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Abstract—Recently, FPGAs (field programmable gate arrays)
technology have made significant advances in both speed and
capacity. Millions of logic gates are now available for reconfig-
uration programming. To fully exploit the potential of so many
programmable devices, powerful design methodology must be
developed. In this paper, we propose a novel systematic com-
puter-aided design methodology that can efficiently implement
deeply nested do-loop algorithms on a FPGA. Specifically, our
design methodology maps the loop dependence graph onto a
linear array of locally connected processing elements to exploit
parallelism. Due to the regular structure of this linear array of
processors, it can be easily implemented on a FPGA. While this
method is based on conventional systolic array design method-
ology, our proposed approach exhibits two distinct features that
contribute to its superior performance: 1) We developed a novel
multiple-order dependence graph representation that is able to ef-
ficiently represent distinct, yet correct algorithm execution orders.
2) We developed new FPGA-specific architectural constraints
during the mapping process. As such, FPGA implementations
based on our approach will utilize much fewer lookup tables while
achieving superior performance.

Index Terms—Dependence graph, field programmable gate
arrays (FPGAs), high-level synthesis, parallel computing, systolic
array.

I. INTRODUCTION

RECENTLY, field programmable gate arrays (FPGAs)
have made significant advances in both speed and ca-

pacity. Current state-of-the-art FPGAs can contain up to ten
million logic gates on a single chip and can run at up to 420
MHz [1]. Next generation FPGAs, with even faster clock rate
and more logic gates, are just around the corner. During the
past decade, FPGAs have out-grown their traditional role as
a rapid prototyping tool for application specific integrated
circuit (ASIC) development. Instead, many FPGAs have been
deployed in consumer products facilitating hardware-assisted
embedded processing [2]. Moreover, with on-line recon-
figuration capability, many FPGAs now support run-time
reconfigurable computing [3].

Such a powerful reconfigurable architecture offers tremen-
dous opportunity to implement computation intensive signal and
video processing algorithms at low power and low cost. The
main challenge faced by design engineers is how to fully exploit
the potentials of FPGA to realize real time, high throughput par-
allel multimedia signal processing algorithms. To achieve this
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goal, it calls for effective and efficient computer-aided design
methodology that can assist a human designer to quickly ex-
plore the design space and identify the optimal design option.

In this paper, we consider the problem of implementing
deeply nested Do-loop algorithms on a large scale FPGA
chip. We focus on nested Do-loop algorithms because they
appear frequently in computation-intensive signal and video
processing algorithm formulations, such as motion estimation,
two-dimensional (2-D) linear transformations, matrix/vector
multiplication, and so on.

Unlike existing FPGA design tools, our approach assumes
that the FPGA can be used to realize a linear array of processors
(processing elements) with localized interprocessor communi-
cation. In other words, we assume a linear systolic array can be
realized on a single FPGA chip. As such, our design method-
ology will be based on the conventional systolic array design
methods [4] that map a nested DO-loop algorithm onto systolic
array structures. Our approach is motivated by the following ob-
servations.

• The increase in the number of configurable logic gates per
FPGA chip demands a systematic, structured architecture
such as a systolic array.

• Nested loop algorithm formulation appears in numerous
computation-intensive multimedia computing algorithms.
Efficient implementation of deep nested loops can dramat-
ically improve the performance.

• Systolic array design style can effectively exploit paral-
lelism inherent in the nested loop algorithm and, therefore,
reduce processing time. Moreover, such high computing
throughput rates of systolic arrays can be achieved from
FPGA due to its spatial parallelism and inherent temporal
pipelining.

• In recent SRAM-based FPGA architecture [1], [5], [6], the
on-chip programmable modules are organized in a regular
fashion with pipelined local as well as long interconnects.
Thus, it should facilitate an excellent implementation of
systolic array structure.

• For mobile multimedia communication, low-power design
is an essential design consideration. Shorter computing
time implies less power consumption.

Existing signal and image processing algorithms to FPGA
mapping tools/methodologies include [7]–[9] and [10]. They
all focus on the previous generation of FPGAs. In [7], a be-
havioral description partitioning tool of algorithms is reported
for multi-FPGA systems. The behavioral specification is rep-
resented by a data-flow graph at the coarse-grained level and
a behavioral graph at a fine-grained level. During partitioning,
embedded memory is utilized to save the interfacing pins among
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FPGAs. The MATCH project [8] maps Matlab nested loop al-
gorithms for FPGA implementation. The loop body is pipelined
to a number of stages and scheduled subject to memory con-
straints so that each loop iteration is started every initiation pe-
riod. Hence, the computation throughput is increased. In addi-
tion to Matlab, Einhardt, and Luk [9] target at loops written in
C programming language. Finally, DG2VHDL [10] is a VHDL
generator of the hardware counterpart of a nested loop algo-
rithm. Due to identical functionality of each loop body, the map-
ping results in an array of small processing elements (PEs).

However, current FPGA mapping tools are inefficient for
mapping nested loop algorithm to its regular structure since no
built-in FPGA constructs have been integrated in the mapping.
Our approach is distinct from these existing approaches in two
major aspects.

1) We propose a novel representation of loop dependence
graphs so that different execution orders of a loop can be
represented in a concise format. By mapping thismultiple
execution order dependence graph(MODG) into a pro-
cessor array, more feasible solutions may be uncovered
and the solution will be closer to the globally optimal so-
lution.

2) We formulate and impose additional architectural con-
straints during the mapping process based on the unique
characteristics of a modern FPGA architecture. By doing
so, the mapping can be performed to closely match the un-
derlying FPGA architecture. As such, more efficient im-
plementation can be accomplished. Specifically, we use
the Xilinx Virtex architecture [5] as an example and de-
duce a set of architecture dependent constraints to achieve
this goal.

The proposed methodology is aimed at mapping (scheduling
and assignment) a nested loop algorithm to an array of PEs.
Each PE is composed of datapath and control logics. The data-
path can be pipelined to meet a high computing throughput rate
while exploiting built-in constructs such as lookup table (LUT),
local storage BlockRAM, and others. To illustrate this novel de-
sign methodology, we use block-matching mothion estimation
as an example. Compared to the existing implementations, our
results achieve compact FPGA layout and high hardware uti-
lization with fewer I/Os.

We begin by introducing the notion of systolic array in
Section II. The MODG formulation, a novel representation of
nested loop, and its design methodology are elaborated next in
Section III. An example of motion estimation is illustrated and
discussed in Section IV. At the end, Section V concludes this
paper along with its limitations.

II. SYSTOLIC ARRAY AND FPGA

In this section, we will describe how our research is moti-
vated. Inspired by the classical systolic array, this paper is in-
tended as an algorithm to FPGA mapping methodology. It over-
comes the limitation of systolic mapping while exploiting the
built-in constructs of FPGA.

A. Systolic Array Mapping or Space–Time Mapping

We will use the example of a matrix–matrix multiplication al-
gorithm to illustrate the basic notation and formulation of sys-
tolic array space–time mapping.

Example 1: Matrix–matrix multiplication
where , , and are

matrices of appropriate dimensions. The corresponding nested
loop algorithm formulation can be expressed as:

Listing 1 : Matrix–Matrix Multiplication
Do to
Do to

Do to

EndDo
EndDo

EndDo

where , , and are loop indices. Together, they form an
(iteration)index spacewhere each point within the loop
bounds corresponds to a single execution of theloop body.

Let be the th level loop index of the of a loop nest. We
denote to be an -Dimensional ( -D)
column index vector of an-level nested Do loop whereis the
space of integer numbers anddenotes the transposition of.
Then, the -D index space can be expressed as

(1)

In this example, the loop body consists of a singlerecurrence
equation

where and areinput variablesand their values are
needed to execute this loop. is anoutput variablewhose
value will be computed.

In Listing 1, the innermost-loop is used to realize the sum-
mation of product terms , . While

is the final result, it is also used to store intermediate re-
sults at th iteration. In other words, the same memory address
designated to is assigned to new values multiple times
during the execution of the algorithm. In asingle-assignment
formulation [4], we introduce a set of new intermediate vari-
ables to store the intermediate results. As such, every variable
will be assigned to a new value at most once during the execu-
tion of the algorithm.

In this example, the input variable will be used in each
of the loops, and will be used in each of the loops.
In particular, will be made available to iterations with in-
dices , and will be made avail-
able to iteration indices in the index
space . In a parallel computing platform, if different iterations
are executed at different processors, these input variables must
be propagated or broadcast to different processors to facilitate
the computation. This routine of input variables can be repre-
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Fig. 1. The 3� 3 matrix–matrix multiplication in a 3-D dependence graph (a) and its node (loop body) (b).

sented using intermediate variables to ensure that the single-as-
signment constraint is satisfied.

With the introduction of these intermediate variables, every
variable associated with a particular iteration will have the full
set of indices. For example, the matrix–matrix multiplication
loop body can now be rewritten as follows.

Listing 2 : Single-Assignment Matrix–Matrix
Multiplication
Do to
Do to
Do to

EndDo
EndDo

EndDo

In the above listing, and are thetransmittal variablesof
and , respectively, and is thecomputation variableof . We

may now define an inter-iterationdependence vectoras the set
of index differences between the output of each iteration (on the
left-hand side of each equation) and the input (on the right-hand
side of the equations). For example, the dependence vector of
variable , , and are , , and

, respectively.

The plot of a graph representing index points corresponding
to the algorithm in the index space and the dependence vec-
tors is called thedependence graph[4] (DG). The DG of Listing
2 is plotted in Fig. 1. In other words, DG (also known as the
iteration space DG [11]) is a graphical representation of data
dependencies among loop iterations of a nested Do loop. It con-
sists of a set of nodes (vertices) and a set of edges. Each node
corresponds to a loop index, , or the innermost loop body
regardless of its complexity. Each directional edge represents
either apropagationor acomputationdependence vector.

A loop nest is called a set ofuniform recurrence equations
(URE) [12] if its dependence vectors are independent of the loop
index . In other words, a UREs loop bounds are known con-
stants before the execution of the algorithm. Almost all the data
intensive nested loop formulated multimedia algorithms can be
formulated as uniform recurrence equations.

In a URE formulated algorithm, each loop has a set of uniform
dependence vectors, that can be described by adependence ma-
trix

where is a set of variables. Due to the regular
structure of -D DG, the task of scheduling and assignment
of individual index (loop body) to be executed on a particular
processor at a particular clock cycle can be solved using alge-
braic projection. This projection is calledsystolicor space–time
mapping. The systolic mapping is limited to nested loop algo-
rithm with uniform recurrence equation. Themapping matrix

[4] consists of ascheduling vector and aprocessor alloca-
tion matrix . In this example, and
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Fig. 2. Two-dimensional processor array forN � N matrix multiplication,
N = 3 after the mapping (D indicates a register).

where is an -element column
vector, . must be a nonsingular matrix so
that the mapping has no conflict such that , where

The mapping of dependence matrix results in adelay–edge
matrix

The scalar–valued delay or pipeline registeris associated
with an edge (inteprocessor link) . For example,
the vector indicates a self loop where in-
dicates one register element to store the intermediate results as
shown in Fig. 2. It can be observed that the three-dimensional
(3-D) DG has been projected along theaxis to a 2-D processor
array and a 1-D execution schedule.

The existing systolic mapping methodology has a number of
limitations due to an unreasonable assumption that data are al-
ways available. For instances, it makes the number I/O ports to
the array grow as a function of problem size. A large number
of I/O ports puts more pressure on the memory bandwidth to
sustain such a high computation rate. Secondly, the notion of
memory hierarchyhas not been used. Memory hierarchy, con-
sisting of register file, cache, and main memory, is very common
in both embedded and general-purpose architecture. Specifi-
cally register file can store intermediate values for later usage.
The fact in the past that transistors (logics) were relatively more
expensive than the interconnects is opposite to the current situ-
ation particularly in FPGA. Based on these limitations, we will
describe the solution in the context of multimillion gate FPGA
architecture.

B. LUT-Clustered FPGA Architecture

In this paper, we assume that a modern multimillion gate
FPGA is used as a reconfigurable coprocessor tailored to com-
putation and data-intensive algorithms. The algorithm is de-
scribed in the form of inter-iteration dependence graph [4]. The
resulting processor array can exploit both loop–level or inter-it-

Fig. 3. Ann-level single-assignment nested Do-loop algorithm.

eration pipelining and parallelism in a multi-million gate FPGA
architecture such as the Altera Apex II [6] and the Xilinx Virtex
families [1], [5]. These FPGA architectures are LUT-clustered
[13] in which each logic cluster is composed of a number of
LUT’s where intracluster interconnect is faster than intercluster
(general-purpose) routing. Hence, local/pielined communica-
tion is preferred. After the mapping, each processor will con-
sist of word-level cores provided by FPGA manufacturers such
as Xilinx’s Core Generator system. These cores are relationally
placed and routed to exploit the faster local or intracluster inter-
connects.

Particularly, each cluster or configurable logic block is com-
posed of four set of LUT’s in the Virtex architecture [5]. Each
LUT, associated with one flip-flop (FF) and carry logic, can
function as a 4-input/1-output Boolean function generator, a
synchronous programmable-length up to 161-bit shift reg-
ister, first-in–first-out (FIFO) buffer, or a synchronous 16-entry

1-bit ROM/RAM. Altogether, two LUT’s can be programmed
as either a 32-entry 1-bit single-port ROM/RAM or a 16-entry

1-bit dual-port ROM/RAM. Due to insufficient capacity and
efficiency of an LUT, a number of 4096-bit BlockRAM’s are in-
tegrated on chip. Each BlockRAM can be programmed to be of
particular width and depth such as an 8-bit512-entry, 16-bit

256-entry, single-/dual-port RAM. In addition, the Virtex II
[1] features programmable 18-bit by 18-bit multiplies for DSP
applications.

III. MODG AND ITS DESIGN METHODOLOGY

This section discusses the notions of multiple-order de-
pendence graph and its space–time mapping methodology.
The mapping can be cast as an optimization searching for the
optimal solution evaluated by a number of objective func-
tions (performances) subject to the design and architectural
constraints (costs). Because the complexity of MODG is of
high-order polynomial, heuristic search strategies are necessary
to seek the near optimal solution.

A. -Dimensional Multiple-Order Dependence Graph (-D
MODG)

A generalized model of single-assignment nested Do loop is
shown in Fig. 3 where and are index variable ’s lower
and upper bounds and . Three types of state-
ments are included in the innermost loop body: theInput/propa-
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gation statement, theComputation/initialization statement, and
theOutput statement. Each type of statement corresponds to a
particular type of the variables.

• Transmittal variable—An input variable is first as-
signed to the transmittal variable at iteration indices

, and then propagated along apropagationdepen-

dence vector for . Specifically,
(empty set).

Referring to Listing 2, we have and as trans-
mittal variables. The initialization spaces of and are

and ,
respectively.

• Computation variable—The computation variable
will be initialized to some constants at an index ,
and then will be assigned to intermediate values at other it-
erations according to the recurrence function .
In Listing 2, we have

and
where is the summation operation.

• Output variable—These are results that will be stored
back to memories outside the array of processors. Their
values will be assigned at a set of output index points

. From Listing 2, is the output variable and
. The indexing function of

output variable is if .
We define an MODG as a set of MODG nodes where each

node is associated with a number of information fields including
edges as dependence vectors as follows.

Definition 1: -Dimensional Multiple-Order Depenence
Graph, .

An -D MODG, , is a set of MODG nodes. Each node,
, is a collection of the following fields of information,

-D index, multiple-order dependence vectors set, input data
set, output data set, and terminal flag set.

Each -D MODG node, , containing a tuple-of in-
formation fields is equivalent to

where is a set of variables. Similar to C++, we use “.” to ac-
cess a particular field of information. For example, denotes
an -D index field, is a set
of input data, where Likewise,

is a set ofoutput data,
Next, a set of Booleanterminal flagspecifies whether the node
is either an input or an output node for each variable, ,

where and
denotes the true logic value. Finally, is a set of depen-
dence vectors associated with variable set,

where denotes a set of all feasible dependence vectors of
variable . can be obtained depending upon the following
variable categories.

1) Transmittal Variable: An input variable is reused,
propagated and called thetransmittal variable according to a

single dependence vector as shown in Fig. 3, i.e.,
This dependence vector is determined

during the algorithm formulation and restricted to an adjacent
or neighboring index. Hence, the propagation along a particular
direction based on heuristic is imposed such that the DG be-
comes localized.

Actually, each can be reused several times during the
course of execution. Ordering should not be imposed as long as
it is correctly delivered. To represent all the possible dependence
vectors among all reusing MODG nodes, we define abroadcast
index setas a set of -D indices associated with each variable
instance :

(2)

where The indexing function
is similar to shown in Fig. 3. Therefore, at any index

point, each variable is associated with a set of multiple-order
dependence vectors

including the localized dependence vector.
2) Computation Variable:In a nested Do loop algorithm,

the computation variableis an output of a particular recurrence
function . This function can be as simple as add, multiply,
minimum, maximum, and the like. If these operators follow both
commutative and associative laws such that

and

respectively, they are calledmultiple-orderoperators. Other-
wise, functions or operators that do not follow both laws are
consideredin-order. Traditionally, each instance of computation
variable is computed and propagated along a local dependence
vector , i.e.,

as if it were an in-order operation.
Given a multiple-order operation, can be computed in

many different orders of execution. Ordering should be relaxed
provided that it is semantically correct and its numerical condi-
tion is satisfied. To represent all the possible dependence vec-
tors among all computing MODG nodes, we define anmul-
tiple-order index setas a set of MODG nodes of a variable
to be

(3)

where Therefore, a set of
multiple-order dependence vectors of variablecan be obtained
as
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Referring to the matrix product example, we can identify the
indexing functions of , , and as if

, if , and if
, respectively. On the other hand, the indexing function

of both input variables, and are and
, respectively. Since the summation follows

both associative and commutative laws, it is a multiple-order
operation and its indexing function .

B. One-Dimensional Space–Time Mapping

We employ the 1-D space–time mapping of-D MODG to
a 1-D array of PEs. Although, it was originally proposed by
Lee and Kedem [14], it is different from theirs in the following
aspects:

• There is no restriction on the ratio of delay and edge
length.

• Input and output ports are not necessary at either end of
the array.

The index space defined in (1) is mapped (both assigned
and scheduled) subject to the dependencies described by de-
pendence vectors. The obtained schedule assumes synchronous
operations in which the whole loop body is executed in one
clock cycle latency. The advantages of 1-D array are threefold.
First, the final 1-D array can be adjusted to fit the FPGA easily.
Second, the input–output port is already on the array boundary.
Third, the array is easy to rearrange to a 2-D array. The 1-D
mapping matrix is defined below.

Definition 2: 1-D space–time mapping matrix,
The 1-D space–time mapping matrix consists of a sched-

uling vector and an allocation vector as

(4)

where and . Furthermore, and must
be linearly independent so that .

Prior to applying to -D MODG, let us define the 1-D PE
array representation to accommodate the mapping.

Definition 3: One-D Processing Element Array,
A 1-D PE array is a set of nodes or PEs in which each node is

resulting from a projection of a number of-D MODG nodes.
Each PE encapsulates the PE number and a clock schedule of
feasible delay–edge pairs, input–output data, and terminal flags.

In other words, each PE is a tuple of
. Input, output, and

terminal sets are assigned to a PE and ordered according to
the synchronous schedule . Hence, it is equivalent to a
set of -D MODG nodes:

(5)

assigned (allocated) to the PE number ,
, where and

. The clock schedule associated
with each is obtained from

At a particular cycle of PE number
, its feasible edges and delay sets

are and
Each variable ’s –

pair results from the space–time mapping of the multiple-order
dependence vectors of an MODG node, such that

In addition, the terminal flag set at this cycle becomes
where

Finally, the final edge–delay pair, – ,
, , are chosen

appropriately subject to the design objectives (performance)
and design constraints (cost) in Section III-B1 and B2.

1) Mapping Objective Functions: Performance:The 1-D
PE array can be evaluated based on the following performance
characteristics. As objective functions, the number of cycles,
the number of PEs, and the utilization are analogous to the
execution time, the area, and the efficiency in hardware,
respectively. Besides, physical input–output pins and memory
bandwidth are of increased importance as the speed gap be-
tween logic and memory, especially dynamic RAM gets wider.
Additionally, these objective functions can be used to constrain
the search as well.

• Number of cycles, : for FPGA implementation, the
total parallel execution time, , can be computed by

where is the PEs longest critical propagation delay,
which depends on the PE architecture and the implemen-
tation technology, and is the number of clock cycles
[4] given by

(6)

In other words, it is the number of cuts by the equitemporal
hyperplane [15] perpendicular to the scheduling vector
. Although, seems to depend on the scheduling

vector only, the question on how many PEs are utilized
and how the data are delivered to the right PE still remains.

• Number of PEs, : in the 1-D or linear array mapping,
the number of PEs, can be expressed as

(7)

In other words, is the number of distinct projections
of the index space on the vector .

• Utilization, : the maximum PE array utilization is the
maximum ratio of active PEs and the number of PEs, .
It is obtained by

(8)
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where denotes the cardinality or size of set. On
the other hand, the average utilization is the ratio of the
number of MODG nodes and the product

(9)

• Number of input–output ports, #IO: due to limited number
of physical I/O pins of a given target architecture, it is
important to minimize the number of I/O ports. Based on
our formulation, the set of PEs performing I/O of either
input or output variable at cycle is

(10)
Therefore, the number of variable’s I/O ports is given by

(11)

where denotes the size of .
• Memory bandwidth: the memory bandwidth associated

with variable , , is the number of input–output in-
stances via a particular input–output port per unit time. In
this case, the unit time is a clock cycle. From (10), is
equivalent to the total number of input–output occurrences
averaged over ,

(12)

2) Design Constraints:The 1-D space–time mapping is
basically a search of scheduling and allocation vectors yielding
the best PE arrays according to certain objective functions and
subject to the following design constraints within bounded
search space. The mapping process is targeted as a com-
puter-aided design tool. On the contrary to traditional mapping,
it lets constraints decide the feasibility, and connectivity, as well
as the final architecture. In general, the mapping conflicts prune
out the infeasible solutions. The propagation and multiple-order
constraints are responsible for assigning input and output ports.
In addition, the causality constraint will validate the solution
whether the producer–consumer concept is violated.

• Mapping conflict: due to insufficient rank of , a map-
ping conflict occurs when two MODG nodes are assigned
to the same PE and scheduled at the same cycle, i.e.,

. Unlike [14] and [16],
no communication conflictis introduced by our method.
In order to efficiently detect the conflicts, a 2-D integer
array of size is used such that

No conflicts (13)

where

initialization
otherwise.

Each array element is increased by one if the
previous value is zero from the initialization phase. Other-
wise, the computation conflict is detected. The worst-case
time complexity of this method is where

while that of [14] is
.

• Propagation constraint: despite the fact that a systolic
array can achieve high computation throughput, one of
the reasons that it has not been successful is partly due to
its high demand of memory bandwidth. As a result, every
input variable should be traced and reused as many times
as possible to eliminate redundant memory fetches. Thus,
we can eventually save the bandwidth and the number of
I/O ports. Hence, the input port should be determined after
the mapping process rather than from a predetermined
terminal flag assigned by a human designer. The input
port is assigned to a PE where the first instance of data
appears and propagated to the next instance. Permissible
edge-delay pairs are obtained by eliminating edges that
point backward in the time domain.

The mapping process starts by initializing the terminal
vectors . After space–time map-
ping, the terminal flag will be true at the first appearance
in the broadcast index set in (2) of each input instance

. Thus, the terminal flag is assigned by

• Multiple-order operation constraint: likewise, given an
output variable after mapping, the terminal flag will be
true at the last appearance in the multiple-order index set
of each instance , in (3). Thus, the terminal flag is
assigned by

• Causality constraint: the purpose of this causality con-
straint is to prevent consuming intermediate data before
it is fully produced. For every instance of intermediate
producer variable and instance of consumer variable

, the following inequality must be satisfied

(14)

C. FPGA Architectural Constraints

In addition to the application of MODG to very large scale
integration (VLSI) implementation, our current target architec-
ture is the SRAM-based FPGAs such as those of Xilinx Virtex
family [1], [5]. Furthermore, our methodology can be slightly
modified to match other targets such as Altera APEX II and Lu-
cent Orca FPGAs because they have similar (almost the same)
features as those of Xilinx Virtex family.

1) Programmable-Length Shift Register or FIFOs:It is a
magnificent feature of the LUT of an SRAM-based FPGA and
can be exploited by our design methodology to propagate input
data that are unknown at design time. Each LUT can be pro-
grammed as 1-bit shift register of length. Hence, an
8-bit -cycle delay consumes only eight LUTs if rather
than flip-flops (FFs) or equivalently LUTs in FPGA be-
cause one FF is provided per LUT [5]. For an input variable
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at PE , the final edge–delay pair at cycle is
subject to the following

(15)

2) ROM/RAM: Besides working as the 4-bit input/1-bit
output Boolean function generator, an LUT can be utilized as a
single- or dual-port ROM/RAM. According to [5], two LUTs
in the same slice can be configured as a single-port 32-entry

1-bit ROM/RAM or a dual-port 16-entry 1-bit ROM/RAM.
Unlike a hardwired ASIC design, FPGA can be reconfigured
with any initialization values embedded in the configuration
bit stream. ROM and RAM are suitable for input and output
variables, respectively. This is due to the fact that RAM can be
updated while ROM cannot. However, the control mechanism
is a little more complex.

For a constant and known input variableat PE ,
the delay and edge sets at cycle are subject to the
following equations to utilize the distributed ROM

(16)

The constraints are similar for an output variableto use dis-
tributed RAM.

3) Three-State Buffer:To save the multiplexer which actu-
ally consumes LUTs, an output bus with three-state buffers is
an efficient alternative to a high fan-in multiplexer. The output
data is placed on the bus at different cycles without bus collision.
This design strategy consumes virtually zero LUT provided that
built-in three-state buffers are inherently available from the oc-
cupied logic LUTs. A bus-based design for an output variable
is subject to the following constraints

(17)

D. Heuristic Search

We denote in order to
determine the space–time complexity of an MODG. Hence, in
a particular -level nested Do loop algorithm, the number of
MODG nodes is . In addition, the variablereuse factor
is a polynomial function of , e.g., .
Therefore, the worst-case number of dependence vectors is

where is the number
of variables. Regarding the matrix multiplication example,
the maximum data reuse factor can be express as and

. Consequently, the total number of dependence vectors
is .

With an exhaustive search for in (4), the number
of search iterations to be conducted is , where

and . Each search iteration
has to manipulate an MODG of complexity.
As a result, the complexity of an exhaustive search can reach

. Due to the insuf-
ficient rank of , the solutions are sparsely scattered which
makes the exhaustive search inefficient and time-consuming.

Fig. 4. Six-level nested Do loop FSBM motion estimation algorithm.

In order to speedup the searching process, a heuristic search
strategy is necessary. A much smaller search set is defined as

From the definition of in (4), the complexity of heuristic
search is reduced to , where

. As a matter of fact, each search iteration is inde-
pendent of one another, a number of different iterations can be
distributed in a high throughput network of workstations, e.g.,
Condor [17] and compared the performance evaluations at the
end. Finally, the problem size should be scaled down to reduce
the computational complexity.

IV. M OTION ESTIMATION: AN EXAMPLE

Due to limited space, we can only demonstrate the use of our
methodology using, block matching motion estimation.

It has been widely accepted that the full search block
matching (FSBM) motion estimation is one of the most
time-consuming task for digital video encoding. Several hard-
wired ASICs have been manufactured including the STi3220
motion estimation processor [18]. As a major step toward
saving memory bandwidth, Yeo and Hu [19] proposed the
formulation of a six-level nested Do-loop algorithm to represent
a single-frame, multiple-block motion estimation. A typical
video frame consists of blocks of pixels where
is the number of blocks in each row and is the number of
rows in each frame. A motion vector, of an block
of pixels, which yields the minimummean-absolute distortion

between current block and the candidates in
the search area, can be obtained from

where , is the search rangein number of
pixels and usually less than or equal to block size. The cor-
responding of a vector is obtained by

where and are the luminance pixels of the current
and previous frames, respectively. A six-level nested Do loop

-based FSBM algorithm is shown in Fig. 4, where is
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Fig. 5. Fully pipelined array of full search block matching motion estimation
(N = Nv = 4; N = 4; p = N=2 = 2).

theminimum distortionmeasured using . It can be noticed
that and are of multiple-order operators. In addition,
it has been observed in [20] that there are many possible data
propagation patterns. Therefore, the proposed MODG is appli-
cable.

To make the problem tractable for analysis, we scale
the problem size down to , , and

. As indicated earlier in Section III-D, must
be searched to obtain the final one-dimensional (1-D) array
that satisfies numerous constraints. In this case, the search was
limited to the line-by-line pixel scanning order. This pixel scan
reduces the buffer size to just one line of pixels rather than the
whole frame in block scanning mode as previously used. Our
objective is to equalize the bandwidth of current frame pixel
and previous frame pixel while minimizing

The permissible edges-delay pair of each PE,
, was chosen in such a way to

minimize the total LUT consumption.
Each PE in Fig. 5 corresponds to a motion vector with

the relationship to PE number Hence, the
array must be composed of PEs. The candidate
is accumulated from for consecutive cycles and stored for

cycles while waiting for its next period of computation.
-bit s are stored in a distributed dual-port RAM oc-

cupying LUTs for smaller video frame size . In
a bigger frame size , the dual-port
BlockRAM [5] should be used instead. The pixels, as
shown in Fig. 6, are fetched in line scanning mode. This pat-
tern can efficiently utilize data cache’s both spatial and temporal
locality. The pixels are reused to the minimum memory
bandwidth required. The array exploits the use of LUTs as delay
elements or first-in first-out (FIFOs). This leads to a more com-
pact layout where a 16-bit FIFOs occupies the space of only one
LUT instead of 16 LUTs if it is designed using 16 FFs. Tables I
and II summarize and compare the attained motion estimation
processor array with other FPGA implementations.

Fig. 6. A fully pipelined schedule of full search block matching
motion estimation: (a) at cycle� = 35, (b) � = 36, and (c)
� = 37 (N = Nv = 4; N = 4; p = N=2 = 2).

TABLE I
BLOCK MATCHING MOTION ESTIMATION PE’S DATAPATH AREA

COMPLEXITY (LUTS) ESTIMATED FROM THE XILINX CORE

GENERATOR, (N = Nv = 3; N = 4; p = N=2 = 2)

TABLE II
PERFORMANCECOMPARISON FOR2-D FSBM ME ARRAYS, N = 4,

p = N=2 = 2

V. CONCLUSION

A novel multiple (execution)-order dependence graph
(MODG) and its FPGA mapping constraints are proposed
for run-time configurable systolic arrays. As concise repre-
sentations of several fundamental nested loop algorithms,
MODG can be exploited to obtain array structures that match
well to the modern SRAM-based FPGA architectures such as
the Xilinx Virtex II and so on. Therefore, the obtained array
is close to the globally optimal solution in many aspects:
minimal execution time, reasonable LUT consumption, low
I/O pins, high-hardware utilization, and eventually low-power
consumption. In conjunction with either the Xilinx Floorplaner
or the custom-made tool, the implementation of the obtainable
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systolic arrays can achieve high operating clock frequency and
efficient LUT utilization. As it was reported in the development
of a 117-MHz systolic FIR filter on FPGA [23], a custom-made
tool [24] was used to aid the placement and routing process.

Despite the high-order polynomial complexity of the MODG
as a result of maximum parallelism, it is a very concise represen-
tation that explicitly expresses parallelism. Nevertheless, its de-
sign constraints and targeted 1-D and 2-D processor arrays can
counterbalance for its complexity on modern computers/work-
stations and network of workstations.
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