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Abstract

Reservation Tables (RTs) have long been used to detect
conflicts between operations that simultaneously access the
same architectural resource. Traditionally, these RTs have
been specified explicitly by the designer. However, the increas-
ing complexity of modern processors makes the manual spec-
ification of RTs cumbersome and error-prone. Furthermore,
manual specification of such conflict information is infeasible
for supporting rapid architectural exploration. In this paper
we present an algorithm to automatically generate RTs from
a high-level processor description, with the goal of avoiding
manual specification of RTs, resulting in more concise archi-
tectural specifications and also supporting faster turn-around
time in Design Space Exploration. We demonstrate the utility
of our approach on a set of experiments using the TI C6201
VLIW DSP and DLX processor architectures, and a suite of
multimedia and scientific applications.

1 Introduction
In most modern processors that exhibit multiple levels of

parallelism and deep pipelines, resource and data hazards
can lead to significant performance degradation, or even (for
VLIWs) incorrect execution behavior. Thus detection and
avoidance of such hazards is a crucial task in processor-based
system design. Hazard information may be captured as con-
flicts between operations that access the same resources at the
same time. Reservation Tables (RTs), which specify (and rep-
resent) both the pipeline behavior and the resource usage of
operations, are commonly used as part of the machine model
for capturing such conflict information for retargetable compil-
ers. RTs can be used, for example, by the instruction scheduler
to avoid resource conflicts and pipeline hazards. Complex pro-
cessors are increasingly being deployed in high-end embedded
applications, typically as (fixed or parameterized) cores in a
System-on-Chip. Since RTs can be specified at different lev-
els of detail, they can also be used in an architectural Design
Space Exploration (DSE) environment involving trade-offs be-
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tween accuracy and speed of the software tools for embedded
Systems-on-Chip.

Most current retargetable tools that follow the RT approach
require the user to specify the RTs manually on a per-operation
basis in the Architecture Description Language (ADL). Pro-
cessors that contain complex pipelines, large amounts of par-
allelism, and complex storage sub-systems, typically contain
a large number of operations1 and resources (and hence RTs).
Manual specification of RTs on a per-operation basis thus be-
comes cumbersome and error-prone. Furthermore, exploration
and customization of different architectures drives the need for
rapid evaluation of different architectural (and pipeline) con-
figurations – making it impractical to manually specify RTs on
a per-operation basis for each configuration.

In this paper we presentRTGEN, an algorithm that auto-
matically generates RTs from a high-level processor descrip-
tion. This frees the user from the burden of having to manu-
ally enumerate the RTs, allowing for conciseness of specifica-
tion, reduction of errors in specification, and reduction of time
spent in specification. Since every operation proceeds through
a pipeline path and accesses storage units through some data-
transfer paths, the key idea behind the RT generation approach
is that it is possible to trace the execution of the operation
through the architecture’s pipeline and data-transfer segments
and thus generate accurate RTs.

In Section 2, we describe related work on ADL-driven
pipeline (and constraint) specification for tools and compare
them with our approach. In Section 3, we motivate the need
for automatic RT generation using the TI C6201 VLIW DSP.
Section 4 describes the features necessary in a high-level pro-
cessor description to support automatic generation of RTs. We
use EXPRESSION, an ADL designed to support architecture
exploration and software tool-kit generation. The RTs gen-
erated from EXPRESSION are used to drive the Trailblaz-
ing scheduler in EXPRESS, a highly optimizing, memory-
aware, instruction-level parallelizing (ILP) compiler. Section 5
presents the algorithm for automatic RT generation. Section 6

1For single issue machines, the terms operation and instruction are used
interchangeably. For multi issue machines (e.g., VLIW, Superscalar), an in-
struction represents a set of operations issued/executed simultaneously.



presents experiments using an implementation of the RTGEN
algorithm, conducted to demonstrate utility of this approach,
and a brief discussion on the different usage scenarios of our
approach for the purpose of DSE, while Section 7 concludes
this paper.

2 Related Work
While pipelining was first developed during the late 1950s,

most modern pipelining techniques are direct descendents of
work done during the late 1970s and early 1980s. [14] surveys
pipelining techniques and provides most of the terminology
and concepts in use today. [12] contains a good description of
the various aspects of pipelining (including tackling hazards
and compilation techniques).

The advent of System-on-Chip (SOC) technology, with the
ability to explore between a variety of processor cores, has
led to renewed interest in retargetable software tool-kits (e.g.
compilers and simulators). Due to increased parallelism and
pipelining in today’s processors, more complex data and re-
source hazards may raise conflicts in the architecture, leading
to insertion of stalls in the pipeline, or even incorrect execu-
tion of instructions (for VLIW processors). Thus, it is crucial
to detect and avoid such conflicts either in the software toolkit
(e.g., compiler), or in the processor itself (in the hardware con-
troller). We present related approaches to specifying and using
such conflict information.

Traditionally, Reservation Tables (RTs) are used to detect
conflicts for scheduling [16]. The concept of using RTs to
represent the resources used by individual operations in each
stage of the pipeline was developed in [2] and [4]. Conflicts
between operations are detected by comparing their RTs. Ex-
amples of compilers that adopt this approach include the Mul-
tiflow Trace Scheduling Compiler [7] and the Trimaran (El-
cor) Compiler [22]. Trimaran uses the MDes[6] ADL which
captures constraints between operations with explicit RTs on a
per-operation basis, using a hierarchical description for com-
pactness. However, explicit specification of RTs introduces re-
dundancy in the processor description. Moreover, during De-
sign Space Exploration (DSE) structural changes to the archi-
tecture may propagate through the description, requiring the
user to manually reflect the changes in the RT section too.

State diagrams or Finite State Automatons (FSAs) are used
to represent the set of all legal instruction schedules for a pro-
cessor. The FSAs are derived from RTs. [1], [18] present
compiler techniques that use FSAs. For determining opera-
tion conflicts, the RT approach suffers from the drawback of
increased time as compared to the FSAs. However, [3] and [6]
present RT optimization techniques that can be used to mit-
igate these drawbacks. Further, RTs are needed in order to
generate FSAs[14]. A disadvantage of the FSA approach is
that it is not amenable to certain advanced scheduling tech-
niques (such as iterative modulo scheduling[19] and mutation
scheduling[17]).

The LISA [8] and RADL [20] approaches are targeted
mainly to generate high performance simulators. The con-

flicts are modeled as signals that capture at run-time the occur-
rence of conflicts in the pipeline stages. In the nML ADL [9],
the processor’s instruction-set (IS) is described as an attributed
grammar with the derivations reflecting the set of legal com-
binations of operations. Combinations of operations not rec-
ognized by this grammar represent the conflicts. In the ISDL
[5] ADL illegal combinations of operations are explicitly enu-
merated. While these approaches have the advantage of being
able to capture most of the constraints (including those due
to bit-width restrictions), the size of specification tends to get
very large for complex processors. [15] presents a technique
for automatic extraction of the instruction set, from a structural
description, specified in the MIMOLA ADL.

All the previous approaches presented require manual spec-
ification of the conflicts, which is a tedious and error-prone
task. We present an algorithm to automatically generate the set
of RTs from a mixed structural/behavioral description of the
processor. We thereby free the user from the burden of having
to manually specify the RTs. Moreover, during DSE, changes
to the structure of the processor are reflected automatically in
the RTs, allowing for fast DSE iterations. Also, by automati-
cally generating the conflict information, we avoid redundancy
in the input processor specification. In our approach, the same
architectural specification is used to generate both a structural
simulator SIMPRESS[13], as well as the RTs required by our
optimizing compiler EXPRESS.

3 Motivating Example
We use Texas Instruments’ C6201 VLIW DSP to intuitively

explain the RT generation algorithm and illustrate the com-
plexity of the problem. The C62 is a state-of-the-art fixed-
point digital signal processor (DSP) with a high-performance,
VLIW architecture, whose block-level diagram is shown in
Figure 1. The bold blocks represent pipeline and functional
units, while the dotted blocks represent storage components.
The interesting features of this architecture include instruction-
level parallelism (ILP) with up to 8 operations being issued in
one cycle, a complex, fragmented pipeline and a complex stor-
age subsystem with 2 register files (RFA, RFB) with multiple
read/write ports and a main memory with 4 banks.

For ease of illustration, we have omitted showing the main
controller, pipeline latches, ports and some connections and
storages. However, the actual RT generation algorithm as-
sumes a complete specification including, for example, the
source and destination ports for each functional unit. A de-
tailed description of the TI C6201 architecture can be found in
[21].

The TIC6201 processor model we examined has 426 fully-
qualified operations2, requiring the specification of 426 RTs.
The operation formats supported are the 1-operand(OPCODE
DEST), 2-operand(OPCODE DEST SRC1)and 3-operand
(OPCODE DEST SRC1 SRC2)formats.

2A fully-qualified operationhas all of its fields bound to architectural com-
ponents such as functional and storage units.
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Figure 1. Block diagram of the TI C6201 VLIW DSP. PG,
PS, PW, PR perform instruction fetch; DP, DC perform de-
code and dispatch; L, S, M, D are functional units.

The large number (426) of operations makes specification
of RTs on a per-operation basis very tedious and error prone.
Further, specifying (or generating) RTs is not a straightfor-
ward, simple task for most architectures due to the presence of
complex architectural features (e.g., the C62 has fragmented
pipeline paths, multiple register files with cross paths, and var-
ied operation formats). An automatic RT generation approach
is essential to free the user from the burden of specifying com-
plex RTs and reduce the possibility of errors in the RTs. Our
approach results in automatic generation of RTs even for ar-
chitectures with complex features (including multiple pipeline
paths, bus-based data-transfers, and different operation for-
mats).

4 ADL Information Required for RT genera-
tion

We now describe the essential features required in an Ar-
chitecture Description Language (ADL) to support automatic
generation of RTs. While we use our ADL EXPRESSSION
[11] as a vehicle for demonstrating the automatic generation
of RTs from a machine description, it is important to note that
the RT generation approach we describe is not specific to EX-
PRESSION. Indeed, any ADL that incorporates the (generic)
features mentioned below is a candidate for automatic genera-
tion of RTs using our approach.

The primary characteristic of an ADL for automatic RT
generation is integrated specification of both structure and be-
havior (i.e., instruction-set) of the system. Below we summa-
rize the key features of the structural and behavioral specifica-
tion of such an ADL.

ADL STRUCTURAL SPECIFICATION : The structure
(of a processor system) is defined by itscomponentsand the
connectivitybetween these components. Further,each com-
ponent is defined by its attributes and the connectivity be-
tween components is defined using two high-level constructs
(pipelineanddata-transfer) as described below.

Component Specification: Every component in the architec-
ture may be modeled as aunit (e.g., ALU), astorage(e.g.,
Register File), aport or a connection(e.g., bus). Each com-
ponent is further described in terms of itsOPCODES(op-
erations supported by the component),TIMING (for multi-
cycle or pipelined components), andLABEL (a tag associated
with port/connection components, which together with the OP-
CODES construct, ties the behavioral description to the struc-
tural description of components).
Connectivity Specification: the PIPELINE and theDATA-
TRANSFERSconstructs provide a natural and concise way
to specify the net-list at a high-level. PIPELINE is used to
specify the ordering of units which comprise the architec-
ture’s pipeline stages.Pipeline pathsrepresent the sequence
(through time) of execution for the pipeline units. DATA-
TRANSFERS are used to specify the valid unit-to-storage or
storage-to-unit data transfers.Data-transfer pathstypically
occur between Functional Units (e.g., ALUs) and Memory el-
ements (e.g., Register Files).

ADL BEHAVIORAL SPECIFICATION : The behavior
of a processor is defined by its instruction-set. Each operation
in the instruction-set is defined in terms of itsOPCODE(the
opcode mnemonic associated with the operation),OPERANDS
(the list of arguments - e.g. src, dst - associated with the op-
eration), andFORMAT(the operation format used to indicate
the relative ordering of the various operation fields).

The information captured in the ADL allows us to gener-
ate resource conflicts for multi-issue processors (e.g., VLIW,
Superscalar), with fragmented pipeline paths, heterogeneous
functional units and variable latency operations (e.g., an ADD
and a MAC operation on the same functional unit may have
different latencies, and similarly, an ADD operation on differ-
ent functional units may have different latencies).

These ADL features are used to drive the automatic gener-
ation of RTs as described in the next section.

5 RTGEN: An Algorithm for Automatic Gen-
eration of Reservation Tables

Figure 2 presents the flow ofRTGEN, the Reservation Ta-
bles (RT) generation algorithm. RTGEN starts from a descrip-
tion of the processor, specified in an ADL such as EXPRES-
SION, and generates the RT for a given operation. RTGEN
proceeds in two phases. In the first phase, the pipeline paths
and data transfer segments are combined to generate a cross-
product, called traces. Traces do not incorporate instruction set
information, but instead capture the behavior of the pipeline as
a set of possible execution footprints in the netlist. A trace
in our example, the TI C6201, is shown in Figure 3 with the
bold lines traversing the PG, PS, PW, PR, DP, DC, M1E1 and
M1 E2 units, and accessing RFA and RFB. This trace could
be activated by an MPY operation, but since the mapping of
traces to specific operation is performed only in the second
phase, this trace is not linked to any operation yet.

In the second phase, given an operation, we use the traces,



operation format, and opcode-to-unit mapping to generate the
corresponding RT. Each RT represents the architectural re-
sources used in each pipeline stage by a particular operation.
In this phase, we can use different strategies (with varying
computation time and memory requirements) to generate the
RTs, as explained in Section 6.

We use traces as an intermediate output of our algorithm,
because the number of traces in a typical processor is small
compared to the number of fully qualified operations, and con-
sequently the number of RTs. Figure 4 details the two phases
of RTGEN, the RT Generation algorithm.

Pipeline
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Figure 2. Overview of the RTGEN algorithm

Phase IFirst, since EXPRESSION contains a hierarchical
description of the pipeline, we flatten out the hierarchy into
a set of distinct pipeline paths. For instance, one flattened
pipeline path in the TI C6201 isPG, PS, PW, PR, DP, DC,
M1 E1, M1 E2 (Figure 3). Also, since the data transfers are
described as individual segments, we compose them into com-
plete RF-to-FU and FU-to-RF transfers3. These two steps are
necessary to transform the pipeline and data transfers descrip-
tion from the hierarchical EXPRESSION format, to the format
required by our algorithm. The rest of the RTGEN algorithm
is independent of EXPRESSION, and can be used with any
processor architecture description language containing the fea-
tures described in Section 4.

Next, procedureDecoratepipelinepaths() annotates the
units in each pipeline path with the ports corresponding toeach
data transfer involving that unit. For example, the M1E1 unit
from Figure 3 is decorated with the ports M1E1 S1 (for the
SRC1 operand) and M1E1 S2 (for the SRC2 operand), allow-
ing transfer of data from RFA and RFB to M1E1 (for concise-
ness, we did not represent these ports in the figure).

The ports annotatingeach pipeline path are chosen based
on the operation formats. In order for a pipeline path to sup-
port an operation format, all the operands referenced in the
operation format have to be implemented by a port decorating

3RF stands for Register Files (e.g., RFA), and FU for Functional Units
(e.g., M1E1).

that pipeline path. E.g., for the formatOPCODE FU SRC1
SRC2 DSTand for the pipeline pathPG, PS, PW, PR, DP, DC,
M1 E1 and M1E2, SRC1 is covered by the port M1E1 S1,
SRC2 by M1E1 S2, and DST by M1E2 D. Thus, for each
pipeline path we try to satisfy each operation format, by gen-
erating all possible decorations so that each operand in the for-
mat is covered by exactly one port. If for a pipeline path there
are multiple formats supported, or multiple ways to decorate it,
we duplicate the pipeline path, and use a different combination
of ports to decorate each copy.
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Figure 3. A trace in the TI C6201 architecture
Finally, Appenddata transfersto pipelinepathsgenerates

the traces by attaching a data transfer to each port decorat-
ing the pipeline paths. For a given port there may be mul-
tiple data transfers which can be attached. E.g., M1E1 S1
can be used to transfer data between the RFA and M1E1,
or between the RFB and M1E1, by following a different
set of connections. For each port we consider all the pos-
sible data transfers, by duplicating the decorated pipeline
paths, and choosing a combination of data transfers to at-
tach. The result of this step is called traces. One such trace
in our example architecture is shown in Figure 5. It con-
tains the units PG, PS, PW, PR, DP, DC, M1E1 and M1E2,
and the data transfers RFB to M1E1, RFA to M1E1, and
M1 E2 to RFA. The unit M1E1 reads one operand from RFB
through the cross connection RFBCROSSPATH and the port
M1 E1 S1, and another one from RFA through the connection
RFA M1 E1 S1 CONNECT, and the port M1E1 S1. The
unit M1 E2 writes the result to RFA through the connection
RFA M1 E2 D CONNECT, and the port M1E2 D.

Phase II. In the second phase, we traverse the traces in or-
der to find the trace corresponding to the input operation. We
first narrow down the choice of traces to the ones correspond-
ing to that operation’s format and unit. E.g., for the opera-
tion MPY M1E1 RFB0 RFA0 RFA0we choose only the traces
which contain the M1E1 unit, and support the formatOP-
CODE FU SRC1 SRC2 DST.

Then, we verify that all the units in the trace support
the operation’s opcode. In this way we account for cases



Algorithm: Phase-I-Generate-Traces
Input: Structural specification of the processor (currently in EXPRESSION)
Output: All possible Traces in the architecture
Begin Phase I

pipelinepaths=Getpipelinepathsfrom ADL(expressionspec);
datatransfers=Getdatatransfersfrom ADL(expressionspec);
decoratedpps=Decoratepipelinepaths(pipelinepaths);
traces=Appenddatatransfersto pipelinepaths(decoratedpps,

datatransfers);
return traces;

End Phase I

Procedure: Decoratepipelinepaths(pipelinepaths)
Input: The pipelinepaths
Output: The decorated pipeline paths
Begin

for each pipelinepath p
for each operation format f

for all permutations of resources r implementing the operands from f
decorate p with the resources r
add decorated pipeline path p to listof decoratedpps

return list of decoratedpps;
End

Procedure: Appenddatatransfersto pipelinepaths(decoratedpps,datatransfers)
Input: The decoratedpps and datatransfers
Output: The traces
Begin

for each decorated pipeline path p
for all permutations of data transfers dt connected to the ports decorating p

append all data transfers from dt to p
add p to listof traces

return list of traces;
End

Algorithm: Phase-II-Bind-Operations-to-Traces
Input: the operation (opcode, unit, operands, format), and the traces in the architecture
Output: the RT for that operation
Begin Phase II

temptracelist=Find tracesfor unit and format(traces,unit,format);
for each trace t in list temptracelist

if(all units supportopcode(t,opcode) and
operationformatsupported(t,format))
Returnreservationtable(t);

End Phase II

Figure 4. RTGEN Reservation Tables Generation Algo-
rithm: (a) Phase-I-Generate-Traces, and (b) Phase-II-
Bind-Operations-to-Traces

when different opcodes supported by one FU require differ-
ent sets of resources. E.g., the D1E1 unit supports both
LD and ADD operations, but LD additionally requires the
MEM CONTROLLER unit, whereas ADD does not. As the
MEM CONTROLLER does not support the ADD opcode, the
traces containing the memory controller are excluded while
determining RTs for the ADD operation.

Next, we choose the traces that satisfy the order in the op-
eration’s format. E.g., for the operationOPCODE FU SRC1
SRC2 DST, SRC1 and SRC2 are read before DST is written.

At this point, the choice of traces corresponding to that op-
eration has been narrowed down to one or more traces. A fully
qualified operation corresponds to exactly one trace (which
represents the RT for that operation) and is returned as the re-
sult of the RTGEN algorithm. For example, given the fully
qualified operationMPY M1 E1 RFB0 RFA0 RFA0, the trace
returned as the RT by RTGEN is the one shown in Figure 5.

During compilation, the operations are qualified incremen-
tally. Starting from a generic (non-qualified) operation, the
fields are bound one by one (depending on the phase order-

Stage 1: PG, Stage 2: PS, Stage 3: PW, Stage 4: PR, Stage 5: DP, Stage 6: DC
Stage 7: RFB, RFBCROSSPATH, M1E1 S1, RFA, RFAM1 E1 S2 CONNECT,

M1 E1 S2, M1 E1
Stage 8: M1E2, M1 E2 D, RFA M1 E2 D CONNECT, RFA

Figure 5. The resources used in each stage by the trace
highlighted in Figure 3

ing of that particular compiler), until the operation is fully-
qualified. In the case of partially qualified operations (e.g,. the
opcode and FU fields have been bound, but the argument fields
have not been bound to RFs yet), RTGEN computes a list of
RTs corresponding to all the possible bindings of the not-yet-
qualified fields of that operation (e.g., the RTs for the opera-
tions having the given opcode and FU, and all the possible RF
choices for the source and destination operands). RTGEN can
also provide an approximate RT, computed as the intersection
(optimistic) or the union (conservative) of the list of possible
RTs, thus providing conflict information even in the absence
of complete information, at any level during the compilation
process, making RTGEN independent of the phase ordering in
the compiler.

The worst case complexity of Phase I of RTGEN isO(x �

z � (y
w
)), where x is the number of pipeline paths, y the number

of data transfers, z is the number of distinct operation formats
for that processor, and w the maximum number of operands in
an operation. Typically, most architectures have a maximum
number of operands between 3 and 4, and the number of for-
mats is under 10. Moreover, very few of the choices in(y

w
)

are considered. E.g., while considering the choices of a data
transfer for a particular operand, only those corresponding to
the operand type (e.g., SRC1), and to the FU assigned to that
operation are chosen. The worst case complexity of phase II
of the algorithm isO(m � n), where m is the number of traces
in the architecture, and n is the number of fully qualified oper-
ations. Since this is the more time consuming part of the algo-
rithm, we present in Section 6 a discussion exploring different
strategies to trade-off computation-time against memory.

6 Experiments
We now present a set of experiments conducted on var-

ious processor descriptions and the generated RTs to drive
pipelined scheduling of a set of multimedia and scientific
benchmarks.

Arch. EXPR. Pipeline DT Traces RTs Time (s)
lines paths paths Traces RTs

DLX P 411 4 5 16 155 0.11 2.71
DLX P 2RF 480 4 8 80 952 0.44 88.41

C62 1RF 1064 12 34 56 168 0.60 18.88
C62 2RF 1095 12 44 98 426 1.04 172.59

Table 1. RT Generation
Table 1 presents the results of the RT generation algorithm

on the TI C62 processor and a multi-issue version of the DLX
processor. In the context of architectural design space explo-
ration, we also present variants of each architecture to show
how modifying features of the architecture (such as the regis-
ter file architecture) impacts the number of traces and RTs.



The C62 processor is a VLIW DSP, allowing 8 operations to
be issued per cycle. The multi-issue DLX architecture allows
4 operations per cycle and has a pipeline with up to 11 stages
and multi-cycled units. The first column in Table 1 describes
the architectures for which the RTs were generated automati-
cally. We experimented with a single register file (C621RF,
DLX 1RF) version and a 2 register file (C622RF, DLX 2RF)
of the architectures. In C622RF (the actual C6201 archi-
tecture, also shown in Figure 1) the 2 register files are parti-
tioned, with limited connectivity between FUs and RFs. The
DLX 2RF contains 2 register files which are connected to all
the functional units.

The second column shows the number of EXPRESSION
lines specifying the complete architecture (including structure
and ISA). The third column shows the number of pipeline
paths, while the fourth column shows the number of data-
transfer paths in the processors. The fifth and sixth columns
show the number of traces and RTs generated, while the last
two columns present the computation time needed to automat-
ically generate the traces and RTs.

It is important to note that in order to compile accurately for
an architecture, all resource constraints (in our case RTs) have
to be either specified or generated. Especially in the case of or-
thogonal architectures, aseach RT corresponds to a fully quali-
fied operation, the number of RTs may be very large (e.g., 952
for DLX 2RF). Manually specifying RTs on a per-operation
basis is very tedious and may lead to increased errors in speci-
fication. Furthermore, simple changes during architectural de-
sign space exploration may affect many RTs, requiring the re-
specification of some or all RTs; in our approach we only need
to re-specify the architecture as the modified RTs are gener-
ated automatically. The importance of RTGEN is that it can
handle real-life processors, including VLIW and Superscalar
architectures, avoiding manual specification and updating of
this large number of RTs.

In C62 1RF and DLX1RF, the number of RTs is 168 and
155. On the other hand, for the two register file versions, it in-
creases to 426 and 952. This is due to the fact that in the 2RF
versions, the operations may read their operands from 2 possi-
ble locations, leading to a larger number of fully qualified op-
erations. The significant difference in RTs between DLX2RF
and C622RF is due to the different RF architecture. For the
DLX, the operands of any operation can belong to any of the
2 RFs, while for the C622RF, the restricted connectivity be-
tween the FUs and RFs precludes many operand combinations.

To deal with the large number of RTs, in the following we
explore different strategies trading off computation time and
memory requirement. Recall that we generate the RTs in two
phases: first, we extract a set of traces, modeling the execution
patterns of the operations; second, we bind these execution
traces to individual operations, in order to generate RTs on a
per-operation basis. This separation of concerns allows us to
make some interesting trade-offs between time and memory
requirements during RT generation.

Phase I of RTGEN – extraction of traces – can be performed
rather quickly (the seventh column in Table 1). As can be
seen, it is in the order of seconds, even for a relatively com-
plex architecture like the C62. Phase II of RTGEN – binding
of RTs to operations – is the more time-consuming step. We
present three strategies which have varying time and memory
requirements. The first, calledon-the-fly (O-T-F), binds RTs
as and when required by tools. The second, calledprecompute
database, binds RTs for all operations before hand and stores
them in a database. The third, calledcached, is a modified O-
T-F approach with RTs generated on demand, but stored in a
database for future access.

Arch Domain O-T-F Precompute DB Cached
(# Apps.) Time[s] Time[s] DB size Time[s] DB size
Array (1) 2.4 0.3 15
Matrix (2) 11.9 0.6 18

DLX MM (4) 50.0 2.7 155 1.4 23
Numeric (8) 62.9 2.2 18
Mixed (16) 153.0 4.9 23
Array (1) 86.5 0.6 21
Matrix (2) 387.0 1.3 28

C62 MM (4) 1735.1 18.9 168 3.2 30
Numeric (8) 2440.4 6.2 28
Mixed (16) 5378.3 12.2 30

Table 2. RT generation strategies for DLX and TI C6201
In Table 2 we present the tradeoffs in terms of computation

time and memory requirement, for the generation of RTs using
the three strategies. We ran our algorithm on 5 sets of bench-
marks containing 1, 2, 4, 8 and 16 applications from a suite
of multimedia and scientific applications, containing filters
(e.g., Wavelet), image processing (e.g., Laplace edge enhance-
ment), and numeric code (e.g., linear recurrence equation
solvers, successive over-relaxation, Red-black Gauss-Seidel
relaxation). For details please refer to [10].

In Table 2, column 2 shows the application domain and
the number of applications in each benchmark set. Column
3 shows the total time required to generate the RTson-the-
fly for a parallelizing compiler. Columns 4 and 5 show the
total time (this includes the time required to precompute the
RTs, but not the time to retrieve them from the database) and
database size (number of RTs) needed in theprecompute DB
approach, while columns 6 and 7 show the total time and max-
imum database size for thecachedapproach.

As expected, the time required to generate RTs using the
naive O-T-F approach is very large. However, it requires min-
imal memory as it does not store any RTs. The database ap-
proach works best when compiling many applications, since
the one-time DB computation is better amortized. However,
the memory penalty is large when compared to the other ap-
proaches. The cached version results in significant time im-
provement (as compared to O-T-F) and memory reduction (as
compared to database). E.g., for DLX the cached approach
performs well for small sets of benchmarks (1, 2, 4), while the
database approach performs better for large sets (16).

Possible improvements to the overall approach may ad-
dress optimizing the RT representation for compactness, and
speeding-up the conflict detection process. However, these is-
sues are orthogonal to RT generation, and can be coupled with



RTGEN. [6] present a hierarchical description of RTs to opti-
mize the description size. Tables of conflicts, containing the
illegal combinations of operations, as well as State Diagrams
[1] capturing the state of the current schedule can be generated
from RTs. They speed up the conflict detection, by replacing
the comparison of RTs with a table look-up, or a transition in
the FSA.

The two-tiered approach to automatic RT generation al-
lows the system designer to experiment with these various ap-
proaches depending on the objectives during DSE. The com-
bined benefits of automatic RT generation and the flexible ap-
proach to generation/usage of these RTs allows the system de-
signer to significantly reduce the time spent in RT (re-) speci-
fication during architectural design space exploration.

7 Summary

Reservation Tables (RT) are needed to detect conflicts be-
tween operations (e.g., two operations trying to use the same
unit at the same time). RTs have been used for a long time
to drive scheduling in the compiler, and to generate state dia-
grams driving dynamic scheduling in the hardware controller.
In this paper we presented RTGEN, an algorithm to automati-
cally generate RTs from an architecture description of the pro-
cessor.

Our approach bridges the gap between the structural rep-
resentation of processors, typically used by processor design-
ers, and the higher level information needed by the compilers.
Traditionally, detailed RTs were specified by hand. Due to the
increasing complexity of today’s processors, containing hun-
dreds of operations, extensive parallelism (e.g., TIC6X) and
deep pipelines, specifying RTs by hand is a very laborious and
error prone task. Moreover, during architectural exploration,
in order to keep the compiler up-to-date with the processor, the
designer needs to reflect the changes to the architecture in the
RT specification. This is a very tedious task. By automatically
generating RTs, we avoid the need for explicit specification,
and we support fast architectural exploration, by automatically
reflecting the changes to the architecture in the compiler.

We presented a set of experiments on the TI C6201 VLIW
DSP, as well as on the DLX architecture. Our prototype tool
starts from an EXPRESSION description, and generates RTs
for the EXPRESS compiler. We presented 3 RT generation
strategies with varying time and memory requirements. The
experiments show the results on a set of multimedia and scien-
tific kernels. Future work will investigate other RT generation
strategies and will also apply these techniques to a wider class
of architectures.
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