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Further Improve Circuit Partitioning Using
GBAW Logic Perturbation Techniques

Yu-Liang Wu, Member, IEEE, Chak-Chung Cheung, David Ihsin Cheng, and Hongbing Fan

Abstract—Efficient circuit partitioning is becoming more and
more important as the size of modern circuits keeps increasing.
Conventionally, circuit partitioning is solved without altering the
circuit by modeling the circuit as a hypergraph for the ease of
applying graph algorithms. However, there is room for further
improvement on even optimal hypergraph partitioning results, if
logic information can be applied for circuit perturbation. Such
logic transformation based partitioning techniques are relatively
less addressed. In this paper, we present a powerful multiway
partitioning technique which applies efficient logic rewiring
techniques for further improvement over already superior
hypergraph partitioning results. The approach can integrate
with any graph partitioner. We perform experiments on two-,
three-, and four-way partitionings for MCNC benchmark circuits
whose physical and logical information are both available. Our
experimental results show that this partitioning approach is very
powerful. For example, it can achieve a further 12.3% reduction
in cut size upon already excellent pure graph partitioner (hMetis)
results on two-way partitioning with an area penalty of only
0.34%. The outperforming results demonstrate the usefulness of
this new partitioning technique.

Index Terms—Alternative wiring, partitioning.

I. INTRODUCTION

T HE objective of circuit partitioning is to divide the circuit
into subcircuits so that the size of each component is rea-

sonable and the number of interconnect between the compo-
nents is minimized. As design scale expands, partitioning be-
comes increasingly important to circuit design automation.

Traditionally, circuit partitioning is done by simply modeling
the circuit as a graph (or hypergraph). Graph partitioning prob-
lems are known to be NP-hard [1]. A comprehensive survey [2]
has presented the directions of partitioning. Commonly used
partitioning algorithms can be categorized into three classes.
The first class strictly abides by the modeling graph, with no
attempt to change the graph. High quality results have been
reported by several algorithms that include iterative improve-
ment based [1], [3], [4], clustering based [5], and spectrum
(eigenvector) based [6], [7]. The second class of algorithms
may modify the graph through node replications [8]–[11].
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Improvement is achieved by sacrificing areas due to node repli-
cations. These two classes both perform the partitioning task on
the graph without considering the logic function of the circuit.
The third class [12]–[15] couples the graph domain (nodes and
their connections) and logic domain (function perform by each
node). The tradeoff of improving the partitioning results is the
high computational cost [13], [14] and may only be applied to
field-programmable gate array (FPGA) circuits [15].

Recently, many research studies on multilevel partitioning
have been proposed [16]–[22]. The general idea behind mul-
tilevel partitioning is to first cluster the whole problem by ef-
ficient algorithms so as to reduce the size, then apply a well-
known graph-domain partitioner on the coarsened graph to get
a high quality initial solution. The graph is then unclustered
and a suitable partitioning refinement algorithm is applied in
order to adjust the cut edge between partitions. The quality and
the runtime by multilevel partitioning are very encouraging. In
particular, Karypis and Kumar [22] propose a partitioner called
hMetis-Kway. It first coarsens the hypergraph, then recursively
bisects the graph into k parts, followed by uncoarsening the
hypergraph with refinement algorithms. More recent research
works [23]–[26], in comparison with hMetis-Kway, have shown
that the solution by hMetis-Kway is such a high quality that the
cut size cannot be further reduced greatly.

Alternative wiring (rewiring) is the technique of adding
single or multiple redundant wires or gates to a circuit so that
other wires or gates become redundant and thus removable.
This logic-domain technique has been widely used for solving
many logic-level and physical-level design problems [12],
[27]–[31]. Circuit performance can be improved by removing
a wire on the critical path and adding its alternative wire
elsewhere. Circuit routability can also be improved by substi-
tuting an unroutable wire in the congested area by a routable
alternative wire in other circuit parts. The cut size of a partition
can be reduced by replacing the wires crossing the cut line.

Fig. 1 illustrates how rewiring can be used to further improve
an already optimal partitioning obtained by a typical graph-do-
main partition algorithm. The global optimal partitioning in the
graph domain, with a cut size of 3, is shown in Fig. 1(a). How-
ever, if we apply the logic-domain rewiring technique to replace
a target wire (thick line) crossing the cut line by its alternative
wire (dotted line), the cut size can be further reduced to 2 as
shown in Fig. 1(b) without injecting area increase. From this ex-
ample, we can see that rewiring can be applied to partitioning to
further improve upon even the optimal solution in the graph-do-
main. Binding the logic-domain rewiring technique with an effi-
cient graph-domain partitioning tool enables a larger flexibility
for obtaining better results. The rewiring technique can be used
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Fig. 1. Circuit partitioning by rewiring (cut net size improved from 3 to 2).

either as a greedily guided optimization tool, or as a random per-
turbation tool that allows for hill climbing on cut cost functions
so as to release the cost out of local minima.

The well-known ATPG-based rewiring technique, redun-
dancy addition and removal for multilevel Boolean optimization
(RAMBO) [12], [14], [27], [28], [32]–[36], is a very powerful
technique for identifying alternative wires of a specified target
wire for a given circuit. This technique has been used for logic
perturbations and has been integrated with a graph-domain
partitioning algorithm to produce improved partitioning [12].
However, as it always selects a nonnegative-gain wire in
replacing a target wire and it only considers simple cases of
adding and replacing one single wire, it is easily trapped in
local minima. Besides, the ATPG-based rewiring technique,
though powerful, tends to spend much running time due to the
time-consuming Boolean implication operations. Moreover,
the benchmark circuits used in the Cheng’s work [12] have
been preprocessed by the SIS package [37] and have mapped
into two-input gates.

To investigate the possibility of perturbing the circuit without
applying any Boolean operations, minimal circuit structures
yielding rewiring patterns have been studied [38], [39]. Based
on benchmark circuits, we observe that the nearest existing
alternative wire is quite close to its target wire. Therefore, these
minimal patterns tend to be small and repeatedly appear in a
circuit. As a result, instead of applying the ATPG-based logic
implications repeatedly to a same pattern, the graph-based
alternative wire (GBAW) technique [38], [39] employs a more
efficient graph pattern matching operation to locate alternative
wires. The basic idea of GBAW is to match the subcircuit
with “prespecified” patterns. Rewiring by GBAW can be done
without applying any logic implication or redundancy check,
hence it runs very fast. Besides considering the alternative wire
that is close to the target wire from those small “prespecified”
patterns, distant alternative wires can also be located by propa-
gating the matchings in a cascading way. By coupling RAMBO
and GBAW as the perturbation engine, Wu [40] proposed the

bipartitioning tool RAMBO-GBAW partitioner (RG) that also
handles the two-input gates and has a larger flexibility for
perturbation.

In our approach, excellent partitionings were firstly obtained
using the pure graph-domain partitioner hMetis-Kway to serve
as initial partitions. Then to expand the optimization space, we
applied an iterative optimization process coupling both graph
and logic domain partitioners. In graph domain, we chose the
Fiduccia–Mattheyses (FM) partitioning algorithm [3] for its
simplicity. In logic domain, we applied either the RAMBO
[12], GBAW engine [38], or augmented GBAW [39], as a
greedily guided perturbation engine.

Please note that the graph partitioner used in this approach
is not limited to any particular one, i.e., the logic perturbation
process can be coupled with any later developed more powerful
graph-domain partitioning tool. We experimented this partition
flow for two-, three- and four-way partitionings on various
MCNC benchmarks ranging from small to fairly large circuits
whose physical and logical information are both available. The
results show that such a graph-logic domain coupled parti-
tioning approach can further cut down the cut size effectively
with small CPU and area overhead. Our results show that
our proposed approach can further reduce the cut cost over
excellent graph partitioner results by 12.3%, 11.1%, and 11.4%
for two- to four-way partitionings with quite low area overhead
of 0.34%, 0.49%, and 0.57% only, respectively. We observed
that the experimental results amongst the three different logic
perturbation engines are all significant and comparable, while
the GBAW rewiring engine is the fastest one. The results seem
to suggest that for partitioning objective, a simple rewiring
scheme would be effective enough to produce the near best
results. The encouraging results also suggest a quite promising
approach for doing circuit partitioning.

This paper is organized as follows. The preliminaries and
notion of alternative wiring are introduced in Section II. In
Section III, a brief introduction to GBAW technique is given. In
Section IV, the details of repartitioning by rewiring are shown.
In Section V, experimental results are presented. Conclusions
are drawn in Section VI.

II. PRELIMINARIES

A combinational circuit can be represented by a directed
acyclic graph (DAG) where vertices correspond to the primary
inputs (PI), primary outputs (PO) and the internal gates of the
circuit. PI and PO are nodes that have only outgoing edges and
incoming edges, respectively. An internal node has at least two
incoming edges and one outgoing edge and is associated with
a Boolean function. Inverters are not considered as internal
nodes, but as polarity of edges during logic-domain perturba-
tion. A Boolean network is used to represent a system of
Boolean functions with specified variables as PI and functions
as PO. The functionality of a Boolean network is specified
by its primary output function set. Two Boolean networks are
equivalent if they have the same functionality.

A wire is defined as a two-point connection between a pair of
source and sink nodes. When a larger circuit is partitioned into
two subcircuits, we define the wires crossing the partitioning
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Fig. 2. Example of alternative wiring.

cut line as cut wires. We also define a cut net as a hyperedge
connecting partitions and the cut pins as the total number of pins
required for all partitioned blocks.

A. Rewiring

If we consider the circuit from Perturb and Simplify [28] as
shown in Fig. 2(a), this circuit is irredundant because none of
the wires in the circuit is removable. If we add a connection
from the output of gate to the input of gate [shown as
a dotted line in Fig. 2(b)], the functionality of the circuit does
not change. In other words, the added connection is redundant.
However, the addition of this connection causes two originally
irredundant wires to become redundant as shown in Fig. 2(b).
After removing these two wires and associated gates that either
become floating ( ) or have a single fanin ( or ), the circuit
can be greatly minimized as shown in Fig. 2(c). We can apply
this rewiring techique to solve the logic synthesis and physical
design problems.

III. GBAW T ECHNIQUE

A wire is replaceable if it has at least one alternative wire. We
use a graph configuration to represent a subnetwork function

in a Boolean network . In a Boolean network, the in-degree

Fig. 3. Configuration of a subnetwork.

of node , denoted by , is defined as the number of edges
entering . The out-degree of node, denoted by , is de-
fined as the number of edges leaving. We also define a node

by a triplet ( ), where is the Boolean op-
erator of that can be any associative operator likeAND, OR,
NAND, or NOR.

For each node in subnetwork in network , is mapped
to a triplet ( ) in where denotes the operator rep-
resenting the Boolean function of and , are nonnegative
integers. All edges inside are preserved, while the edges out-
side are omitted in . In most cases, equals and

equals . The element of a triplet
can also be “don’t care” (dc). For the first element, “dc” means
any operator. For the other elements, “dc” can be any positive
integers. We use a configuration to denote a minimal pattern
containing both the target (the wire to be replaced) and its al-
ternative (the wire to be added) wire. A minimal pattern implies
that all the edges or nodes associated with the pattern cannot be
removed.

The mapping is illustrated in Fig. 3. is a subnetwork of
. and are two mappable configurations of. They are

both called subgraph as they are mapped from a subnetwork
. A subgraph is minimal if all of its nodes and edges are all

essential (unremovable) to the graph. A-local pattern denotes
a minimal subgraph with the distance between the alternative
wire and its target wire being. The distance between two wires
is defined as the difference of maximum path length from any
primary input to each of the wires. In Fig. 4(a), gatecan be
reached from and and the maximum path length is defined
as 2.



454 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

Fig. 4. A combinational network, a labeled Boolean network and two
configurations.

Fig. 4 shows a combinational network (A) and its corre-
sponding Boolean network (B) by using the configuration
notation. We can further simplify this Boolean network into
two configurations containing the alternative wire (C) and
without containing redundant wire (C). Finally, a pattern is
constructed.

GBAW is a newly proposed and efficient rewiring technique.
It models a circuit as a DAG and searches alternative wires by
checking graph matchings between local subnetworks and the
prespecified minimal subgraph configurations. A configuration
is a minimal circuit pattern containing alternative wires within
a given distance. Experiments show that the number of all such
local minimal subgraphs is limited. Most of the alternative wires
are located topologically “near” to their target wires. It has been
shown that about 96% of the closest alternative wires are only
two-edge distant from their target wires. When a subnetwork
matches a pattern, GBAW can quickly determine the target wire
and the corresponding alternative wires. Obviously, ifis an
alternative wire of , then is also an alternative wire of .
Both and are pescribed in a pattern. But in a subnetwork,
only one of them exists.

Fig. 5. 0-local pattern in GBAW.

Fig. 6. 1-local patterns in GBAW.

A. Alternative Wiring Patterns

There are 0-local, 1-local, and 2-local patterns in GBAW
and they are discussed briefly in the following subsections.
According to our observations, the nearest alternative wire of a
target wire is close to the target wire in most practical cases. In
this paper, we apply an augmented GBAW scheme [39], which
is a much extended scheme improved from GBAW version
shown in Wu [38], to improve the effectiveness of identifying
alternative wires of a given circuit for repartitioning. GBAW
is able to find the alternative wire of the target wire within a
limited distance; also it is able to locate a distant alternative
wire by waveform propagations. This paper majorly applies
GBAW as the perturbation engine in logic domain.

1) 0-Local Pattern: A 0-local pattern is a node substitution
pattern such that two nodes can replace each other if they have
the same logic function. As shown in Fig. 5, the target wire is

and its alternative wire is .
2) 1-Local Patterns:There are three basic types in 1-local

patterns as shown in Fig. 6. Now, if we consider case 1-1,
can be replaced by if AND and AND

or NAND. Case 1-2 can be proved by the following. Let
NOR and AND, then , where

and are the other inputs of
, or if has no other inputs. Then, , where

and are the other inputs of ,
or if has no other inputs. Then can be regrouped as

, where
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Fig. 7. 2-local patterns in GBAW.

is the logic function of after is removed. Therefore,
is an alternative wire of .

3) 2-Local Patterns: In every 2-local patterns, the alterna-
tive wire is 2-edge far away from the target wire. In Fig. 7, three
2-local patterns are shown.

B. Functional Analyses

Fig. 8 shows four new 2-local patterns used in the augmented
GBAW, with the target wire and its alternative wire shown as
the thick line and dotted line respectively. The position of the
target wire and alternative wire can be swapped. There are more
than 40 different patterns in the implementation of augmented
GBAW. GBAW does handle adding one wire and removing an-
other one, adding oneAND, OR, NAND, or NOR gate so as to re-
move one target wire. The patterns of the original GBAW are
constructed based on basic minimal pattern configurations. In
augmented GBAW, more patterns extracted from benchmark
circuits using RAMBO tool are included.

IV. PARTITIONING USING ALTERNATIVE WIRING

The objective of a multiway partitioning is essentially to min-
imize the number of pins required to connect all partitions. As-
sume that one pin is used in a partition for a net. Since some
of the wires may have alternative wires, if we replace cut wires
by their alternative wires that are not cut wires, cut size can be
reduced. The rewiring process may lead to new circuit graphs
and in turn help escaping from local minima led by the graph
domain partitioning process.

A rewiring perturbation refers to the replacement of a target
wire by its alternative wires. Fig. 9 illustrates the gains regarding
various perturbations in a circuit. In the figure, thick lines rep-
resent the target wires and dotted lines refer to their alternative
wires. As shown in the example, we may have positive, zero,
and negative gains.

Fig. 8. Partial new 2-local patterns in GBAW.

Fig. 9. Perturbations and cut pin gains for three-way partitioning.
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Fig. 10. Cut net cost versus cut pin cost in two-way partitioning.

Fig. 11. Algorithm of GBAW-partitioner (GP).

As shown in Fig. 10, it shows the cut different between cut
net cost and cut pin cost of a simple bipartition example. It is
important to know that the cut net cost is only 1 but not 2. It
is inaccurate to measure the cut net cost in k-way partitioning,
therefore, in our experiments we used the cut pin cost as the
cut size in order to compare the quality of different partitioning
approaches.

We use the hMetis-Kway partitioning tool to provide a fast
and near optimal solution that serves as our initial partition.
We adopt the well-known FM partitioning algorithm [3] as our
graph-domain partitioner in our iterative graph-logic perturba-
tion process for its simplicity and efficiency. In fact, we can
apply any other graph domain partitioner for this purpose. Then
we apply our rewiring technique (RAMBO for RP while GBAW
for GP), to perform iterative logic perturbations aiming for fur-
ther improvements. The perturbation operations include:

• substituting a wire with its alternative wire,
• adding a gate and removing several wires,
• adding one wire to remove other wires,
• adding two gates to remove other wires and so on.

Fig. 11 gives the algorithm of GP.
During the perturbation process GP, only cut wires will be

selected as target wires for perturbations. We first randomly se-
lect a cut wire as the target wire. Then, GBAW is used to find
the alternative wire set of the target wire. Finally, among
the wire set , the alternative wire with the highest gain

Fig. 12. Diagram shows the procedure of the experiments.

is selected for perturbation. When the of the target cut
wire is empty, GP may randomly select another cut wire for an-
other trial. The number of iterations is set by. The number of
trials is limited by times. is the limit of perturbations. These
limits serve to set bounds for unnecessary runs when the total
number of alternative wires of all cut wires is zero or very small.
RP is similar to GP except that RAMBO is used for rewiring.
The main difference between algorithm GP and the algorithm
in [12] lies in the condition of perturbations. In [12], a perturba-
tion is performed only when the alternative wire of the selected
cut wire has a nonnegative gain. However, in our experiments,
hill-climbing perturbations are allowed, therefore the chance of
obtaining better solutions can increase. In this paper, a nega-
tive-gain perturbation is also allowed to help escaping local min-
imums. On the other hand, the main difference between GP and
the algorithm in Wu [40] is the perturbation engine used. In Wu
[40], a coupling scheme of RAMBO and GBAW (RG) is used.

V. EXPERIMENTAL RESULTS

The algorithm GP was implemented in C and the experi-
ments were conducted on Sun Enterprise E4500 workstation
with 8 GB memory in a single-processor configuration for
circuits of various sizes from MCNC benchmarks. The large
benchmark circuits used in ISPD98 [41] are not applicable for
our experiments due to the lack of logical-domain information.
The benchmark circuits are first mapped into 2-input gates
by using SIS [37] package. The logic minimization by SIS
[37] standard scriptscript.algebraic is conducted on each
benchmark circuit in the preprocess step. Fig. 12 shows the
precedure of the experiments.

There are 29 MCNC benchmark circuits in our experiments.
The number of nodes and wires of each circuit are shown in
Table I. Column “literals,” “PI,” and “PO” show the literal
counts, the number of primary inputs, and the number of
primary ouputs, respectively. This table also lists the statistics
of alternative wires on the benchmark circuits and the results
are separated into three parts which are RAMBO, GBAW, and
the augmented GBAW. Column “Circuit” shows the name of
the circuit. Column “alt. wire” lists the number of alternative
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TABLE I
BENCHMARK CIRCUITS STATISTICS

TABLE II
COMPARISON OF2-WAY PARTITIONING BETWEEN HMETIS-KWAY & RP AUGMENTED GP & GP

* (The result was picked from 250 runs of hMetis-Kway)
* (Total CPU times of 250 runs of hMetis-Kway)
cut size: the total number of pins required for all partitioned blocks

wires found in the circuits. Column “CPU” refers to the runtime
in seconds. From the experimental results listed in Table I,
we observe that GBAW and RAMBO have comparable AW
searching power while GBAW uses barely 1% CPU usage of
RAMBO. The augmented GBAW includes many newly formed
2-local patterns, which leads to better capability in locating

AWs than the original GBAW engine.We give an example
on how GP works below. Taking a C3540 benchmark as an
example, the circuit is first partitioned by hMetis-Kway for 250
times to obtain an initial partition with cut pin cost of 134. The
GP algorithm is then applied to further cut down the cost to
116 through the following steps.
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TABLE III
COMPARISON OFTHREE-WAY PARTITIONING BETWEEN HMETIS-KWAY ANDGBAW-PARTITIONER

* (The result was picked from 250 runs of hMetis-Kway)
* (Total CPU times of 250 runs of hMetis-Kway)
cut size: the total number of pins required for all partitioned blocks

• GP searches all the alternative wires of the wires which lie
along the cut line and replaces them and the original graph
is changed with gain 5.

• With a logically equivalent but different graph, FM re-
duced the cost down to 122.

• Again, GP searches along the cut line and reduces the total
cost by 6.

• By switching between graph and logic domain, the cost is
reduced to 116.

In our experiments, we set the tolerance of area imbalance of
RP/GP to be 20 of the average area in each partitioned block.
Therefore, the maximal ratios are 40% : 60% and 20% : 30% in
two-way and four-way partitionings, respectively. The graph-
domain partitioner of RP/GP is FM and the logic-domain par-
titioner is RAMBO/GBAW. In order to obtain excellent initial
partitions, hMetis-Kway [22] was run 250 times to pick the best
result for each circuit. As hMetis-Kway is known to be quite
powerful, the initial partioning results should be very excellent if
not near optimum. The next step is to apply RP/GP for logic per-
turbation to further improve the high quality graph partitioning
results with the setting of and . Table II lists
the experimental results for the two-way partitionings by four
different approaches. The first one is the initial partitioning by
hMetis-Kay, the second one is the ATPG-based RAMBO parti-
tioner (RP), the third one is the augmented GBAW partitioner
(GP2), and the last one, the GBAW partitioner (GP). Column
“area” lists the area of the subcircuit in terms of the number

of gates. “#lits” lists the total number of literals of the parti-
tioned circuits, which is used to measure the size of the circuit.
From the results, the area penalties for two-way partitionings by
RP, GP2, and GP are 0.91%, 0.21%, and 0.34%, respectively.
Column “cut pins” lists the total number of pins required for all
partitioned blocks, which should be double of the cut net size
in a two-way partitioning. Column “cpu” lists the cpu time (in
seconds).

We can see that applying logic perturbation can further reduce
the cut size of the good partitionings produced by the purely
graph-domain partitioner significantly. The total number of lit-
erals is slightly increased because of the added gates during per-
turbations. Table II shows that the approach can obtain 8.6%,
12.1%, and 12.3% further reduction on cut size over the al-
ready excellent hMetis-Kway cut results in two-way partition-
ings using RP, GP2, and GP, respectively.

On average, RP took nearly 20 times of CPU usage than
GP. In GP2, the logic-domain engine is able to locate more
2-local patterns than GP while the cut reduction is similar. Either
rewiring engine applied in the logic domain can always produce
further significant cut size reduction upon graph partitioner re-
sults. As GP is the fastest engine amongst the three partitioners
while produces near best results, we give experimental results
on three-way and four-way partitioning by using GP only in
Tables III and IV. We obtained 11.1% and 11.4% reduction in
cut pins for the three-way and four-way partitionings with area
penalties of 0.49% and 0.57% only, respectively.
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TABLE IV
COMPARISON OF4-WAY PARTITIONING BETWEEN HMETIS-KWAY & GBAW-PARTITIONER

* (The result was picked from 250 runs of hMetis-Kway)
* (Total CPU times of 250 runs of hMetis-Kway)
cut size: the total number of pins required for all partitioned blocks

VI. CONCLUSION AND FUTURE WORK

In this paper, a scheme coupling the graph-domain and logic-
domain partitioners to explore a larger optimization flexibility
of circuit partitioning is proposed. The scheme is shown to be
very efficient in terms of CPU expenditure and is also quite ca-
pable of bringing further improvements on good partitioning
produced by state-of-the-art partitioner hMetis-Kway. We con-
ducted experiments on 29 MCNC benchmark circuits for two- to
four-way partitionings and obtained further cutsize reductions,
from 12.3% to 11.1%, than the high-quality results produced
by hMetis-Kway. As logic-domain partitioner such as RAMBO,
GBAW can be integrated with any newly developed powerful
graph partitioner, this partitioning approach should be very prac-
tical and useful for various partitioning tasks.
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