile computing, but for conventional processor design as well.
In this paper, we present microarchitectural level control and
resizing of processor resources to address the issue of power
consumption.

A. Prior Work

Although, low-power design has been an active area of re-
search for the last decade or so, the problem of power mod-
eling and optimization at the microarchitectural level has only
recently been addressed. An overview of various approaches to
system-level power management, power optimization, and effi-
cient processor design is given in [1]. A large number of these
techniques focus on memory and cache power optimization. For
example, [2] presents a technique using an additional smaller
“L0” cache for storing frequently executed parts of the pro-
gram, while [3] proposes novel techniques for improving the
energy efficiency of caches. The dynamic power management

Manuscript received February 26, 2001; revised December 22, 2001. This
work was supported in part by NSF Career Award CCR-0084479.

A. Iyer is with AMD, Austin, TX 78741 USA.
D. Marculescu is with the Department of Electrical and Computer Engi-

neering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 USA.
Publisher Item Identifier S 1063-8210(02)06535-6.

approach to saving power in microprocessors using low-power
sleep modes has been implemented in standards like advanced
configuration and power interface (ACPI) [4]. Dynamic supply
voltage variation techniques also show promise [5] and have
been commercially implemented [6]. Microarchitectural level
power modeling and simulation tools are presented in [7] and
[8]. In [7], an accurate parameterized power simulator (accurate
to within 10% when compared with three different high-end mi-
croprocessors) is presented, as well as some interesting tradeoffs
between energy and performance under varying microarchitec-
ture settings. In [8], the case of datapath dominated architec-
tures is considered, as well as an analysis of the impact of com-
piler optimizations and memory design on power-consumption
values. Software optimization for low-power consumption has
also been studied [9].

So far only a few microarchitectural level solutions to the
power problem have been proposed; for example, [10] pro-
poses a technique that uses confidence estimation to gate the
execution of branches that are most likely to be mispredicted,
and [11] presents a new paradigm for adapting the execution
of application programs for low power using profiling. [12]
presents an analysis of different configurations of superscalar
processors and derives the optimal “envelope” for energy-delay
product; but their approach is not adaptive. [13] presents
a framework for complexity-adaptive processors but does
not specify the mechanism for adaptive behavior. In [14], a
similar adaptive scheme is presented, but the approach is very
coarse-grained, and [15] has a dynamic approach but they look
at resizing only the issue queue. The work presented in [16]
uses instructions per cycle (IPC) values obtained from profiling
to characterize different portions of the code and uses a fixed
window of instructions whose execution is monitored in order
to reduce the power consumption.

B. Motivation

Most solutions to the power problem are static in nature since
they do not allow for adaption to the application. It has been ob-
served in [11] and [17] that there is wide variation in processor
resource usage among various applications. In addition, the ex-
ecution profile of most applications indicate that there is also
wide variation in resource usage from one section of an applica-
tion’s code to another. For example, Fig. 1 shows the execution
profile of theepic benchmark (part of the MediaBench suite)
on a typical workload on a eight-way issue processor. We can
see several regions of code execution characterized by high IPC
values lasting for approximately two million cycles each; toward
the end we see regions of code with much lower IPC values.

The quantity and organization of the processor’s resources
will also affect the overall execution profile and the energy con-
sumption. Fig. 2 shows the variation of the total energy con-

1063-8210/02$17.00 © 2002 IEEE

IYER AND MARCULESCU: MICROARCHITECTURE-LEVEL POWER MANAGEMENT 231

Fig. 1. Execution profile of the epic benchmark.

sumption of thelispbenchmark with variation in the register up-
date unit (RUU) size and the effective pipeline width. Low-end
configurations consume higher energy per instruction due to
their inherently high cycles per instruction (CPI); high-end con-
figurations also tend to have high energies in part due to resource
usage and in part due to power consumption of unused modules.
The ideal operating point is somewhere in between.

Combining the two ideas, we can find the optimal operating
point for each region of code in terms of processor resources.
The goal of our work is to identify the right configuration for
each code region in terms of various processor resources to op-
timize the overall energy consumption. Our approach allows
fine-grained power management at the processor level based on
the characteristics of the running application.

We use a hardware profiling scheme to identify tightly cou-
pled regions of code and a hardware-based power estimation
method to judge the power requirements for each region of code
and scale or resize resources at runtime depending on these es-
timates. Allocating architectural resources dynamically based
upon the needs of the running program, coupled with aggres-
sive clock-gating styles, can lead to significant power savings.

C. Organization of Paper

This paper is organized as follows. Section II presents
the framework needed for hotspot detection. We present in
Section III, the methodology for finding the optimal configu-
ration. Section IV contains details of our implementation and
results on a set of benchmarks. In Section V, we discuss some
practical considerations. In Section VI, we conclude with some
final remarks.

II. DETECTING HOTSPOTS

Let us use the termbasic blockto describe a straight execution
path of code ending at any branch or jump instruction. A typical
mix of instructions contains one branch every five or six instruc-
tions, so the average size of the basic block is also of the order
of five or six. In the ideal case, each basic block could be char-
acterized in terms of its parallelism and resource usage and the
configuration of the processor could be changed dynamically for

Fig. 2. Energy variation of lisp.

each basic block. However, in modern processors, that would re-
quire changing the configuration of the processor during almost
every cycle, which is not feasible to implement. Hence, we need
to look at collections of basic blocks executing together, called
hotspots. It has been shown that most of the execution time of
a program is spent in several small critical regions of code, or
in severalhotspots. These hotspots consist of a number of basic
blocks exhibiting strong temporal locality. Mertenet al. have
presented in [17] a scheme for detecting hotspots at run time.
We have implemented a reduced version of their scheme which
we describe as follows:

• Since a hotspot is a collection of frequently executing
basic blocks, identifying hotspots involves keeping a count
of all branch instructions committed and finding the most
frequent branches. We use a cache-like structure called the
branch behavior buffer(BBB) to keep track of branches.
Each branch has an entry in the BBB, consisting of an ex-
ecution counter and a 1-bit candidate flag. The execution
counter (9-bits wide as suggested in [17]) is incremented
each time the branch is taken and once the counter ex-
ceeds a fixed value, the branch in question is marked as a
candidate branch by setting the candidate flag bit for that
branch. Figs. 3 and 4 show the details. The number of en-
tries in the BBB and the width of the execution counter are
determined by the average size of a hotspot; 2K hotspot
entries and 9-bit execution counters worked well for the
applications we tested. For larger applications with bigger
average hotspot sizes, these may have to be higher.

• A saturating counter called thehotspot detection counter
(HDC) keeps track of candidate branches. Initially all bits
of the counter are set; each time a candidate branch is taken
the counter is decremented by a valueand each time a
noncandidate branch is taken, it is incremented by a value
. When the HDC decrements down to zero, we are in a

hotspot. The width of the HDC determines how many can-
didate branches we want to have before we say that we
have detected a hotspot; a very-low HDC width may lead
to many false alarms which may not be hotspots, whereas

232 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Fig. 3. Hotspot detection hardware.

Fig. 4. Implementation of one BBB entry.

a high width may lead to longer times before a hotspot
is detected. We found that a 13-bit wide HDC works for
most benchmarks. The values ofand are determined
by how fast we want the HDC to count upwards and down-
wards; their ratio determines the ratio of candidate to non-
candidate branches that controls the threshold where we
say hotspots are found and lost. For our implementation
we chose as 2 and as 1.

• The BBB and HDC are left running even when execution
is inside the hotspot. When the code strays away from
the hotspot, noncandidate branches start to execute more
frequently; the HDC then increments to its upper limit
eventually and we say that we are out of the hotspot.

• The replacement policy for entries in the BBB is that if
there is a conflict, the old entry is retained and the new one
discarded. Entries arenot replaced; this is needed so that
the BBB figures reflect the correct execution statistics.

• After every cycles, BBB entries, which are noncandi-
date entries are flushed. Every cycles, the entire BBB
is reset. These two mechanisms ensure that the replace-
ment policy we have adopted does not cause stagnation
of entries in the table. Experiments we ran showed that

and were appropriate values.

The amount of time a program spends in hotspots depends on
the behavior of the program itself; Fig. 5 illustrates this for the
benchmarks that we tested. The average fraction of time spent
inside detected hotspots is 92%, with the fraction being higher
for MediaBench programs than for the Spec benchmarks. The
length of most hotspots is of the order of half a million to tens
of millions of cycles, depending upon the application.

Fig. 5. Fraction of execution time spent in hotspots.

III. ENERGY-OPTIMAL CONFIGURATION

Once a hotspot has been detected, we need to determine an
optimum configuration for that hotspot. By the term configu-
ration, we mean a unique combination of several processor pa-
rameters under control. We have seen from our experiments and
from previously reported results [7] that the size of the RUU and
the effective pipeline width are the two factors that most dra-
matically affect the performance and energy consumption of the
processor. Hence, changing the configuration of the processor
would mean setting different values for the RUU size and the ef-
fective pipeline width. To have a consistent flow of instructions
through the pipeline, the fetch, decode, issue and commit widths
were all made equal in order to control the effective pipeline
width. Since less than half the instructions are memory access
instructions, we set the size of theload-store queue(LSQ) to be
half the size of the RUU. We define the optimum as that config-
uration which leads to theleast energy dissipated per committed
instruction.We would like to point out that this is equivalent to
the power-delay product per committed instruction (the inverse
of millions of instructions per second (MIPS) per watt), which is
a metric used for characterizing the power-performance tradeoff
for a given processor.

A. Energy Profiling in Hardware

To determine the optimum configuration, we need a way
to determine approximate energy dissipation statistics in
hardware. For this purpose, when a hotspot is detected, two
counter registers are set in motion: thepower registerand the
instruction count register(ICR).

The power register is used to maintain power statistics for
the four most power-hungry units of the processor. Using
the organization and modeling of Wattch [7] we collected
data on 14 benchmarks to identify the units of the processor
which consume the most energy. We identified seven units of
processor hardware which when taken together account for
over 70% of the energy consumption (excluding clock power)
for all applications. The units we identified and their relative

IYER AND MARCULESCU: MICROARCHITECTURE-LEVEL POWER MANAGEMENT 233

TABLE I
RELATIVE PER-ACCESSENERGY CONSUMPTION OF THEHOTTESTPARTS

OF THE SIMPLESCALAR PROCESSORMODEL

Fig. 6. Power-profiling hardware.

per-access energy dissipations are shown in Table I. These
figures are not exact but are rounded off for simple integer
arithmetic. Multiplying these power figures with the access
counts of the respective units provides a rough estimate of the
energy consumed in each cycle. These multiplications could be
implemented as integer shift and add operations, pipelined if
necessary. A schematic view of this process is shown in Fig. 6.
We point out that depending on the implementation, these
hottest units may be different from the units shown here or the
weights used for estimating power may be different. However,
the same scheme can be implemented irrespective of the actual
processor.

B. Optimizing the Configuration

When a hotspot is detected, a finite state machine (FSM)
walks the processor through all possible configurations for a

Fig. 7. FSM example.

fixed number of instructions in each. The instruction count reg-
ister (ICR) is used to keep a count of the number of instruc-
tions retired by the processor. It is initialized with the number
of instructions to be profiled in each configuration, which we
set in our experiments to 1024. The number of instructions for
testing each configuration was arrived at empirically; we found
that 512 instructions was not accurate enough and 2K instruc-
tions was just as accurate as 1K. During each cycle, the ICR is
decremented by the number of instructions retired in that cycle.
When the ICR reaches zero, the power register is sampled to ob-
tain a figure proportional to the total energy dissipated. If there
are parameters of the processor to vary, exhaustive testing of
all configurations would mean testing all points in the-dimen-
sional lattice for a fixed number of instructions. In our experi-
ments, we varied the RUU size and the fetch rate, and ran 1024
instructions in each configuration. Since we were testing con-
figurations with RUU sizes of 16, 32, 48, and 64; and with fetch
rates of 4, 6, and 8, we had a total of configurations,
requiring an FSM of only 12 states. A schematic of the FSM is
shown in Fig. 7. In general, we have seen that the hotspot de-
tection scheme does not provide many false alarms; but it is in-
deed possible that the hotspot thus obtained, may be lost before
the FSM cycles through all the configurations. In that case, the
default configuration of the procesor is restored and execution
continues.

The approximate energy dissipation statistics obtained by
evaluating all possible configurations are then compared and
the optimal configuration of the processor for the current
hotspot is determined. The processor is then switched to this
optimal configuration for the whole duration of the hotspot,
which could take several million instructions. As Fig. 5 shows,
a majority of the execution time of most applications is spent
inside hotspots, and hence, detecting hotspots and optimizing
the processor’s energy consumption inside hotspots will lead

234 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Fig. 8. Segmented bitlines in array structures.

to an overall increase in the energy-efficiency of the machine.
When execution goes out of the hotspot, the processor is
switched back to the default configuration.

C. Energy Impact of Smaller Structures

When we change the active size of any RAM or CAM, we can
reduce access capacitances by using segmented bitlines to turn
off the unused cells of the array. Fig. 8 illustrates this idea for an
array of size 16 with 4-bit long words; for simplicity the decoder
array and the sense amplifiers are not shown here. This array is
divided into four segments of four words each, and hence, uses
three enable-lines, en1–en3. Each enable line needs to drive a
transmission gate containing one NMOS and one PMOS tran-
sistor; since we need both true and complemented versions of
the enable signal, we need apair of physical enable lines for
each logical enable line. For example, when the active size of
this array is eight, the first enable-line en1 is turned on and en2
and en3 are turned off. This method can also be used in the in-
struction issue logic of a superscalar processor. Changing the
size of the issue window from 64 to 16 can be done if we divide
the array into four segments and enable only the first. The vari-
ation in the per-access energies of the issue stage (reservation
station, wakeup, and select logic) as a function of the instruc-
tion window size are shown in Fig. 9.

Instead of using segmented bitlines, we could also organize
arrays into several banks and selectively enable banks to imple-
ment dynamic sizing.

D. Selective Dynamic Voltage Scaling

Buffered lines in array structures can be used to selectively
enable some parts of the structure and disable others. Thus,
scaling down the resources of a processor can reduce the critical
path delay since the rename and window access stages (which
determine the critical path to a large extent) have latencies
highly dependent on the instruction issue width and the
RUU size . The following equations derived in [18] show the
relationship:

Rename logic delay (1)

(2)

(3)

Fig. 9. Window access energy.

Issue logic delay (4)

We can exploit this to dynamically scale the operating voltage
while keeping the clock frequency constant. Delays in some
structures scale better than others and some delays do not scale
at all. The structures that scale well could be powered by dy-
namic supply voltages. This would necessitate the use of level-
shifters to pass data between different stages which operate at
different voltages.

The dependence of path delay on supply voltage is given by
the following equation [19]:

(5)

If is the delay of a structure in the default configuration,
is the delay after scaling, and is the delay introduced by the
level shifter logic, then the relationship between supply voltage
and delays is given by the following equation:

(6)

In practice, since supply voltages cannot be varied on a contin-
uous scale, the implementation should consist of a few supply
voltage rails with logic for switching between them as and when
delays reduce to appropriate values.

When the processor goes from its highest configuration we
tested (RUU size of 64 and issue width of 8) to the lowest (RUU
size of 16 and issue width of 4), the delay in issue logic reduced
by about 60% (for instance from 3369 ps to 1995 ps in a 0.8m
technology). If the supply voltage was 5 V to start with, scaling
to the lowest configuration now allows the issue logic to run at
3.6 V. Assuming that energy dissipation is proportional to ,
the savings in energy dissipated in the issue logic amount to
about 48%.

IV. I MPLEMENTATION AND RESULTS

A. Implementation on Simplescalar

The above ideas were implemented on the Simplescalar archi-
tecture [20]. Simplescalar is a popular industrial-strength simu-
lator that implements a derivative of the MIPS-IV instruction set

IYER AND MARCULESCU: MICROARCHITECTURE-LEVEL POWER MANAGEMENT 235

TABLE II
BASELINE CONFIGURATION USED FOROUR EXPERIMENTS

and has various configuration options including a superscalar
out-of-order simulator that we used for our experiments. The
power modeling we used to report power figures was based on
Wattch [7], which is an extension to the Simplescalar simulator.
Wattch has various choices for power modeling; the one we
chose for our application assumes support for aggressive clock
gating styles and parameterized power calculation. This implies
that power consumption is scaled according to the number of
units (in case of multiple functional units) or ports used (in case
of register files and caches). Unused units are modeled as con-
suming 10% of their active power in the idle state; this is a con-
servative model for low-feature sizes of modern technologies.
Wattch also uses the scheme implemented in Cacti [21] for opti-
mizing caches and cache-like structures based on delay analysis.

In accordance with the existing implementation of Sim-
plescalar, the additional structures and options we introduced
in the simulator are set through command line options and their
power overhead is included in the total power estimates. The
baseline configuration of the processor we used for our tests is
given in Table II. This is similar to a typical high-performance
processor with out-of-order execution. The configuration of
the processor with the profiling hardware included is shown in
Fig. 10.

B. Maintaining Performance Levels

While resource scaling helps to operate the processor in an
energy-optimal mode, scaling down the effective pipeline width
during execution does lead to a fall in performance. A perfor-
mance monitoring counter along with the profiling hardware can
restrict this performance hit to acceptable levels. After hotspot
detection, while we evaluate the energy usage of each config-
uration, the performance counter keeps track of the number of

Fig. 10. The processor model with profiling hardware included.

cycles needed for the execution of 1024 instructions in each con-
figuration, thus providing a rough CPI estimate. The acceptable
performance hit we defined for our experiments was one-eighth
(12.5%). (In particular, this figure was chosen because dividing
by 8 can be done by a simple 3-bit shift operation.) If a particular
configuration takes more than 12.5% cycles above the baseline
configuration, it is rejected. This ensures that for each hotspot
detected, the performance hit is not more than 12.5%; hence,
the overall performance hit for the application will be less than
12.5%.

Measuring CPI by counting the clock cycles needed for a
fixed number of instructions has its caveats. We have found that
in the event of an instruction cache miss, the number of cycles
counted goes up inordinately and this distorts the CPI figures so
that configurations which are feasible in the long run are some-
times left out of consideration. To minimize the chances of this,
we discount the cycles spent waiting on a cache miss. This tech-
nique gives us a more realistic (though not completely accurate)
estimate of the CPI which we could have obtained, had the cache
access not resulted in a miss. It should be noted that cache misses
do not distort the power estimates since these estimates are de-
termined only by usage of individual units of the processor.

C. Experimental Results

We performed experiments with programs from the Spec95
CPU benchmark suite as well as the MediaBench suite [22].
For the Spec benchmarks, the “reference” workloads supplied
by Spec were simulated and the figures given are for complete
execution of the application. For the MediaBench applications,
we chose and ran appropriate input vectors; for example we used
the popularLenaimage for testingepicimage compression, and
used a short 320 200 movie clip, 68 frames long for testing
mpeg2decoding. We tested thepegwitencryption program using
a few paragraphs of random text.

The power and energy savings we obtained are shown in
Figs. 11 and 12. In Fig. 11, there are four values indicated for
each application. TheDyn value represents the power obtained
with our dynamic resource scaling scheme assuming a 10% en-
ergy overhead for unused units, normalized to the power con-
sumption of the base processor model. TheIdeal value repre-
sents the normalized power consumption assuming no overhead
for unused units; while this is becoming increasingly difficult
to achieve with smaller technologies, this figure is given only

236 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Fig. 11. Variation in power.

Fig. 12. Variation in energy.

to provide an indication of the potential savings possible with
a circuit design aggressively optimized for leakage. The figure
markedPerf represents the power obtained with the constraint
that the performance hit does not exceed 12.5%. The figure
markedDvs shows the power obtained with microarchitecture
resource scaling combined with dynamic voltage scaling ap-
plied to the instruction window alone. The legend for all the
other graphs is identical. For the benchmarks we ran, we ob-
tain an average power saving of 18% and an average saving in
the total energy of 8% when compared to the base case. With
dynamic voltage scaling, the average power saving is 21% and
the energy saving is 12%. The instruction issue window energy
consumption is shown in Fig. 13. Across the benchmarks, we
obtain an average savings of 26% in the instruction window en-
ergy; with dynamic voltage scaling, we obtain 36% saving. The
performance of the processor for various benchmarks using re-
source scaling with and without the constraint on performance
is shown in Fig. 14. The average performance hit is lower for
integer benchmarks than for floating point benchmarks. With

Fig. 13. Variation in instruction window energy.

Fig. 14. Variation in performance.

TABLE III
SAVINGS OBTAINED USING RUN-TIME RESOURCESCALING

the constraint on performance hit, the drop in performance of

IYER AND MARCULESCU: MICROARCHITECTURE-LEVEL POWER MANAGEMENT 237

all the benchmarks is bounded. Table III summarizes the results
and shows comparative percentage savings in total energy and
average-power consumption.

The characteristics of each application have to be taken into
account while interpreting the results. For example, thempeg2
benchmark shows no change in any parameter. This is because
the entire execution time of the mpeg decoder is spent inside one
hotspot; the optimum configuration determined for this hotspot
is the same as the default configuration, so the saving obtained is
zero. Thepegwitbenchmark shows a large potential for energy
reduction with a corresponding tradeoff in performance; it is in
such applications that the performance hit constraint comes in
useful. In general the integer applications we ran (the first seven
benchmarks in the graphs) showed more energy reductions than
the floating point benchmarks (the next four bars in the graphs)
and the MediaBench applications (the last three bars) with lower
drops in performance.

V. PRACTICAL CONSIDERATIONS

A. Performance Overhead of Switching Configurations

Many parts of the processor are implemented as circular
queues usingheadandtail pointers, eg. instruction issue queue,
load-store queue, etc. Each configurable unit has a maximum
size (physical capacity) and an active size (fraction of units
which are enabled, determined at runtime). The processor is
said to switch configurations when the active size of any unit
changes.

Whenever a decision is made to change the configuration of
the processor (say to reduce the instruction window size from
64 to 32 or to reduce the pipeline width from 6 to 4) a flag is set
and the dispatch unit stops pumping instructions into the exe-
cution queue. The instructions already in the queue are allowed
to run to completion; after they are committed, the active sizes
of the reconfigured units are changed. The exact loss of CPU
cycles incurred by this pipeline flush done on every reconfigu-
ration depends on the state of the processor at the instant of the
switch. Our experiments have shown penalties as low as zero
cycles (when the queue is nearly empty) and as high as 30 cy-
cles (for example when the queue is nearly full, when long-la-
tency instructions are already in pipeline, or when we have a
cache-miss on a load). However, we do not reconfigure the pro-
cessor too often; in practice we find that the number of cycles
lost is less than 0.5% in the worst case and much less than this
in most cases. A summary of the performance overhead induced
for each benchmark is given in Fig. 15.

B. Performance and Energy Overhead of Profiling Hardware

The accesses to the BBB are done after branch instructions
are retired; hence, the hotspot detection scheme is not on the
critical path of the instruction flow and does not bring about
any delay overhead. The BBB hardware is activated only once
every branch instruction; hence, the power overhead is also quite
small. Fig. 16 gives the energy overheads for the profiling hard-
ware for each application we tested. The profiling hardware con-
sumes an average of 0.2% of the total energy across the appli-
cations we tested; the maximum was 0.45%.

Fig. 15. Performance overheads of profiling hardware.

Fig. 16. Percentage energy overheads of the profiling hardware.

C. Comparison With Static-Throttling Methods

Many power-management methods work by reducing the fre-
quency of operation of the chip at run-time. Such static clock
throttling methods do not reduce the net energy consumption for
a particular task; they only serve to spread out the consumption
of the same amount of energy over a longer time period. The re-
duction in power is then exactly equal to the reduction in clock
frequency. Our approach is better, since for a given penalty in
performance (which we could restrict to acceptable levels) we
obtain a net savings in the total energy consumption. Other ap-
proaches have been suggested which throttle the flow of instruc-
tions from the I-cache. Fig. 17 shows a graph comparing mi-
croarchitecture scaling scheme with static-throttling methods,
namely static I-cache throttling [23], with 2 and 4 instructions
fetched per cycle and static clock throttling. The graph shows
data from all the 14 benchmarks we studied; each point in the
graph corresponds to one benchmark. It can be observed that for
given values of energy reduction achieved, our method provides
significantly lesser delay for all the benchmarks than any of the
static throttling methods do.

238 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Fig. 17. Delay versus power comparison chart.

Fig. 18. Resource scaling in the context of ACPI.

D. Power Management Strategies

The dynamic reconfiguration process described above can be
used in the context of comprehensive power management strate-
gies like the advanced configuration and power interface (ACPI)
model [4]. Briefly, the ACPI standard for processor power man-
agement defines one functional state C0 (in which the processor
executes instructions) and three sleeping states C1, C2, and C3
(different low-power modes in which the processor does not ex-
ecute any instructions). Inside the state C0, the standard also
specifies various degrees of clock throttling, by which the pro-
cessor’s clock is stopped for different periods of time. While this
mechanism directly provides a large reduction in power, it does
so at the cost of a correspondingly large hit in performance.

The run-time resource scaling methods presented in this
paper can be used as anadditionalstage in the active mode of
operation C0, as shown in Fig. 18. This has the advantage of
providing power savings with less performance overhead than
is associated with clock throttling. as shown in Fig. 17.

VI. CONCLUSION

Using hardware structure for code profiling enables detec-
tion of program hotspots. Most applications have several such
hotspots and spend a significant proportion of their execution

time within them. Optimizing the processor configuration for
each hotspot leads to an optimal overall execution profile,
providing good reduction in energy dissipation. This can be ex-
ploited in mobile computing systems as well as in conventional
systems for thermal management. Our presented approach
allows fine-grained power management at the processor level
based on the characteristics of the running application.

REFERENCES

[1] L. Benini and G. de Micheli, “System-level power optimization: Tech-
niques and tools,” inProc. Int. Symp. Low-Power Electronics Design,
San Diego, CA, Aug. 1999, pp. 288–293.

[2] N. Bellas, I. Hajj, and C. Polychronopoulos, “Using dynamic cache man-
agement techniques to reduce energy in a high-performance processor,”
in Proc. Int. Symp. Low-Power Electronics Design, San Diego, CA, Aug.
1999, pp. 64–69.

[3] K. Ghose and M. B. Kamble, “Reducing power in superscalar processor
caches using subbanking, multiple line buffers and bit-line segmenta-
tion,” in Proc. Int. Symp. Low-Power Electronics and Design, San Diego,
CA, Aug. 1999, pp. 70–75.

[4] “Advanced Configuration and Power Interface Specification,” Compaq,
Intel, Microsoft, Phoenix and Toshiba, http://www.acpi.info/spec.htm,
2000.

[5] T. Pering and R. Brodersen, “The simulation and evaluation of dynamic
voltage scaling algorithms,” inProc. Int. Symp. Low-Power Electronics
Design, Monterey, CA, Aug. 1998, pp. 76–81.

[6] A. Klaiber, The Technology Behind Crusoe Processors. Santa Clara,
CA: Transmeta Corp., 2000.

[7] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for ar-
chitectural-level power analysis and optimizations,” inProc. Int. Symp.
Comput. Architecture (ISCA), Vancouver, Canada, May 2000, pp. 83–94.

[8] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The design
and use of simplepower: A cycle-accurate energy estimation tool,” in
Proc. 37th Design Automation Conf., May 2000, pp. 95–106.

[9] V. Tiwari, S. Malik, A. Wolfe, and M. Lee, “Instruction level power anal-
ysis and optimization of software,”J. VLSI Signal Processing, vol. 13,
no. 1–2, 1996.

[10] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: Speculation
control for energy reduction,” inProc. Int. Symp. Computer. Architecture
(ISCA), Barcelona, Spain, May 1998, pp. 132–141.

[11] D. Marculescu, “Profile driven code execution for low power dissi-
pation,” in Proc. Int. Symp. Low-Power Electronics Design, Rapallo,
Portofino, Spain, Aug. 2000, pp. 253–255.

[12] V. Zyuban and P. Kogge, “Optimization of high-performance superscalar
architectures for energy-delay product,” inProc. Int. Symp. Low-Power
Electronics Design, Rapallo, Portofino, Spain, Aug. 2000, pp. 84–89.

[13] D. H. Albonesi, “Dynamic ipc/clock rate optimization,” inProc. Int.
Symp. Comput. Architecture (ISCA), Barcelona, Spain, May 1998, pp.
282–292.

[14] R. I. Bahar and S. Manne, “Power and energy reduction via pipeline bal-
ancing,” inProc. Int. Symp. Comput. Architecture, Goteborg, Sweden,
May 2001, pp. 218–229.

[15] D. Folegnani and A. Gonzalez, “Energy-effective issue logic,” inProc.
Int. Symp. Comput. Architecture (ISCA), Goteborg, Sweden, May 2001,
pp. 230–239.

[16] S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC variation in work-
loads with externally specified rates to reduce power consumption,” in
Proc. Workshop Complexity Effective Design, Vancouver, Canada, May
2000.

[17] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal, and W.
W. Hwu, “A hardware-driven profiling scheme for identifying program
hotspots to support runtime optimization,” inProc. Int. Symp. Comput.
Architecture (ISCA), Atlanta, GA, May 1999, pp. 136–148.

[18] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Quantifying the Com-
plexity of Superscalar Processors,” University of Wisconsin-Madison,
Dept. Comput. Sci. , Tech. Rep. 1328, 1996.

[19] K. Usami and M. Horowitz, “Clustered voltage scaling technique for
low-power design,” inProc. Workshop Low-Power Design, Monterey,
CA, Aug. 1995, pp. 3–8.

[20] D. Burger and T. M. Austin, “The Simplescalar Tool Set, Version 2.0,”
Univ. Wisconsin-Madison, Dept. Comput. Sci., Tech. Rep. 1342, 1997.

[21] S. J. E. Wilton and N. P. Jouppi, “An Enhanced Access and Cycle Time
Model for On-Chip Caches,” Western Res. Lab., DEC, Tech. Rep. 93/5,
1994.

IYER AND MARCULESCU: MICROARCHITECTURE-LEVEL POWER MANAGEMENT 239

[22] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool
for evaluating and synthesizing multimedia and communications sys-
tems,” inProc. Int. Symp. Microarchitecture (Micro), Research Triangle
Park, NC, Dec. 1997, pp. 330–335.

[23] H. Sanchez, B. Kuttanna, T. Olson, M. Alexander, G. Gerosa, R. Philip,
and J. Alvarez, “Thermal Management System for High Performance
PowerPC Microprocessors,” inProc. IEEE CompCon, San Jose, CA,
Feb. 1997, pp. 325–330.

Anoop Iyer (S’00–M’02) received the Bachelors de-
gree in electrical engineering from the Indian Insti-
tute of Technology, Bombay, and the Masters degree
in electrical and computer engineering from Carnegie
Mellon University, Pittsburgh, PA, in 2000 and 2002,
respectively.

He is currently with AMD, Austin, TX. His
research interests are in computer architecture,
low-power computing, and VLSI systems.

Diana Marculescu (S’94–M’98) received the M.S.
degree in computer science from the Polytechnic
Institute of Bucharest, Romania, and the Ph.D.
degree in computer engineering from the University
of Southern California, Los Angeles, CA, in 1991
and 1998, respectively.

She is currently an Assistant Professor in the
Department of Electrical and Computer Engineering
at Carnegie Mellon University, Pittsburgh, PA. Her
research interests include energy aware computing,
VLSI, computer architecture, and CAD for power

modeling and estimation.
Dr. Marculescu received the NSF Career Award in 2000. She is a Member of

the organizing committee of the ACM International Symposium on Low-Power
Electronics and Design and the IEEE/ACM International Workshop on Logic
and Synthesis. She also serves on the technical program committee of several
conferences, including the IEEE ACM International Conference on Computer-
Aided Design, and IEEE Design, Automation, and Test in Europe.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

