
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 6, JUNE 2004 553

Power Minimization in QoS Sensitive Systems
Jennifer L. Wong, Student Member, IEEE, Gang Qu, and Miodrag Potkonjak, Member, IEEE

Abstract—The majority of modern multimedia and mobile sys-
tems have two common denominators: quality-of-service (QoS) re-
quirements, such as latency and synchronization, and strict energy
constraints. However, until now no synthesis techniques have been
proposed for the design and efficient use of such systems. We have
two main objectives: conceptual and synthesis. The conceptual ob-
jective is to develop a generic practical technique for the automatic
development of online adaptive algorithms from efficient off-line
algorithms using statistical techniques.

The synthesis objective is to introduce the first design technique
for QoS low-power synthesis. We introduce a system of provably-
optimal techniques that minimize energy consumption of stream-
oriented applications under two main QoS metrics: latency and
synchronization. Specifically, we study how multiple voltages can
be used to simultaneously satisfy hardware constraints and min-
imize power consumption while preserving the requested level of
QoS. The purpose of the off-line algorithm is threefold. First, it
is used as input to statistical software which is used to identify im-
portant and relevant parameters of the processes. Second, the algo-
rithm provides buffer occupancy rate indicators. Lastly, it provides
a way to combine buffer occupancy and QoS metrics to form a fast
and efficient online algorithm. The effectiveness of the algorithms
is demonstrated on a number of standard multimedia benchmarks.

Index Terms—Low power, quality of service (QoS), synchroniza-
tion.

I. INTRODUCTION

THE most popular mobile low-power applications, such as
audio and video, are stream oriented. The nature of these

applications impose a need for addressing the quality-of-service
(QoS) requirements under energy constraints. Latency and syn-
chronization are the most relevant QoS metrics in these types
of applications. Our goal is to develop a spectrum of techniques
and algorithms which minimize energy consumption under
the most important QoS metrics. Specifically, we study how
to use multiple voltage technologies to simultaneously satisfy
hardware requirements and minimize power consumption,
while preserving the requested level of QoS in terms of latency
and synchronization. Our starting point is a provably optimal
off-line algorithm for power minimization under QoS and
buffer constraints. In addition to buffer occupancy, a crucial
criteria for deciding which process to run at which voltage, we
identified four key properties of streaming processes (latency
slack, synchronization slack, relative burstiness, and number of
tasks.

Manuscript received August 2, 2002; revised January 30, 2003. This work
was supported in part by the National Science Foundation under Grant ANI-
0085773.

J. L. Wong and M. Potkonjak are with the University of California, Los An-
geles, CA 90005 USA (e-mail: jwong@cs.ucls.edu).

G. Qu is the Maryland Institute of Advanced Computer Studies, University
of Maryland, College Park, MD 20742 USA.

Digital Object Identifier 10.1109/TVLSI.2004.827567

Our primary goal is to present competitive online algorithms
for power minimization for streaming media applications for
given hardware resource constraints: latency and synchro-
nization, as well as context switching overhead. We aim to
dynamically adjust the supply voltage in such a way that an
incoming statistical stream of data does not overflow the buffer
capacity of our processing system while expending the least
amount of energy. By considering the long and short term
statistics of the media streams and current buffer backlog,
we decide which supply voltage to apply. Furthermore, by
considering latency and synchronization constraints, we decide
which task to schedule at the current moment. Finally, we use
the new online algorithm to explore the tradeoff between buffer
size (cost) and energy consumptions.

II. RELATED WORK

Our research results can be viewed in the context of four re-
lated areas: low-power modeling and optimization, quality of
service, online algorithms, and statistical techniques.

Mainly due to the demand for mobile applications, low-power
research has attracted a great deal of attention in the last decade.
A number of researchers proposed the use of multiple voltages
in order to reduce power consumption [6], [11], [15], [18].
Furthermore, several variable voltage techniques have been
reported [8], [20]. Numerous algorithms for dynamic priority
real-time systems have been proposed including [10], [19].
Also, several industrial multiple voltage low-power designs
have been reported [8] and prototypes [3], [13]. dynamic power
management which aims to reduce the power consumption of
electronic systems by selectively shutting down idle compo-
nents [2]. From one point of view our work can be interpreted
as a combination of these two techniques, multiple voltages
and system-level power management.

The first QoS requirements, such as bounded delay, guar-
anteed resolution or synchronization have been addressed in
the network and real-time operating systems (RTOS) commu-
nities. The most sound and practically relevant QoS model in
the networking community was proposed by R. Cruz [7]. The
main conceptual results in RTOS literature was presented by
Rajkumar et al. [16]. They introduced an analytical approach
for satisfying multiple QoS dimensions under a given set of re-
source constraints. They proved that the problem is NP-hard
and developed an approximation polynomial algorithm for the
problem by transforming it into a mixed integer programming
problem [17]. A comprehensive survey of QoS research in these
two areas is given in [1]. Recently, the first efforts in QoS, and
in particular synchronization during the system design process,
has been reported in design automation literature [14].

There are three main conceptual novelties in the presented
research with the respect to the previous efforts. The first is

1063-8210/04$20.00 © 2004 IEEE

554 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 6, JUNE 2004

that we consider QoS requirements for the streaming media task
model. The second is that we have developed one or rare prob-
ably optimal algorithms for power minimization at the system
level. The final novelty is that online algorithm is developed
using statistical methods starting from the off-line algorithms
and therefore they provide a generic paradigm for rapid devel-
opment of effective online algorithms. Comprehensive versions
of this paper can be found at [21]–[22].

III. PRELIMINARIES

In this section, we outline the abstraction and models used for
power consumption, and define latency, synchronization, and
context switch overhead.

The dominating component of power consumption is
the switching power. Switching power can be modeled as

, where is the effective switching
capacitance. This results from the fact that greater throughput
comes with the cost of higher voltage. Specifically, the gate
delay of circuits is a function of applied voltage and can be
calculated using the formula where k
is a constant [4].

We assume the design operates using multiple voltage sup-
plies and that the voltages change instantaneously with no over-
head. These changes in voltages are assumed to happen only at
the beginning or the end of a time unit.

The demand-supply model for QoS was developed by Cruz
et al. [7]. The model addresses the burstiness of QoS while han-
dling resource allocation. This model assumes periodic segmen-
tation of the time dimension. During each period, each process
receives a task of generally varying complexity. The cumulative
sum of tasks for a process can be depicted as a demand curve
imposed on the system. The system serves the task sequentially
by allocating resources during each time period to one of the
processes. The cumulative sum of the processed data forms a
supply curve.

The demand curve measures the burstiness of the service re-
quirement. The service curve guides the resource allocation with
QoS guarantees. Backlog is defined as the amount of demand
that cannot be processed at that time point, and must then be car-
ried over to the next time unit. The backlog in the QoS model
is represented by the difference between the vertical positions
of the demand curve and the service curve. Latency is the time
between when the demand for a task arrives, and when it is pro-
cessed. This is shown in the model by the horizontal difference
between the demand and service curve at any given vertical po-
sition. A process is a program which assumes that it has inde-
pendent use of the CPU. A process is long, in the sense that
it consists of many tasks. These tasks are processed at periodic
moments in time. With each task, we associate a processing time
and a storage requirement.

Latency is defined as the difference between the time when
the data is processed and the time the data arrived, i.e., .
We denote the time in which a particular sample (piece of date)
arrives as and the time when that piece of data is completely
processed as . At the intuitive level, synchronization indi-
cates how well two or more processes are correlated in their
execution.

We define synchronization in the following way. For the sake
of simplicity, consider only two processes, and . We denote
the tasks of the processes by and by , where ,

. Perfect synchronization constraints indicate which
sample (task or piece of data) of process , which is denoted
by , has to be executed at the same time as piece of data .
Synchronization tolerance (often for the sake of brevity is solely
called “synchronization”) indicates the maximal amount of time
by which the execution of fully synchronized samples and

can maximally differ.
A context switch is the time overhead which is incurred by a

multitasking kernel when it decides to process different tasks.
The amount of context switching time dramatically depends
on the processor. Context switching time for a typical DSP
processor is fairly low, around ten cycles, while for a RISC
processor it is much higher, approximately 100 cycles. In our
experimentation, we used ten cycles.

IV. OFFLINE OPTIMAL ALGORITHM

In this section, we formulate the off-line QoS low-power
problem and present our optimal algorithm. We use a single
processor that can operate at multiple supply voltages. The goal
is to service multiple processes with minimal energy consump-
tion and the minimal amount of memory while meeting various
QoS requirements.

A process consists of a sequence of tasks. With each task ,
we associate:

• : The arrival time, the time when a task is generated from
the process and makes the CPU request.

• : The time needed to complete this task at the nominal
voltage .

• : The storage demand which is the minimal amount of
memory to store this task on its arrival.

Each of the tasks may have QoS requirements such as latency
and synchronization. Latency is the time that task has to
be served after its arrival, that is, the actual finish time of task

must be earlier than . Synchronization measures the
interaction among tasks in different processes. We say that task

from one process and task from another are -synchronized
if the difference of their finishing times is within CPU units.
We denote this by .

The variable voltage processor has multiple supply voltages
among which it can switch. The processor’s processing speed
varies as the voltage changes, so will the actual execution time
for a task to receive its required amount of service. Suppose a
task needs one CPU unit at the nominal voltage , then the
execution time to accumulate the same amount of processing at
voltage is given by [5]:

(1)

where is the threshold voltage.
Given processes , each consists of a se-

quence of tasks . A schedule is a set consisting of
the starting time, finishing time, and the voltage level for each
task. A schedule is feasible if the processor starts each task after

WONG et al.: POWER MINIMIZATION IN QoS SENSITIVE SYSTEMS 555

its arrival, finishes it before the latency constraint, and satisfies
all synchronization requirements. The quality of a schedule is
measured by its energy consumption and the memory require-
ment. Since these two metrics are noncomparable to each other,
we introduce the concept of competitiveness. We say two sched-
ules are competitive if neither outperforms the other in both en-
ergy consumption and memory requirement. We formulate the
problem as:

On a processor with multiple voltages, for a given set of
processes, find all the feasible competitive schedules.
We make the following assumptions.

• Tasks from the same process have to be executed and
completed in the first-in first-out (FIFO) fashion. The
common processes that we consider are audio, video, and
streams generated by sensor networks. For this type of ap-
plications, there is a natural intrinsic order in which con-
secutive tasks have to be executed.

• A task’s processing demand, , is proportional to its
storage demand, . In general, of course, this assumption
is not necessarily correct. However, in many situations, the
amount of processing required for a specific set of data is
proportional to the amount of data.

• The memory occupied by a task can be partially freed,
but only at the end of a CPU unit.1 This assumption
is a direct consequence of the way how current operating
systems function.

• There is no context switching overhead. Obviously, in
almost all types of processors, there is context switching
overhead. The key observation is that the operating system
cycle is significantly longer than the overhead and there-
fore in the first approximation the overhead does not have
to be considered.

• The processor can instantaneously switch the supply
voltage, but only at the beginning of each CPU unit.
Physical laws in current technology imply that the change
of supply voltage can not be done instantaneously. Re-
cently, there have been several efforts to take this time into
account [12]. However, in modern technologies, context
switching times are usually two to three orders of magni-
tude shorter than the operating system cycle. Therefore,
this approximation is sound and impacts overall results
only nominally.

A. Optimal Solution for Single Process

In this section, we show how to find all feasible competitive
solutions for a single process. Suppose the reference voltage

is 0.8 V, and there are two different voltage levels
3.3 V and 1.8 V. From (1), we approximate the processing
speeds to be 3 and 10 at and , respectively. Consider a
process with six tasks, . For simplicity, we further
assume that task arrives at time , and there are no deadline
constraints. Finally, we assume that the processing and memory
requirement are , and , respectively, for the six

1Memory can be partially freed means that, for instance, if half of the pro-
cessing demand is fulfilled at the end of one CPU unit, then we are able to free
half of the space used to store this task. Our proposed algorithm can be easily
modified when this is not allowed.

TABLE I
MEMORY REQUIREMENTS FOR THE MOTIVATIONAL EXAMPLE

tasks. The goal is to determine the voltage to use for each unit
time, such that the energy consumption is minimized. We devel-
oped a dynamic programming-based algorithm which achieves
polynomial run time for this task.

Table I shows the memory requirement at the end of each
unit time, which is the minimal amount of memory required to
store all the arrived but unfinished tasks. The table uses the time
(in terms of CPU units) that the processor is operating at
and to label the horizontal and vertical axis respectively. For
example, entry is the minimal memory requirement after
running at for CPU units and at for units.

Consider entry (1,1), whose content is the storage we need at
the end of the second unit of time after we use for one unit
of time and for one unit. We can either apply in the first
unit and in the second unit, or start at and switch to
after one CPU unit. In the first case, since task ’s processing
demand is 4 and we are able to process 10 at , we will finish

, free the memory, and wait for ; then at in the next
unit of time, we can finish 3 out of the 7 units of processing
demand from ; now is arriving, therefore we need a total
of units of memory to store and . In
the second case, then , we can only finish 3 out of the 4
processing demand of task by the end of the first unit of time
due to the slow processing speed at ; however, after raising
the voltage to during the second unit, we are able to finish
both the remaining of and entire ; the storage for tasks
and are freed and therefore when arrives, we only need 12
units of storage to store this new task. Thus, we fill entry (1,1)
with 12, the smaller storage requirement of the two different
strategies.

Let be the content of entry . We can reach this
entry from entry by applying or from its left
neighbor by applying , hence, we have

(2)

where and are the processing speed at and ,
respectively. The inner max is introduced to enforce that excess
processing resource cannot be used for future work. We build
Table I based on (2), where every row ends with an entry of 0
meaning that there are no tasks left.

While gives the minimal storage requirement at the
instant , we may have used more storage already before
this time. We further denote as the minimal amount
of storage that has been used up to time after running
units of time at and at . Considering the voltage being
used in the th unit, we observe that if we use , we

556 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 6, JUNE 2004

TABLE II
STORAGE REQUIREMENTS FOR THE MOTIVATIONAL EXAMPLE

TABLE III
MEMORY AND ENERGY FOR DIFFERENT SCHEDULES

can finish at most and need a storage of
. Moreover, previously we

have already required a storage at the amount of .
This implies that

(3)
Similar inequality holds if we use , therefore, we have

(4)

Based on the recursive formulas (2) and (4), we calculate
’s and store them in Table II, where the last entry of the

th row gives the minimal storage requirement to complete all
the tasks by using for exactly units.

The power consumption at 3.3 V is 1, then the power
consumption at 1.8 V is 0.1 from our power model. Un-
like the storage requirement, energy consumption is path inde-
pendent. i.e., it depends on the total number of CPU units that
we have used at and , not the voltage at every individual
time unit.

Table III gives the memory requirements and total energy
consumptions by different scheduling policies, where in
the first row indicates a schedule that uses for units and
for units. Clearly from this table, we see that there exist three
competitive optimal solutions, (4,2), (2,5), and (0,11). They con-
sume different amounts of energy and require different amounts
of memory. We can then choose the one that fits our preference
of memory and energy, and retrieve the actual schedule (i.e., the
voltage for each CPU unit) by using simple backtracking.

Fig. 1 shows the algorithm of finding all the competitive op-
timal solutions for multiple processes. A schedule in this case
has to determine, for each CPU unit, which process to be exe-
cuted and at which voltage level.

Assuming that there are processes and different
voltages, we have choices: running the th process
at voltage . A state

means that the th process has
been allocated CPU units, and the processor has been working

Fig. 1. Algorithm for all off-line competitive schedules.

at voltage for CPU units. Notice that
and the equality holds if and only if at any time, there exists un-
finished process(es). We say state
precedes if i) , ii)

, iii) , and iv) . If
precedes , we say that follows . We define

, and .
A state is reachable if . A final state is a state
when all processes’ requests are satisfied. A schedule is a
sequence of states such that and
all processes’ processing loads are satisfied at the final state.

The off-line optimal algorithm consists of three phases. First,
we build an -dimensional table which stores the min-
imal memory requirements. For example, when there is only one
process and two voltages, then we will have a table like Table II.
Step 1 computes the set for the initial state , if all pro-
cesses require CPU time at the beginning, then this set will have

elements. Steps 2–4 makes all the states in
reachable, since each state is one move away from the initial
state . We denote the set of reachable states by . Steps 5–18
build the table recursively until there is no reachable state. We
keep all the reachable states in a queue, we calculate the
set for the head of the queue (state) in Step 15, delete from

WONG et al.: POWER MINIMIZATION IN QoS SENSITIVE SYSTEMS 557

Fig. 2. Overall flow for the creation of the online algorithm.

the queue and put all elements of into the queue in Step
16. When we compute , we consider all the timing re-
quirements. For example, if process has a deadline at the end
of next CPU unit and its remaining process requirement can be
fulfilled only when we use the highest voltage, then
will contain only one state, which assigns the current CPU unit
to process and applies the highest voltage. Because all other
schedules will fail to meet process ’s deadline. The memory
requirement for each state is calculated using formulas similar
to (2) and (4).

From the table built in the first phase, we can easily see the
total memory requirement for each schedule, which is the value
at its corresponding final state. In Phase II, we calculate their en-
ergy consumption. Recall that the energy consumption is path-
independent. Let be the power for voltage , then for final
state , all schedulers with this
final state will consume energy in the amount of

. So for each final state, we associate with the pair ,
the memory requirement and the energy consumption. Recall
also that two final states and are competitive if i)
and , or ii) and .

In the third phase, we find a schedule for each competitive
final state. We achieve this by using backtracking as shown in
Steps 23–29. The existence of state in Step 26 is guaranteed
by the way in which we build the memory requirement table in
Phase I. Therefore, we have:

Theorem 4.1: The algorithm in Fig. 1 finds all the feasible
competitive schedules.

We analyze the complexity of the algorithm, for a fixed pro-
cessor that has supply voltages to execute processes, in
terms of the total processing demands. Suppose that we need
CPU units to service all the processes at the reference voltage.
In Phase I, we essentially fill in the entries of an dimen-
sional table.

The calculation of energy consumption in Phase II takes con-
stant time for each final states. According to how many units we
have run at the reference voltage, it is clear that we will have at
most different final states (c.f. Table II for an example). Thus,
the cost here is . In the last phase, we determine a fea-
sible schedule for each competitive final state by backtracking.

In step 27, we move one entry closer to the starting point, and
the total number of steps we need is also in the order of .
Therefore, we have:

Theorem 4.2: If we need CPU units to service all the pro-
cesses at the reference voltage, the run-time of the proposed
algorithm is .

V. ONLINE HEURISTICS

In this section, we present the online algorithm for power
minimization under the QoS constraints, synchronization and
latency.

We have multiple online streaming processes, with tasks
which arrive at periodic time intervals. For each task of each
process, we have memory and CPU requirements. Each of
these tasks have a given latency constraint, and on some
subset of these tasks additional synchronization constraints are
imposed. We are given multiple supply voltage levels in which
to execute these tasks. The goal of the online algorithm is to
decide which task from the stream processes to execute at each
time interval and at which voltage in such a way that all latency
and synchronization constraints are satisfied. Additionally, at
no point of time the requirements for storage should exceed the
memory size (buffer space).

In order to solve the overall problem, we must answer the
following three questions: (i) how much buffer space is needed;
(ii) which task to execute; and (iii) which voltage to apply. The
answer to each of these questions is determined by our synthesis
and online scheduling approach which is presented in Fig. 2.
The online approach uses the optimal off-line algorithm to de-
termine its decision mechanism.

The online approach begins with the assembly of a diverse
set of test cases. The off-line optimal algorithm provides a lower
bound on the memory requirement for the system along with the
optimal QoS solution for the test set. The lower bound memory
requirement is used to determine the proper buffer allocation
size for the online algorithm. In this phase, a binary search on
the size of the buffer is conducted. Each iteration tests the new
buffer size on a new set of test cases, until the buffer space allo-
cated is sufficient to handle all considered cases.

558 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 6, JUNE 2004

Next, the buffer size and the optimal solutions are used to
build the online algorithm. The initial online algorithm builds a
statistical model from the optimal off-line solutions and creates
an online decision strategy, which is used in order to select the
proper task and voltage in which to execute in each situation.
The decision strategy is then evaluated on a set of online test
cases. If the decision strategy does not provide the level of QoS
specified, then modification of not only the statistical model
and the decision strategy, but also the allocated buffer space is
conducted. We continue to make modifications until the desired
level QoS is reached.

The initial online algorithm is created in five steps. In the first
step, we identify the relevant properties for the QoS require-
ment. For example, in the case of latency and synchronization,
we define properties such as average latency, maximum syn-
chronization delay, and buffer occupancy. We evaluate the rel-
evance of these properties in terms of the off-line optimal al-
gorithm in the second step. We eliminate all properties which
show little relevance to the outcome of the optimal off-line so-
lutions. Following this step, both the optimal off-line solutions
and the relevant properties are used to build the statistical model.
We build a -dimensional space, where is the number of
properties and is the number of processes. The resolution of
each property is specified, and for each subspace we determine
the statistical values for task selection. Each subspace contains
the percentage of time the optimal off-line algorithm selected
each of the tasks under the defined property conditions. In a sim-
ilar way, the statistical values for all situations and each voltage
level is calculated.

Before we evaluate the effectiveness of the model, we have to
develop the online decision strategy. The strategy is responsible
for making the decision as to which task and which voltage to se-
lect according to the particular combination of property values.
The strategy is reliant on the context switch time or penalty. For
each subspace, in the task selection statistical model, the deci-
sion strategy must decide with task to select based on the values
in the subspace and the context switch penalty. If there was no
penalty for context switching, then for each situation we would
select the statistically strongest task from the statistical model.
However, if the context switch penalty is high, we would like
to continue to run the tasks of the currently selected process as
long as possible. In the moderate case, the proper time to switch
between processes needs to be defined, and therefore we pro-
pose different points in the statistical model to switch between
processes. The final step is to evaluate each of these proposed
points to determine the proper switching point in the model.
Once the proper switching points has been defined, we com-
pact the -dimensional table by combining subspaces with
the same task/process selected to execute. Statistically, the sub-
spaces should not be interleaved, and therefore we shall have
continuous subspaces. For each decision the online algorithm
determines which subspace the properties fall into, and select
the assigned task/process to execute. The same process is ap-
plied to determining the voltage selection decision strategy. This
online decision strategy is then passed on to the final stage of the
overall online approach.

The online algorithm builds a statistical model and an online
decision strategy based on the -dimensional space defined

by the properties. The goal is to select properties which provide
strong indication of which task should be run at which voltage.
We have defined the following five properties.

• Latency. If the latency of multiple tasks of a process
are close to their maximum allowed latency, this process
should be selected. Additionally, a higher voltage should
be run to ensure each of the tasks meet their latency re-
quirements. However, if the latency for all tasks/processes
are at lower levels, then the task of the current process
should be executed to eliminate a context switching
penalty.

• Relative Burstiness. The recent burstiness of a process,
or rapid arrival of tasks for a process, can play an impor-
tant role in voltage and task selection. If a task has shown
recent burstiness, we should consider the execution of the
task/process due to the likelihood that this task will con-
tinue to be bursty, therefore consuming more buffer space
and extending the latency of each of the tasks if they are
not run.

• Number of Tasks. The number of tasks which a process
has waiting also plays a key in the task and voltage selec-
tion process. If the current selected process has more tasks
than the other processes, the tasks of the current process
should continue to be selected in order to eliminate con-
text switching penalties.

• Synchronization. When the synchronization for any
task/process is nearing the maximum allowed level for
QoS this task should be selected.

• Buffer Occupancy. Buffer occupancy is an indiction
of the current demand of the processes as a whole. This
property looks at the percentage of the entire buffer in
which each process occupies. If the buffer is near capacity,
the processes with higher buffer occupancy should be
selected.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
using comprehensive simulation study. We first describe the
used examples (multimedia applications). After that, we present
our experimental setup and collected data. Finally, we conduct
the analysis of the experimental results.

In order to evaluate the online heuristic, we adapt the fol-
lowing procedure. We use four CPU units for the latency con-
straints. For synchronization, we use eight CPU units. The goals
of the our experimentation and results analysis was to answer the
following questions: Are multiple voltages useful? How many
voltages are needed? What is the relative quality of the online
algorithm with comparison to the optimal off-line scheme? How
much benefit one can obtain for online algorithms when the goal
is to minimize design costs (buffer storage) under energy con-
sumption constraints?

We used six streaming applications [9] to evaluate the effec-
tiveness of the approach: IJG JPEG encoder and decoder, MSG
MPEG encoder and decoder, CCITT G.721 encoder, and PGP
encryption and description module.

WONG et al.: POWER MINIMIZATION IN QoS SENSITIVE SYSTEMS 559

Fig. 3. Energy savings by off-line algorithm using multiple supply voltage
assuming 3.3 V nominal voltage with the same amount of memory.

Fig. 4. Normalized energy consumption for 2 and 3 voltages. Normalization
is performed with respect to the single voltage case.

In order to analyze the effectiveness of our approach, we
started with preliminary testing to determine the appropriate
number of voltage levels. We considered three cases, 2-voltages
at 3.3 and 1.8 V, 3-voltages at 3.3, 1.8, and 1.0 V, and 4-voltages
at 3.3, 2.4, 1.8, and 1.0 V. We used the off-line algorithm to de-
termine the energy savings of the three cases on 1, 2, 3, 5, 6, 8,
and 10 processes. All energy consumption values were normal-
ized to the single voltage case at 3.3 V, and we used the memory
requirement for the single voltage case as the basis for the other
cases. We present the results in Fig. 3. The figure shows the per-
centage of energy savings versus the number of processes.

The first three questions are addressed using data from the ex-
periments that are displayed in Fig. 4. The figure shows that for
different number of processes the normalized energy require-
ments when the optimal off-line and online algorithms are ap-
plied under the same memory requirement. All the values are
normalized to the single voltage (3.3 V) case found using the
off-line algorithm. Since the off-line algorithm is optimal, we
use the off-line values as the lower bound. The figure indicates
the results after applying the optimal off-line algorithm and the
online algorithm for both the 2-voltage and 3-voltage cases. The
percentage by which the off-line and the online algorithm differ
in savings compared to the number of processes is presented in
Fig. 5.

Fig. 5. Increase of energy consumption (in percentages) by the online heuristic
over the off-line.

Fig. 6. Normalized memory consumption for 2-voltage and 3 voltages.
Normalization is done with respect to the single voltage case.

Fig. 6 presents the results for the dual problem evaluated
using Fig. 4. Here we evaluate how much the cost of the system,
measured in terms of buffer space, can be reduced under the
conditions that energy consumption is fixed. All results are
normalized against the base case where storage requirements
are first calculated for the set of tasks assuming that a single
voltage is used. For the case when we use 2-voltages we
compare to 2.5 V, and in the case for 3-voltages we use 1.8 V.
Again, we present the normalized results for both the 2-voltage
case, and the 3-voltage case in Fig. 6. Additionally, we present
the percentage difference between the optimal off-line memory
requirement and the online algorithm for both the 2-voltage
case and the 3-voltage case in Fig. 7.

Lastly, we consider the relationship between the drop rate of
the online and off-line algorithm relative to their performance.
These results are presented in Table IV. For both the 2 and
3-voltage level cases, we varied the drop rate from 0.1 to 0.5
and considered and average and median percentage difference
between the drop rates of the off-line and online approaches.

The first important question that we analyze is what is the
optimal number of voltage levels required to obtain essentially
all potential benefits from the use of multiple voltages. In
Fig. 3, we analyze the potential benefit for the use of 2,3 and
4-voltage levels with our off-line algorithm. Our results show a
energy savings of at least 35% when 2-voltages are used, and at
least 45% improvement in the 3-voltage case. While the energy

560 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 6, JUNE 2004

Fig. 7. Increase of memory consumption (in percentages) by the online
heuristic over the off-line.

TABLE IV
RELATION BETWEEN DROP RATE AND RELATIVE PERFORMANCE OF

THE ONLINE AND OFF-LINE ALGORITHMS

saving increases with the number of voltage levels used, the
benefit of using 4-voltages over 3-voltages is relatively small.
Therefore, we see diminishing returns when using more than
3-voltage levels.

The comparison between the optimum off-line and the
heuristic online algorithms with respect to storage requirements
and energy savings indicates several important conclusions.
Evaluation of the online and off-line memory consumption is
shown in Fig. 5. On average the online algorithm indicates an
overhead of 25%. However, it also saves energy over the single
voltage case with 36.5% savings for 2-voltages, and 44.4%
savings for 3-voltages.

From Fig. 7, we see that the online algorithm is not able to
completely match the performance of the optimal off-line algo-
rithm, the reduction for storage requirements are significantly
larger than the energy savings. This is a consequence of the fact
that energy consumption is dictated by the overall average ef-
fectiveness of online and off-line algorithms, while the storage
requirements are primarily a function of how well these algo-
rithms can use high voltages to reduce storage requirements
during bursty periods of processes.

VII. CONCLUSION

We have developed an optimal polynomial-time algorithm for
power minimization of popular streaming media applications,
such as audio, video, and sensor network data under QoS re-
quirements and hardware constraints using multiple voltages.
Furthermore, we have developed an online adaptive policy for
power minimization in the same scenario. The online approach
leverages the insights from the off-line optimal algorithm.

REFERENCES

[1] C. Aurrecoechea, A. T. Campbell, and L. Hauw, “A survey of qos archi-
tectures,” Multimedia Syst., vol. 6, pp. 138–151, 1998.

[2] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE Trans. Computer-
Aided Design, vol. 18, pp. 813–833, June 1999.

[3] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A dy-
namic voltage scaled microprocessor system,” IEEE J. Solid-State Cir-
cuits, vol. 35, pp. 1571–1579, Nov. 2000.

[4] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R.
Brodersen, “Optimizing power using transformations,” IEEE Trans.
Computer-Aided Design, vol. 14, pp. 12–31, Jan. 1995.

[5] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power
CMOS digital design,” IEEE J. Solid-State Circuits, vol. 27, pp.
473–484, Apr. 1992.

[6] J. Chang and M. Pedram, “Energy minimization using multiple supply
voltages,” in Proc. Int. Symp. Low-Power Electronics Design (ISLPED),
1996, pp. 157–162.

[7] R. L. Cruz, “Quality of service guarantees in virtual circuit switched
networks,” J. Select. Areas Commun., vol. 13, pp. 1048–1056, Aug.
1995.

[8] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power
optimization of variable voltage core-based systems,” IEEE Trans. Com-
puter-Aided Design, vol. 18, pp. 1702–1714, Dec. 1999.

[9] C. Lee et al., “Mediabench: a tool for evaluating and synthesizing mul-
timedia and communications systems,” in Proc. Int. Symp. Microarchi-
tecture, 1997, pp. 330–335.

[10] J. Luo and N. K. Jha, “Static and dynamic variable voltage scheduling
algorithms for real-time heterogeneous distributed embedded systems,”
in Proc. Asia and South Pacific Design Automation Conf., 2002, pp.
719–726.

[11] A. Manzak and C. Chakrabarti, “A low power scheduling scheme with
resources operating at multiple voltages,” in IEEE Int. Symp. Circuits
Systems, vol. 1, 1999, pp. 354–357.

[12] B. Mochocki, X. Hu, and G. Quan, “A realistic variable voltage sched-
uling model for real-time applications,” in IEEE Int. Conf. Computer
Aided Design, 2002, pp. 726–731.

[13] K. Nose, M. Hirabayashi, H. Kawaguchi, and L. Seongsoo et al., “V/sub
TH/-hopping scheme to reduce subthreshold leakage for low-power pro-
cessors,” IEEE Custom Integrated Circuits, pp. 93–96, 2001.

[14] G. Qu, M. Mesarina, and M. Potkonjak, “System synthesis of syn-
chronous multimedia applications,” in Proc. Int. Symp. System Synthesis
(ISSS), 1999, pp. 128–133.

[15] S. Raje and M. Sarrafzadeh, “Scheduling with multiple voltages,” Inte-
gration, The VLSI J., vol. 23, no. 1, pp. 37–59, 1997.

[16] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource allo-
cation model for qos management,” in Proc. IEEE Real-Time Systems
Symp., 1997, pp. 298–307.

[17] , “Practical solutions for qos-based resource allocation problems,”
in Proc. IEEE Real-Time Systems Symp., 1998, pp. 296–306.

[18] V. Sandararajan and K. K. Parhi, “Synthesis of low power cmos vlsi
circuits using dual supply voltages,” in Proc. Design Automation Conf.,
1999, pp. 72–75.

[19] A. Sinha and A. P. Chandrakasan, “Energy efficient real-time scheduling
microprocessors,” in Proc. IEEE/ACM Int. Conf. Computer-Aided De-
sign, 2001, pp. 458–463.

[20] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for re-
duced CPU energy,” USENIX Operating Syst. Design Implementation,
pp. 13–23, 1994.

[21] J. L. Wong, G. Qu, and M. Potkonjak, “An online approach for power
minimization in QoS sensitive systems,” in Proc. Asia South Pacific De-
sign Automation Conf., 2003.

[22] , “Power Minimization in QoS Sensitive Systems,” Univ. Cali-
fornia, Los Angeles, Los Angeles, CA, Tech. Rep. 030057, 2003.

Jennifer L. Wong received the B.S. degree in computer science and engineering
and the M.S. degree in computer science from the University of California, Los
Angeles, in 2000 and 2002, respectively, and is currently working toward the
Ph.D. degree at the same university.

Her research interests include intellectual property protection, optimization
for embedded systems, and mobility in ad hoc sensor networks.

WONG et al.: POWER MINIMIZATION IN QoS SENSITIVE SYSTEMS 561

Gang Qu received the B.S. and M.S. degrees in mathematics from the Univer-
sity of Science and Technology of China, in 1992 and 1994, respectively, and
the Ph.D. degree in computer science from the University of California, Los
Angeles in 2000.

He joined the Electrical and Computer Engineering Department, University
of Maryland, College Park in 2000, and joined the Maryland Institute of Ad-
vanced Computer Studies, also at the University of Maryland, in 2001. His re-
search interests include intellectual property reuse and protection, low-power
system design, applied cryptography, and computer-aided synthesis.

Miodrag Potkonjak received the Ph.D. degree in electrical engineering and
computer science from the University of California, Berkeley in 1991.

In 1991, he joined C&C Research Laboratories, NEC USA, Princeton, NJ.
Since 1995, he has been with Computer Science Department, University of Cal-
ifornia, Los Angeles. His watermarking-based Intellectual Property Protection
research formed a basis for the Virtual Socket Initiative Alliance standard. His
research interests include system design, embedded systems, computational se-
curity, and intellectual property protection.

Dr. Potkonjak received the National Science Foundation CAREER Award,
OKAWA Foundation Award, UCLA TRW SEAS Excellence in Teaching Award
and a number of best paper awards.

