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Mapping Deep Nested Do-Loop DSP Algorithms to
Large Scale FPGA Array Structures
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Abstract—Recently, FPGAs (field programmable gate arrays) goal, it calls for effective and efficient computer-aided design
technology have made significant advances in both speed andmethodology that can assist a human designer to quickly ex-
capacity. Millions of logic gates are now available for reconfig- plore the design space and identify the optimal design option.

uration programming. To fully exploit the potential of so many - . . .
programmable devices, powerful design methodology must be In this paper, we consider the problem of implementing

developed. In this paper, we propose a novel systematic com-deeply nested Do-loop algorithms on a large scale FPGA
puter-aided design methodology that can efficiently implement chip. We focus on nested Do-loop algorithms because they
deeply nested do-loop algorithms on a FPGA. Specifically, our appear frequently in computation-intensive signal and video
design methodology maps the loop dependence graph onto an4cessing algorithm formulations, such as motion estimation,

linear array of locally connected processing elements to exploit tWo-di . | (2-D) i ¢ f i trix/vect
parallelism. Due to the regular structure of this linear array of wo-dimensional (2-D) linear transformations, matrix/vector

processors, it can be easily implemented on a FPGA. While this Multiplication, and so on.

method is based on conventional systolic array design method-
ology, our proposed approach exhibits two distinct features that
contribute to its superior performance: 1) We developed a novel
multiple-order dependence graph representation that is able to ef-
ficiently represent distinct, yet correct algorithm execution orders.
2) We developed new FPGA-specific architectural constraints
during the mapping process. As such, FPGA implementations
based on our approach will utilize much fewer lookup tables while
achieving superior performance.

Index Terms—Dependence graph, field programmable gate
arrays (FPGAs), high-level synthesis, parallel computing, systolic

Unlike existing FPGA design tools, our approach assumes
that the FPGA can be used to realize a linear array of processors
(processing elements) with localized interprocessor communi-
cation. In other words, we assume a linear systolic array can be
realized on a single FPGA chip. As such, our design method-
ology will be based on the conventional systolic array design
methods [4] that map a nested DO-loop algorithm onto systolic
array structures. Our approach is motivated by the following ob-
servations.

» The increase in the number of configurable logic gates per

array.

I. INTRODUCTION i

ECENTLY, field programmable gate arrays (FPGAS)

have made significant advances in both speed and ca-
pacity. Current state-of-the-art FPGAs can contain up to ten
million logic gates on a single chip and can run at up to 420 *
MHz [1]. Next generation FPGAs, with even faster clock rate
and more logic gates, are just around the corner. During the
past decade, FPGAs have out-grown their traditional role as
a rapid prototyping tool for application specific integrated
circuit (ASIC) development. Instead, many FPGAs have been
deployed in consumer products facilitating hardware-assisted *
embedded processing [2]. Moreover, with on-line recon-
figuration capability, many FPGAs now support run-time
reconfigurable computing [3].

Such a powerful reconfigurable architecture offers tremen-
dous opportunity to implement computation intensive signal and *
video processing algorithms at low power and low cost. The
main challenge faced by design engineers is how to fully exploit

FPGA chip demands a systematic, structured architecture
such as a systolic array.

Nested loop algorithm formulation appears in numerous
computation-intensive multimedia computing algorithms.
Efficient implementation of deep nested loops can dramat-
ically improve the performance.

Systolic array design style can effectively exploit paral-
lelism inherent in the nested loop algorithm and, therefore,
reduce processing time. Moreover, such high computing
throughput rates of systolic arrays can be achieved from
FPGA due to its spatial parallelism and inherent temporal
pipelining.

Inrecent SRAM-based FPGA architecture [1], [5], [6], the
on-chip programmable modules are organized in a regular
fashion with pipelined local as well as long interconnects.
Thus, it should facilitate an excellent implementation of
systolic array structure.

For mobile multimedia communication, low-power design
is an essential design consideration. Shorter computing
time implies less power consumption.

Existing signal and image processing algorithms to FPGA

apping tools/methodologies include [7]-[9] and [10]. They

| focus on the previous generation of FPGAs. In [7], a be-

havioral description partitioning tool of algorithms is reported
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FPGAs. The MATCH project [8] maps Matlab nested loop alA. Systolic Array Mapping or Space—Time Mapping
gorithms for FPGA implementation. The loop body is pipelined g \jj| use the example of a matrix-matrix multiplication al-

to a number of stages and scheduled subject to memory Cggithm to illustrate the basic notation and formulation of sys-
straints so that each loop iteration is started every initiation pgy;ic array space—time mapping.
riod. Hence, the computation throughput is increased. In addi'ExampIe 1: Matrix—matrix multiplicationC’' = A x Be; ; =
tion to Matlab, Einhardt, and Luk [9] target at loops written iR~k , . T . L
C programming language. Finally, DG2VHDL [10] is aVHDLrZ"':-1 0i ki Whered = [a; ;] B = [b;,], andC = [c; ;] are

' ' matrices of appropriate dimensions. The corresponding nested
generator of the hardware counterpart of a nested loop alg&—)p algorithm formulation can be expressed as:
rithm. Due to identical functionality of each loop body, the map- '

ping results in an array of small processing elements (PEs). _ _ S
However, current FPGA mapping tools are inefficient fof/Sting 1 : Matrix-Matrix Multiplication

mapping nested loop algorithm to its regular structure since Rgi=1t M

built-in FPGA constructs have been integrated in the mapping}?O j=1t N

Our approach is distinct from these existing approaches in twocli, j] = 0

major aspects. DO' k. =1 FO. K ‘ ‘
. cli, j] = cli, j] + ali, k] x [k, j]
1) We propose a novel representation of loop dependencg-,ypo

graphs so that different execution orders of a loop can bEndDo j
represented in a concise format. By mapping thistiple EndDo i
execution order dependence grafMODG) into a pro-
cessor array, more feasible solutions may be uncovered
and the solution will be closer to the globally optimal so- Wherei, j, andk are loop indices. Together, they form an
lution. (iteration)index spacevhere each poir(t, j, k) within the loop
2) We formulate and impose additional architectural cofpounds corresponds to a single execution ofitlo@ body
straints during the mapping process based on the uniqud-€t i,, be themth level loop index of the of a loop nest. We
characteristics of a modern FPGA architecture. By doirégnote; = (i1, s, .. .,i,)" € Z" to be am-Dimensional {-D)
so, the mapping can be performed to closely match the wielumnindex vector of an-level nested Do loop whet&is the
derlying FPGA architecture. As such, more efficient imspace of integer numbers afiddenotes the transposition @f
plementation can be accomplished. Specifically, we ud&en, then-D index spacd™ can be expressed as
the Xilinx Virtex architecture [5] as an example and de- .
duce a set of architecture dependent constraints to achieve J" = {L = (i1,02, ., in)" | i1, 02, ... 0p € Z} @
this goal.
The proposed methodology is aimed at mapping (schedulingh this example, the loop body consists of a singleurrence

and assignment) a nested loop algorithm to an array of PE§uation

Each PE is composed of datapath and control logics. The data- . . ) )

path can be pipelined to meet a high computing throughput rate cli, j] = cli, ]+ ali, k] x blk, j]

while exploiting built-in constructs such as lookup table (LUT), _ ) . . .

local storage BlockRAM, and others. To illustrate this novel dg\_/herea[z./ k] andb[k, j] areinput variablesand their values are

sign methodology, we use block-matching mothion estimati&?eded to execute this loogli, j] is anoutput variablewhose

as an example. Compared to the existing implementations, Xﬁ]l”e W”_I be computed. . .
n Listing 1, the innermost-loop is used to realize the sum-

results achieve compact FPGA layout and high hardware uti- . )
lization with fewer I/gs 4 g mation of K product termsi[z, k] x b[k, j], 1 < k < K. While

We begin by introducing the notion of systolic array i£lé; j] is the final result, it is also used to store intermediate re-
Section II. The MODG formulation, a novel representation ults atkth iteration. In other words, the same memory address

nested loop, and its design methodology are elaborated nex ﬁﬁ'gn?[t_]ed to[”'71_'s asilinedlto n_ter:/v va}lue_s r?ultlplétlmes .
Section Ill. An example of motion estimation is illustrated anr?u”ng € execution ot the aigorithm. Insengie-assignmen

discussed in Section IV. At the end, Section V concludes thi rlmultatmtn [4]t'hwe' |tr1trodt:jc;eta set ?tf n;w mtehrmedlate v§r|t—)|
paper along with its limitations. ables to store the intermediate results. As such, every variable

will be assigned to a new value at most once during the execu-
tion of the algorithm.

In this example, the input variabgi, k] will be used in each
of the j loops, and[k, j] will be used in each of theé loops.

[l. SysTOLIC ARRAY AND FPGA In particular,a[i, k] will be made available to iterations with in-
dices{(i,j,k)*;1 < j < N}, andb[k, 5] will be made avail-

In this section, we will describe how our research is motable to iteration indice$(i, j,k)";1 < ¢« < M} in the index
vated. Inspired by the classical systolic array, this paper is ispacel®. In a parallel computing platform, if different iterations
tended as an algorithm to FPGA mapping methodology. It oveare executed at different processors, these input variables must
comes the limitation of systolic mapping while exploiting thde propagated or broadcast to different processors to facilitate
built-in constructs of FPGA. the computation. This routine of input variables can be repre-
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The 3x 3 matrix—matrix multiplication in a 3-D dependence graph (a) and its node (loop body) (b).

sented using intermediate variables to ensure that the single-ashe plot of a graph representing index points corresponding

signment constraint is satisfied.

to the algorithm in the index spadé and the dependence vec-

With the introduction of these intermediate variables, evetgrs is called thelependence gragW] (DG). The DG of Listing
variable associated with a particular iteration will have the full is plotted in Fig. 1. In other words, DG (also known as the
set of indices. For example, the matrix—matrix multiplicatioiteration space DG [11]) is a graphical representation of data

loop body can now be rewritten as follows.

Listing 2 : Single-Assignment Matrix—Matrix
Multiplication
Doi:=11to M
Doj=1to N
Do k=1t k

o asli,j — 1,k], §>0
aali b = { s B 920
. bslt —1,7,k], ¢>0
Cg[t,_] k] :{83[L7Jk - 1] + a3[L7J/ k] X b3[£J7 k]? ]]zzg

C[Lm}] :C3[L,Jk] k=K

EndDo k&
EndDo j
EndDo 1

In the above listingg; andbs are theransmittal variableof
a andb, respectively, and; is thecomputation variablef c. We

dependencies among loop iterations of a nested Do loop. It con-
sists of a set of nodes (vertices) and a set of edges. Each node
corresponds to a loop indexe J”, or the innermost loop body
regardless of its complexity. Each directional edge represents
either apropagationor acomputatiordependence vector.

A loop nest is called a set afiform recurrence equations
(URE) [12] ifits dependence vectors are independent of the loop
indexi. In other words, a UREs loop bounds are known con-
stants before the execution of the algorithm. Almost all the data
intensive nested loop formulated multimedia algorithms can be
formulated as uniform recurrence equations.

In a URE formulated algorithm, each loop has a set of uniform
dependence vectors, that can be describeddgpandence ma-
trix Dy

1 0 0
Dy=[dy, d, d.]=1]0 1 0
0 0 1
whereV = {a,b,c} is a set of variables. Due to the regular

structure ofn-D DG, the task of scheduling and assignment
of individual index (loop body) to be executed on a particular

may now define an inter-iteratiatependence vectas the set processor at a particular clock cycle can be solved using alge-
of index differences between the output of each iteration (on theaic projection. This projection is callsgstolicor space—time
left-hand side of each equation) and the input (on the right-hanthpping. The systolic mapping is limited to nested loop algo-
side of the equations). For example, the dependence vectoritffm with uniform recurrence equation. Theapping matrix
variableas, bs, andes ared,, = (0, 1,0), dp, = (1,0,0)*,and T7[4] consists of ascheduling vecto§ and aprocessor alloca-

d., = (0,0,1)", respectively.

tion matrix P. In this examples = (i, 4,k)* = (0,0,1)* and
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Fig. 2. Two-dimensional processor array fr x N matrix multiplication, Fig. 3. Ann-level single-assignment nested Do-loop algorithm.
N = 3 after the mapping (D indicates a register).

eration pipelining and parallelism in a multi-million gate FPGA
. ) architecture such as the Altera Apex Il [6] and the Xilinx Virtex
vector,1 < m < n — 1.7 must be a nonsingular matrix sog ijies 11, [5]. These FPGA architectures are LUT-clustered
tbat tbe nlappTg his no conflict such #iaF # Tq, where [13] in which each logic cluster is composed of a number of
P#G VP Ve LUT’s where intracluster interconnect is faster than intercluster
i 00 1 (general-purpose) routing. Hence, local/pielined communica-
T = [ St} =10 1 ofl. tion is preferred. After the mapping, each processor will con-
P 1 0 0 sist of word-level cores provided by FPGA manufacturers such

) ] as Xilinx’s Core Generator system. These cores are relationally
The mapping of dependence matfi- results in adelay—edge pjaced and routed to exploit the faster local or intracluster inter-

P=1[py P» --- Pn—1] Wherep,, is ann-element column

matrix connects.
— 0 01 Particularly, each cluster or configurable logic block is com-
TDy = {;t} Dy = [7;" Ta C"} =0 1 0]. posed of four set of LUT’s in the Virtex architecture [5]. Each
€ Ca Ce 1.0 0 LUT, associated with one flip-flop (FF) and carry logic, can

function as a 4-input/1-output Boolean function generator, a
synchronous programmable-length up toxiBbit shift reg-
o P = ster, first-in—first-out (FIFO) buffer, or a synchronous 16-entry
the vectorz. = (0,0)" indicates a self loop where. = 1in- 1 1t RoM/RAM. Altogether, two LUT’s can be programmed
dicates one register element to store the intermediate res”“%é‘@ither a 32-entry 1-bit single-port ROM/RAM or a 16-entry
shown in Fig. 2. It can.be observed thaF the three-dlmensmr‘;gh_bit dual-port ROM/RAM. Due to insufficient capacity and
(3-D) DG has been prolgcted along thexis to a 2-D processor efficiency of an LUT, a number of 4096-bit BlockRAM’s are in-
array and a 1-D execution schedule. tegrated on chip. Each BlockRAM can be programmed to be of
The existing systolic mapping methodology has a number 0f i jar width and depth such as an 8-vi612-entry, 16-bit

limitations due to an unreasonable assumption that data are?bSB-entry single-/dual-port RAM. In addition, the Virtex Il
ways available. For instances, it makes the number 1/O portsg ' ' ’

X - ?features programmable 18-bit by 18-bit multiplies for DSP
the array grow as a function of problem size. A large numb plications.
of I/O ports puts more pressure on the memory bandwidth t
sustain such a high computation rate. Secondly, the notion of
memory hierarchyas not been used. Memory hierarchy, con-
sisting of register file, cache, and main memory, is very commonThis section discusses the notions of multiple-order de-
in both embedded and general-purpose architecture. Speglgndence graph and its space-time mapping methodology.
cally register file can store intermediate values for later usagele mapping can be cast as an optimization searching for the
The fact in the past that transistors (logics) were relatively mo@gtimal solution evaluated by a number of objective func-
expensive than the interconnects is opposite to the current sH@ns (performances) subject to the design and architectural
ation particularly in FPGA. Based on these limitations, we wionstraints (costs). Because the complexity of MODG is of
describe the solution in the context of multimillion gate FPGAigh-order polynomial, heuristic search strategies are necessary

The scalar—valued delay or pipeline registgris associated
with an edge (inteprocessor link}, = (z,y)t. For example

I1l. MODG AND ITS DESIGN METHODOLOGY

architecture. to seek the near optimal solution.
B. LUT-Clustered FPGA Architecture A. n-Dimensional Multiple-Order Dependence GraphD
In this paper, we assume that a modern multimillion gaMODG)

FPGA is used as a reconfigurable coprocessor tailored to comA generalized model of single-assignment nested Do loop is
putation and data-intensive algorithms. The algorithm is dehown in Fig. 3 wheré,, andu,,, are index variablé,,’s lower
scribed in the form of inter-iteration dependence graph [4]. Tlaad upper bounds and = 1,2,...,n. Three types of state-
resulting processor array can exploit both loop—level or inter-itrents are included in the innermost loop body:ltimut/propa-
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gation statementhe Computation/initialization statemerdgnd  single dependence vectdy as shown in Fig. 3, i.ek,,.D, =
the Output statemenEach type of statement corresponds to @,, ¥ k,.. € I}’ U IL. This dependence vector is determined
particular type of the variables. during the algorithm formulation and restricted to an adjacent

« Transmittal variable-An input variablev; is first as- Or neighboring index. Hence, the propagation along a particular
signed to the transmittal variabié [7] at iteration indices direction ba_sed on heuristic is imposed such that the DG be-
ie I} , and then propagated alongepagationdepen- ©OMeS localized.

dence vectori;] for 7 € 1. Specifically,I” N1/ = ¢ Actually, each_v[gj can b_e reused several_tlmes during the
(empty set). i i i course of execution. Ordering should not be imposed as long as

) . : : itis correctly delivered. To represent all the possible dependence
Referring to Listing 2, we haves[i] andbs]i] as trans- . )
. . T vectors among all reusing MODG nodes, we defiteaadcast
mittal variables. The initialization spaces®fandb; are . 2 . ) .
I C ) ) index sefas a set of:-D indices associated with each variable
L ={G4k|1<i:< M 1<k<K, j=0} instancev[]:
andll = {(i,j, k)t [<j <N, 1<k<K,i=0}, gl
respectively. Ig‘:{k I H (b D=3 VE EK} >
« Computation variable-The computation variable[7] v ned | Holkad) = G, ¥ ko € Ko @
i initiali index 1V “ = -
will be initialized to some constants at an index I, , where™M, (7) : i — ¢, 37 € I” UIL. The indexing function

and then will be assigned to intermediate values at otherﬁ- is similar toG (Z) shown in Fig. 3. Therefore, at any index
erations’ € IS according to the recurrence functid, . Y “ L ;

In Listing 2, we havd® = {(i,7,0)' | 1 <i < M, 1 < point, each variable is associated with a set of multiple-order
, c — UL St M, L

j < NYandIC = {(Lj k)Y |1<i< M 1<j< dependence vectors

N, 1 <k < K} whereF, is the summation operation. k,.D, = {;1 —kni | kni# i, Vir € Ig}
» Output variable—These are results that will be stored

back to memories outside the array of processors. Thﬁif;luding the localized dependence veador

values will be assigned at a set of output index points

19 . From Listing 2, c[i,] is the output variable and

v "

2) Computation Variable:In a nested Do loop algorithm,
Y A , X . the computation variableis an output of a particular recurrence
I = {(,j.k)" | k = K}. The indexing function of g,ncion 7, . This function can be as simple as add, multiply,

output variable: is G.(i, j, k) = (i, ) if k = K. minimum, maximum, and the like. If these operators follow both

node is associated with a number of information fields including

edges as dependence vectors as follows. Fola,b) = Fy(b,a)
Definition 1: n-Dimensional Multiple-Order Depenence

Graph,K,,. and
An n-D MODG, K,,, is a set of MODG nodes. Each node, Fo(Folah), ¢) =Fo(a, Fo(b, )

k., € K,, is a collection of the following fields of information,
n-D index, multiple-order dependence vectors set, input data
set, output data set, and terminal flag get.

Eachn-D MODG node\k, € K,, containing a tuple-of in-
formation fields is equivalent to

=F, (b, Fo(a,c))

respectively, they are calleahultiple-order operators. Other-

wise, functions or operators that do not follow both laws are

consideredh-order. Traditionally, each instance of computation

kA (;7 Dy, Iv,Ov, Fy) variablev i_s computed and propagated along a local dependence
vectord,, i.e.,

whereV is a set of variables. Similar to C++, we use “." to ac- kn.Dy = dy, ¥ hknicIVUIC

cess a particular field of information. For exampig,i denotes

ann-D index field, k,,.i = (i1, iz, ...,in)" € I". k,.Iyv isaset as if it were an in-order operation.

of input data wherek,,.Iyy = {k,.I, | Vv € V}. Likewise, Given a multiple-order operatiom/g] can be computed in

k,.Ov is a set ofoutput data k,,.Oy = {k,.O, | Vv € V}. many different orders of execution. Ordering should be relaxed

Next, a set of Booleaterminal flagspecifies whether the nodeprovided that it is semantically correct and its numerical condi-

is either an input or an output node for each variables V, tion is satisfied. To represent all the possible dependence vec-

kn.Fy = {kn.F, |Vv eV} whereF, € {0,1} andF, = 1 tors among all computing MODG nodes, we defineraal-

denotes the true logic value. Finally,.Dy is a set of depen- tiple-order index seas a set of MODG nodes of a variabig]]

dence vectors associated with variablelset to be

bin.Dy = {kin.Dy | Vv € V) U= {ki| Hlbad) =3, Vhn € K0} (@)

wherek,.D, denotes a set of all feasible dependence vectorswhere, (i) : i — g, 37 € I¥ U IC. Therefore, a set of
variablev. k,,.D,, can be obtained depending upon the followingnultiple-order dependence vectors of variabéan be obtained
variable categories. as

1) Transmittal Variable: An input variablev[g] is reused, . - o L _
propagated and called thmnsmittal variable according to a kn-Dyy = {i1 — k.t | kni #11, Vig € 13} :



KITTITORNKUN AND HU: MAPPING DEEP NESTED DO-LOOP DSP ALGORITHMS

Referring to the matrix product example, we can identify th&t a particular cycle r €

indexing functionsg of a, b, andc as G, (i, j, k) = (i,k) if

213

ki.t(i) of PE number
= P%k,.), its feasible edges and delay sets

are k1.Ey[r] = {k.E,[r]|Yv eV} and k1.Ry[r] =

k = K, respectively. On the other hand, the indexing functiofk;.R,[r] | Vv € V}. Each variablev's ki.E,[r]—.R,[7]
‘H of both input variablesg andb are’H, (7,7, k) = (i, k) and pair results from the space—-time mapping of the multiple-order
Hy(i,7,k) = (k, 7), respectively. Since the summation followslependence vectors of an MODG node, such that

both associative and commutative laws, it is a multiple-order

operation and its indexing functiol..(, 7, k) = (¢, 7).

B. One-Dimensional Space—Time Mapping
We employ the 1-D space—time mappingreD MODG to

[kl.RU [T]} =Ty (kn.D,)

kl.Ev[T]
3]

a 1-D array of PEs. Although, it was originally proposed b

Lee and Kedem [14], it is different from theirs in the followin I addition, the terminal flag set at this cycte becomes

Y1 Folr] = {ki.Folr] | Vv e V) whereky.Fylr] = ky.F,.

aspects: ) o i Finally, the final edge—delay pair,k;.e,[7T]-ki.7[7],
e There is no restriction on the ratio of delay and edgE1 eolr] € kiEylr], kirofr] € ki.R.[r], are chosen
length. | A R

) appropriately subject to the design objectives (performance)
* Input and output ports are not necessary at either endfy design constraints (cost) in Section IlI-B1 and B2.
the array. 1) Mapping Objective Functions: Performanc@he 1-D
The index spacd™ defined in (1) is mapped (both assignegg array can be evaluated based on the following performance
and scheduled) subject to the dependencies described by dfracteristics. As objective functions, the number of cycles,
pendence vectors. The obtained schedule assumes synchroggsisiumber of PEs, and the utilization are analogous to the
operations in which the whole loop body is executed in ongecution time, the area, and the efficiency in hardware,
clock cycle latency. The advantages of 1-D array are threefoldspectively. Besides, physical input—output pins and memory
FirSt, the final 1-D array can be adjusted to fit the FPGA eaSiIMandwidth are of increased importance as the Speed gap be-
Second, the input-output port is already on the array boundagyeen logic and memory, especially dynamic RAM gets wider.

Third, the array is easy to rearrange to a 2-D array. The 1AQjditionally, these objective functions can be used to constrain
mapping matrix is defined below. the search as well.

Definition 2: 1-D'space—t|rr.1e mapping maf[rﬂq * Number of cyclesNgy.1.: for FPGA implementation, the
_The 1-D sPace—tlme mapping mat@X consists of a sched- total parallel execution time;...;, can be computed by
uling vectors and an allocation vectar as

§’t S1 S92 ... S
Th=|3|= " 4
! [Pt} [pl b2 ... Dn @

tiotal = tcyclc X Ncyclc

wheret.y.i. is the PEs longest critical propagation delay,
which depends on the PE architecture and the implemen-
tation technology, ant¥..i. is the number of clock cycles

[4] given by

whereT; € Z?>*™ ands;,p; € Z. Furthermore§ and P must
be linearly independent so thBank(7}) = 2. O

Prior to applyindl; to n-D MODG, let us define the 1-D PE
array representation to accommodate the mapping. o

Definition 3: One-D Processing Element Arraly, Neyele = saean {F-a)+ 1. ©)

A 1-D PE array is a set of nodes or PEs in which each node is
resulting from a projection of a number 0fD MODG nodes. In other words, itis the number of cuts by the equitemporal
Each PE encapsulates the PE number and a clock schedule of hyperplane [15] perpendicular to the scheduling vector

feasible delay—edge pairs, input—output data, and terminal flags. - Although, Ncyci. seems to depend on the scheduling
0 vectors only, the question on how many PEs are utilized

In other words, each PE is a tuple of and how the data are delivered to the right PE still remains.
(', t(7), Ry, Byv,rv, ev,Iy,Ov,Fy). Input, output, and * Number of PEsNpg: in the 1-D or linear array mapping,
terminal sets are assigned to a PE and ordered according to the number of PESVpg can be expressed as
the synchronous schedulg.t(7). Hence, it is equivalent to a

set ofn-D MODG nodes: Npg = PEnax

— PEpin + 1. @)

hy 2 {kn | k3 = Bt(kni), Vb € Kn} (5) In other words Npg is the number of distinct projections
of the index spacd™ on the vectorP.

assigned (allocated) to the PE numberJ', PE.i, < « Utilization, U: the maximum PE array utilization is the

k1.J' < PE.x, WherePE,,;, = min(ﬁt(ﬂ 7€ J") and maximum ratio of active PEs and the number of PEsg.

PEpay = max (P'§| ¢ € J™). The clock schedule associated It is obtained by

with eachk; € K, is obtained from .
max, |{k1 | 7 € k1.t(¢)}

Umax = 8
No (8)

o t(7) = {gf(kn.f) |k J = Ptk d), Yk € Kn}.
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where |a| denotes the cardinality or size of set On
the other hand, the average utilization is the ratio of the
number of MODG nodes and thé.yjc — Npg product

K|
Uig = ———7"7.
e NPE X Ncycle

Number of input—output ports|®: due to limited number
of physical I/O pins of a given target architecture, it is
important to minimize the number of I/O ports. Based on
our formulation, the set of PEs performing 1/O of either
input or output variable at cycler is

9)

10,[r] = {k1 |k Fofr] =1, 7€kit(), Vk € Kl}.
(10)
Therefore, the number of variahdés 1/0 ports is given by

#10, = max 1O, [7]] (11)
where|IO,[7]| denotes the size aD, [7].

Memory bandwidth: the memory bandwidth associated
with variablev, B,, is the number of input—output in-
stances via a particular input—output port per unit time. In
this case, the unit time is a clock cycle. From (1B), is
equivalent to the total number of input—output occurrences
averaged oveN ycle,

2

€k .t(7), ¥V k1 €K,
Ncycle

|10, [7]|
By =

(12)

2) Design Constraints:The 1-D space-time mapping is
basically a search of scheduling and allocation vectors yielding
the best PE arrays according to certain objective functions and
subject to the following design constraints within bounded
search space. The mapping process is targeted as a com;
puter-aided design tool. On the contrary to traditional mapping,
it lets constraints decide the feasibility, and connectivity, as well
as the final architecture. In general, the mapping conflicts prune
out the infeasible solutions. The propagation and multiple-order
constraints are responsible for assigning input and output ports.
In addition, the causality constraint will validate the solution
whether the producer—consumer concept is violated.

« Mapping conflict: due to insufficient rank daf;, a map-
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max {u; —l; + 1, 1 =1,2,...,n} while that of [14] is
O(N?™).

Propagation constraint: despite the fact that a systolic
array can achieve high computation throughput, one of
the reasons that it has not been successful is partly due to
its high demand of memory bandwidth. As a result, every
input variable should be traced and reused as many times
as possible to eliminate redundant memory fetches. Thus,
we can eventually save the bandwidth and the number of
I/O ports. Hence, the input port should be determined after
the mapping process rather than from a predetermined
terminal flag assigned by a human designer. The input
port is assigned to & PE where the first instance of data
appears and propagated to the next instance. Permissible
edge-delay pairs are obtained by eliminating edges that
point backward in the time domain.

The mapping process starts by initializing the terminal
vectorsk,.F, = 0, V k, € K, . After space-time map-
ping, the terminal flag will be true at the first appearance
in the broadcast index s&{ in (2) of each input instance
v[g]. Thus, the terminal flag is assigned by

1, 7= min(kl.t(g)

0, 7 > min(ky.t(¢))

Multiple-order operation constraint: likewise, given an
output variabley after mapping, the terminal flag will be
true at the last appearance in the multiple-order index set
of each instance[g], IZ in (3). Thus, the terminal flag is
assigned by

Vk,iell

bonfr) = {

-

1, 7=max(k;.t(z))

Viknicld
0, 7 < max(k:.t(7) e

k’l.E, [T] = {
Causality constraint: the purpose of this causality con-
straint is to prevent consuming intermediate data before
it is fully produced. For every instance of intermediate
producer variable,,[f] and instance of consumer variable
v.[g], the following inequality must be satisfied

max (?ﬁ|‘v’ﬁ€ I,ffp) <min (57| V7€ Igc). (14)

ping conflict occurs when two MODG nodes are assigned. FPGA Architectural Constraints
to the same PE and scheduled at the same cycle, i.ey, 4qition to the application of MODG to very large scale

Tvp = Thg, p # 4, p,¢ € J™. Unlike [14] and [16],

integration (VLSI) implementation, our current target architec-

no communication conflicis introduced by our method. y  o%s the SRAM-based FPGASs such as those of Xilinx Virtex

In order to efficiently detect the conflicts, a 2-D integefamily [1]

array A of size Npg X Neycle IS Used such that

No conflicts 5 A[Tyg] < 1, Ve J" (13)

where
initialization

0,
AlTq) = {A[Tl(j] +1, otherwise.

[5]. Furthermore, our methodology can be slightly

modified to match other targets such as Altera APEX Il and Lu-
cent Orca FPGAs because they have similar (almost the same)
features as those of Xilinx Virtex family.

1) Programmable-Length Shift Register or FIFOR:is a
magnificent feature of the LUT of an SRAM-based FPGA and
can be exploited by our design methodology to propagate input
data that are unknown at design time. Each LUT can be pro-

Each array elemend [T} 4] is increased by one if the grammed as 1-bit shift register & < 16 length. Hence, an
previous value is zero from the initialization phase. OtheB-bit N-cycle delay consumes only eight LUTS\NT < 16 rather
wise, the computation conflict is detected. The worst-casiean8 NV flip-flops (FFs) or equivalentlg N LUTs in FPGA be-

time complexity of this method i©®(N") where N =

cause one FF is provided per LUT [5]. For an input variable
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at PEk; € K1, the final edge—delay pair at cyctec kl.t(g) iS Dov=0toN,-1
i i Doh=0to N,—-1
subject to the following MV[h,v] =(0,0);
Dpinlh, v] = 005
b >0 Realhol s
ky.e,[T] #£0 Don=0to2p
. MAD[m,n] = 0;
|k1.eo[][(k1ry[7]) = min(ky. Ry [7]|k1. Ey[7]]).  (15) Doi=0toN—1
. . L ) Doj=0toN-1
2) ROM/RAM: Besides working as the 4-bit input/1-bit MAD[m,n] = MAD[m,n] + |z[AN +i,uN + j]
output Boolean function generator, an LUT can be utilized as E d;)y[h!\’ +i+m—p,uN+j+n-p;
single- or dual-port ROM/RAM. According to [5], two LUTs Ianr;-;i: fzjj > M AD[m,n] Then
in the same slice can be configured as a single-port 32-en Dpinlh,v]| = MAD m,n};
x 1-bit ROM/RAM or a dual-port 16-entry 1-bit ROM/RAM. nﬂéf%[h, v =[m—-p,n-p;

Unlike a hardwired ASIC design, FPGA can be reconfigure gndpo n, m, h, v
with any initialization values embedded in the configuration
bit stream. ROM and RAM are suitable for input and outpuig. 4. Six-level nested Do loop FSBM motion estimation algorithm.
variables, respectively. This is due to the fact that RAM can be
updated while ROM cannot. However, the control mechanismIn order to speedup the searching process, a heuristic search
is a little more complex. strategy is necessary. A much smaller search set is defined as

For a constant and known input variableat PEk; € K, o
the delay and edge sets at cyeles k;.t(7) are subject to the © = {0> +1, H (wiuj), H (wiujur), 1< i, 5,k < ”} :
following equations to utilize the distributed ROM From the definition of7; in (4), the complexity of heuristic

ki.R,[r] ={mN | N >0, m#0, meZ} search is reduced tO(|V|N"t™|S|?"), where[|S|] = n? +
ko B, [r] = n? +3 < M. As a matter of fact, each search iteration is inde-
1.E,[T] ={0}. (16) i : X
pendent of one another, a number of different iterations can be

The constraints are similar for an output variable use dis- distributed in a high throughput network of workstations, e.g.,
tributed RAM. Condor [17] and compared the performance evaluations at the

3) Three-State BufferTo save the multiplexer which actu-end. Finally, the problem size should be scaled down to reduce
ally consumes LUTSs, an output bus with three-state bufferstise computational complexity.
an efficient alternative to a high fan-in multiplexer. The output
datais placed on the bus at different cycles without bus collision. V. MOTION ESTIMATION: AN EXAMPLE
This design strategy consumes virtually zero LUT provided that -
built-in three-state buffers are inherently available from the oc- Due o limited space, we can only demonstrate the use of our

y

cupied logic LUTs. A bus-based design for an output variablemethcdeIOgy using, block matching motion estimation.
) . . . It has been widely accepted that the full search block
is subject to the following constraints

matching (FSBM) motion estimation is one of the most

#10,[7] =1, V7 eki.t(@), Vk € K; time-consuming task for digital video encoding. Several hard-
#10, >1. (17) Wired ASICs have been manufactured including the STi3220

motion estimation processor [18]. As a major step toward

saving memory bandwidth, Yeo and Hu [19] proposed the

formulation of a six-level nested Do-loop algorithm to represent
We denote N = max(u; —1;, 1 <i<m) in order to ga single-frame, multiple-block motion estimation. A typical

determine the space—time complexity of an MODG. Hence, yideo frame consists oV, x N, blocks of pixels whereV,,

a particularn-level nested Do loop algorithm, the number ofs the number of blocks in each row and, is the number of

MODG nodes igO(N™). In addition, the variableeuse factor rows in each frame. A motion vectdr, n] of anN x N block

is a polynomial function oV, e.g.,O(N™), 1 < m < n. of pixels, which yields the minimurmean-absolute distortion

Therefore, the worst-case number of dependence vector§NsAD) between current block and ti2p + 1)? candidates in

O(N™ x [VIN™) = O([VIN"*™) where|V| is the number the search area, can be obtained from

of variables. Regarding the matrix multiplication example, )

the maximum data reuse factor can be expres®@¥) and MV = arg{min MAD[m, n]} — [p, p]

|V| = 3. Consequently, the total number of dependence vectqga e < m,n < 2p, p is the search rangdn number of

is O(3N?). pixels and usually less than or equal to block SkeThe cor-

With an exhaustive search fof; in (4), the number respondingMIAD of a vector|m, n] is obtained by
of search iterations to be conducted (¥M>?"), where

u; < M < [[, (w)andl < i < n. Each search iteration o ) )
has to manipulate an MODG aP(|V|N™*™) complexity. MAD[m,n] = Z Z le[i 5] = yli +m —p,j +n—p]

As a result, the complexity of an exhaustive search can reach =0 3=0

O(|[VIN™tm™ x M?") = O(|[V|N™t™M?"). Due to the insuf- wherez[i, j] andy[i, j] are the luminance pixels of the current
ficient rank of 1%, the solutions are sparsely scattered whiciind previous frames, respectively. A six-level nested Do loop
makes the exhaustive search inefficient and time-consumingM AD-based FSBM algorithm is shown in Fig. 4, whébg,;,, is

D. Heuristic Search

N—-1N-1
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D, .=l —D, D, D, =D, 11 11
=t PEO 1 b " b2 1 pps " b D, X[laj] Y[l,J]
[ - ol ol ]
[ ¥ L) L) L)
Xy Yy Yy Yy Yy
bl \ 1 1 f 3,5 14,4 13,4 12,4 11,4 13,2 13,2 13,2 13,2 13,2
D, D, D, =, 10,4 9,4 8,4 7,4 6,4 8,3 83 8,3 8,3 8,3
D, =Inf PES PE6 PE7 PES PE9 |-D, min
x x x F—x 5,4 4,4 3,4 14,3 13,3 3,4 3,4 3,4 15,3 15,3
. ’ ’ X X l 12,3 11,3 10,3 9,3 8,3 10,4 10,4 10,4 10,4 10,4
v I ! ! ! 7,3 6,3 5,3 4,3 3,3 55 55 55 55 5,5
D, D, D,, D,
D, =Inf PE 10 PE1I PEI2 PEI3 PEI4 |—D,, -~ min
x x x F—x (a)
[ ) ¥ ¥ ¥ ¥
Xy Y Y Yy Y l
P \ 1 1 I 10,5 9,5 8,5 7,5 6,5 8,3 83 8,3 8,3 8,3
D, D, D, D,
D, =Inf peas | peas [ ez || peas [T PE19 |—=D,, | min 5,5 4,5 3,5 14,4 13,4 3,4 3,4 3,4 315,3
N ; x . x I . 12,4 11,4 10,4 9,4 8,4 10,4 10,4 10,4 10,4
Xy y y M v l 7,4 6,4 5,4 4,4 3,4 55 55 5,5 5,5
S =, =, —, : 14,3 13,3 12,3 11,3 10,3 12,5 12,5 12,5 12,5 12,5
D, =Inf PE 20 " PE21 " pE22 "ol pe2s | ™ PE24 {—D,,~» min
x x —
x x | )
t i f f i D,
) v 5,6 4,6 3,6 14,5 13,5 3,4 3,4 3,4 3,4 3,4
12,5 11,5 10,5 9,5 8,5 10,4 10,4 10,4 10,4 10,4
Y 7,5 6,5 5,5 4,5 3,5 55 5,5 55 55 5,5
14,4 13,4 12,4 11,4 10,4 12,5 12,5 12,5 12,5 12,5
Fig. 5. Fully pipelined array of full search block matching motion estimation 9,4 8,4 7,4 6,4 5,4 7,6 7,6 7,6 7,6 1,6

(Npy, =Nv=4, N=4, p=N/2=2). ©
C

theminimum distortiormeasured usin§[AD. It can be noticed Fi9: 6. A fully pipelined schedule of full search block matching
. . ... motion estimation: (a) at cycle = 35, (b) 7 = 36, and (c)
FhatMAD andmin are <_)f multiple-order operators. In ad(.jltlon,r =37 (N =Nv=4d, N=4, p=N/2=2).
it has been observed in [20] that there are many possible data
propagation patterns. Therefore, the proposed MODG is appli- TABLE |
cable. BLOCK MATCHING MOTION ESTIMATION PE’S DATAPATH AREA
To make the problem tractable for analysis, we scale  COMPLEXITY (LUTS) ESTIMATED FROM THE XILINX CORE

. GENERATOR (N}, = Nv =3, N =4, p= N/2=2)
the problem size down t&v, = N, = 4, N = 4, and

p = N/2 = 2. As indicated earlier in Section IlI-D[; must Performance Using LUT [ Using FF
be searched to obtain the final one-dimensional (1-D) array %b{)t,tla(—igl %‘é %‘é
that satisfies numerous constraints. In this case, the search was 16:19;1: pome;farison 17 17
limited to the line-by-line pixel scanning order. This pixel scan 8-bit z’s Reg. 8 16
. . . . 8-bit y’s Reg. 8 56
reduces the buffer size to just one line of pixels rather than the 16-bit Dpin’s RAM 32 48
whole frame in block scanning mode as previously used. Our Total Area (LUTS) 105 177
objective is to equalize the bandwidth of current frame pixel
and previous frame pixel while minimizing Neycie TABLE I
PERFORMANCE COMPARISON FOR2-D FSBM ME ARRAYS, N = 4,
T N NhNZ 1 2p+1 1 N2 p=N/2=2
=
0 0 1 2p+1 0 0 References XZIL [22] [19] [20] | Ours
Scan Mod BIB Kk F'Esylpekl Block | Block | L
iSSi - i — can Mode ocC 0oC OCi oC e
The permissible edges-delay pair of eaph RE.c,[7] Range AT ET RS
ky.ry[7]), v € {z,y, Dmin}, Was chosen in such a way to Npg 16 16 16 25 5
inimi i Cycles/Frame | 656 656 272 256 256
minimize th_e to_tal LUT consumption. _ _ T / 1440 | 1904 | 1,024 | 2289 | 2625
Each PE in Fig. 5 corresponds to a motion ve¢iorn| with LUTs/PE 90 119 64 92 105
the relationship to PE numbér.J' = nN + m Hence, the By/B; 10 2 2 2 1
9 . Fan-Out 0 100 16 8 5
array must be composed @fp + 1)* PEs. The candidatefAD #I0 (pins) 80 40 40 40 29

is accumulated from for consecutivé cycles and stored for
N, N cycles while waiting for its next period of computation.
N}, M-bit MADs are stored in a distributed dual-port RAM oc-
cupying2M LUTs for smaller video frame siz@V,, < 16). In A novel multiple (execution)-order dependence graph
a bigger frame siz¢16 < N, < [4096/M|), the dual-port (MODG) and its FPGA mapping constraints are proposed
BlockRAM [5] should be used instead. Thei, j] pixels, as for run-time configurable systolic arrays. As concise repre-
shown in Fig. 6, are fetched in line scanning mode. This paentations of several fundamental nested loop algorithms,
tern can efficiently utilize data cache’s both spatial and tempotdlODG can be exploited to obtain array structures that match
locality. They][i, j] pixels are reused to the minimum memoryvell to the modern SRAM-based FPGA architectures such as
bandwidth required. The array exploits the use of LUTs as delthe Xilinx Virtex Il and so on. Therefore, the obtained array
elements or first-in first-out (FIFOs). This leads to a more conis close to the globally optimal solution in many aspects:
pact layout where a 16-bit FIFOs occupies the space of only oménimal execution time, reasonable LUT consumption, low
LUT instead of 16 LUTs if it is designed using 16 FFs. TableslIO pins, high-hardware utilization, and eventually low-power
and Il summarize and compare the attained motion estimatioonsumption. In conjunction with either the Xilinx Floorplaner
processor array with other FPGA implementations. or the custom-made tool, the implementation of the obtainable

V. CONCLUSION
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systolic arrays can achieve high operating clock frequency ando] S. Kittitornkun and Y. H. Hu, “Frame-level pipelined motion estimation
efficient LUT utilization. As it was reported in the development array processor,[EEE Trans. Circuit Syst. Video Technalol. 11, pp.

248-251, Feb. 2001.

ofa117-MHz SyStOI'C FIR filter on FPGA [23]' a C.UStom'made [21] T.Komarek and P. Pirsch, “Array architectures for block matching algo-
tool [24] was used to aid the placement and routing process. rithms,” IEEE Trans. Circuit Systvol. 36, pp. 1301-1308, Oct. 1989.
Despite the high—order polynomial complexity of the MODG [22] L. D. Vos and M. Stegherr, “Parameterizable VLSI architectures for the

full-search block-matching algorithm|EEE Trans. Circuit Syst.vol.

as aresult of maximum parallelism, itis a very concise represen- 35y 1309-1316, Oct. 1989.
tation that explicitly expresses parallelism. Nevertheless, its dg23] D. R. Martinez, T. J. Moeller, and K. Teiteloaum, “Application of
Slgn constraints and targeted 1-D and 2-D processor arrays can reconfigurable computing to a high performance front-end radar signal

processor,”J. VLSI Signal Processingol. 28, no. 1-2, pp. 65-83,

counterbalance for its complexity on modern computers/work-  ay “yun” 2001.
stations and network of workstations. [24] T. J. Moeller, “Field Programmable Gate Arrays for Radar Front-End
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