
Error-Correction and Crosstalk Avoidance in DSM Busses

Ketan N. Patel and Igor L. Markov
Department of EECS, University of Michigan, Ann Arbor 48109-2122

{knpatel,imarkov }@eecs.umich.edu

ABSTRACT
Aggressive process scaling and increasing clock rates have made
crosstalk noise an important issue in VLSI design. Switching on
adjacent wires on long bus lines can increase delays and lead to
logic faults, particularly when adjacent lines switch with opposite
transitions. At the same time system-level interconnects have also
become more susceptible to other less predictable forms of inter-
ference such as noise induced by power grid fluctuations, electro-
magnetic interference, and alpha particle radiation. Previous work
has treated these systematic and non-systematic forms of noise sep-
arately.

In this paper we propose to make system level interconnects
more robust using encoding that simultaneously addresses error
correction requirements and crosstalk noise avoidance. This is more
efficient than satisfying these requirements separately. We give al-
gorithms for obtaining optimal encodings, and present a practical
class of codes called boundary shift codes. We evaluate the over-
head of our method and make comparisons to using error correction
with simple shielding.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—VLSI

General Terms
Design

Keywords
bus encoding, error-correction, crosstalk noise, DSM busses

1. INTRODUCTION
As packing densities and clock rates continue to increase in VLSI

circuits, bus crosstalk is becoming an increasingly important issue
to consider in optimizing performance. The severity of the inter-
ference is highly correlated with the particular switching patterns
on the bus. For example, if two adjacent wires have simultaneous
rising transitions, both transitions speed up and a hold violation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SLIP’03,April 5–6, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-627-7/03/0004 ...$5.00.

is possible. Similarly, a rising transition on one wire can cause
a neighboring wire to falsely transition and lead to a logic fault.
However, the most detrimental switching pattern on two neighbor-
ing wires is opposite transitions; this causes both transitions to slow
down and can lead to a setup violation. A number of techniques
have been used to mitigate crosstalk interference including special-
ized routing strategies [4], intentionally skewing signal transition
timings on adjacent wires [6], both active and passive shielding [7,
9], and signal encoding to minimize conflicts [14, 2].

Busses can also suffer from other forms of interference such as
that due to power grid fluctuations, electromagnetic interference, or
alpha particle radiation. Typically, these effects are unpredictable,
and difficult to prevent. For example, power grid fluctuations oc-
cur when large numbers of gates switch simultaneously. The effect
aggravates as the number of gates supplied by the same power grid
increases and is not closely linked to the particular switching pat-
terns on the bus. In the nanotechnology context, where circuits are
manufactured with a significant proportion of faults, occasional er-
rors may be unavoidable. In these cases using solely preventive
techniques may not be effective and active error correction may be
necessary.

In the past, a number of proposals have considered error correc-
tion for busses to combat both crosstalk [3] and other non-systematic
interference [12, 1]. However, these methods only correct errors af-
ter they occur; they make no attempts to prevent the interference.
Conversely, other bus encoding techniques have been used to pre-
vent crosstalk, but do not correct errors [14, 2]. For example, Vic-
tor and Keutzer [14] have proposed encoding the bus to prohibit
opposite transitions on adjacent wires. They call such codes self-
shielding as they are an alternative to placing shielding wires in
between lines. However their method is purely preventive and does
not correct errors if they do occur.

In this paper we combine the goals of providing self-shielding
and error correction in designing the bus encoding. This is more
effective than the conventional approach of treating these sepa-
rately. Since our method not only reduces the interference due to
crosstalk, but also corrects errors, it can be useful in a variety of
applications including nanotechnology, low-swing signaling, and
radiation-hardened circuits. We provide algorithms for generating
optimal bus encodings, and present a general construction method
for a practical class of codes. Encoding and decoding circuits are
given for specific codes.

2. NOTATION AND TERMINOLOGY
Our basic goal is to design a bus encoding scheme that avoids

crosstalk while simultaneously offering error-correction capabil-
ity. Our problem is closely related to that considered by Victor et
al. [14], and we follow much of their notation and terminology. In

(b) (a)

011

010

000

011

001

111

100

101

110

000

110

100

111

010

001

101

Figure 1: Graphical representation of optimal 3-bit self-
shielding codes: (a) single error-detecting, (b) no error control.

addition we use some basic background in classical error correc-
tion [10, 11, 13] and self-checking [15, 8] techniques. We model
the bus as ann-bit communication channel. During eachsignaling
interval the encoding scheme is used to select and transmit ann-
bit word, called acodeword, from a possibly dynamic set called a
codebook. The codebook is dynamic in the sense that it can be a
function of previously transmitted codewords. We call the overall
encoding scheme acode.

A code ismemorylessif it uses a fixed codebook. We define
the rate of the code as log2 |Cmin|, where|Cmin| is the number of
codewords in the smallest codebook. This is the minimum number
of bits that can be encoded during every signaling interval.

We say a pair of codewords contains aninvalid transitionif tran-
sitioning from one codeword to the other causes adjacent bits to
switch in opposite directions. For example, the following code-
words contain an invalid transition by bits 3 and 4:

c1 → 0 1 1 0 0 0 1 1
c2 → 1 1 0 1 1 0 1 0

Such transitions are undesirable because they increase crosstalk
noise. A code isself-shieldingif it does not allow invalid tran-
sitions; this terminology comes from the conventional technique
of using shielding wires to prevent crosstalk. Following Victor et
al. [14], we assume that neighboring wires are routed in parallel.
Therefore, the encoded bus is effectively self-shielding.

In addition to avoiding invalid transitions, we want to be able to
differentiate our codewords reliably even in the presence of errors
(bit flips). This is possible if the codewords in the codebook have
a large enoughHamming distancebetween them, that is, if they
differ in enough bit positions. For example, if the codewords have a
minimum Hamming distance of three between them, we can correct
any single error since the “noisy” codeword must be closer to the
original codeword than to any other. In general, if the minimum
Hamming distance between any two codewords isd, then we can
either correct up tob d−1

2 c errors, or detect up tod−1 errors [10].
We should note that while the codes considered in this paper are

simultaneously self-shielding and capable of correcting errors, they
do not necessarily remain self-shielding in the presence of errors.
In other word, an error occurring on the bus could lead to an in-
valid transition, though the bus encoding prevents such transitions
in error-free operation.

A binary code islinear if the bitwise sum (mod 2) of any two
codewords is also a codeword. A linear code can be efficiently
represented by an independent set of basis codewords [13]. All

other codewords can then be formed by a linear combination of
these. A standard representation of a linear code is thegener-
ator matrix, a matrix whose rows are are an independent set of
basis codewords. For example, a generator matrix for the code
{0000,0011,0101,0110,1001, 1010,1100,1111} is

G =




1 1 0 0
0 1 1 0
0 0 1 1




The generator matrix provides a simple way to map information
bits to codewords: multiply the generator matrix by a column vec-
tor of information bits. For example,G maps[1 1 1]t to the code-
word [1 0 0 1]. A lengthn binary linear code encodingk bits with
minimum Hamming distanced is called an[n,k,d] code.

3. MEMORYLESS CODES
In a memoryless self-shielding code we use a fixed codebook

and therefore the transitions between any two codewords must be
valid. Victor et al. [14] use a graphical model to represent these
constraints. Alln bit words are represented by a vertex in the
graph with edges between two vertices if transitions between the
corresponding words are valid (see Figure 1b). A memoryless self-
shielding code consists of a set of vertices forming aclique, that is,
a set of vertices with edges between every pair in the set. The max-
imum rate code is the largest clique in the graph. One such clique
is highlighted for the graph in Figure 1b. Properties of the graphs
for these codes can be used to obtain a formula for the size of the
largest clique for generaln [14].

This graphical model easily generalizes for additional constraints.
For example, in our case we would like the minimum Hamming
distance between any two codewords to be at leastd. We can add
this constraint to the model by only placing edges between two ver-
tices if the corresponding words satisfy the Hamming distance con-
straint in addition to the valid transition condition. Figure 1a shows
such a graph for a single error-detecting (d = 2), self-shielding code
on three wires. A clique of maximum size is highlighted.

function k Clique(G, k)
{ V = {vert. of G sorted by ↑ degree }

if (G is complete & |V| ≥k)
return 1

for (v ∈ V)
{ remove vert. w/ degree < k from G & V

if |V| < k return 0
G s = {subgraph w/ vert. incident to v }
if (k Clique(G s, k)==0)

remove v from G & V
else

return 1
}

}

Algorithm 1: Solving Max-Clique

In general the max-clique problem is NP-complete [5, pp. 53-
56], however there are a number of heuristic algorithms that per-
form well for many cases. Here we used a simple pruning algo-
rithm (see Algorithm 1) coded in MATLAB. The algorithm deter-
mines if a clique of sizek exists in the graph. For then = 9 case,
the algorithm took approximately 45 minutes on a Sun-Sparc. The
results are shown in Table 1. The maximum rates for memoryless
codes without error correction (column two) match those given by
Victor et al. [14].

Without Memory With Memory
Wires single error-correcting single error-correcting single error-correcting

self-shielding self-shielding self-shielding self-shielding boundary shift
3 2.32 1.00 2.32 1.00 1.00
4 3.00 1.00 3.17 1.00 -
5 3.70 1.59 3.91 2.00 2.00
6 4.39 2.32 4.75 2.32 -
7 5.09 2.58 5.52 3.17 3.00
8 5.78 3.17 6.34 3.59 -
9 6.48 3.81 7.14 4.25 4.00

Table 1: Maximum rate for self-shielded codes. The first column gives the number of wires used for the encoding. The remaining
columns give the maximum number of bits that can be encoded by the self-shielding codes specified by the column headings.

4. CODES WITH MEMORY
For codes with memory, the codebook can be a function of the

previously transmitted codeword. For this case we use two graphs
to represent the problem. The first graphG1 has a vertex for each
n-bit word, and an edge between two vertices if they form a valid
transition. The second graphG2 contains the same vertices asG1
but has edges between vertices if the Hamming distance between
them is greater thand− 1. Intuitively, G1 and G2 represent the
self-shielding and the Hamming distance constraints, respectively.

In a self-shielding minimum distanced code with rate log2 M
each codeword must be able to transition to a sizeM subset of code-
words that are at least a Hamming distanced apart from each other.
In our graphical representation, each vertex in graphG1 must have
edges to at leastM vertices that form a clique in graphG2. We can
determine if such a code exists by continuing to eliminate vertices
that do not meet this condition from both graphs. If we are left with
a non-empty set of vertices all meeting the condition, they form a
code with the desired properties, otherwise no such code exists. We
list the pseudo code for this algorithm here (see Algorithm 2).

function Exist Code(G1, G2, k)
{ V = {vert. of G1 }

Vin = {}
while (V not empty)
{ if (V==Vin)

return 1
v = vertex from {V-Vin } of lowest degree
G s = {subgraph of G2 w/ vertices

incident to v in G1 }
if (k-Clique(G s, k)==0)

remove v from G1, G2 & V
Vin = {}

else
add v to Vin

}
return 0

}

Algorithm 2: Search for code with memory

Note that a series of calls tok Clique is embedded in this algo-
rithm. We found the computation time for specific cases can vary
greatly for different implementations of this function. Using Al-
gorithm 1, we were able to calculate the optimal codes forn≤ 8,
however the computation time became prohibitive for then = 9
case and an alternate algorithm was necessary.

For final case we used an integer linear programming (ILP) for-
mulation for the max-clique problem. A binary variable is assigned

to each vertex in the graph with a one denoting membership in the
clique. For every pair of vertices that do not share an edge, we
impose the constraint that both cannot be members of the clique.
The size of the max-clique is found by maximizing the sum of the
variables, i.e., the number of members in the clique. We used the
linear optimization tool CPLEX to perform the optimization. Re-
sults for then = 9 case took several hours on a Sun-Sparc. We
should note that while the ILP implementation was more efficient
than Algorithm 1 for this case, it was not as efficient for others. For
example, we found that cases in Section 3 required approximately
5 times as much computation time using the ILP formulation com-
pared with Algorithm 1. All of the results are shown in Table 1.
Those in columns two and four, for codes without error correction,
were previously found by Victor et al. [14].

5. BOUNDARY SHIFT CODES
In the previous section we presented an algorithm for finding

maximum rate error-correcting self-shielding codes, however this
algorithm does not provide a practical encoder or decoder. In fact
decoding these codes may require significant resources. Further-
more, the algorithm becomes computationally infeasible for mod-
erate to large bus sizes. In this section we give a general construc-
tion method for practical codes.

We define adependent boundaryin a codeword as a position
where two adjacent bits differ. We denote the location by the po-
sition of the leftmost bit of the boundary. If two codewords do not
share any dependent boundaries, they cannot form an invalid tran-
sition. For example, consider the following codewords:

c1 → 0 1 1 0 0 1 1 1
c2 → 1 1 0 0 1 1 1 0.

Herec1 andc2 have dependent boundaries{1,3,5} and{2,4,7},
respectively. Since there is no overlap, the transition must be valid.

Using this property, we note that if a codebook has codewords
with only even dependent boundaries, then performing a 1-bit cir-
cular right shift yields a new codebook with no even dependent
boundaries. Since the two codebooks do not have overlapping de-
pendent boundaries, we can alternate between the two to obtain a
self-shielding code. We call this aboundary shift code.

For this construction we need an error correction code with no
odd dependent boundaries. LetC be an[n,k,d] code, and letC′ be
formed by duplicating each bit position inC. ThenC′ is a[2n,k,2d]
code with no odd dependent boundaries, since every bit in an odd
bit position is followed by a copy. By alternating betweenC′ and a
shifted version of it, we obtain a[2n,k,2d] self-shielding code. In
addition,puncturing C′ in the last bit position, i.e., removing the
last bit in every codeword, yields a[2n−1,k,2d−1] code.

OUT

IN

CLK

y0 y2

OUT

IN

CLK

x1 x2 x3x0

(a)

x0 x1 x2 x3

y0 y1 y2 y3 y4 y5 y6 y7 y8

y1 y3 y4 y6y5 y7 y8

(b)

2:1
0 1

SMux

OUT

2:1
0 1

SMux

OUT

2:1
0 1

SMux

OUT

2:1
0 1

SMux

OUT

2:1 SMux

OUT

1 0

2:1 SMux

OUT

1 0

2:1 SMux

OUT

1 0

2:1 SMux

OUT

1 0

2:1
0 1

SMux

OUT

2:1 SMux

OUT

2:1
0

SMux

OUT

1 0 1

2:1
1 0

SMux

OUT

2:1
1 0

SMux

OUT

2:1
1 0

SMux

OUT

Figure 2: Encoding (a) and decoding (b) circuits for[9,4,3] code.

Using a single parity check code in the above construction gives
an infinite class of single error-correcting codes. In a[k+ 1,k,2]
single even parity check code thek data bits are appended with a
final bit chosen to make the parity of the codeword even. Applying
our construction, we obtain a[2k+ 1,k,3] single error-correcting
self-shielding code.

In Table 1 we compare the rates of these codes to the optimal
rates. Their performance is better than that of the optimal mem-
oryless codes, and comparable to that of the optimal codes with
memory, particularly when integer rates are of interest.

As an example consider the[9,4,3] boundary shift code with
generator matrices:

G0 =




1 1 | 0 0 | 0 0 | 0 0 | 1
0 0 | 1 1 | 0 0 | 0 0 | 1
0 0 | 0 0 | 1 1 | 0 0 | 1
0 0 | 0 0 | 0 0 | 1 1 | 1




G1 =




1 | 1 1 | 0 0 | 0 0 | 0 0
1 | 0 0 | 1 1 | 0 0 | 0 0
1 | 0 0 | 0 0 | 1 1 | 0 0
1 | 0 0 | 0 0 | 0 0 | 1 1




Generator matricesG0 andG1 are used for encoding during even
and odd clock cycles respectively. Equivalently,G0 can be used for
all cycles with the output then right shifted for odd cycles. The fol-
lowing example illustrates how this code would be used to encode a
4-bit bus. The intermediatepre-shiftedoutput is shown for clarity.

time input pre-shifted output output
0 1 0 1 0→ 1 1 0 0 1 1 0 0 0→ 1 1 0 0 1 1 0 0 0
1 0 1 1 1→ 0 0 1 1 1 1 1 1 1→ 1 0 0 1 1 1 1 1 1
2 1 0 0 0→ 1 1 0 0 0 0 0 0 1→ 1 1 0 0 0 0 0 0 1
3 0 1 0 0→ 0 0 1 1 0 0 0 0 1→ 1 0 0 1 1 0 0 0 0

We duplicate each input bit and append the parity check at the end
yielding the pre-shifted output. If the clock cycle is odd we perform
a 1-bit circular right shift before transmitting.

At the receive side, we first undo the right shift if the clock cycle
is odd, then decoding can be done by majority vote, where the two
“copies” of the desired bit are augmented by a third generated by
taking the sum (mod 2) of one copy of each of the other informa-
tion bits and the parity check. For example, in an even cycle three
independent copies of the first information bit are given byy0, y1
and(y2 + y4 + y6 + y8) mod 2. A single error will affect at most
one of the three copies and is therefore correctable. The following
example shows how noisy versions of the codewords in the previ-
ous example would be decoded after unshifting. The highlighted
bits correspond to errors.

noisy output majority vote data
1 0 0 0 1 1 0 0 0→ (101) (000) (111) (000) → 1 0 1 0
0 0 1 1 1 1 1 10 → (001) (110) (110) (110) → 0 1 1 1
0 1 0 0 0 0 0 0 1→ (011) (001) (001) (001) → 1 0 0 0
0 1 1 1 0 0 0 00 → (011) (110) (001) (001) → 1 1 0 0

The last codeword is decoded incorrectly as it contains two errors,
and is therefore beyond the code’s error correcting capability.

6. PRACTICAL CONSIDERATIONS
Since the codes constructed in the previous section are based on

very simple error-correcting codes, they can be encoded and de-
coded efficiently. Figures 2a and 2b show an encoder and decoder
respectively for the[9,4,3] code. These circuits can be generalized
in a straightforward manner for larger single error-correcting codes.
Gate counts and maximum circuit depths are given in Table 3 for
a range of bus sizes and closed form expressions are given for the
general case.

For large bus sizes the increased circuit depth may lead to signif-
icant delay. This can be reduced by breaking the bus into smaller
sub-busses with shielding wires inserted between them. This re-
sults in a slight increase in the number of wires and gates needed,
but limits the circuit depth. In addition, it also increases the error
correction capability, since single errors in each sub-bus can then
be corrected independently.

Code Advantages Drawbacks
Optimal - encoding/decoding by - relatively low rate
memoryless combinational circuits - code construction difficult

- decoder may be complex
Optimal - maximum rate - code construction difficult
with memory - encoder/decoder may be

very complex
- possible error propagation

Boundary Shift - achieve higher rate than - achieve slightly lower rate
Codes opt. memoryless codes than optimal codes

- scalable construction
- simple encoder/decoder
- integer rates; systematic

Table 2: Comparison of boundary shift codes and optimal self
shielding error-correcting codes.

A potentially useful feature of the proposed codes is that they
aresystematic, that is, the information bits are embedded in the en-
coded codeword, and can therefore be obtained without any decod-
ing logic. For example, the information bits of the[9,4,3] code are
given by bitsy1, y3, y5 andy7. Of course, simply using these bits
rather than decoding the full codeword sacrifices the error correc-
tion capabilities of the code. However one can imagine a scenario
where error correction may only be necessary for certain destina-
tions on the bus that are relatively far from the source, while other
destinations may opt for error detection or simply picking the in-
formation bits off of the encoded codeword.

A possible concern with codes with memory is that since future
codebooks may depend on the current transmitted codeword, an un-
correctable error has the potential to propagate and cause additional
errors. A clear advantage of boundary shift codes is that they do not
suffer from error propagation since the codebook does not depend
on the choice of previous codewords transmitted, rather it is only a
function of the time index. As long as the source and destination
are synchronized, no error propagation will occur.

A summary of advantages and drawbacks of the codes presented
in this paper are shown in Table 2. The boundary shift codes have
a higher rate (i.e., require fewer additional wires) than the optimal
memoryless codes, and only a slightly lower rate than the optimal
codes with memory. The primary advantages of boundary shift
codes over the optimal codes are a simple scalable construction,
and a practical encoder and decoder.

In Table 4 we compare boundary shift codes to other shielding
and error correction methods. Compared to the self-shielding codes
proposed by Victor et al. [14] our codes are not only able to prevent
crosstalk but also tolerate errors; this additional protection comes

Bus Wires Encoder Decoder
Size Gates Delay Gates Delay

4 9 10 3 gates 15 4 gates
8 17 18 4 gates 27 5 gates
16 33 34 5 gates 51 6 gates
32 65 66 6 gates 99 7 gates
64 129 130 7 gates 195 8 gates
n 2n+1 2n+2 dlog2ne+1 3n+3 dlog2(n+1)e+1

Table 3: Encoder/decoder gate counts and delay for single
error-correcting boundary shift codes.

Method Advantages Drawbacks
Shielding Wires - crosstalk prevention - no error correction

- simple construction - additional wires
- no additional delay

Self-Shielding - crosstalk prevention - no error correction
Codes [2, 14] - relatively high rate - encoding/decoding logic

- additional wires
- additional delay

Error-Correcting - error correction - no crosstalk prevention
Codes [1, 3, 12] - encoding/decoding logic

- additional wires
- additional delay

Bus Precharging - crosstalk prevention - no error correction
- no additional wires - high power consumption

Proposed Boundary - crosstalk prevention - encoding/decoding logic
Shift Codes - error correction - additional wires

- additional delay

Table 4: Comparison of boundary shift codes and other shield-
ing and error correction methods.

at the expense of a rate reduction (see Table 1). When compared
to placing shielding wires between bus lines, our technique pro-
vides error correction in addition to self-shielding without appre-
ciably reducing the rate, though some encoding and decoding logic
is required. This is a more effective approach than treating error
correction and shielding separately.For example, to protect a 4-bit
bus from single errors requires a total of at least 7 bits [10]. Adding
shielding wires to this encoded bus to prevent crosstalk then results
in a 13-bit bus. In comparison, the[9,4,3] single error-correcting
boundary shift code illustrated in Section 5 achieves the same error
protection for the 4-bit bus using only 9 bits.Precharging busses to
prevent crosstalk is also an alternative, however it can be costly in
terms of power consumption and does not provide error correction.

7. CONCLUSIONS
In this paper we have considered the problem of designing bus

encoding schemes that provide both crosstalk prevention and active
error correction. The former helps reduce the crosstalk interfer-
ence, while the latter corrects faults after they occur, regardless of
their origin. This is an important improvement over previous meth-
ods which have been designed to either reduce crosstalk interfer-
ence or provide error correction, but not both. Our joint approach
is particularly applicable to scenarios, such as nanotechnology and
radiation hardened circuits, where random errors are a concern in
addition to crosstalk interference. We give algorithms for finding
optimal codes for various constraints and code parameters.

One of the most significant contributions of this paper is a prac-
tical class of error-correcting self-shielding codes called bound-
ary shift codes. These codes are derived from conventional error-
correcting codes, which have been studied extensively in the litera-
ture. For the specific case of single error-correcting boundary shift
codes we give gate level encoding and decoding circuits.

Future work includes case studies of faults in DSM busses and
abstractions to more accurate fault models. Simulations of our
methods using realistic circuit models would be useful in evalu-
ating the effectiveness of our approach. We also plan to generalize
the codes considered here to include additional constraints, such as
a limit on the power consumption.

8. REFERENCES
[1] D. Bertozzi, L. Benini, and B. Ricco. Energy-efficient and

reliable low-swing signaling for on-chip buses based on
redundant coding.Proc. IEEE Intl. Symp. on Circuits and
Systems, pp. 93–96, 2002.

[2] C. Duan, A. Tirumala, and S. P. Khatri. Analysis and
avoidance of cross-talk in on-chip buses.Hot Interconnects
9, pp. 133–138, Aug. 2001.

[3] M. Favalli and C. Metra. Bus crosstalk fault-detection
capabilities of error-detecting codes for on-line testing.IEEE
Trans. on VLSI Systems, pp. 392–396, Sept. 1999.

[4] T. Gao and C. L. Liu. Minimum crosstalk channel routing.
Proc. IEEE/ACM Intl. Conf. on Computer Aided Design, pp.
692–696, Nov. 1999.

[5] M. R. Garey and D. S. Johnson.Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, New York, 1979.

[6] K. Hirose and H. Yasuura. A bus delay reduction technique
considering crosstalk.Proc. Design, Automation and Test in
Europe Conf. and Exhibition 2000, pp. 441–445, 2000.

[7] H. Kaul, D. Sylvester, and D. Blaauw. Active shields: A new
approach to shielding global wires.Proc. IEEE Great Lakes
Symp., pp. 112–117, Apr. 2002.

[8] P. K. Lala.Self-Checking and Fault-Tolerant Digital Design.
Academic Press, Inc., 2001.

[9] K. M. Lepak, I. Luwandi, and L. He. Simultaneous shield
insertion and net ordering under explicit RLC noise
constraint.Proc. Design Automation Conf., pp. 199–202,
June 2001.

[10] F. J. MacWilliams and N. J. A. Sloane.The Theory of
Error-Correcting Codes. North-Holland, Amsterdam, 1996.

[11] V. Pless.Introduction to the Theory of Error-Correcting
Codes. Wiley, New York, 1998.

[12] D. Rossi, V. van Dijk, R. Kleihorst, A. Nieuwland, and
C. Metra. Coding scheme for low energy consumption
fault-tolerant bus.Proc. IEEE On-line Testing Workshop, pp.
8–12, 2002.

[13] S. A. Vanstone and P. C. van Oorschot.An Introduction to
Error Correcting Codes with Applications. Kluwer, Boston,
1989.

[14] B. Victor and K. Keutzer. Bus encoding to prevent crosstalk
delay.Proc. IEEE/ACM Intl. Conf. on Computer Aided
Design, pp. 57–69, Nov. 2001.

[15] J. F. Wakerly.Error detecting codes, self-checking circuits
and applications. Elsevier North-Holland, Inc., New York,
1978.

