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Abstract tween accuracy and speed of the software tools for embedded
. ystems-on-Chip.
Reservation Tables (RTs) have long been used to dete& Most current retargetable tools that follow the RT approach

conflicts between operations that simultaneouslgess the . . ;
) i require the user to specify the RTs manually on a per-operation
same architectural resource. Traditionally, these RTs have ' " . o
basis in the Architecture Description Language (ADL). Pro-

been specified explicitly by the designer. However, the increas- . S
: ) cessors that contain complex pipelines, large amounts of par-
ing complexity of modern processors makes the manual spec

e allelism, and complex storage sub-systems, typically contain
ification of RTs cumbersome and error-prone. Furthermore, :
e L o -_’alarge number of operatiohand resources (and hence RTSs).
manual specification of such conflict information is infeasible L . .
. . . . : Manual specification of RTs on a per-operation basis thus be-
for supporting rapid architectural exploration. In this paper :
; X comes cumbersome and error-prone. Furthermore, exploration
we present an algorithm to automatically generate RTs from - . . .
. L ; .. and customization of different architectures drives the need for
a high-level processor description, with the goal of avoiding ~_ . : : . s
e o . ® rapid evaluation of different architectural (and pipeline) con-
manual specification of RTs, resulting in more concise archi-

e . figurations — making it impractical to manually specify RTs on
tectural specifications and also supporting faster turn-around . ; . .
time in Design Space Exploration. We demonstrate the utilitya per-operation basis for each configuration.
' In this paper we presefRTGEN, an algorithm that auto-

of our approach on a set of experiments using the TI C6201maticall enerates RTs from a high-level processor descrip-
VLIW DSP and DLX processor architectures, and a suite of y9 9 b P

. . S C tion. This frees the user from the burden of having to manu-

multimedia and scientific applications. . : o
ally enumerate the RTs, allowing for conciseness of specifica-
1 Introduction tion, rgduction'of errors i'n specification, and reduction of time
spent in specification. Since every operation proceeasiir
In most modern processors that exhibit multlple levels Ofa pipe”ne path and accesses Storage Unitﬂ]ghl some data-

parallelism and deep pipelines, resource and data hazardgansfer paths, the key idea behind the RT generation approach
can lead to significant performance degradation, or even (fofs that it is possible to trace the execution of the operation
VLIWSs) incorrect execution behavior. Thus detection and through the architecture’s pipeline and data-transfer segments
avoidance of such hazards is a crucial task in processor-baseghd thus generate accurate RTS.
system design. Hazard information may be captured as con- |n Section 2, we describe related work on ADL-driven
flicts between operations that access the same resources at thipeline (and constraint) specification for tools and compare
same time. Reservation Tables (RTs), which specify (and repthem with our approach. In Section 3, we motivate the need
resent) both the pipeline behavior and the resource usage @fr automatic RT generation using the TI C6201 VLIW DSP.
operations, are commonly used as part of the machine modedection 4 describes the features necessary in a high-level pro-
for capturing such conflict information for retargetable compil- cessor description to support automatic generation of RTs. We
ers. RTs can be used, for example, by the instruction schedulgjse EXPRESSION, an ADL designed to support architecture
to avoid resource conflicts and pipeline hazards. Complex Proexploration and software tool-kit generation. The RTs gen-
cessors are increasingly being deployed in high-end embeddegtated from EXPRESSION are used to drive the Trailblaz-
applications, typically as (fixed or parameterized) cores in ajng scheduler in EXPRESS, a highly optimizing, memory-
System-on-Chip. Since RTs can be specified at different levaware, instruction-level parallelizing (ILP) compiler. Section 5

els of detail, they can also be used in an architectural Desigipresents the algorithm for automatic RT generation. Section 6
Space Exploration (DSE) environment involving trade-offs be-

I For single issue machines, the terms operation and instruction are used
*This work was partially supported by grants from NSF (MIP-9708067) interchangeably. For multi issue machines (e.g., VLIW, Superscalar), an in-
and ONR (N00014-93-1-1348). struction represents a set of operations issued/executed simultaneously.




presents experiments using an implementation of the RTGENIicts are modeled as signals that capture at run-time the occur-
algorithm, conducted to demonstrate utility of this approach,rence of conflicts in the pipeline stages. In the nML ADL [9],
and a brief discussion on the different usage scenarios of outhe processor’s instruction-set (IS) is described as an attributed
approach for the purpose of DSE, while Section 7 concludeggrammar with the derivations reflecting the set of legal com-
this paper. binations of operations. Combinations of operations not rec-
2 Related Work ognized by this grammar represent the conflicts. In the ISDL

While pipelining was first developed during the late 1950s, [5] ADL iIIega'I combinations of operations are explicitly enu- '
most modern pipelining techniques are direct descendents dferated. While these approaches have the advantage of being

work done during the late 1970s and early 1980s. [14] survey&PI€ t0 capture most of the constraints (including those due
pipelining techniques and provides most of the terminologyto bit-width restrictions), the size of specification tends to get
and concepts in use today. [12] contains a good description of €'Y 1arge for complex processors. [15] presents a technique

the various aspects of pipelining (including tackling hazards;orau.tor.natlc extr'?ctéqn o:]the instruction set, from a structural
and compilation techniques). escription, specified in the MIMOLA ADL.

The advent of System-on-Chip (SOC) technology, with the All the previous approaches presented require manual spec-

ability to explore between a variety of processor cores, hadfication of the conflicts, which is a tedious and error-prone

led to renewed interest in retargetable software tool-kits (e.g!@Sk: We present an algorithm to automatically generate the set

compilers and simulators). Due to increased parallelism an®f RTs from a mixed structural/behavioral description of th.e
pipelining in today’s processors, more complex data and reProcessor. We thereby free the user from the burden of having

source hazards may raise conflicts in the architecture, Ieadin%? manually specify the RTs. Moreover, during DSE, change§
to insertion of stalls in the pipeline, or even incorrect execu-© the structure of the processor are reflected automatically in

tion of instructions (for VLIW processors). Thus, itis crucial the RTS, allowing for fast DSE iterations. Also, by automati-

to detect and avoid such conflicts either in the software toolkitC@!ly generating the conflict information, we avoid redundancy
(e.g., compiler), or in the processor itself (in the hardware con-N the input processor specification. In our approach, the same

troller). We present related approaches to specifying and usinarchitectural specification is used to generate both a structural
such conflict information. Simulator SIMPRESS[13], as well as the RTs required by our

Traditionally, Reservation Tables (RTs) are used to detecPtimizing compiler EXPRESS.
conflicts for scheduling [16]. The concept of using RTs to 3 Motivating Example

represent the resources used by individual operations in each We use Texas Instruments’ C6201 VLIW DSP to intuitively

stage of the plp.ellne was developed in [2] aﬂd [4]. .Conﬂ'CtSexplain the RT generation algorithm and illustrate the com-
between operations are detected by comparing their RTs. Ex-, . . )

. . : plexity of the problem. The C62 is a state-of-the-art fixed-
amples of compilers that adopt this approach include the Mul-_ > 7 .~ . : .
tiflow Trace Scheduling Compiler [7] and the Trimaran (El- point digital signal processor (DSP) with a high-performance,

cor) Compiler [22]. Trimaran uses the MDes[6] ADL which VLIW architecture, whose block-level diagram is shown in

. . . L Figure 1. The bold blocks represent pipeline and functional
captures constraints between operations with explicit RTs on %nits while the dotted blocks represent storage components.

per-operation basis, using a hler.a'rch'lcal descrlptlon for COMrhe interesting features of this architecture include instruction-
pactness. However, explicit specification of RTs introduces & avel parallelism (ILP) with up to 8 operations being issued in
dundancy in the processor description. Moreover, during De- L s

: . .one cycle, a complex, fragmented pipeline and a complex stor
sigh Space Exploration (DSE) structural changes to the amh'ége subsystem with 2 register files (RFA, RFB) with multiple
tecture may propagate through the description, requiring th '

: : fead/write ports and a main memory with 4 banks.
user to manually reflect the changes in the RT section too. ports : yw . .
. - For ease of illustration, we have omitted showing the main
State diagrams or Finite State Automatons (FSAs) are used - :
. : controller, pipeline latches, ports and some connections and
to represent the set of all legal instruction schedules for a pro- : .
! storages. However, the actual RT generation algorithm as-
cessor. The FSAs are derived from RTs. [1], [18] present e .
. . e sumes a complete specification including, for example, the
compiler techniques that use FSAs. For determining opera: - . :
: . source and destination ports for each functional unit. A de-
tion conflicts, the RT approach suffers from the drawback of; . - . )
) . ailed description of the TI C6201 architecture can be found in
increased time as compared to the FSAs. However, [3] and [6 21]
present RT optimization techniques that can be used to mit* .
igate these drawbacks. Further, RTs are needed in order to Tlhfe 'JICGZO% prr?gcessqr'moshel we e>.<]:'.:1 m'tf‘ed hfaAsz%ZGR;‘_ully
generate FSAs[14]. A disadvantage of the FSA approach i lrj]a' 1€ rotFi)er:a:‘ I(r)m trequmngrt de &;p?ﬁl 'ia lon ;rRCODES.
that it is not amenable to certain advanced scheduling tech- € operation formats supported are the 1-ope

: . . . .~ DEST) 2-operand(OPCODE DEST SRCland 3-operand
h lo scheduling[1
Q(I:?‘]ueedsul(fnugtflg)s iterative modulo scheduling[19] and mutatio OPCODE DEST SRC1 SRG2ymats.

The LISA [8] and_RADL [20] appro‘?"Ches are targeted 2 fy-qualified operatioras all of its fields bound to architectural com-
mainly to generate high performance simulators. The con-ponents such as functional and storage units.




PG

Component Specification Every component in the architec-

[Pc ]
ture may be modeled asumit (e.g., ALU), astorage(e.g.,
4 o H J e # Register File), gort or aconnection(e.g., bus). Each com-
‘ T | R | T I ponent is further described in terms of EPCODES(op-
) erations supported by the componerf)MING (for multi-
cycle or pipelined components), ahdBEL (a tag associated
with port/connection components, which together with the OP-
[og] [sia] [we] [oue] [oze] |[weri] [seex] [zei] CODES construct, ties the behavioral description to the struc-
O e] tural description of components).

Connectivity Specification the PIPELINE and theDATA-
TRANSFERSo onstructs provide a natural and concise way
to specify the net-list at a high-level. PIPELINE is used to

MEM CONTROLLER

| oaTATRANSFER specify the ordering of units which comprise the architec-
| PreeuNEPaTH ture’s pipeline stagesPipeline pathgepresent the sequence
MAIN MENORY (through time) of execution for the pipeline units. DATA-
Figure 1. Block diagram of the TI C6201 VLIW DSP. PG, TRANSFERS are used to specify the valid unit-to-storage or
PS, PW, PR perform instruction fetch; DP, DC perform de- storage-to-unit data transferdata-transfer pathgypically
code and dispatch; L, S, M, D are functional units. occur between Functional Units (e.g., ALUs) and Memory el-

ements (e.g., Register Files).

The large number (426) of operations makes specification ) .
of RTs on a per-operation basis very tedious and error prone(.)f aAErI:)cBeE?cﬁ\fls%zﬁrﬁeiZiilsﬁfsf\rzgsn ée-[hgat::ihggle:c;;tion
Further, specifying (or generating) RTs is not a straightfor-. . ) : d . Pt

pecifying (or g 9) 9 ip the instruction-set is defined in terms of @CODE(the

ward, simple task for most architectures due to the presence o . . . :
complex architectural features (e.g., the C62 has fragmente pcer mnemonic associated with the opera'n@P)ERANDS
the list of arguments - e.g. src, dst - associated with the op-

pipeline paths, multiple register files with cross paths, and var-" " ) —
: . : : eration), and-ORMAT (the operation format used to indicate
ied operation formats). An automatic RT generation approacr‘{he releztive ordering of( the vzrious operation fields)

is essential to free the user from the burden of specifying com- The inf . din th I
plex RTs and reduce the possibility of errors in the RTs. Our e ormatlor! capture n t e ADL allows us to gener-
ate resource conflicts for multi-issue processors (e.g., VLIW,

approach results in automatic generation of RTs even for arS I i f d pineli hs. h
chitectures with complex features (including multiple pipeline SUP€rscalar), with fragmented pipeline paths, heterogeneous
unctional units and variable latency operations (e.g., an ADD

paths, bus-based data-transfers, and different operation foF : , ;
and a MAC operation on the same functional unit may have

mats).

) . . different latencies, and similarly, an ADD operation on differ-
4 ADL Information Required for RT genera- ent functional units may have different latencies).

tion These ADL features are used to drive the automatic gener-

We now describe the essential features required in an Aration of RTs as described in the next section.
chitectu.re Description L.anguage (ADL) to support automatic5 RTGEN: An Algorithm for Automatic Gen-
generation of RTs. While we use our ADL EXPRESSSION . .
[11] as a vehicle for demonstrating the automatic generation eration of Reservation Tables
of RTs from a machine description, it is important to note that ~ Figure 2 presents the flow &TGEN, the Reservation Ta-
the RT generation approach we describe is not specific to EXbles (RT) generation algorithm. RTGEN starts from a descrip-
PRESSION. Indeed, any ADL that incorporates the (generic)tion of the processor, specified in an ADL such as EXPRES-
features mentioned below is a candidate for automatic generéSION, and generates the RT for a given operation. RTGEN
tion of RTs using our approach. proceeds in two phases. In the first phase, the pipeline paths
The primary characteristic of an ADL for automatic RT and data transfer segments are combined to generate a cross-
generation is integrated specification of both structure and beproduct, called tces. Traces do not incorporate instruction set
havior (i.e., instruction-set) of the system. Below we summa-information, but instead capture the behavior of the pipeline as
rize the key features of the structural and behavioral specificaa set of possible execution footprints in the netlist. A trace
tion of such an ADL. in our example, the Tl C6201, is shown in Figure 3 with the
ADL STRUCTURAL SPECIFICATION : The structure  bold lines traversing the PG, PS, PW, PR, DP, DC, Bllland
(of a processor system) is defined byémmponentand the  M1_E2 units, and accessing RFA and RFB. This trace could
connectivitybetween these components. Furtreach com-  be activated by an MPY operation, but since the mapping of
ponent is defined by its attributes and the connectivity be-traces to specific operation is performed only in the second
tween components is defined using two high-level constructgphase, this trace is not linked to any operation yet.
(pipelineanddata-transfe)y as described below. In the second phase, given an operation, we use the traces,



operation format, and opcode-to-unit mapping to generate théhat pipeline path. E.g., for the form&@PCODE FU SRC1
corresponding RT. Each RT represents the architectural reSRC2 DSRnd for the pipeline patRG, PS, PW, PR, DP, DC,
sources used in each pipeline stage by a particular operatiodM1_E1 and M1E2, SRC1 is covered by the port ME1 S1,
In this phase, we can use different strategies (with varyingSRC2 by M1E1 S2, and DST by MIE2 D. Thus, for each
computation time and memory requirements) to generate theipeline path we try to satisfy each operation format, by gen-
RTs, as explained in Section 6. erating all possible decorations so that each operand in the for-
We use traces as an intermediate output of our algorithm{mat is covered by exactly one port. If for a pipeline path there
because the number of traces in a typical processor is sma#ire multiple formats supported, or multiple ways to decorate it,
compared to the number of fully qualified operations, and con-we duplicate the pipeline path, and use a different combination
sequently the number of RTs. Figure 4 details the two phasesf ports to decorate each copy.
of RTGEN, the RT Generation algorithm.

EXPRESSION
‘ ‘
il v

‘ GEN PIPELINE PATHS ‘ ‘ CCOMPOSE DT SEGMENTS ‘ 4

Pipeline-paths
M

DECORATE PIPELINE PATHS

: [Lier] \\F\ [MLEL]

PHASE |

[s2E1] [2E1]

AAPPEND DATA-TRANSFERS

EXPRESS
COMPILER

H SIMRESS
4 SIMULATOR

BIND OPER TO RT
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H VERIFICATION

PHASE Il

MEM CONTROLLER

MAIN MEMORY

Fully-qualified
Operation

Figure 3. A trace in the Tl C6201 architecture
Figure 2. Overview of the RTGEN algorithm Finally, Appenddatatransfersto_pipeline pathsgenerates

Phase IFirst, since EXPRESSION contains a hierarchical Fhe traces by attaching a data transfer to each port decorat-

description of the pipeline, we flatten out the hierarchy into!"d the pipeline paths. For a given port there may be mul-
a set of distinct pipeline paths. For instance, one flattenediP!e data transfers which can be attached. E.g.,B41S1
pipeline path in the TI C6201 iBG, PS, PW, PR, DP, DC, ¢an be used to transfer data between thg RFA qndEMl
M1.E1, MLE2 (Figure 3). Also, since the data transfers are O Petween the RFB and ME1, by following a different
described as individual segments, we compose them into com2et Of connections. - For each port we consider all the pos-
plete RF-to-FU and FU-to-RF transférsThese two steps are sible data transfers, by dupI!cat!ng the decorated pipeline
necessary to transform the pipeline and data transfers descrip@hs, and choosing a combination of data transfers to at-
tion from the hierarchical EXPRESSION format, to the format @ch- The result of this step is called traces. One such trace
required by our algorithm. The rest of the RTGEN algorithm IN ©ur example architecture is shown in Figure 5. It con-
is independent of EXPRESSION, and can be used with any@ns the units PG, PS, PW, PR, DP, DC, i1 and M1E2,

processor architecture description language containing the fend the data transfers RFB to M1, RFA to M1EL, and
tures described in Section 4. M1_E2 to RFA. The unit M1E1 reads one operand from RFB

Next, procedureDecoratepipelinepaths() annotates the through the cross connection REBROSSPATH and the port

e Y : ; M1_E1 S1, and another one from RFA through the connection
units in each pipeline path with the ports copesding toeach '
data transfer involving that unit. For example, the 1 unit ~ RFA-M1-ELSLCONNECT, and the port MELS1. The

from Figure 3 is decorated with the ports MEIL S1 (for the unit M1_E2 writes the result to RFA through the connection
SRC1 operand) and ME1 S2 (for the SRC2 operand), allow- RFA-M1.E2.D_.CONNECT, and the port ME2.D.

ing transfer of data from RFA and RFB to MH1 (for concise- q Pthf’e d”t-k:n f[he second phas(jg, W? t{ﬁvgrse tthe trac;as mv?/r-
ness, we did not represent these ports in the figure). er toTind the trace corrésponding to the input operation. Ve

The ports annotatingach pipeline path are chosen based flrst narrow down the choice of traces to the ones cpoad-

on the operation formats. In order for a pipeline path to sup-'?ognﬁgia;ﬂi%e{ﬁ'ggg ;O;&aéﬁzg/gr;ﬁboigarf rt:]réeaggsera-
port an operation format, all the operands referenced in thé y

operation format have to be implemented by a port decorating\é:nghEclfStggctgzgéEle%qt’ and support the formaP-

3RF stands for Register Files (e.g., RFA), and FU for Functional Units Then, we verify that all th? units in the trace support
(e.g., M1E1). the operation’s opcode. In this way we account for cases




Algorithm: Phase-I-Generate-Traces Stage 1: PG, Stage 2: PS, Stage 3: PW, Stage 4: PR, Stage 5: DP, Stage 6: DC

Input: Structural specification of the processor (currently in EXPRESSION) Stage 7: RFB, RFBCROSSPATH, M1E1.S1, RFA, RFAM1_E1.S2 CONNECT,

Output: All possible Traces in the architecture M1_E1S2, M1E1

Begin Phase | Stage 8: M1E2, MLE2.D, RFA-M1_E2 D_CONNECT, RFA
pipelinepaths=Gepipelinepathsfrom_ADL (expressionspec); : ;
datatransfers=Getlatatransfersfrom_ADL (expressiomspec); F!gur_e 5. T_he r_esources used in each stage by the trace
decoratechps=Decoratpipelinepaths(pipelingaths); highlighted in Figure 3
traces=Appendlatatransfersto_pipelinepaths(decorategps, . . . . . .

datatransfers); ing of that particular compiler), until the operation is fully-

o baces: qualified. In the case of partially qualified operations (e.g,. the
. o o opcode and FU fields have been bound, but the argument fields
procedure: Decoratepipelinepaths(pipelinaths) have not been bound to RFs yet), RTGEN computes a list of

Input: The pipelinepaths

Output: The decorated pipeline paths RTs corresponding to all the possible bindings of the not-yet-
Begin iy : :
for each pipelingpath p quallfled flelds of .that operation (e.g., the RTs for the opera-
for each operation format f tions having the given opcode and FU, and all the possible RF
for all permutations of resources r implementing the operands from f . . .
decorate p with the resources r choices fpr the source gnd destination operands). RTGEN can
add decorated pipeline path p to list decoratecbps also provide an approximate RT, computed as the intersection

o listof.decoratecpps; (optimistic) or the union (conservative) of the list of possible
o RTs, thus providing conflict information even in the absence
Procedure: Appenddatatransfersto_pipelinepaths(decorategps,dataransfers) of complete information, at any level during the compilation

Input: The decorateghps and datdransfers

Output: The traces process, making RTGEN independent of the phase ordering in
Begin .
for each decorated pipeline path p the Comp”er'
for all permutations of data transfers dt connected to the ports decorating p The worst case Complexity of Phase | of RTGEN]'@U *
append all data transfers from dt to p y h is th b f ipeli h h b
add p to listof traces z*(Y)), where x is the number of pipeline paths, y the number
r;}turn listof traces; of data transfers, z is the number of distinct operation formats
E . .
" for that processor, and w the maximum number of operands in
IAlz:writhi:n: Phase-lI-Bind-gperations-to-Tgacefrs s e archi an operation. Typically, most architectures have a maximum
t: tl t ,unit, , t), the t t tectl
Ot e o tha siorianit operands,forma. and the fraces n the architec ““number of operands between 3 and 4, and the number of for-
Begin Phasel!l i racesior it andformat(t ot mats is under 10. Moreover, very few of the choiceg¥n
t t= t _unita s . ) . . . . .
o et It s e ancormat(iraces,unt formay) are considered. E.g., while considering the choices of a data
if(all units supportopcode(t,opcode) and transfer for a particular operand, only those corresponding to

operationformatsupported(t,format))

Returnreservatiortable(t) the operand type (e.g., SRC1), and to the FU assigned to that
End Phase Il operation are chosen. The worst case complexity of phase Il
Figure 4. RTGEN Reservation Tables Generation Algo- of the algorithm iD(m  n), where m is the number of traces
rithm: (@) Phase-l-Generate-Traces, and (b) Phase-II- in the architecture, and n is the number of fully qualified oper-
Bind-Operations-to-Traces ations. Since this is the more time consuming part of the algo-

when different opcodes supported by one FU require differ-fithm, we present in Section 6 a discussion exploring different

ent sets of resources. E.g., the B1 unit supports both Strategies to trade-off computation-time against memory.

LD and ADD operation;, but LD additionally requires the 6 Experiments

MEM_CONTROLLER unit, whereas ADD does not. As the

MEM_CONTROLLER does notipport the ADD opcode, the We now present a set of experiments conducted on var-
traces containing the memory controller are excluded whilelOUS processor descriptions and the generated RTs to drive

determining RTs for the ADD operation. pipelined scheduling of a set of multimedia and scientific
Next, we choose thedces that satisfy the order in the op- Penchmarks.
eration’s format. E.g., for the operati@?PCODE FU SRC1 Arch. EXPR. | Pipeline | DT | Traces | RTs Time ()
SRC2 DSTSRC1 and SRC2 are read before DST is written. S 'i;lels Pﬁghs Pa;hs N - T(;affs ;;51
At this point, the choice of traces corpesding to that op- DLX PoRE | 480 ) 3 80 [ 952 | 044 | 8841
eration has been narrowed down to one or more traces. A fully__C621RF 1064 12 34 56 | 168 | 0.60 | 1888
qualified operation corresponds to exactly one trace (whick Coz2RF 1095 12 2 % [460] 104 [ 17259
represents the RT for that operation) and is returned as the re- Table 1. RT Generation

sult of the RTGEN algorithm. For example, given the fully  Table 1 presents the results of the RT generation algorithm
qualified operatiotMPY M1E1 RFBO RFAO RFAQthe trace  on the TI C62 processor and a multi-issue version of the DLX
returned as the RT by RTGEN is the one shown in Figure 5. processor. In the context of architectural design space explo-
During compilation, the operations are qualified incremen-ration, we also present variants of each architecture to show
tally. Starting from a generic (non-qualified) operation, the how modifying features of the architecture (such as the regis-
fields are bound one by one (depending on the phase ordeter file architecture) impacts the number of traces and RTs.



The C62 processor is a VLIW DSP, allowing 8 operationsto  Phase | of RTGEN — extraction of traces — can be performed
be issued per cycle. The multi-issue DLX architecture allowsrather quickly (the seventh column in Table 1). As can be
4 operations per cycle and has a pipeline with up to 11 stageseen, it is in the order of seconds, even for a relatively com-
and multi-cycled units. The first column in Table 1 describesplex architecture like the C62. Phase Il of RTGEN — binding
the architectures for which the RTs were generated automatief RTs to operations — is the more time-consuming step. We
cally. We experimented with a single register file (CH2F, present three strategies which have varying time and memory
DLX_1RF) version and a 2 register file (C&RF, DLX_2RF) requirements. The first, callemh-the-fly (O-T-F) binds RTs
of the architectures. In C62RF (the actual C6201 archi- as and when required by tools. The second, calledompute
tecture, also shown in Figure 1) the 2 register files are parti-databasebinds RTs for all operations before hand and stores
tioned, with limited connectivity between FUs and RFs. Thethem in a database. The third, calleathed is a modified O-
DLX_2RF contains 2 register files which are connected to allT-F approach with RTs generated on demand, but stored in a

the functional units. database for future access.

The second column shows the number of EXPRESSION Arch [ Domain O-T-F Precompute DB Cached
lines specifying the complete architecture (including structur if;‘;pg; Timels] | Timels] | D8 size | Timels] | DB size
and ISA). The third column shows the number of pipeline Mafrix(2) | 11.9 0.6 8
paths, while the fourth column shows the number of data{ °* iRt 50 1 27 155 - 23
transfer paths in the processors. The fifth and sixth columnsg Mixed (16) | 153.0 4.9 23
show the number of traces and RTs generated, while the last L I 9oe a
two columns present the computation time needed to automay- c62 | MM(4) 173517 189 168 32 30
ically generate the traces and RTs. NM‘iTei”ég) ég;lg:g 162'.22 ég

Itis important to note that in order to compile accurately for e 2. RT generation strategies for DLX and TI C6201
an architecture, all resource constraints (in our case RTs) have |n Table 2 we present the tradeoffs in terms of computation
to be either Specified or generated. ESpeCiaIIy in the case of Olime and memory requirement, for the genera’[ion of RTs using
thogonal architectures, aach RT corrgsondsto a fullyquali-  the three strategies. We ran our algorithm on 5 sets of bench-
fied operation, the number of RTs may be very large (e.g., 952narks containing 1, 2, 4, 8 and 16 applications from a suite
for DLX_2RF). Manually specifying RTs on a per-operation of multimedia and scientific applications, containing filters
basis is very tedious and may lead to increased errors in specfe.g., Wavelet), image processing (e.g., Laplace edge enhance-
fication. Furthermore, simple Changes during architectural dEment), and numeric code (e_g_, linear recurrence equation
sign space exploration may affect many RTs, requiring the resolvers, successive over-relaxation, Red-black Gauss-Seidel
specification of some or all RTs; in our approach we only needre|axation). For details please refer to [10].
to re-specify the architecture as the modified RTs are gener- |n Table 2, column 2 shows the application domain and
ated automatically. The importance of RTGEN is that it canthe number of applications in each benchmark set. Column
handle real-life processors, inCIUding VLIW and Superscalar3 shows the total time required to genera‘[e the Bifigshe-
architectures, avoiding manual specification and updating ofjy for a parallelizing compiler. Columns 4 and 5 show the
this large number of RTs. total time (this includes the time required to precompute the

In C62.1RF and DLX1RF, the number of RTs is 168 and RTs, but not the time to retrieve them from the database) and
155. On the other hand, for the two register file versions, it in-database size (number of RTs) needed ingiegompute DB
creases to 426 and 952. This is due to the fact that in the 2R&pproach, while columns 6 and 7 show the total time and max-
versions, the operations may read their operands from 2 possimum database size for tlachedapproach.
ble locations, leading to a larger number of fully qualified op-  As expected, the time required to generate RTs using the
erations. The significant difference in RTs between D2RF naive O-T-F approach is very large. However, it requires min-
and C622RF is due to the different RF architecture. For the imal memory as it does not store any RTs. The database ap-
DLX, the operands of any operation can belong to any of theproach works best when compiling many applications, since
2 RFs, while for the C62RF, the restricted connectivity be- the one-time DB computation is better amortized. However,
tween the FUs and RFs precludes many operand combinationthe memory penalty is large when compared to the other ap-

To deal with the large number of RTs, in the following we proaches. The cached version results in significant time im-
explore different strategies trading off computation time andprovement (as compared to O-T-F) and memory reduction (as
memory requirement. Recall that we generate the RTs in twaompared to database). E.g., for DLX the cached approach
phases: first, we extract a set of traces, modeling the executioperforms well for small sets of benchmarks (1, 2, 4), while the
patterns of the operations; second, we bind these executiodatabase approach performs better for large sets (16).
traces to individual operations, in order to generate RTs on a Possible improvements to the overall approach may ad-
per-operation basis. This separation of concerns allows us tdress optimizing the RT representation for compactness, and
make some interesting trade-offs between time and memorgpeeding-up the conflict detection process. However, these is-
requirements during RT generation. sues are orthogonal to RT generation, and can be coupled with
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