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Abstract—This paper introduces an efficient and passive
discrete modeling technique for estimating signal propagation
delays through on-chip long interconnects that are represented
as distributed RLC transmission lines. The proposed delay model
is based on a less frequently used numerical approximation
technique, called the differential quadrature method (DQM). The
DQM can compute the partial derivative of a function at any
arbitrary point located within a prespecified closed domain of the
function by quickly estimating the weighted linear sum of values
of the function at a relatively small set of well-chosen grid points
within the domain. By using the fifth-order DQM, a new approxi-
mation framework is constructed in this paper for discretizing the
distributed RLC interconnect and thereafter modeling its delay.
Due to high efficiency of DQM approximation, the proposed
framework requires only few grid points to achieve good accuracy.
The presented equivalent-circuit model appears like the ones de-
rived by the finite difference (FD) method. However, it has higher
accuracy and less internal nodes than generated by the FD-based
modeling. The fifth-order DQM modeling technique is shown to
preserve passivity. It has linear forms that are compatible with the
passive order-reduction algorithm for linear network. Numerical
experiments show that the proposed modeling approach leads to
high accuracy as well as high efficiency.

Index Terms—Differential quadrature method (DQM), discrete
transmission line model, equivalent circuit, interconnect modeling,
passivity, transient simulation.

I. INTRODUCTION

W ITH the feature size of VLSI technology continually
shrinking and chip area simultaneously increasing, the

VLSI circuit simulators are now encountering formidable chal-
lenges to precisely model various passive circuit elements such
as multilayer interconnects, substrates, wells, packaging struc-
tures, etc., so that their electrical characteristics can be presented
to circuit simulator along with short-channel device models. As
the length of on-chip global interconnects increases to few cen-
timeters, at very high-speed of operation, when the time of flight
of signals is comparable to their rise/fall times, the parasitic in-
ductance of passive elements plays a dominant role in deter-
mining the signal waveforms and propagation delay. In order
to accurately estimate the signal integrity and circuit speed, the
interconnect modeling algorithms that are now being used in
circuit simulators must model these interconnects as distributed
RLC transmission lines.
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Over the past decades, many methods were developed in
order to model the propagation delays through transmission
lines. Transmission line characteristics are usually represented
by transcendental functions where signal frequency and line
length are arguments. As transmission lines are generally
characterized in the frequency domain and are usually ter-
minated with nonlinear loads, the time domain models of
transmission lines are derived by applying the convolution
operation. This allows us to observe the transient response of
the transmission line [1]. Considerable amount of research has
been done in the literature to convert the frequency-domain
solutions to time-domain responses. The typical methods are
the fast Fourier transform (FFT) and numerical inverse Laplace
transform (NILT), which can be employed in most cases.
When the inverse transforms are directly used to find the time
models, the computation complexity becomes proportional to
the square of the simulation time, thus significantly slowing
down the circuit simulators. Moreover, these methods have
an intrinsic shortcoming due to aliasing error that introduces
inaccuracy to evaluate the delay. On the contrary, the method
of characteristics (MC) can accurately separate the time
delay due to distributed inductance and capacitance. It is also
efficient and accurate for solving the telegrapher’s equations
of transmission lines. Transmission line models obtained by
MC can be implemented into the existing circuit simulators
such as SPICE. However, the frequency domain equations of
MC are not linear; therefore, they cannot be incorporated in
model-order reduction.

Recently the reduced-order macromodeling has been widely
used. Asymptotic waveform evaluation (AWE) technique was
the first well-known macro-modeling method for representing
the general linear networks [2], [3]. However, AWE macro-
modeling technique had two intrinsic limitations, namely poor
accuracy and instability. These shortcomings have been over-
come in subsequent research work that led to the development
of the complex frequency hopping (CFH) method [4], [5].
Unlike AWE that uses a single expansion point, CFH performs
the Taylor series expansion of the characteristic function at
multiple points on the imaginary axis, which are known as
hopping points. Frequency hopping on the complex plane
allows the CFH to improve its accuracy and the process is
inherently stable since it has no poles on the right plane. The
residues of the poles are determined using a selected set of
low-order moments generated at various expansion points for
frequency hopping. CFH preserves the poles of the transfer
function rather than the moments, and it circumvents the
ill-conditions encountered in AWE. However, each hop of
CFH requires its own expensive processing time and complex
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mathematical manipulations while AWE only requires one
expansion. Two other techniques employing two-pole [6] or
multipoint moment matching methods [7] can also generate
reduced-order macromodels.

Currently the development of model reduction algorithms is
in progress for macromodeling very large linear network con-
taining distributed transmission lines. The realistic integrated
systems generally include a large number of state variables as-
sociated with the distributed interconnections and lumpedRLC
elements. In order to overcome this difficulty, model reduction
has been employed. A large system is at first partitioned into
both nonlinear and linear systems; then the algorithms of
model-order reduction are performed to linear parts only. It
is very important that the reduced-order model maintain the
passivity properties of the original circuit. Though the Krylov
subspace techniques such as Padé Via Lancoz (PVL) [8] and
Matrix Padé Via Lanczos (MPVL) [9] are passive in some
cases, the Padé-based reduced-order model cannot guarantee
passivity for generalRLC circuit. On the other hand, a new
direction for passive reduced-order model shown in [10], is
based on congruence transformations. An extended technique
based on Arnoldi’s method with congruence transformations
is presented in the literature [11], in which the PRIMA al-
gorithm was demonstrated as a milestone to develop passive
reduced-order models.

Although the algorithms of model reduction are well devel-
oped and are being continuously improved, it can only handle
the finite-order systems in the forms of state equations. Specif-
ically, the original system to be reduced should be described in
the form of . Transmission lines, however, are rep-
resented by nonlinear partial differential equations, which are
infinite order systems. Therefore, it becomes imperative todis-
cretizethe transmission lines into models involving finite state
variables so that they are stamped into the stencil of
prior to the reduction process. However, the finite-order trans-
mission-line models must preserve the passivity of the original
distributed transmission lines.

One of thediscretizationmethods is the distributed mod-
eling, which implicitly obtains state equations with finite state
variables [7]. On the other hand, the most effort to develop
finite-order models of distributed transmission line is focused
on direct discretization approaches, which generally select grid
points along the lines. As partial differential equations have been
long approximately solved by finite difference (FD) or finite
element (FE) methods [12], the discretization of transmission
lines is far from a new topic. For instance, it is the FD discrete
model that represents the distributed transmission lines in the
linear network handled by the original PRIMA algorithm [11].
A low-order finite method to model transmission lines gives
well understandable physical explanation of lumped element
equivalent circuits. Such a popular approach for discrete mod-
eling directly segments the line into sections whose lengths are
chosen to be small fractions of the minimum wavelength. De-
spite its simplicity, it has the disadvantage that the number of
grid points, depending on the minimum wavelength, is gener-
ally as large as dozens. Consequently, such an approach results
in very large numbers of lumped elements for accurate mod-
eling and thus sharply increases the number of state variables

of the whole circuit. A compact difference method is employed
in literature [13], which has fourth-order accuracy. In this dis-
cretization approach, the number of unknowns per wavelength
required for highly accurate modeling is smaller and its depen-
dence on the electrical length of the line is weaker.

The drawback of low-order finite methods can be removed by
using the high-order finite methods or pseudospectral methods
[14]. The mathematical fundamental of FD schemes is the
Taylor series expansion. The scheme of low-order finite method
is determined by low-order Taylor series, while the scheme of
high-order finite method is determined by high-order Taylor
series. In general, the high-order schemes have a high-order
truncation error. Thus, to achieve the required accuracy, the
mesh size used by the high-order schemes can be much less
than that used by low-order schemes. As a result, the high-order
schemes can obtain accurate numerical solutions using very
few mesh points. Chebyshev polynomial representation, a kind
of pseudospectral methods, has been used to model transmis-
sion lines and shown high efficiency [15]. However, it cannot
guarantee passivity.

In this paper, the fifth-order differential quadrature method
(DQM) is employed for passive modeling of transmission lines.
A numerical technique similar to the spectral method, DQM was
originally developed by mathematicians to approximately solve
nonlinear partial differential equations (PDE) [16]. As an al-
ternative to the FD and FE methods, the DQM gained use in
solving differential equations in many engineering areas. The
idea of DQMs is to quickly compute the derivative of a func-
tion at any grid point within its bounded domain by estimating
a weighted linear sum of values of thefunctionat a small set of
points belonging to the domain. Recently general DQMs have
been employed for interconnect modeling [17], and high effi-
ciency is observed. However, the passivity cannot be guaran-
teed. This paper adapts the DQM for passive interconnect mod-
eling in the following steps.

At first, the fifth-order DQM is investigated and the specific
approximation frame is derived for the modeling of trans-
mission lines. Then following the conventional FD model
of transmission lines, the discrete models are obtained by
using the fifth-order DQM-based approximation framework.
Like FD-based models, the proposed discrete models can be
incorporated into popular all-purpose simulators. Due to the
super efficiency of DQM, the proposed discrete modeling ap-
proaches give high-approximation accuracy using moderately
few grid points, which improves the computational efficiency
of transmission line modeling. The generated discrete models
are theoretically proved to be passive, and have the linear form
of , therefore, they are compatible to the reduced
order algorithm for linear circuit reduction. However, this
presentation focuses on the DQM-based discrete modeling, and
will not be concerned on model-order-reduction techiques.

The organization of this paper is as follows. In Section II, the
mechanisms of two kinds of DQMs are reviewed and the ap-
proximation framework is derived by using fifth-order DQMs.
The fifth-order DQM-based model of single transmission line
are discussed in Section III and it is extended for multicon-
ductor transmission lines (MTLs) in Section IV. In Section V the
accuracy and efficiency rules of fifth-order DQM-based mod-
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eling approaches are investigated. Numerical examples are pre-
sented and the results of the proposed approaches are compared
with the results obtained using other methods in the following
sections.

II. A PPROXIMATION FRAMEWORK FORTRANSMISSIONLINES

The presented approximation frame is based on DQM, whose
mathematical basis is the interpolation function. In the practical
application of distributed transmission lines, the-domain dis-
tributed voltages or currents
can be approximated by means of interpolation as follows:

(1)

where and is an interpola-
tion function determined by ’s and interpolating formulation.

A. Differential Quadrature Methods

We employ the DQM to approximate the first-order derivative
of the distributed voltages or currents along transmission lines
[16], given by

(2)

where , , and
. Equation (2) is called the th-order differential

quadrature approximation.
The key procedure to this technique is to determine the dif-

ferential quadrature (DQ) coefficients . Once the locations of
grid points are selected, the DQ coefficients are uniquely deter-
mined by the formation of interpolation . Following the
concept of the weighting residual method, one way suggested
by Bellman etc. in [16] is to let (2) be exact for test functions

(3)

By substituting every item in the function set into (2), a set
of equations having Vandermonde matrix is obtained, and the
coefficients can be calculated by solving the equations. Fur-
ther studies give the coefficients by the following closed-form
formulas:

(4)

Such an approach is called polynomial-based differential
quadrature (PDQ). The above process shows that the PDQ
method is closely related to the collocation or pseudospectral
method [14]. Its principal advantages over the latter, how-
ever, lies in its simplicity of using grid spacing without any
restriction.

Another way to determine DQ coefficients is to employ
harmonic (triangular) functions, called harmonic differential
quadrature (HDQ). An th-order Fourier expansion is a linear

Fig. 1. Approximation framework based on fifth-order DQM.

combination in an -dimension linear subspace, which is
spanned by the following orthogonal base:

(5)
where is the number of grid points that is normally an odd
number. In order to determine the weighting coefficients using
sine and cosine functions, let (2) be exact when test functions
take the set of (5), then the weighting coefficients are determined
by

The explicit formulas in this case are given by [18]

(6)

All the DQM coefficients in (4) [or (6)] form an ma-
trix, called DQM operator. For the application below, here we
give a property of DQM operators.

Theorem 1: If the grid points are equally spacing, then the
DQM operator is inverse symmetric with respect to the central
point of the matrix, i.e.,

(7)

Proof: Equation (7) can prove to be true by using either
(4) or (6).

B. Approximation Framework Based on Fifth-Order DQM

Next we use fifth-order DQMs to construct the approxima-
tions of the distributed voltages (or currents) along transmission
lines. For simplicity and without loss of generality, we study the
fifth-order DQM applied to a single transmission line at first.
Assuming thatAB is a sliding window containing a section of
the transmission line, if it is uniformly segmented into four sub-
sections, then five grid points are obtained as shown in Fig. 1.

Normalizing the section AB into a unit length, the DQM ap-
proximation in this case is represented by

...
...

...
. . .

...
...

(8)

where is the -domain voltage at point , s
denote the derivatives
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Fig. 2. FD-based lumped-element equivalent circuit.

and ’s are the DQ coefficients determined by the methods dis-
cussed previously. Taking a weighting summation of all the nu-
merical derivatives in (8), and employingTheorem 1, it follows:

where , and are coefficients to be determined, and

Let , and , then the coefficients are
calculated by

(9)

Therefore, the DQM-based approximation frame for dis-
tributed voltages along the transmission lines isobtained as
follows:

(10)

At the end points, the approximation framework (10) are
not applicable. In this case, assume the left-end approximation
framework have the following form:

(11)

We use the test functions (3) and (5) to determine the coeffi-
cients and , corresponding to PDQ and HDQ, respectively.
Let (11) be exact to as many functions in (3) or (5) as possible.
Specificly, in this case, enforce (11) being exact when the first
two test functions in (3) or (5) are taken, the coefficients can
therefore be determine as

(12)

for PDQ, and

(13)

for HDQ.
Apparently, the right-end approximation framework can be

analogously obtained

(14)

Equations (10), (11), and (14) constitute the complete approx-
imation framework.

III. D ISCRETEMODELING TECHNIQUE

In this section, the approximation framework in (10), (11),
and (14) are employed to develop the transmission line model.
We begin with the simplest case of single line in this section,
and then generalize the procedure to multiconductor transmis-
sion lines (MTL) in Section IV. In order to retain clarity of phys-
ical meaning, we follow the simplest conventional lumped-ele-
ment equivalent circuit model based on the FD method, and then
improve it by using the approximation frames of DQM-based
modeling technique obtained in Section II.

A. Conventional FD-Based Discrete Model

Assume that a single transmission line stretches from 0 to
along the axis of a Cartesian coordinate system, whereis the
length of the line. Let the distributed per-unit-length (PUL) pa-
rameters of the line be denoted by, , , and representing
resistance, inductance, conductance, and capacitance, respec-
tively. The Telegrapher’s equations can be written as

(15)

By making an FD approximation to the derivatives in (15), the
discretization with respect to the space coordinateis equiva-
lent to a lumped-element network [12]. Since there are different
FD frameworks such as forward/backward difference and cen-
tral difference methods, the equivalent lumped-element circuits
may have different forms featuring T-cells,-cells or half-cells.
If the cell lengths are small enough, then the various models
yield similar results [19]. By approximating the transmission
line by a network of T-cells, a lumped-element circuit of a single
line is shown by Fig. 2.

In this equivalent circuit the voltage and current nodes are
separated by a distance, which is in contrast to the alternatives
where the samples of both voltages and currents are taken at the
same points along the transmission lines. From Fig. 2, such a
discrete frame has clear physical meaning featuringRLC ele-
ments. Assuming the number of T-cells is, the transmission
line is segmented into sections, which form an open-loop
circuit having ( ) nodes and ( ) state variables.
Among the state variables are ( ) nodal voltages and ( )
inductance currents, which have the following relationship:

(16)

for center grid points and

(17)
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Fig. 3. Fifth-order DQM-based equivalent circuit.

for boundary points, where

(18)

However, the choice of cell length depends on the minimum
wavelength of interest as well as the electrical length of the
transmission lines, which require that dozens of grid points per
minimum wavelength are needed to achieve necessary compu-
tational accuracy. Consequently, the number of state variables
increases to a great extent and the computational efficiency de-
creases remarkably. The applicability of this method is chal-
lenged especially when handling MTLs.

B. Fifth-Order DQM-Based Discrete Model

The fifth-order DQM-based discrete model can be obtained
by analogy to the FD approximation framework in (16) and (17).
Like in Fig. 2, the transmission line is uniformly segmented into

sections, then the discrete circuit has ( ) nodes. At
each node, the Telegrapher’s equation is discretized as

(19)

In order to apply DQM approximation framework, the length
of transmission line should be normalized to match with the
condition of (8). Specifically, the length of each small section
is normalized to be 1/4 unit so that five consecutive grid points
constitute one-unit length over which the fifth-order DQM can
be performed. Therefore, it follows in the discretized (19):

(20)

Applying (10), (11), and (14) to the corresponding grid
points, we obtain the DQM-based discrete modeling frame-
works for voltage and current as represented by

(21)

for center grid points and

(22)

for boundary points.

If defining the following current controlled voltage sources
(CCVS)

(23)

and the voltage controlled current sources (VCCS)

(24)

then the fifth-order DQM-based discrete model can be shown
by Fig. 3.

Fig. 3 shows that the DQM-based model has explicit phys-
ical meaning. The DQM-based discrete model is a chain com-
prised of CCVSs and VCCSs, compared to the FD-based dis-
crete model that is a cascade ofRLCelements.

Assuming that and are, respectively, the applied
voltages at two ports, the state equation of the open-loop dis-
crete model shown in Fig. 3 can be formulated by using modi-
fied nodal analysis (MNA) [20]

(25)

where is the vector of nodal
voltages; is the vector of
branch currents; matrices , ,

, and are,
respectively

...
...

. . . (26)

...
...

. . . (27)

...
...

(28)
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...
...

. . . (29)

...
...

. . . (30)

(31)

C. Passivity of the DQM-Based Model

As stated in classical circuit theory, interconnections of stable
systems may not necessarily be stable; interconnections of pas-
sive circuits are passive and therefore stable. When multiport
models are connected together, the resulting overall circuit can
guarantee to be stable only if each of the multiport models is
passive [11]. In this view, it is extremely important to inves-
tigate the passivity of the discrete model that results from the
discretization of telegrapher’s equations. In order to do this, the
following definitions and results are referred to [21].

Lemma 1: Necessary and sufficient conditions for a transfer
function matrix to be passive is that is posi-
tive-real: (1) each element of is analytic in , (2)

, and (3) is nonnegative def-
inite for all .

Lemma 2: An -port network is passive if and only if its
admittance matrix is positive-real.

Lemma 3: If is positive-real, then is positive-
real, if existed.

Lemma 4: If is positive-real and is real, then
is positive-real.

We now return to the MNA formed state equations (25).
Noting that the original port variables are , , , and

, the admittance matrix is obtained as

(32)

and the passivity of (32) is determined by the following theorem.
Theorem 2: The matrix in (32) is positive-real.

Proof: Using Lemmas 1–4, the matrix being posi-
tive-real ascribes to that the following matrix is positive-real

(33)

Referring back to Lemma 1, the first two conditions are au-
tomatically satisfied for matrix . In proving that matrix
satisfies condition (3), noting that matrices, , , and
are all symmetric, it follows

(34)

As matrices , , , and are all nonnegative,
is therefore nonnegative. Thus, the matrix is posi-

tive-real and the DQM-based model for single transmission line
preserves passivity.

Some remarks on DQM modeling technique and passivity
are as follows. (a) As a general rule, cast into MNA equation
like (25), a circuit is passive if the matrices , , , and

are all nonnegative and symmetric. An immediate result of
this rule is that the discrete modeling shown in Fig. 2 is also
passive. (b) The symmetry of the matrices, , , and
is guaranteed by uniformity of transmission line, and boundary
approximation frames (11) and (14). (c) In (25), matrices
and are naturally formulated by modified nodal analysis,
as stated in [22]. (d) With comparable accuracy, the DQM-based
modeling has higher efficiency than FD-based modeling, which
is shown in Section V. The reason is that the proposed modeling
approach employs the global approximation framework, which
leads to the fact that the matrices, , , and for DQM-
based modeling are denser than those for FD-based modeling:
the former are tridiagonal matrices, and the latter are diagonal
matrices.

IV. DISCRETE MODELING OF MULTICONDUCTOR

TRANSMISSIONLINES

A. Discrete Model

The discrete model of multiconductor transmission lines
(MTL) can be straightforward obtained by extending that of
single transmission line. Similarly, the MTL is segmented into

sections. At each grid point, the Telegrapher’s equations of
-coupled transmission lines are represented by

(35)

where

are voltage and current vectors corresponding to theth gird
point, respectively, and

The approximation frames of MTL are as follows:

(36)

for center grid points and

(37)

for boundary points. Similarly define the VCCSs and CCVSs
as in Fig. 3, the equivalent circuit for MTL can be shown as in
Fig. 4.
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Fig. 4. Equivalent circuit of MTL.

Likewise, the open-loop MNA-formed state equation of the
discrete model of an MTL follows:

(38)
where is the vector of
nodal voltages; is the
vector of branch currents; matrices ,

, ,
and are, respectively

...
...

. . . (39)

...
...

. . . (40)

...
...

(41)

...
...

.. . (42)

...
...

.. . (43)

(44)

where is the unit matrix.

B. Passivity

Analogously, noting that the original port variables are,
, and , the admittance matrix for MTL is repre-

sented by

(45)

The passivity of MTL discrete model is guaranteed by the
positive-real property of (45), which is shown by the theorem
below.

Theorem 3: The matrix in (45) is positive-real.
Proof: Using Lemmas 1–4 and referring to the proof of

the positive-real property of (32), this theorem can be proved
similarly.

To complete this section, the quantitative statistic for the
fifth-order DQM-based modeling of an coupled MTL is
summed up as follows: the number of discrete sections is,
the number of nodes in the open loop circuit is ,
the number of voltage state variables is , the number
of current state variables is , and the total number of
state variables is thus .
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TABLE I
STANDARD ERRORS(N : THE NUMBER OF SECTIONS)

V. ACCURACY OF DQM-BASED DISCRETE

MODELING TECHNIQUE

In this section, we investigate the efficiency and accuracy of
the proposed modeling approach. Similar to FD-based discrete
model, DQM-based model leads to filter-like multiport devices.
This kind of models have the approximate transfer functions
which are agreeable to the exact ones over the low frequency
band, and have more error as the frequency increases.

In practical applications, the accurate modeling means to
guarantee its accuracy over a frequency bandwidth from 0
to a high frequency of interest. If the maximum frequency
and the features of interconnections are known, the minimum
wavelength can be simply obtained. The efficiency of discrete
modeling technique is represented by the freedom degree
(the number of grid points) within a minimum wavelength to
achieve an expected accuracy. It is known that the number of
grid points for FD modeling technique is needed to be as high
as dozens. In order to evaluate the efficiency of the presented
DQM-based modeling method, we compare it to FD method.
As the bases of the presented method is (8), we will first
determine how many grid points DQ approximation (8) needs
over a minimum wavelength to achieve a comparable accuracy.

Assuming that a signal in Fourier analysis has the form of
sine function along the minimum wavelength and that the wave-
length is normalized to be 1, e.g., , ,
we use FD, fifth-order PDQ, and fifth-order HDQ to compute
the numerical differentiations and compare their standard errors.
The unit wavelength is equally segmented into smaller sections,
over which the FD and DQ approximations are performed. The
results are shown as in Table I.

From Table I, the error of FD method keeps decreasing as
the number of segments increases. This also occurs to that of
PDQ method, but at a faster rate. The error of HDQ, however,
shows oscillation as the number of sections increases. In order
to achieve most accuracy as well as efficiency, we consider
fifth-order PDQ approximation adopting eight equal sections
and fifth-order HDQ approximation adopting eight equal sec-
tions. From Table I, both approximation approaches can give
comparable accuracy to FD method with 20 sections. Their nu-
merical differentiations over a unit minimum wavelength are
shown in Fig. 5, where central difference FD, fifth-order HDQ
and fifth-order PDQ use 20, eight, and eight equal sections,
respectively.

From the above comparison of per minimum wavelength res-
olution, a heuristic rule for the resolution of fifth-order DQMs is
shown to segment eight equal sections per minimum wavelength
in the spectrum. Therefore, for a transmission line with length
, the number of sample points for fifth-order DQM based mod-

eling technique is

(46)

Fig. 5. Numerical differentiations over a minimum wavelength.

where is the minimum wavelength. Accordingly, the
number of state variables of discrete model of a line with length

is ( ) for DQ modeling.
For different standards, there are different methods to deter-

mine the maximum high frequency. Here we refer to a metric
adopted by HSPICE [23], the maximum frequency of interest
can be evaluated by

(47)

where is the rise time of the input waveform. The maximum
frequency determines the minimum wavelength within the spec-
tral range of interest.

VI. CIRCUIT FORMULATION AND APPLICATIONS

The frequency-domain models presented in previous sections
can be directly incorporated in formulating reduction algorithm
like PRIMA [11]. However, this paper focuses on the efficiency
and accuracy of the discrete modeling technique, and will not be
concerned on reduction models. Instead, the presented models
are directly incorporated into MNA matrix. Following the ap-
proach in the literature [24], the time-domain counterparts of
discrete transmission line model described by (25) and (38)
can be directly incorporated into MNA equations as stamps.
Next we present several examples. All the fifth-order PDQ and
fifth-order HDQ used in these examples employ equally spaced
grid points. Since the spatial distributions of the grid points have
been fixed, all the coefficients in the approximation frames used
in these examples are available constants which have been al-
ready obtained by the approaches of Section II.
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Fig. 6. Transient responses of single transmission line.

The first example, a single transmission line as shown in
Fig. 6, shows the transient simulation accuracy of the presented
modeling technique. The length of this transmission line is 5 cm,
and the PUL parameters are , , and

(Hereinafter, the units of PUL parameters are nH/m,
pF/m, , and S/m for inductance, capacitance, resistance,
and conductance, respectively). Noting that the transmission
line in this example is an undistorted line, the transient simu-
lation response calculated by the Method of Characteristics is
exact value if the round errors are neglected [25].

Assume that the applied input is a step voltage whose
rise time is 50 ps. The propagation velocity along the line
is , and by (47) the maximum frequency is

. Equation (46) shows that the number of sec-
tions using fifth-order DQ methods is approximately calculated
as 8. Therefore, the number of state variables is 11. Fig. 6
shows that the transient result by PDQ is most agreeable with
the exact value.

The second example consists of three coupled transmission
lines as shown in Fig. 7. The length of each transmission line
is 4 cm, and its RLCG parameters are:

, , , ,
, , , ,

, , and .
Input excitation is a trapezoidal pulse with 100 ps rise/fall

time whose magnitude is 1 V. The phase velocities along the
transmission lines are obtained by eigenvalue analysis ofas
following, ,
and , respectively. According to the
rule of (47), the highest frequency of interest is 3.5 GHz. The
minimum wavelength is thus calculated as 3.89 cm. Application
of (46) shows that the number of sections using fifth-order DQ
method is approximately calculated as 8. Therefore, the number
of state variables of transmission line for either PDQ or HDQ

Fig. 7. Circuit of 3-coupled transmission line.

is . The main line waveform at pointA and the
crosstalk waveform at pointB are shown in Fig. 8, altogether
with the result of HSPICE. The accuracy of transmission line
modeling is usually represented better by the accuracy of the
transient results at victim line. The simulation results show both
DQM-based modeling and HSPICE are agreeable.

In this example, HSPICE uses the FD method and segments
the transmission line into 20 sections, while the DQ methods
need only 8 sections. Furthermore, the 20 sections of FD method
lead to state variables, while the 8 sections of
DQM modeling lead to only state variables, as
stated at the end of Section IV. The whole circuit has 29 nodes
using the proposed modeling technique, in contrast to 89 nodes
in using HSPICE. Cast in MNA matrices, the state equations
of the proposed methods have the size of 3333, while that
of FD method has the size of 126126. As the running time of
solving linear equations is generally proportional to, the
fifth-order DQMs have as dozens times efficiency as FD method
to obtain accurate discrete modeling. This estimate is basically
verified by the total running time on an Ultra-1 SUN worksta-
tion: taking the same time step, the running time by DQM mod-
eling is 0.108 s, while that of HSPICE is 0.7 s.

The third example consists of coupled transmission lines as
shown in Fig. 9. Among the lumped elements of this example,
each of the resistors has the value of 50, each of the capacitor
has the value of 1 pF, and the inductance is 10 nH. The length
of both coupled transmission lines is 5 cm. The distributed pa-
rameters of the two-coupled line (TL1) are represented in the
following matrices:

The four-coupled line (TL2) has the following distributed
parameters:
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(a)

(b)

Fig. 8. Transient responses at (a) point A and (b) point B in Fig. 7.

Fig. 9. MTL network.

The phase velocities along the transmission lines are obtained
by eigenvalue analysis ofLC. For the TL1, the phase velocities
of two modes are and

, respectively; for the TL2, they are

(a)

(b)

Fig. 10. Transient responses at (a) point A and (b) point B Fig. 9.

TABLE II
COMPARISON OFCIRCUIT STRUCTURES OFDISCRETEMODELING TECHNIQUE

, , ,
and .

If the excitation is a pulse with rise/fall time 0.1 ns and 2.8 ns
square width, the highest frequency of interest will be

. Then the minimum wavelength for the TL1 is
, and the minimum wavelength for the

TL2 is 4.975 cm. The transient responses of main transmission
lines and the responses of victim lines are shown in Fig. 10.

The statistic data in solving this example by the proposed
modeling technique and HSPICE are compared in Table II.
Taking the same time step, the total running time on ULTRA-1
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SUN workstation is 0.54 s for the fifth-order DQM-based
modeling technique and 1.55 s for HSPICE.

VII. CONCLUSION

A numerical technique called the DQM is adapted for
interconnect modeling. The approximation framework is
derived based on the fifth-order DQM, and its advantageous
computational accuracy and efficiency are demonstrated
in contrast to those of FD methods. In the-domain, the
fifth-order DQM-based modeling methods represent trans-
mission lines by matrix equations which is compatible with
Krylov subspace techniques for circuit reduction. The proposed
modeling approaches generate equivalent-circuit interconnect
models consisting of VCCSs and CCVSs, which can be
directly incorporated into circuit simulators like SPICE. The
proposed modeling approaches have been shown to produce
highly efficient equivalent-circuit models. For both single and
multiconductor transmission lines, the fifth-order DQM-based
modeling technique generates as 8/20 discrete sections, 9/21
circuit nodes, and 11/42 state variables as HSPICE does, while
maintaining comparable accuracy. The proposed modeling
approaches are theoretically proved to preserve passivity. Nu-
merical experiments on linear network show that the fifth-order
DQM-based modeling technique generates solutions at least
three times faster than HSPICE.
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