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Non-RAM-Based Architectural Designs of
Wavelet-Based Digital Systems Based on Novel
Nonlinear I/0 Data Space Transformations

Dongming Peng and Mi Lu, Senior Member, IEEE

Abstract—The designs of application specific integrated circuits
and/or multiprocessor systems are usually required in order to
improve the performance of multidimensional applications such as
digital-image processing and computer vision. Wavelet-based al-
gorithms have been found promising among these applications due
to the features of hierarchical signal analysis and multiresolution
analysis. Because of the large size of multidimensional input data,
off-chip random access memory (RAM) based systems have ever
been necessary for calculating algorithms in these applications,
where either memory address pointers or data preprocessing and
rearrangements in off-chip memories are employed. This paper
establishes and follows novel concepts in data dependence analysis
for generalized and arbitrarily multidimensional wavelet-based
algorithms, i.e., the wavelet-adjacent field and the super wavelet-de-
pendence vector. Based on them, a series of novel nonlinear /0
data space transformations for variable localization and depen-
dence graph regularization for wavelet algorithms is proposed.
It leads to general designs of non-RAM-based architectures for
wavelet-based algorithms where off-chip communications for
intermediate calculation results are eliminated without prepro-
cessing or rearranging input data.

Index Terms—Dependence graph, discrete wavelet transform,
non-RAM-based architectures, zerotree coding.

1. INTRODUCTION

HE DESIGNS of application specific integrated cir-

cuits (ASIC) and/or multiprocessor systems are usually
required in order to improve the performance of multidimen-
sional applications such as multimedia processing, computer
vision, high-definition television, medical imaging, and re-
mote sensing, etc. Wavelet-based algorithms have been found
promising among these digital signal processing applications
due to the features of hierarchical signal analysis and multires-
olution analysis. There have been many useful wavelet-based
multidimensional algorithms studied in literature including
multi-wavelet transform (MWT) [1], [10], [11], [25], [27],
wavelet packet transform (WPT) [2], [15], embedded zerotree
wavelet transform (EZW) [13], set partitioning in hierarchical
trees (SPIHT) [14], and space frequency quantization (SFQ)
[15], [16], etc. In these algorithms, multidimensional data
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are decomposed into different spectral subbands, and correla-
tions across the subbands are further analyzed and exploited
in coding systems. The calculations of these complex algo-
rithms are based on intense and complicated manipulation of
multidimensional data. For instance, the algorithms of EZW,
SPIHT, and SFQ have three common procedures: 1) hierar-
chical wavelet decompositions; 2) construction of zerotree
data structures; and 3) symbol generation from the wavelet
coefficients on zerotrees, quantization of the magnitudes of
significant coefficients and entropy coding. The second pro-
cedure, i.e., the zerotree construction, is the most important
one that efficiently encodes the coefficients with a number of
symbols by exploiting the inter-subband correlations of DWT
via the zerotree data structure. Because the zerotrees are created
from the two-dimensional (2-D) data generated by DWT, in
applications it is difficult locating the corresponding parent
coefficient for a given child coefficient among the 2-D data
[20]. For another instance, the application of 2-D MWT on
images involves preprocessing images into 2-D vector-valued
data streams, convoluting groups of data from adjacent rows
with the matrix-valued wavelet filter taps, and then convoluting
groups of data from adjacent columns in the result of row-wise
convolution. In calculating these algorithms, off-chip random
access memory (RAM) based systems have been necessary
where either memory address pointers or data rearrangements
in off-chip memories are employed, because of the large size
of 2-D input data. As a matter of fact, to the best of our knowl-
edge, all recently proposed special-purpose architectures (e.g.,
[18]-[20]) for these complex algorithms have to be involved
with large off-chip RAMs when calculating and rearranging
multidimensional data.

In this paper, we contribute to embedding the main bodies
of these algorithms into non-RAM-based architectures leading
to the elimination of off-chip communications, and thus, the
increase of the processing rates that are especially desirable in
image and video coding. For example, one of our main ideas in
building zerotrees for the algorithms of EZW, SPIHT, or SFQ,
is to rearrange the calculations of wavelet transform and take
advantage of parallel as well as pipelined processing, so that
ANY parent coefficient and its children coefficients in zerotrees
are guaranteed to be calculated and output simultaneously
during the computation of wavelet transform. In this way,
neither locating the parent for a given child coefficient, nor
building zerotree data structures is necessary any more after the
computation of wavelet transforms. In other words, we combine
the procedures of wavelet transform and zerotree construction
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into a single routine without using RAMs. The same philosophy
can be applied to other wavelet-based algorithms described
above. Principles of non-RAM-based architectural designs for
the wavelet based digital systems are proposed in the paper.

Generally, the broadcast or communication of control infor-
mation is one of the bottlenecks that block the increase of pro-
cessing rates and hardware efficiency in parallel processing sys-
tems. This paper proposes architectures featured with localized
control, where algorithms are computed by some processing
units, and all devices operate independently with local controls,
except when using a single global clock signal.

Prior to presenting architectural designs, this paper estab-
lishes and follows two novel concepts in data dependence
analysis for generalized and arbitrarily multidimensional
wavelet-based algorithms, i.e., wavelet-adjacent field, and
super wavelet-dependence vector. Based on these, novel non-
linear I/0 data space transformations for variable localization
and dependence graph regularization for wavelet algorithms
are proposed which lead to designs of non-RAM-based
architectures.

Unlike regular iterative algorithms that can be linearly
mapped onto efficient regular architectures by conventional
space-time mapping techniques, wavelet-based algorithms
are characterized by a rather irregular data dependence struc-
ture largely due to sequence decimations, and the efficient
space-time maps are bound to employ a certain form of
nonlinearity. A thorough design space exploration can be
accomplished for the linear synthesis in choosing linear
space-time mapping functions, but selecting appropriate non-
linear mapping functions in architectural synthesis is still an
open problem. A nonlinear index space transformation applied
to synthesizing parallel structures for one-dimensional (1-D)
DWT has been reported in [23]. However, the approach in [23]
is heuristic but not systematic, and it is ONLY applicable to 1-D
cases and cannot be extended to architectural designs for gen-
eralized and arbitrarily multidimensional wavelet algorithms.
The major contributions of this paper are exploring the com-
putation locality and dependency within general wavelet-based
algorithms by representing them with wavelet-adjacent fields
and super dependence vectors based upon a newly defined
model of “I/O data space,” then regularizing and merging the
dependence graphs via novel nonlinear I/O data space transfor-
mations, and finally, proposing non-RAM-based architectures
with appropriate space-time mapping techniques, based on the
transformed dependence graphs.

Although, the data dependence analysis and dependence
graph regularization are proposed in this paper as a theoretical
basis of architectural designs for generalized wavelet-based al-
gorithms, with the space limit of this paper, it is impossible here
to derive architectural designs for all complex wavelet-based
algorithms. In this paper, we use the zerotree construction
algorithm as the representative of wavelet-based algorithms
for deriving corresponding architectures. Zerotree construction
algorithm is the main body of such algorithms as EZW, SPIHT,
and SFQ ([13]-[16]). The schemes in architectural designs in
this paper form the basis for synthesizing other more general-
ized wavelet-based digital systems. As such, we mention full
wavelet transform [17], M-ary wavelet transform [17], and

embedded zerotree coded multi-wavelet [10]. Interested readers
may refer to [28]—[31] for our detailed introductions of specific
designs.

The rest of the paper is organized as follows. In Section II,
we define I/O data space modeling of wavelet based algorithms,
conduct a general data dependence analysis of these algorithms
based on newly-defined concepts, and propose novel nonlinear
I/O data space transformations for regularizing and merging the
inter-octave dependence graphs. The non-RAM-based architec-
tural designs for zerotree construction in the class of wavelet
zerotree coding algorithms are proposed in Section III. Then,
we detail experimental results and performance analysis and fi-
nally draw conclusions in Sections IV and V.

II. NOVEL NONLINEAR I/O DATA SPACE TRANSFORMATIONS
FOR REGULARIZING DEPENDENCE GRAPHS OF
WAVELET-BASED ALGORITHMS
A. I/O Data Space Modeling of Wavelet-Based Algorithms

The basic equation for any discrete wavelet algorithms is gen-
erally represented by

Xjlt] =) CIkIX;[Mt — k]

ey

where C[k] are taps of a wavelet filter, X; and X4 are the
sequence of input data and output data, respectively, at the (j +
1)th level transform, L is a set that corresponds to the size of
the wavelet filter, and M is a constant scalar in the algorithm.

Generally, the algorithm is termed as M-ary wavelet trans-
form when M > 2. There are M wavelet filters for M-ary
wavelet transform. j is always used in this paper to refer to the
wavelet transform level. If X; and X are scalars and C' is
scalar-valued taps of the wavelet filter, the algorithm is a clas-
sical scalar wavelet transform; if X ; and X ; ; are vector-valued
data and C' is matrix-valued taps of the multiwavelet filter, it is
an MWT. If ¢ and k are scalars, the algorithm is a 1-D trans-
form; if ¢ and k are n-component vectors, it is an n-D trans-
form. Wavelet-based algorithms are multiresolution algorithms,
i.e., the output data at a level of transform can be further trans-
formed at the next level. In the classical DWT, there are two
wavelet filters (low-pass filter and high-pass filter) at each level
of transform, and only the output of low-pass filter is further
transformed at the next level. In the arbitrary wavelet tree ex-
pansion of the WPT, the output of either filter may be further
transformed at the next level. Note that the domain over which
the sum is calculated by (1) is centered at X ;[M].

1) Parameter Index Axis: The parameter index axis of a
signal processing algorithm is the index axis for those data to
be broadcasted in the algorithm, i.e., the data used in most com-
putations but not generated by computations. As parameters of
the computations, the number of them is fixed.

2) Data Index: The data index is the index for the interme-
diate data, input data, or output data that are generated and/or
used by computations. In signal processing algorithms, the input
size is variable.

We propose the following definitions for our modeling of
wavelet algorithms in the n-D I/O data space.
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target vector

super wavelet dependence vector

wavelet-adjacent field
covering a bunch of vectors

Either target vector or each vector in the
wavelet-adjacent field consists of two items
of data at both ends of the vector.

Fig. 1.

3) I/0 Data Space: In an I/O data space, the indexed data
are only possibly the input data and output data, and the pa-
rameters of the algorithm are ignored. The intermediate data are
viewed as partial inputs or partial outputs for the intermediate
computations.

4) Wavelet-Adjacent Field: In an I/O data space, a wavelet-
adjacent field is a small domain made up of a group of source
data items used by a calculation in (1). Its size is dependent on
the wavelet filter.

5) Super Wavelet-Dependence Vector: A super wavelet-de-

pendence vector d—W; starts from a wavelet-adjacent field W and
ends at the resulted data b. Since the source of the “dependence
vector” itself is a domain instead of a single datum, we term
such a dependence vector [corresponding to the calculation in
(1)] a super wavelet-dependence vector. In later analysis, the
super wavelet-dependence vectors are generally called depen-
dence vectors and treated similarly as traditional dependence

vectors. The length of a super wavelet-dependence vector |m|
is defined as the Euclidean distance between a and b., where a
and b, are arithmetic centers of W and b, respectively.

We also refine the following concepts which are used
throughout this paper.

6) Dependence Graph: Although, there are many versions
of the definitions of the dependence graph, in this paper, we
make an emphasis on the dependence graph based on an I/O
data space, where each node in the dependence graph corre-
sponds to a data item, and each edge corresponds to a calculation
or a dependence relation between the data used in the calcula-
tion and that generated in the calculation.

7) Regular Dependence Graphs: In such dependence
graphs, the length of each dependence vector d is a constant
value independent of either the input size or the data positions.

8) Pseudo Regular Dependence Graphs: In such depen-
dence graphs the dependence vectors can be partitioned into
a certain number of groups and in each group the length of
dependence vectors is a constant value independent of either
the input size or the data positions.

As examples, a wavelet-adjacent field, a super wavelet-
dependence vector, and the dependence graph including some
instances of dependence vectors for the algorithm of separable
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Dependence Graph

e

Example of an dependence graph for the 2-D MWT modeled in I/O data space.

2-D MWT [11], [27] are shown in Fig. 1, based on these
concepts. The term “separable” means that the 2-D wavelet
transform can be done row-wise and column-wise, consec-
utively. In Fig. 1, j is the transform level; n; and no are
indices for the 2-D input data or 2-D output data. In (1) for
the MWT, both X; and X, are vector-valued and C cor-
responds to the matrix-valued multiwavelet filter. Thus, the
wavelet-adjacent field is a bunch of vectors and the end of the
super wavelet-dependence vector itself is a vector (X;41) in
Fig. 1. The separable 2-D MWT is performed row-wise and
column-wise separately at each level of transform, and the
dependence graph shown in Fig. 1 presents the dependence
relationships in the I/O data space. Index j corresponds to
the multiwavelet transform level. In Fig. 1, Plane 7 = 0 in
the 3-D space is the input plane which means the input data
is always located at this plane, 7 = 2 is the output plane
which means the final output data of the algorithm is always
located at this plane, and 5 = 1 is an intermediate data plane.
Plane j = 1/2 or j = 3/2 is the output plane of a row-wise
transform and meanwhile the input plane of a column-wise
transform. The dependence graph in Fig. 1 is apparently not a
regular dependence graph, as the length of dependence vectors
is not a constant value yet depends on the positions of the
target of the dependence vector.

B. Novel Nonlinear 1/0 Data Space Transformations for
Regularizing Dependence Graphs

As illustrated in Fig. 1, the dependence graph for a wavelet-
based algorithm in the I/O data space is irregular in that the
lengths of the dependence vectors are dependent on the data po-
sitions as well as the input size. Whether it be a classical DWT, a
vector-valued transform MWT, an arbitrary wavelet expansion
WPT, or other wavelet-based algorithm, this irregularity always
exists due to the sequence decimation in the nature of each level
wavelet transform. Meanwhile, the output size is always M™
times less than the input size of each level transform (where n is
the number of dimensions of the wavelet transforms). However,
as proposed later, these irregular dependence graphs in the I/O
data space can be generally regularized through a group of novel
nonlinear I/0 data space transformations so that the output data
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is uniformly distributed and the dependence vectors are regular-
ized. The general dependence regularizations are formulated in
the following proofs of Theorem 1 and Theorem 2.

Theorem 1: The dependence graphs of wavelet algorithms
modeled in I/O data space can always be regularized through
appropriate nonlinear I/O data space transformations.

Proof: The proof can be presented in two cases:

(1) For algorithms of 1-D wavelet transforms and nonsep-
arable n-D wavelet transforms: According to (1), the wavelet
adjacent fields in the I/O data space correspond to groups of
data X;[Mt — k] where k € L, and L is a set that depends on
the size of the wavelet filter and the number of the dimensions
of the wavelet transform. The super dependence vectors repre-
sent the dependence relationships between the wavelet adjacent
fields and the target data X;4[t], and the lengths of depen-
dence vectors are the distances between centers of the wavelet
adjacent field and the target data. When performing the non-
linear 1/0 data space transformation I'y: j — j, t — MJt, we
can always make the lengths of dependence vectors a constant
value, and thus, regularize the dependence graph as analyzed
in the following. After rearranging data, the dependence vector
in the I/O data space corresponding to the dependence relation
between X;i1[t] and the wavelet-adjacent filed X;[Mt — k]
(where k € L) changes to the dependence vector for the de-
pendence relation between X;11[M7+1¢] and the wavelet-ad-
jacent field X;[M7+1t — M7k] (where k € L). Meanwhile,
the length of this dependence changes to the distance between
Xj41[M7*] and X;[M7*¢], or |(j + 1) — j| = 1. In other
words, the dependence graph is regularized by performing the
nonlinear I/O data space transformation I';.

(2) For separable n-D wavelet transforms: The multidimen-
sional filter C[K] is separable for the separable n-D wavelet
transforms, and (1) is separated to be calculated in each dimen-
sion. Generally, (1) is calculated equivalently by the following
(2) in separable n-D wavelet transforms:

j+1[t1,t2,...,tn]
= > Cilka] > Colko]--- > Cul
k€L, ko€L> kn€L,
XXj[Mtl—k17Mt2—k27...7Mtn—kn] (2)

where (t1,ts,...,t,) are components of the n-compo-
nent vector ¢,(ki,ko,...,k,) are the components of
k,(Mt; — kl,Mtg — koy...,Mt, — k,) are the compo-
nents of Mt — k in (1), Cy,Cs>,...,C,, are the n 1-D filters
separated from the n-D filter C, and Ll, Lo, ..., L, correspond
to n 1-D wavelet-adjacent fields separated from the original
n-D wavelet-adjacent field. In order to give the dependence
graph for (2) in the I/O data space, we draw the index j [which
represents the level of multiresolution transforms and can
only be integers in case (1)] in fractional numbers to repre-
sent the intermediate calculations in every level of transform.
For example, the plane 5 = 0.5 in Fig. 1 corresponds to
the output of the first level row-wise wavelet transform and
the input of the first level column-wise wavelet transform.
In the (s + 1) level (where s is a nonnegative integer) of
an n-D wavelet transform, we thus have intermediate planes

j=s+1/n,j=s+2/n,...,5 = s+ (n—1)/n between the
plane j = s and j = s 4 1. Accordingly, (2) can be calculated
in the order of

Z C1[k1] Z Calks] - - - Z Chn [kn]

ki€Ly ko€ L2 kn€Ln
X X [Mtl —kl Mtg—kg.....,Mtn—k'n]

= Z Calka] -+ - Z Chn[kin]

ko€L> kn€L,
X XS+1/n[t1,Mt2 — k‘g, e ,Mtn — kn]
= Z 03[k3]"' Z Cn[kn]
ks€Ls kn€L,
X X5+2/n[t1,t2,Mt3 — k‘3, A 7Mtn — kn]
= Z Cn[kn]Xs+(n—1)/n[t17t27 s 7tn—17 Mtn - kn]
kn€Lnp
= Xop1lt1,t2, ..., 1) 3)

When performing the nonlinear I/O data space transformation
Dy :j g, ti — MU=G/m+A/20)1 . fori =1,2,...,n,
we can make the lengths of dependence vectors a constant value
and thus, regularize the dependence graph corresponding to (3)
as analyzed in the following. Here, (1/2n) is used in the ex-
pression for adjusting the value of ceiling function. Since [j —
(i/n)+(1/2n)] = s+1whenj € [s+ (i/n),s+ 1+ (i/n) —
(1/2n)], where s is an integer, the calculation of the ith step
in the calculation of (3) (for the (s + 1) level of the separable
wavelet transform)

Soakl Y > Culkal

ki€L; kiy1€Li41 kn€Ln
X Xop(im1y/nlti,to, .-, Mt; — ki,
Mtl+1 - k1+17 v 7Mtn - kn]

Ciy1lkix1] -+~

= Z Ciyrlkiya] - Z Crlkn]
ki+1€Li+1 kn eLn
X Xs+i/n[t17t27 . 7ti7Mti+1 — ki+1~, ce 7]\41511 — ]i}n]
changes to
S Cilk] Y Ciplkiyal--- > Culk
ki€L; kiy1€Li41 kn€Lny
X Xey(io1)/mlM* T M5+1t2 ..... , M*(Mt; — k;)
M*(Mtiy — kiyy), ..., M*(Mt, — kn)]
= Z OL+1[ L+1 Z C
kit1€Lit1 kn €L,
X Xopi/n M5, M5ty o MY,

M*(Mtiz1 — kiy1), ..., M*(Mt, — kn])
after the mapping of I's.

Thus, after the transformation I's, the dependence vector,
starting from the wavelet-adjacent field which corresponds to

L; and is centered at data

Xop oty M T, Moty o MY,
M» (Mtz-l-l - kl-l—l)' ceey MS(Mtn -
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is targeted to data

Xopijn[MoT i, Moy, Mo,

M*(Mti1y — kiv1), ..., M°(Mt, — k,)]).
Thus, the length of the dependence vector is |(s 4+ i/n) — (s +
(i—1)/n)| = 1/n.In other words, the dependence graph for the
calculation of the separable wavelet transform is regularized by
performing the nonlinear I/O data space transformation I'y. [

Note that we have not assumed that the data calculated in
the wavelet transforms are scalar-valued, so the proof is also
applicable to MWT.

In the algorithm of WPT, the computation has a structure of
an arbitrary wavelet tree expansion, and the algorithm is calcu-
lated by iterating the wavelet branches of the filter bank to give
a finer resolution to the wavelet decomposition, where not only
the coarse component but also the detailed component is pos-
sibly further decomposed. The classical DWT can be taken as
a special instance of WPT, where only the coarse component is
recursively decomposed at each level of transform. The calcu-
lation for any wavelet filter in the computation of WPT follows
(1), with C replaced by different wavelet filters. We can con-
struct the dependence graphs corresponding to the calculations
of WPT, and regularize them similarly by nonlinear I/O data
space transformations I'; and I's as introduced above. Never-
theless, each dependence graph represents only one path in the
arbitrary expansion of wavelet tree, and the whole dependence
graph of WPT should be the combination of dependence graphs
corresponding to all paths in the expanded wavelet tree of WPT.
Such process of combining the dependence graphs via nonlinear
I/O data space transformations is formulated in the following
Proof of Theorem 2.

Theorem 2: The dependence graphs of wavelet-packet based
algorithms modeled in I/O data space can always be merged and
regularized to a pseudo regular dependence graphs via appro-
priate nonlinear I/O data space transformations.

Proof: The symbols j, t, X, L, ti,to,...,t,, L1,
Lo, ..., L, have the same meanings as in the previous para-
graphs. The proof can be presented in three cases:

(1) For algorithms of 1-D transforms: There are M wavelet

transform, and each level of transform can decompose a certain
subband into M components in wavelet-packet based algorithms.
One of the filters (f;) is for generating coarse component,
others for detailed components. Assume M functions F;(x) =
Mx+1i—1fore=1,2,..., M.

Suppose that a subband II is calculated in [ levels of
wavelet-packet based transform consecutively with wavelet
filters p1,p2,-..,p;, where p, = f; foru = 1,2,...,l and %
is any integer € [1, M]. Since the calculation of each level of
transform follows the same format in (1), the corresponding
dependence graph of II can be constructed and regularized
via the I/O data space transformation similarly as in the Proof
of Theorem 1. However, considering that there are many
subbands generated together by [ levels of wavelet-packet
based transform, and their corresponding dependence graphs
should be merged as well as regularized to get a whole depen-
dence graph for the algorithm, the nonlinear I/O data space

transformation I's is presented as follows. Without loosing
generality, for the dependence graph corresponding to subband
ILTgis: j — gyt tif j = 05t — Pi(Pa(...(Pj(t))...))
otherwise, where P, = F; if p, = f; foru = 1,2,...,7, and
j <l,i € [1, M]. Note that here j corresponds to the level of
transform and can be only integers.

Consider another subband II; different from IT generated in
the algorithm. Suppose that II; is calculated in [ levels consec-
utively with wavelet filters p/, ph, ..., p], where p,, = f; for
w=1,2,...,0 and 7 is any integer € [1, M]. Since there exits
at least one p, # p, where u € [1,{],T's maps the data for
II and II; to different positions in the I/O data space. In other
words, I'3 can combine all dependence graphs of the subbands
into a single I/O data space without conflicts.

Consider a dependence vector in the I/O data space corre-
sponding to a calculation of (1) at data position t, at the (u+ 1)
level of transform

Xutilto] = Y pus[FXu[Mto — k]
kel
where p,,1 represents the wavelet filter used at this level. After
the mapping of '3, the calculation changes to

Xu+1[P1(P2(~ - (Pu(Pu+1(t0))) e ))]

= 3 puns XL PL(Pa. .. (Pu(Mtg — K))..)]
keL

where P, = F; if p, = fiforv = 1,2,...,u + 1, and
i € [1,M]. The dependence vector, starting from the
wavelet-adjacent field which corresponds to L and is cen-
tered at data X,[P1(Pa(...(Pu.(Mtg))...))], is targeted to
data X, 1[P1(Pa(. .. (Py(Pus1(t0))) --.))]. The length of the
dependence vector can be resolved by the difference between
their coordinates along index j and t. The difference along
index j is |[u + 1 — u| = 1. The difference along ¢ is

[P . (Pu(Puti(t0))) - ) = Po(-- . (Pu(Mto)) - .. .))|
= |Pi(...(Pu(Mto + w))...)) = Pi(...(Pu(Mtg))...))]
= M"“w

where w is an integer € [1, M — 1]. Here the length of the de-
pendence vector is independent of ¢y’s value, and the number
of transform levels and the number of wavelet filters (M) re-
main constant in the algorithm. In other words, the lengths of
the dependence vectors in the I/O data space after the mapping
of I's are bounded and independent of the data positions and
input size. Moreover, the dependence vectors can be partitioned
into a finite number of groups (according to the possible values
of w and w), and the lengths of the dependence vectors in each
group are the same. That is, the dependence graphs for 1-D
wavelet-packet based algorithm are combined and regularized
to be a pseudo regular dependence paragraph via the nonlinear
I/O data space transformation I's.

(2) For nonseparable n-D transforms: There are Q = M™"
different wavelet filters (f1, fa,..., fo) at each level of n-D
M -ary wavelet transform. Assume Q functions F;(xz) = Mz +
q, where x and ¢ are n-component vectors. The components
of g are ¢q1,42,...,qn, and g, is an integer € [0, M — 1] for
v=1,2,...,n,andi = > '_ M"q,.Soi € [1,Q].
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Suppose that a subband II is calculated in [ levels of n-D
wavelet-packet based transform consecutively with wavelet fil-
ters p1,p2,...,p1, where p, = f; foru = 1,2,...,1 and
i € [1, Q]. Without loosing generality, for the dependence graph
corresponding to subband II, a nonlinear I/O data space trans-
formation I'y is presented as: j +— j;t — tif j = 0;t —
Py (Ps(...(P;(t))...)) otherwise, where P, = F; if p,, = f;
foru =1,2,...,7,and j <[ i € [1,Q]. Note that here j cor-
responds to the level of transform and can be only integers, and
t represents n-component vectors.

For other subbands different from II generated in the algo-
rithm, since there exits at least one filter used in the calculation
of [ levels of transform different from that of I, 'y maps the
data of them to different positions. In other words, I"4 can com-
bine all dependence graphs of the subbands into a single I/O
data space without conflicts.

Similar to the case (1), a calculation corresponding to the de-
pendence vector changes to

X“+1[P1(P2( - (PU(Pu-H(t))) . ))]
= Zpu-{—l (Pz(

keL

A(Pu(Mt = k))...))]

where P, = F;ifp, = fiforv =1,2,...,u+1,andi € [1,Q].
The difference between the coordinates of the source and the
target of the dependence vector along index j is [u+1—u| = 1.
The difference along ¢ is

Pi(Po(. . (PulPuss(1))) ) = Pi(Pal... (Pu(MD)..)
= Pi(Ps(... (P, (Mt +w))...))
— Py(Py(...(P,(M?))...))
= M“w

where w is an n-component vector whose components are in-
tegers € [1, M — 1]. Thus, the length of the dependence vector
is independent of ¢’s value. We have the similar conclusion that
the lengths of the dependence vectors in the I/O data space after
the mapping of I'y are bounded and independent of the data po-
sitions and input size, and the dependence vectors can be parti-
tioned into a finite number of groups (according to the possible
values of w and ), and the lengths of the dependence vectors
in each group are the same.

(3) For separable n-D transforms: As in case (2) of the proof
for Theorem 1, the n-D separable transforms are calculated sep-
arately and consecutively in every dimension. The index j is
drawn in fractional numbers to represent the intermediate cal-
culations in each level of transform. In the (s+1) level (where s
is a nonnegative integer) of a separable n-D wavelet transforms,
we have (n — 1) intermediate I/O data planes j = s+ 1/n,j =
s+2/n,...,5 = s+ (n — 1)/n between the planes j = s
and j = s + 1. In the calculations for every dimension, there
are M wavelet filters f1, fa,..., far, and a subband may be
decomposed into M components on each dimension. So after
each level of transform, a subband can be decomposed into M™

components. In addition, we assume M functions F,(z) =
Mz +v—1forv=1,2,...,M.

Suppose that a certain subband II is calculated in [ levels
of n-D separable wavelet-packet based transform consecutively
with wavelet filters p1 1, 1,2, - - -, 1,0 P2,15 - - -, P2,n5 - - - s Plyn>
wherepm—fvforu—IZ ,land i =
and v € [1, M]. p,; represents the wavelet filter used for the
calculation of the uth level transform on the ¢th dimension in
generating I1I. In order to regularize the dependence graphs, we
present the nonlinear I/O data space transformation I'5 as fol-
lows. Without loosing generality, for the dependence graph cor-
responding to subband II, T's is: j +— j,t; — t;(i = 1,2,...,n)

ifj =05t — Pri(Pai(...(Pst1.:(ti))...)) otherwise, with
j €[s+i/n,s+1+1i/n),s beinganinteger € [0,l—1], P, ; =
F,forp,; = fo (w=1,2,...,5+1;4 = 1,2,...,n; and

€ [1, M]).

For other subbands different from II generated in the algo-
rithm, since there exits at least one filter used in the calculation
of [ levels of transform different from that of I, I's; maps the
data of them to different positions.

The calculation for the sth dimension in (3) (at the (s + 1)
level of transform) for II

Zps+1,i[/€i] Z Pst1,i+1[kita] -

Z ps—l—l n

ki€L; kit1€Lit1 kn€Ln
X XS+(Z 1)/n[t1 tQ. c. ,Mt,; — k7
Mot = kisr, .o, Mty — k)
= > pervanlkial o Y perralkl
Fis1€Lis kncLn
X Xoyisnltito,- - ti, Mtigs

changes to calculating

Zps+1,i[ki] Z ps+1,i+1[ki+1]"'

Z ps+1,n[kn]

k,€L; kiv1€L; 11 k,€L,
X Xerio1)y/mlPrLi(Poa(e.. (Poyra(t1)) . ..))
Pio(Pos(. .. (Payra(t2))...)), ..
Pii(Poi(... (Psi(Mt; — ki))...))
Privi(Poisi (oo (Poigr(Mtipy — kiz1))..)s- ..
Pln(PZn("(Psn(Mf _k)) ))]
= Z Ps+1, 1—1—1 1—1—1 Z Ps+1, n[k
kit1€L;q1 kn €Ly,
X Xoyisn[Pr1(Poa(e - (Poy1,1(t1)) .. ))
Pra(Pos(.. . (Papra(t2)) .. ), - .
Py i(Poi(... (Psg14(t:))-..))
Priv1(Poip1(co o (Psipn (Mtipr — kiga)) o)), -
Po(Poyn(co - (Po(Mty, = k) .))]

after the mapping of I's, where P,; = F, if p,; = f, for
u=1,2,...,s+1;i=1,2,...,n;and v € [1, M].
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Row-column coordinates for data in different subbands after the nonlinear I/O data space transformation:
BL: (2x,2y)

LHLL: (4x,4y+1)

LHLH: (4x,4y+3)

LHHL: (4x+2,4y+1)

LHHH: (4x+2,4y+3)

HHLL: (4x+1,4y+1)

HHLH: (4x+1,4y+3)

HHHL: (4x+3,4y+1)

HHHH: (4x+3,4y+3)

HL: (2x+1,2y)

where x and y are non-negative integers.

—
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O = N WA WUOAN 0O

Fig. 2. An example for the applications of the nonlinear I/O data space transformation on a 2-D wavelet packet transform. (a) A 2-D wavelet packet transform,
(b) Some instances of super wavelet dependence vectors after I/O data space transformation, (c) A projection of data distribution along axis j.

Thus, after the transformation I's, the dependence vector, Pio(Poo(... (Psg1,2(t2))...)), -
starting from the wavelet-adjacent field which corresponds to P1i(Pyi(... (Poi(Mt))...)
L; and is centered at data ' ’ 7 / '
Pl,i+1(P2,i+1(- .. (P51i+1(Mti+1 — k’H—l)) .. )), e
Xot(i=1)/mPr,1(P2a(. .. (Psg1a(t1)) .. .)) Pip(Pop(.o (Pspn(Mtn — k) .. ))]
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is targeted to data

XosimlPra(Poa(.. (Pasa(t1)) )
Pro(Paa(... (Pag1a(t2)) ), ...
Pri(Poi(... (Papri(t))...))
Privi(Poivi(e .. (Poipt(Mtisy — kig1)).. ), ...
Pro(Pon(. .. (Pon(Mty — k) .. )].

The difference between the coordinates of the target and the
source of the dependence vector along index j is |(s + i/n) —
(s+ (¢ — 1)/n)| = 1/n. The difference along ¢ is

Pri(Pai(- .- (Pei(Pog,i(ti))) - - )
— Py i(Poi(... (P i(Mt;))...)

= Pl,i<P2,i<~ .. (Ps,i(Mti + w)) .. ))
— P i(Po(. .. (Psi(Mt;))...))

= M3w

where w is an integer € [1, M — 1]. Thus, the length of the de-
pendence vector is independent of ¢’s value. We have the similar
conclusion that the lengths of the dependence vectors in the I/O
data space after the mapping of I'5 are bounded and independent
of the data positions and the input size, and the dependence vec-
tors can be partitioned into a finite number of groups (according
to the possible values of w and s), and the lengths of the depen-
dence vectors in each group are the same.

To sum up, the dependence graphs for wavelet-packet based
algorithms are combined and regularized to be a pseudo regular
dependence paragraph via the nonlinear I/O data space transfor-
mation I's, 'y, or I';. O

An example of nonlinear I/O data space transformation I'; is
illustrated in Fig. 2, where an original 2-D signal is decomposed
into various subband images, and each element (or wavelet coef-
ficient) in the subbands is relocated in the I/O data space by I's.

Although, nonlinear input formats of multidimensional data
such as random access or pseudofractal scan [26] also exist, the
paper only considers linear input format of a multidimensional
data set. This is to prevent systems from potentially involving
data preprocessing and rearrangement in RAMs before compu-
tation. Suppose that the input data is n-dimensional. A group
of n-component unitary orthogonal vectors {51, S2,...,S,} is
used to describe a linear input format. Assume that A and B are
any two samples indexed by n-component Cartesian vectors X
and Y, respectively, in the multidimensional data set. (X, Y) is
the inner product of two vectors X and Y. The linear input format
can be described as: 1) if (X, S1) # (Y, S1), the sample corre-
sponding to the less of the two inner products will be input to
the system earlier; 2) else if (X, S2) # (Y, S2), the sample cor-
responding to the less of the two inner products will be input
to the system earlier; 3)...; n) else if (X, S,) # (Y, S,), the
sample corresponding to the less of the two inner products will
be input to the system earlier.

Now consider the dependence graphs regularized by the non-
linear I/O data space transformations proposed in this subsec-
tion. The n-dimensional input data is always located on the

super plane j = 0 shown as in Fig. 2, and it is scanned in a lin-
early indexed order when the data is input to the system. The I/O
data space is (n + 1)-dimensional. On super planes j = ¢+i/n
(where ¢ and ¢ are integers, ¢ > 0 and n > 7 > 0) located are in-
termediately calculated data which makes up wavelet-adjacent
fields for the next level calculation. Dependence vectors starting
from the wavelet-adjacent fields are located between every two
neighboring super planes.

A scheme of free schedule is used to optimize the system
performance, which schedules a calculation in the I/O data
space to be executed as soon as its operands (i.e., the data in
wavelet-adjacent field) are ready. Due to the dependence graph
regularization via nonlinear I/O data space transformations,
dependence vectors and wavelet-adjacent fields are uniformly
distributed on super planes which are orthogonal to axis j.
When the input data items are fed to the system one by one
according to a linear input format, the wavelet-adjacent fields
on plane j = 0 are scanned one by one, and the corresponding
dependence vectors which start from this plane and take these
wavelet-adjacent fields as sources are ready to be processed
one by one. Since dependence vectors are along the orientation
of axis j due to I/O data space transformations, the calculation
results on the next super plane, or the targets of these dependence
vectors, can be produced one by one in a linear order which
is the same as the system’s linear input format, resulting in
that the wavelet-adjacent fields in this super plane are also
“scanned” one by one, and dependence vectors between this
plane and the further next plane are ready to be processed
in the same linear order, and so on. Thus, if we assign each
level of algorithm computation, or each layer of dependence
vectors in I/O data space, to a separate processor, have all
these processors execute simultaneously, and let the processing
rates match the system’s data-feeding rate, we can finish the
algorithm computation as soon as the feeding of input data is
finished. In this scheme, we avoid using RAMs to rearrange or
manipulate multidimensional input data, which was necessary in
the complex computation structure of wavelet algorithms. Since
any wavelet-based algorithm consists of wavelet transforms
that follow (1), and basically uses data structures on the results
of wavelet transforms that can be modeled and reformulated
in I/O data space as proposed in this section, we can apply
the above scheme to general wavelet-based algorithms without
using RAMs. The following two sections give more detailed
explanations in design examples for specific wavelet-based
algorithms.

Because the dependence vectors and wavelet-adjacent fields
are uniformly distributed on super planes which are orthogonal
to axis 7 due to I/O data space transformations I'; — I'5, when
the input data items are fed to the system in linear order at a
constant rate, the processors, each of which is to perform cal-
culations corresponding to each layer of dependence vectors in
I/O data space, will operate periodically according to the scheme
described in the above paragraph. For instance, when 2-D input
data which is located at plane j = 0 in Fig. 2, is fed to the
system in row-major format, the processor that needs to per-
form calculations for dependence vectors between plane j = 0
and j = 1/2 will alternate performing low-pass and high-pass
wavelet filtering periodically. The other processor that performs
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Fig. 3.
DWT. (c) The three-level separable 2-D DWT.

calculations for dependence vectors between planes j = 1/2
and 7 = 1 has the similar feature of periodic operations. This
feature of periodic operations of parallel processors, which is in-
dependent of input data or intermediate calculation results, leads
to control-localized parallel processing architectures.

III. DESIGN EXAMPLE: NON-RAM-BASED ARCHITECTURES
FOR ZEROTREE CONSTRUCTION IN WAVELET ZEROTREE
CODING SYSTEMS

A. Zerotree Coding Algorithm

Zerotree coding is the common and the most important part of
algorithms EZW, SPIHT, and SFQ. With the limit of the length
of this paper, we briefly review EZW as the typical scheme of
the class of wavelet zerotree coding algorithms, and make our
designs of zerotree construction based on the scheme without
loosing generality. Hereby we quote several definitions like
parent, child, descendent, root, zerotree, significance, dominant
pass, subordinate pass, etc. from the [13] to describe the EZW
coding scheme. As illustrated in Fig. 3, the input image is trans-
formed and subsampled using the hierarchical DWT to obtain a
collection of 3S + 1 subband images, where S is the number of
transform levels. As wavelet coefficients in the subband images
have some correlations along the same orientation (horizontal,
vertical, or diagonal), the dependencies can be well exploited
by building a quadtree structure called “zerotrees,” according
to which any coefficient at a given band in Fig. 3 has four
children coefficients at its lower-level subband (corresponding
to the four-time larger subband image) in the same orientation.
Suppose that the parent’s position is (¢, 7) with 4 and j standing

The zerotree construction in the EZW algorithm. (a) The Relation of parent-children in two level DWT. (b) The Relation of parent-children in three-level

for the row and column number in its subband image, then
its children’s positions are (2i,27), (2i,27 + 1), (2¢ + 1,2j),
and (2¢ + 1,25 4+ 1) in their corresponding subband image.
There are two types of passes performed in EZW coding. The
dominant pass finds significant coefficients (greater than a
given threshold), and its following subordinate pass refines the
magnitudes of all significant coefficients found in the dominant
pass. A ZTR symbol (meaning “zerotree root”) is used for an
insignificant coefficient (less than a given threshold) that has
no significant descendents. An isolated zero symbol (named
1Z) is used when a coefficient is insignificant but has some
significant descendents. Because a child coefficient is probably
also insignificant when its parent coefficient is insignificant,
and thus, many insignificant coefficients can be represented
as ZTRs, and furthermore a ZTRs descendents may be cut off
from the final code stream, the use of ZTR and IZ symbols
informs the locations of significant coefficients quite efficiently.
Interested readers may refer to [13] for the details of zerotree
coding algorithm.

B. The Application of Nonlinear 1/O Data Space
Transformations on Zerotree Construction

In the zerotree coding algorithm one first computes 2-D DWT
and then constructs zerotree data structures on the results of
wavelet transform. At each level of the 2-D separable DWT,
the band is decomposed into L, and H, (where L, is the
result of low-pass row-wise filtering and H,. is the result of
high-pass row-wise filtering); L, is decomposed into LI and
LH by low-pass and high-pass column-wise filters; H, is
decomposed into HL and HH by low-pass and high-pass
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Fig. 4. Regularization of dependence graphs for zerotree construction.

column-wise filters. Subband LL is recursively decomposed
in higher levels of transforms, as shown in Fig. 3. The subscript
number of a subband in Fig. 3 refers to the wavelet transform
level. For instance, LH, refers to the LH subband in the
second-level wavelet transform. The dependence graphs in I/O
data space and the nonlinear I/O data space transformations are
illustrated in Fig. 4. According to I'5 in Section II, the nonlinear
I/O data space transformation for 2-D DWT is rewritten as
follows. When j w~+ 1/2 (u is supposedly a positive
integer), for L, : n; — ZUJnl,nZ s 2[71 ne,j — j; for
H, :ni — 2Ulng ny — 2m(ng +(1/2)),7 — j; when j
is an integer, for LL: ny +— 2Ulny ny — 2000, j — j;
for LH: ny — 2Ul(ny 4 (1/2)),n2 — 2[91ny, 5 — 4; for
HL: ny — 2Ulng, ny — 201 (ny + (1/2)),5 — j; for HH:
ni e 260 (g 4+ (1/2)),n2 = 201 (ne + (1/2)).5 = .
Considering the zerotree data structures among the results of
wavelet transforms, we can find that the nonlinear I/O data space
transformation I'; relocate the parent-children relationships
and put each parent and its children together in terms of
their coordinates of nq and no in the I/O data space. For
instance, let there be a parent data item belonging to subband
H L, with the coordinates of (n; = a,ny =b,j =2) in I/O
data space before the nonlinear I/O data space transformation.
According to the zerotree coding algorithm, it has four children
belonging to subband H L, with coordinates of (n1 = 2a,ns =
2b,j =1),(2a,2b+1,1),(2a+1,2b,1),and (2a+1,2b+1,1),
respectively. After the nonlinear I/O data space transformation
is applied, the parent’s new coordinates are (4a,4b+2,2), and
the children’s new coordinates are (4a,4b+1,1), (4a+2,4b+
1,1),(4a,4b+ 3,1) and (4a + 2,4b + 3,1), respectively. In
other words, the parent-children relationships are restricted in
local domain if we get a projection of the dependence graphs
in I/O data space along axis j.

To give a brief presentation, we suppose that there are two
levels of wavelet transforms (j < 2 for the dependence graphs
in I/O data space), and assume a row-major input format to scan
a 2-D image and feed the image pixels to the system. Following
the scheme of free schedule at the end of the last section, we
can assign the computation corresponding to each layer of de-
pendence vectors in Fig. 4, to a separate processor, and have
all processors perform calculations in parallel when the input
data are fed to the system in real time. The particular challenge
in architectural designs of wavelet zerotree coding algorithms
stems from locating children given any parent data item. To
avoid using RAMs for data rearrangement when constructing
zerotrees and generating symbols as designated in the zerotree
coding algorithm, we adjust the scheme of free schedule so that
the calculation of any parent data and the calculation of its chil-
dren are scheduled to be on the same time. In other words, we
reorder the 2-D DWT computation so that the result of the DWT
computation (as the outputs of parallel processors) itself fol-
lows the zerotree structures. This has been made possible by
nonlinear I/O data space transformations proposed in the paper.
When the input image pixels are fed to the system in a row-major
order, the wavelet-adjacent fields on plane 5 = 0 are row-wise
scanned, and the calculations corresponding to the dependence
vectors between planes j = 0 and j = 1/2 are ready to be per-
formed in the same row-wise order. Due to I/O data space trans-
formation, the calculation results on each plane (orthogonal to
axis j) above 7 = 0 can also be produced in row-wise major
by parallel processors in real time. Since any parent data and its
children on zerotree structure are put together via I's in terms
of their coordinates of ny and ns in I/O data space, we can ad-
just the schedules of parallel processors only a little so that the
children are calculated by a processor when their parent is cal-
culated by another processor simultaneously. This adjustment is
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Fig. 5.

accomplished by using a small transpose unit in which only sys-
tolic data flow is allowed, and meanwhile a large off-chip RAM
is avoided. The architectures are proposed in the following.

C. The Architecture for Rearranging 2-Level 2-D DWT

We assume the width of wavelet filters is L and the size of
2-D input data is N x N. For typical applications in practice,
let L = 9 and N = 512 in the introduction of this subsec-
tion. We introduce a simple structure of wavelet filters whose
architecture is detailed in [22]. Its structure is used in our de-
sign as a module of processing unit (PU) that computes wavelet
filtering and decimation. As illustrated in Fig. 5 for a 9-point
wavelet filter, it is made up of four registers, five multipliers, and
six adders. It rearranges the calculation of wavelet filtering such
that the filter is cut to half taps based on the symmetry between
the negative and positive wavelet filter coefficients. a, X, and
Y are the input sequence, low- and high-pass filtering output
sequence, respectively. While a datum of input sequence a is
fed and shifted into the PU every clock cycle, a datum of X
is calculated every even clock cycle and a datum of Y is cal-
culated every odd clock cycle. Such calculations are possible
because of the wavelet dyadic downsampling. The connections
between computation units (multipliers or adders) are restricted
local. The PU in Fig. 5(a) is extended to a parallel format as il-
lustrated in Fig. 5(b) where if a number of data from sequence
Gk+8, Qfy7,---,0r are fed to the PU in parallel at a certain
clock cycle, then ay.y9, arys, - - -, ar1 are fed at the next cycle.
The calculations of X and Y are the same as in Fig. 5(a). The
PU actually takes a wavelet-adjacent field as the input.

We propose a module called transpose unit (TU) that can par-
tially transpose a matrix on the fly. When a matrix is input to
the TU in a row-wise indexing way with one element per clock
cycle, the TU gives out the elements in a partially column-wise
indexing way as explained in the following. The structure of

Systolic and parallel wavelet filters integrating low-pass and high-pass filtering. (a) Systolic filter. (b) Parallel filter.
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Fig. 6. Architecture of Transpose Unit (TU).

TU is illustrated in Fig. 6. It is made up of (L + 4) or 13
concatenated modules of first in first out (FIFOs), with each
FIFO having N or 512 cells. The top FIFO takes as its input
the row-wise indexed matrix with one element per clock cycle.
Because the distance between the outputs of all FIFOs Y; and
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L -point column-wise data

Y1 ——
Input Image
— | Py — TU; Yiis DM;
% —_—

1) DM1 is a multiplexer that selects L-point data from L+3 outputs of TU1.
2) PU2 is a parallel filter as in Figure 2(b) and has four output ports active at different time.

3) PU3 is the hybrid version of PU that can take either sequential or parallel inputs.

—

Feedback

block

l \L Lr2/Hr 2

LL, I § 5.1
4q PU3 LH2
aq+1 | _LHy —
PU, sqi2 HL 4
4qe3 | HHy

4) Feedback block consists of 2 separate TUs and multiplexers to select Lr2 / Hr2 into respective TU and to select outputs from 2 TUs into PU3.

Fig. 7. Architecture for zerotree construction.

real-time Alg. DWT amenable to EZW
{

fori=0 toN-1 / * row */
for j=0 to N-1 /* column */
Do DWT(,))
}
DWT(,j) /*q.sareany non-negative integers */
{
what PU1 does what PU , does what PU .does
if i=4q r c
if j=even Ln =— x LL=—1ILn
if j=odd L £ x Lk, < 1)
if j=4s L, <. LL
if j=ds+1 Hr, <:— LL,
if j=4s+2 Lr} - LL{
if j=4s+3 H, =<——LLI
if i=4q+1 .
if j=even Ln T x LH<%—Lr:
if j=odd Lri X LH °  1r*
if j=4s = LL: - ¢ Ip
if j=4s+2 LH2 c Lr;
if i=4q+2
if j=even L'  x HL:_° Hn
if j=odd Hn ' x HL | _¢ Hr] c
if j=4s+2 HL <=—— Hnr
if i=4q+3
if j=even Ln T x HH1<C_Hr;r
if j=odd Hn T x HH] ¢ Hr* c .
if j=4s+2 HH2 =<—— Hr:

Fig. 8. Operation timing for 2-level zerotree construction.

Y;+1(0 < i < (L + 3)) is always N, the TUs 13 outputs be-
long to the same column in the input matrix. The FIFOs transfer
the input data step by step in clock cycles, and meanwhile pro-
vide a new group of column-wise data (i.e., a new column-wise
wavelet-adjacent field) to the next wavelet filter in each clock
cycle.

Keeping in mind the dyadic downsamplings in both
row-major and column-major filtering of 2-D DWT. In the
following, we present our design that rearranges the computa-
tion of the DWT so that a parent and its children are calculated

at the same time. The structure for the non-RAM-based zerotree
construction is proposed in Fig. 7, and the timing of operations
is regulated in Fig. 8.

The coefficients generated in the first decomposition level
can be separated into groups each of which contains four co-
efficients having the same parent (which is generated in the
next decomposition level). Now we have the restriction that
these four sibling coefficients be calculated together for the pur-
pose of calculating children and parent simultaneously. More
exactly, we calculate the four siblings consecutively at a rate
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Fig. 9. Example of local-controlled 4-1 multiplexer.

with one coefficient per clock cycle, and at the same time gen-
erate their parent coefficient at a four-time less rate via another
output port. Due to the row-major dyadic downsampling, the
row-major high- low-pass filtering is alternatively executed by
PU; in Fig. 7 point by point in each row. Based on similar
column-major dyadic downsampling, PU, takes turns to exe-
cute column-major high-pass/low-pass filtering and selects ap-
propriate inputs from TU; to generate four sibling coefficients
consecutively. The order to calculate the siblings is as A, then B,
C, and D in the example of four siblings illustrated in Fig. 3(a).
After PUy’s calculation of point A by taking Y;,..., Y asin-
puts, PUy has to calculate B by taking Y3, ..., Y12 as inputs,
then PUs comes back to take Y1,..., Y to calculate C, then
PU, takes Y3, ..., Y42 again to calculate D. This is for the
case that A—D are in the column-major low-pass subband (HL
in Fig. 3). If they are in the column-major high-pass subband
(LH or HH in Fig. 3), PU, will alternate using Yo, ..., Y41
and Yy, ..., Y143 asinputs and take turns on the calculations in
similar ways. Note that PUs consume one clock cycle for each
calculation and the TU cells consume one clock cycle to transfer
a datum so that the above calculations and the corresponding
data transfers are performed step by step. In a similar way, PUj;
follows the timing in Fig. 8, and takes turns generating the par-
ents as the outputs of the second level of DWT. In summary,
any four siblings are always generated in turns by PU; and their
parent is calculated by PUj at the same time. The control signal
for the switch DM is internal and simple according to the opera-
tion timing in Fig. 8. There is neither external nor complex con-
trol for any device in Fig. 7. Only the clock signal is global to
synchronize the system. We call this scheme of internal control
as “self-controlled” device. Fig. 9 has demonstrated an example
that a multiplexer selects data based on internal control signals
which are generated from the input clock periodically. It is the
rearranged periodical operations for zerotree construction de-
rived from our novel nonlinear I/O data space transformations
in Section II that make such designs of “self-controlled” devices
possible.

D. Extension to Arbitrary Number of Levels in DWT and
Zerotree Construction

In this section, we extend our design to general cases where
any levels of wavelet decompositions are possible. All coeffi-
cients in the first level and in the intermediate levels which corre-
spond to the same ancestor in the last level decomposition have
to be calculated together to satisfy the restriction that any parent
and its children be calculated simultaneously. As in the former

subsection, by the word “together” we mean successively cal-
culating the children at a four-time higher frequency than their
parent and simultaneously outputting children and the parent via
two ports, respectively.

Because the input image is fed into the system in the same
way as before, the first level row-major high-pass/low-pass fil-
tering is still performed in PU; alternatively as designated in
Fig. 8. Regarding the first level column-major high-pass/low-
pass filtering performed in PU,, we note that there are 4™ ! co-
efficients in the first-level decomposition corresponding to the
same ancestor in the last level (level m) decomposition. To sat-
isfy the restriction of generating parent and children simultane-
ously, it is required that these 4™~! “kindred” coefficients be
calculated together. Meanwhile, these coefficients’ parents in
the intermediate levels of decomposition should be calculated
together as well. Note that these 4™~ ! coefficients are located
in 2™~1 adjacent rows and 2™~ adjacent columns in their sub-
band. PUj, should alternatively select appropriate inputs among
2m—1 different groups of parallel column-major data from TU;,
and perform column-major filtering to generate the 4™~ kin-
dred coefficients in turn, where the coefficients calculated with
the same group of input belong to the same row (see the fol-
lowing paragraph, for example). Accordingly, TU; is an ex-
tended version in Fig. 6 and is supposed to have output ports
Yq,..., Y with M equal to 2™, so TU; has (L+ M) x N
cells with a structure similar to Fig. 6.

For instance, there are 16 “kindred” coefficients in HL; sub-
band illustrated in Fig. 3(b) to be calculated successively in the
first level of the three-level DWT. The order to calculate these
coefficients is from Al to A2, A3, A4, B1, B2, B3, B4, C1, C2,
C3, C4, D1, D2, D3, and at last D4. This calculation order is
according to the requirement that siblings be calculated succes-
sively, e.g., the siblings A1, A2, A3, and A4 should be calculated
as a group (meanwhile their parent A is calculated in PU3). Four
parallel column-major data are selected among TU;’s output
ports Yq,..., Yris as: Yi,..., Y (named E; for brevity);

’ ’ ’ ’

Ys,...,Yryo (named Eq); Ys, ..., Yr+4 (named E3); and

’ ’ ’

Y7,..., Y16 (named E4). Based on the systolic data transfer
in TU; and column-major dyadic subsamplings in PU,, PU,
first takes E; as input to calculate Al, then uses E, for calcu-
lating A2 in the next clock cycle; after that, it comes back to take
E; for A3, then E, for A4. PU,’s following operations are: E3
for B1, E, for B2, E3 for B3, E4 for B4, then E; for C1, E,
for C2, etc.

Now we analyze the operations in PUs. PUj carries out
the rest of the computations in DWT. The second level de-
composition is achieved as follows. In the first quarter of the
period when 2™ rows of input image are fed to the system,
PUj gets its inputs, i.e., the coefficients in L.LI.; subband [see
Fig. 3(d)] from TU;, and alternatively performs the second
level low-pass/high-pass row-major convolution. The calcu-
lated results, or the coefficients in Lro and Hrs are stored
in two TUs in PUj’s feedback block. In the second quarter,
the Lry coefficients are fed back to PUj to be column-major
filtered to get the results in LLs and LHs. In the third and
fourth quarter, the Hr, points are fed back to PUj to be
used to calculate out HLo, and HHs, respectively. There are
some idling intervals during PUj3’s performing the second
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real-time Alg. for 3-level DWT amenable to EZW
{
fori=0to N-1 /* row */
for j=0 to N-1 /* column */
Do 3-level-DWT(,j)
}

3-level-DWT(.,j)
{

/ * q,s are any non-negative integers */

what PU | does what PU , does
if i=8q r c
if j=even Ln =— x LL=——1Ln
if j=odd Lt £ x LLllc%Lri
if i=8q+1 ¢
o r 2 <
if j=even Ln - x LLl Llf
if j=odd Hn I x L2 1r’
if i=8q+2 .
if j=even Ln -©  x LH<%—Lr:
if j=odd Hn ' x LH S 11*
if i=8q+3 ) -
if j=even Ln ™ x LH1® 1r
if j=odd Hno I x LH? ¢ 1r3*
if i=8q+4
if j=even Ln '  «x HL1_® Hn
1
if j=odd Hn ' x HL!_® Hn
if i=8q+5 )
if j=even Ln . x HLf<C_Hr1
3
if j=odd Hn T x HL £ Hri
if i=8q+6 r .
if j=even Ln =— x HHIC@Hr1
1+
if j=odd Hn T x HH! _© Hr.
if i=8q+7 . . ¢ s
if j=even In—  x HH:1<—Hn
3+
if j=odd Hn '  «x HH? ® Hn

} /* the notation in Fig(c),(d) and Fig 5 applies to this algorithm */

Fig. 10. Operation timing for 3-level zerotree construction.

level transform due to less computation in the second level of
DWT. Thus, we can insert the computation of further levels
of decomposition into those available intervals. For example,
once an LLs point is generated in the second quarter, it will
be fed back to PUj; via the feedback block to be row-major
filtered in available intervals. Then the generated Lrs and Hrj
coefficients are also stored in TUs in PUj3’s feedback block.
In the next available intervals Lro and Hrs are fed to PU3 for
column-major convolution to calculate LH3, HL3, and HHj3
coefficients. Due to the exponentially decreasing number of
parents, PUj3 can similarly proceed to more levels of decompo-
sition in the intervals between lower-level calculations. Fig. 10
has given an illustration of the operation timing for 3-level
zerotree construction.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

As part of our study, various experimental results have been
obtained regarding the implementation of architectures pro-
posed in this paper. We have achieved the gate-level synthesis
of the architecture with the Cadence Verilog HDL simulation
package. The simulation results have shown advantages in

what PU3 does depending on j’s value

1 1
Le % LL (j=4s) Lr, =—— LL (j=4s+2)
T i 1 T 1
Hl‘2 - LLI(]—4S+1) Hr2 - LLl (j=4s+3)
L <t LIf (=4s) Lrj L LI (=4s+2)

LL? (=4s+1) Hrl T LI (j=4s+3)

2 T
Hr2 -

c 1 1
<=— Lo (j=49) LL2 Ln
1<

<L LL, (=8s+1) Lr} L1

T
Hry <—— L, (j=8s+5)

LL2
Lrs

(j=4s+2)
(j=8s+3)
Hr! _T LI

3 <=—— (j=8s+7)

N
LH, . © I

LL, <& Ln

LH) <C—— Lr}*(j=4s+2)
LH,<“— L&

(j=4s)

(7=8s+1) (j=85+5)

[
HL, -

Hr2 (j=4s)

1 c 1

HL2 <=—— Hr2 (j=4s)
c

HL 3 <=—— Hrs (j=8s+5)

C
HH: <—— Hr (j=4s)

Cc
-

Hr;+ G=4s)

< gt (=8s+5)

1
HH 2
HH 3

our designs in contrast with those RAM-based architectures
for implementing the algorithm of zerotree construction. We
also compare the gate-level synthesis of our architecture for
zerotree construction with the results of the architecture for
basic wavelet transforms (without zerotree construction). The
experimental results have shown that the execution time and
structure cost are comparable although the algorithm of zerotree
construction has a much higher complexity than the algorithm
of basic wavelet transform.

In simulation of the module processing unit for PU;, PUs,
and PUj, we chose to implement the computation of Harr-basis
[17] integral wavelet filtering using shifters and adders based on
calculations of integers. The computation of other wavelet-basis
filterings can be implemented similarly when using general
structures of floating-point adders and multipliers. All devices
are locally controlled and the hardware connections are lo-
calized. The size of input image is N x N, with each pixel
represented in 8 bit. The input square image is fed into the
system with one pixel per clock cycle.

To evaluate the performance, we also present a gate-level syn-
thesis of a typical RAM-based design for zerotree construc-
tion [18] as a contrast with the architectures proposed in this
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TABLE 1 TABLE 1I
GATE-LEVEL IMPLEMENTATION OF NON-RAM-BASED ZEROTREE GATE-LEVEL IMPLEMENTATION OF RAM-BASED ZEROTREE CONSTRUCTION
CONSTRUCTION
The width of The number of gat Execution
The width of input The number of gates Execution clock input square ¢ humber of gates coutio
. . . in the system clock cycles
square image in the system cycles image
64 67232 4576 64 360448B RAM cells + 35488 10304
128 125712 17344 128 131072B RAM cells + 68256 41088
256 248592 67456 256 524288B RAM cells + 133792 164096
512 491832 265984 512 2097152B RAM cells + 264864 655872
1024 934480 1124380 1024 8388608B RAM cells + 520462 2619844

paper. In this design, the image is stored in an off-chip RAM
and accessed by an ASIC processing structure for the wavelet
transforms and zerotree construction. The processing structure
performs the calculation of hierarchical wavelet transforms on
the image, and constructs the zerotree data structure based on
the results of wavelet transforms by locating the parent-children
relationships with calculation of address pointers.

In literature, researchers have proposed many RAM-based ar-
chitectural designs for zerotree coding ([18]-[20]). All of these
designs use off-chip RAMs for data preprocessing and/or calcu-
lation since the sizes of input images are much bigger than the
size of what on-chip caches can hold. There exist bottlenecks
in nature limiting the processing rate in these designs—the fre-
quent data transfers between the processor and the RAM, the
limitation on the off-chip RAM bus bandwidth and on the size of
the data bus. The general difference between access rates from
off-chip RAMs and access rates from on-chip storage can be ref-
erenced from [32], [33]. Generally, access from off-chip RAMs
is at least tens of times slower than access from on-chip FIFOs.
The comparison in Tables I and Il between our design of zerotree
construction and a typical RAM-based implementation shows
advantages of the non-RAM-based design of zerotree construc-
tion against the RAM-based implementation of zerotree con-
struction. The numbers of gates used in the implementation and
the execution time in clock cycles are shown in Tables I- III.
The clock rate in the circuit in Fig. 7 is limited by the longest
latch to latch delay which is independent of the width of input
square image. In the structure, the longest delay path is located
within PUj3’s feedback block which contains two multiplexers,
and has 14 gate delay time units. The clock rate in Table II is
limited by the rate of off-chip RAM buses.

In the following, we present the complexity analysis of our
architectural designs for arbitrary level of wavelet transforms,
generic wavelet filters and data precisions. Since L (the width
of wavelet filters) is far less than N (the width or length of input
image) and the size of boundary effect of wavelet transforms is
only dependent on L, in the analysis we ignore the boundary ef-
fect to simplify the expressions. The area of the architecture in
Fig. 7 is dominated by PUs and TUs since all connections are
restricted in locality. A PU contains pL multiplier and accumu-
lator cell MACs, where p is the number of precision bits of data,
thus, three PUs contain 3p L MACs, and the area for these MACs
is O(pL). Because a TU is necessary for the column-major fil-
tering in every level tran sform, and the number of cells in TU
at the ith level transform is N(L + 2¢), the area for TUs is
N(L+2™%1 1), where m is the number of levels in DWT. As-
suming 2m+1 ig 3 constant C, the whole area of the architecture

TABLE III
GATE-LEVEL IMPLEMENTATION OF BASIC DWT

The width of input The number of gates Execution clock
square image in the system cycles
64 26736 4288
128 51312 16768
256 100464 66304
512 198768 263680
1024 410992 1087642

for m level DWT is A = O(pNL). Noting that a new datum is
calculated and outputted as a pixel arrives every cycle, and the
output size is not more than input size if the boundary effect is
disregarded, we have the system’s latency (execution time) T as
N? clock cycles. Thus, the product of A and T for the system
is O(pN3L), where pN? is the input size of the algorithm. The
hardware utilization of PU; and PU> is 100%. The utilization
of PUj for m levels of DWT can be figured out by the compar-
ison between the computation tasks of PUs and PU; or PUs.
PU; and PU,, respectively, processes a half amount of the com-
putation for the first level of 2-D DWT; on the other hand, PUj
with the same hardware structure takes all computation tasks for
the other levels of 2-D DWT. Considering that the computation
amount for every level of 2-D DWT is four times less than that
of the previous level, we have the utilization of PUj3 equal to
(Z:’:ll (T/4%))/(T/2), where T is the computation amount for
the first level of 2-D DWT. Thus, the total hardware utilization
of three processors is (2 +2 7' /1/47)/3, which is around
90% for the 2-D DWT of more than 4 levels of transform. The
utilization of TUs is 100%. The result of performance analysis
has been summarized in Table IV.

The proposed architectures can be extended to the com-
putation of more complex algorithms. For instance, with the
coefficients grouped in zerotrees, it is easy to generate the
zerotree-coding symbols (as the third step of EZW algorithm)
based on the architecture in Fig. 7. Put detectors for insignifi-
cant coefficients and registers at output ports and connect the
registers at those output ports corresponding to the relation of
parent and children. A symbol of IZ is generated and kept in the
pertinent register if one coefficient is detected to be insignifi-
cant. According to the scheme of EZW, this register is then reset
to the symbol of ZTR either if all of its corresponding children
are ZTRs or if the children are leaves of the zerotree and IZs.
Then the registers of the ZTRs children are set as bubbles so
that nothing is output to the generated symbol stream. Also
the symbols POS and NEG [13] can be generated by trivially
detecting the signs of the significant coefficients. Thus, the
zerotree-coding symbols can be streamed out via system output
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LL2
l Lrs/ Hrs
Le/ Hr2
LL 3
FEEDBACK
BLOCK ds
LHs/ HL 3/ HH = grandparent
L -point column-wise data Vode p | LH/ HL 3/ HH3 D C2 grandparent
— LLi M da v
PU LH, / HL2/ HH2
3 L [En i E-
3 2
D di g
LH, M S
x—=| PU  |—=| TU PU, || M LCi —=|D E
d:2 EE
2] m M M| LH,/HLi/HH 5
1
— R é —> child
o 4
HH 1 ds
— —

DM1,DM2,DM3,DM4: multiplexers selecting approriate signals periodically dictated by the algorithm in figure7.
LCi ,LC, L(; : linear storage (FIFO) containning N celts ------ 2rowsof LH /HL /HH .1

di1, d2, ds3, da,ds :zero-detector thresholding the coefficients

C1  : ZTR-detector setting the parent ZTR if its children are zeros.

C2 : ZTR-detector setting the grandparent ZTR if its children are ZTR.
FEEDBACK BLOCK: store data and feed them in PUs
TU : the Figure 6(b) version

Fig. 11.

TABLE 1V
PERFORMANCE ANALYSIS FOR THE ZEROTREE CONSTRUCTION ARCHITECTURE
Device Area Execution Time Hardware Utilization

PUy O(pL) N? 100%
PU, O(pL) N2 100%
PU; O(pL) N2 2yt L
-1 1 P
ALL PUs | O(pL) N? @+23"7 /3
TU(FIFO) | O(pNL) N2 100%

ports in real time when the input image is fed to the system.
The extension of the architecture (Fig. 7) is shown in Fig. 11.

V. CONCLUSION

This paper has proposed a methodology for non-RAM-based
architectural designs of wavelet algorithms based on novel
nonlinear I/O data space transformations. Exploiting common
features of computation locality and multirate signal processing
within general wavelet-based algorithms, this paper proposes
a series of novel nonlinear transformations in I/O data space
analysis and obtains regularized and/or merged structures of
dependence graphs for any wavelet-based algorithms. Such
nonlinear transformations for newly-modeled data dependence
graphs lead to non-RAM-based architectures for hardware
implementations of general wavelet-based algorithms.

The series of nonlinear I/O data space transformations are
proposed as a theoretical basis of architectural designs for
generalized wavelet-based algorithms, but it is infeasible to
introduce designs for all complex wavelet-based algorithms due
to the space limit in this paper. We use the zerotree construction
algorithm as the representative and propose a non-RAM-based
design in which the input image is recursively decomposed
by DWT and the zerotrees are constructed simultaneously. In

Extension of the zerotree-building architecture for symbol generation in real time.

contrast with the reported architectures ([18]-[20]) for wavelet
zerotree constructions that use large off-chip RAMs in building
zerotrees and employ either memory address pointers or data re-
arrangement, our architectures only need much smaller on-chip
FIFOs leading to the elimination of off-chip communications
and the increase of processing rates.

The philosophy underlying our proposed design is a full ex-
ploitation of the locality of the computation. The computation of
wavelet-based zerotree coding is strongly featured by the com-
putation locality in that the calculations of coefficients on a cer-
tain zerotree only depend on the same local subarea of the 2-D
inputs. This desirable feature has been fully exploited in this
paper by calculating children and their parent simultaneously in
the rearranged DW'T, so that the necessary storage for intermedi-
ately calculated data is reduced to a great extent—some items of
intermediate data need not be held for future calculations if the
coefficients on the corresponding zerotrees are scheduled to be
calculated together and earlier. This primary approach based on
our novel nonlinear I/O data space transformations is not only
used to derive designs for the algorithm of zerotree construc-
tion, but for many other general complex wavelet-based digital
systems. As such, interested readers are referred to [28]-[31] for
our detailed architectural designs of MWT, FWT, etc.
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