IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

765

TABLE 1I
VARIABILITY RESULTS FOR DUAL-THRESHOLD VOLTAGE ALLOCATION
Benchmark Algorithm Delay Leakage
Type Low | Nominal | High | AD Low | Nominal | High | AL
C1355 Nominal 4358.85 4690.00 5076.97 8.25% 406.27 1985.08 9593.97 9177.7
Variability 4309.08 4619.18 4971.07 6.00% 606.06 2760.15 12670.20 12064.14
Variability 4260.19 4550.29 4877.27 4.00% 871.36 371797 16001.40 15130.04
Variability 4210.65 4480.94 4783.51 2.00% 1316.89 5277.11 21309.59 19992.70
C1908 Nominal 6082.91 6548.00 7094.86 8.35% 170.58 886.05 4709.74 4539.16
Variability 6013.28 6448.94 6951.37 6.00% 251.03 1219.78 6125.34 587431
Variability 5944 .37 6351.69 6811.64 4.00% 373.69 1708.84 8062.22 7688.53
Variability 5864.54 6240.16 6684.57 2.00% 555.56 232219 10080.26 9524.7
C2670 Nominal 8707.25 9397.00 10194.37 8.48% 388.15 1885.21 9446.47 9058.32
Variability 8618.41 9238.11 9969.88 6.00% 573.51 271221 13183.74 12610.23
Variability 851403 9096.02 977787 4.00% 842.19 3697.96 16748.48 15906.29
Variability 8403.50 8955.08 9587.69 2.00% 1271.30 5100.29 2124784 19976.54
C499 Nominal 3575.46 3847.00 4192.59 8.98% 405.49 1989.22 9848.17 944268
Variability 3534.69 3788,99 4080.46 6.00% 616.16 2840.73 13190.79 12574.63
Variability 349458 3732.48 4001.41 4.00% 900.32 3896.79 16986.99 16086.67
Variability 3453.94 3675.59 3923.70 2.00% 1330.04 5392.75 22023.53 20693.49

had at least 8% delay variability. This is a significant amount of vari-
ability that might not be tolerable for the given design. We also note
that as we reduce this constraint on the delay variability, the nominal
leakage as well as the leakage variability increases. Hence, there is a
trade-off between delay variability and leakage variability which can
be controlled through our proposed formulation.

V. CONCLUSION

In this paper, we presented a general mathematical framework for si-
multaneous multiplethreshold selection and assignment. Additionally,
we also address the problem of fabrication variability and present a
variability driven threshold voltage selection and assignment scheme
that lets the designer control the leakage and delay variability in the
design. An interesting course of future work could be to develop effi-
cient and faster techniques for gate clustering.

REFERENCES

[1] B.J. Sheu, D. L. Scharfetter, P. K. Ko, and M. C. Jeng, “BSIM: Berkeley
short-channel IGFET model for MOS transistors,” IEEE J. Solid-State
Circuits, vol. SC-22, no. 4, pp. 558-566, Aug. 1987.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangio-
vanni-Vincentelli, “SIS: A System for sequential circuit synthesis,”
Dept. Electrical Eng. Comp. Sci., Univ. California, Berkeley, CA,
Memo. UCB/ERL M92/41, May 1992.

J. Kao, A. Chandrakasan, and D. Antoniadis, “Transistor sizing issues
and tools for multithresh-hold CMOS technology,” in Proc. Design Au-
tomation Conf., Jun. 1997, pp. 409—414.

M. Anis, S. Areibi, M. Mahmoud, and M. L. Elmasry, “Dynamic and
leakage power reduction in MTCMOS circuits using an automated effi-
cient gate clustering technique,” in Proc. Design Automation Conf., Jun.
2002, pp. 480-485.

M. Sarrafzadeh, D. A. Knol, and G. E. Tellez, “A delay budgeting algo-
rithm ensuring maximum flexibility in placement,” IEEE Trans. Com-
puter-Aided Design Integr. Circuits Syst., vol. 16,no. 11, pp. 1332-1341,
Nov. 1997.

Q. Wang and S. B. K. Vrudhula, “Static power optimization of deep
submicron CMOS circuits for DUAL V; technology,” in Proc. Int. Conf.
Computer Aided Design, Nov. 1998, pp. 490-496.

R. X Guand M. I. Elmasry, “Power dissipation analysis and optimization
of deep submicron CMOS digital circuits,” IEEE J. Solid-State Circuits,
vol. 31, no. 5, pp. 703-713, May 1996.

V. Sundararajan and K. Parhi, “Low power synthesis of dual thresh-hold
voltage CMOS VLSI circuits,” in Proc. Int. Symp. Low Power Electron.
Design, 1999, pp. 139-144.

(21

(3]

(4]

(5]

(6]

(71

(8]

Synthesis of Fredkin—-Toffoli Reversible Networks

Dmitri Maslov, Gerhard W. Dueck, and D. Michael Miller

Abstract—Reversible logic has applications in quantum computing, low
power CMOS, nanotechnology, optical computing, and DNA computing.
The most common reversible gates are the Toffoli gate and the Fredkin gate.
We present a method that synthesizes a network with these gates in two
steps. First, our synthesis algorithm finds a cascade of Toffoli and Fredkin
gates with no backtracking and minimal look-ahead. Next we apply trans-
formations that reduce the number of gates in the network. Transforma-
tions are accomplished via template matching. The basis for a template is
a network with m gates that realizes the identity function. If a sequence of
gates in the network to be reduced matches a sequence of gates comprising
more than half of a template, then a transformation that reduces the gate
count can be applied. We have synthesized all three input, three output re-
versible functions and here compare our results to the optimal results. We
also present the results of applying our synthesis tool to obtain networks
for a number of benchmark functions.

Index Terms—Design automation, logic design, network optimization,
quantum computing.

I. INTRODUCTION

Reversible logic has attracted significant attention in recent years.
It has applications in quantum computing, nanotechnology, low power
CMOS, and optical computing. Interest in this area started when Lan-
dauer [10] proved that traditional binary irreversible gates lead to power
dissipation in a circuit regardless of implementation. Recently, Zhirnov
et al. [20], among others, estimated that power dissipation in future
CMOS (scaled for the year 2016 in accordance with the 2001 Interna-
tional Technology Roadmap for Semiconductors) leads to impossible
heat removal, thus suggesting a limit to speeding up CMOS technology

Manuscript received March 18, 2004; revised September 8, 2004. This work
was supported in part by grants from the Natural Sciences and Engineering Re-
search Council of Canada.

D. Maslov and D. M. Miller are with the Department of Computer Science,
University of Victoria, Victoria, BC V8W 3P6, Canada (e-mail: dmaslov@
uvic.ca; mmiller@cs.uvic.ca).

G. W. Dueck is with the Faculty of Computer Science, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail: gdueck@unb.ca).

Digital Object Identifier 10.1109/TVLSI.2005.844284

1063-8210/$20.00 © 2005 IEEE

766 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

devices. Bennett [3] showed that for power not to be dissipated it is nec-
essary that a binary circuit be build from reversible gates. This suggests
that reversible technologies and the synthesis of reversible networks are
potentially very promising areas of study with regard to further tech-
nological advances.

A reversible function (gate) is a bijection. Traditional gates such
as AND, OR, and EXOR are not reversible. In fact NOT is the only re-
versible gate from the traditional set of gates. Several reversible gates
have been proposed. Among them are the controlled NOT (also known
as the Feynman [7] or the two-bit Toffoli gate), the Toffoli gate [19],
and the Fredkin gate [8]. These gates are, perhaps, the most investigated
reversible gates. Inexpensive quantum implementations of the Toffoli
[2], [11], [17], and the Fredkin [6], [17] gates have been found. While
the technological costs of Toffoli and Fredkin gates are comparable, it
has been shown [5] that using both types of gates results in network
specifications with fewer gates. Therefore, a synthesis procedure ex-
ploiting both types of gates is of interest. In this paper, we concentrate
on the synthesis of networks with these well-known gates and their
straightforward generalizations.

The synthesis of reversible logic differs significantly from traditional
irreversible logic synthesis approaches. Fan-outs and loops are not per-
mitted due to the target technology. Outputs from one gate are used as
inputs to the next gate resulting in a network that is a cascade of gates.

Only afew synthesis methods have been proposed for reversible logic.
Suggested methods include: using Toffoli gates to implement an ESOP
(EXOR sum-of-products) [16], using tree search and Reed—Muller expan-
sions [1], exhaustive enumeration [18], heuristic methods that iteratively
make the function simpler (simplicity is measured by the Hamming dis-
tance [4] or by spectral means [14]), and transformation based synthesis
[9], among others. Some methods use excessive search time, others are
not guaranteed to converge, and some require many additional garbage
outputs. In this paper, we employ the following definition of garbage:
outputs that are not required by the function specification, but appear
in a design due to the reversibility requirements [12]).

We follow the two-step approach used in [15] for Toffoli network
synthesis. Our method first finds an initial network with no back-
tracking and minimal look-ahead. We first present a unidirectional
algorithm and then show how reversibility leads to a more effective
bidirectional algorithm. Both the unidirectional and the bidirectional
algorithms always find a solution. The second step of our approach
is to apply a set of template transforms that reduce the size of the
network. In this paper we describe and classify the templates used for
such transformations.

II. DEFINITIONS

We use generalized Toffoli [19] and generalized Fredkin [8] gates
defined as follows.

Definition 1: For the set of domain variables {z1, z2,...,z,} the
generalized Toffoli gate has the form TOF(C;T), where C' =
{ziy.2igseo i 1, T = {z;} and C N T = 0. It maps
each pattern (2F,27,...,2%) to (;vf,;c;",...,wj'_],wj‘ &

Definition 2: For the set of domain variables {x1,22,..., 2@}
the generalized Fredkin gate has the form FRE(C;T),
where C = {ay,2ip,...,0 1, T = {zj,z} and
C NT = @ It maps each pattern (x7,27,...,2F%) to
(zh,2d, ..., ;v;r_1 L, ;L’;L_H R S ;L';L, ;L’?:_l, ez iff
.Lj_l sz; .1: = 1, otherwise the pattern is unchanged. In other

words, the generalized Fredkin gate interchanges z; and z; if, and
only if, the product of the variables in C' equals 1.

For both gate types, C' will be called the control set and 7" will be
called the target set. The number of elements in the set of controls C

X+2 X2 X2

a: X, b: x5 C: X,
X, Xy B ‘
X — S|

Fig. 1. Toffoli and Fredkin gates, and the box notation.
defines the width of the gate. The set of generalized Toffoli and gen-
eralized Fredkin gates will be called the Fredkin—Toffoli family. For
the control set C' = {x3, x4, ..., 2142} the pictorial representation of
gate TOF(C';z2) is shown in Fig. 1(a), and the pictorial representa-
tion of gate FRE(C'; x1, x2) is shown in Fig. 1(b).

Toffoli and Fredkin gates are closely related. In fact, they can
be written as one general gate G(S; B). Section IV illustrates how
useful it is to unite these two gate types. The uniform way of writing
Toffoli and Fredkin gates is captured in the definition of a box
notation G(S; B), which for |B| = 1 is the TOF(S; B) gate and
for |B| = 2 is FRE(S; B). This way of writing the gates is needed
when we consider a gate from the Fredkin—Toffoli family and do not
want to specify its type. If the size of the set B is not specified, it
can be either 1 or 2. The gate shown in Fig. 1(c) is G(C; B) where
the set B is not specified.

III. UNIDIRECTIONAL AND BIDIRECTIONAL ALGORITHMS

Unidirectional Algorithm: The unidirectional algorithm assumes
that the function to be synthesized is given as a truth table, and
starts the synthesis process with an empty network. The algorithm
transforms each row of the output specification to the corresponding
input pattern assigning gates from the Fredkin—Toffoli family building
the network in order from the outputs to the inputs.

Step 0: Use nor gates as required to transform the first output pattern
to the form (0,0,...,0).

Let (b1, b2, ..., by) be the first output pattern. To bring it to the form
(0,0,...,0) requires gates TOF(0; z;) for every ¢ : b; # 0. After
adding the gates to the cascade, update the output part of the table by
applying the appropriate inversions to all output patterns.

Step S,1 < 5 < 2" —2: Without influencing the patterns of lower
order that were transformed in previous steps of the algorithm, use
the least number of gates with the fewest possible controls (those are
usually less costly when implemented in any particular technology)
to bring the output pattern to the form of the corresponding input

pattern.

Assume pattern (a1, das2,...,a,) is the binary representation
of S. Let (bi,b2,...,b,) be the output pattern corresponding to
(a1,a2,...,ay). (b1,b2,...,b,) must be equal to (a1,az,...,a,)

or must be the binary representation of a value greater than S since all
values less than .S correspond to earlier entries in the truth table which
are already in place. If the patterns are equal, no action is required.

When transforming (b1, b2,...,b,) to (a1,aq,...,ay,), note that
each application of a Toffoli gate is capable of flipping one bit of pattern
(b1,b2,....by), and each Fredkin gate is capable of interchanging a
pair of unequal Boolean values.

Now, the problem can be formulated as follows: using the two oper-
ations “flip” and “swap” bring the Boolean pattern (b, b2, ..., b,) >
(a1,az2,...,ay) to the form (a1, as,...,ay,) so that all intermediate
Boolean patterns are greater than (ay, as, . . ., a,,). The controls for the
corresponding gates will be assigned later. The solution is as follows.

. If the number of ones in (by,ba,...
the number of ones in (ai,as,..

,bn) is less than
., ap) apply “swaps”

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005 767

that improve 2 bit positions and then flip the remaining
incorrect bits. Use “swaps” so that the order of each inter-
mediate pattern (x1,x2,...,2,) is greater than the order
of (a1,a2,...,ay,). This can be easily done if “swaps” are
used on the low order bits first. Note, that the initial pattern
(b1,b2,...,by) is of an order higher than (a1, az,...,ay),
while having lesser number of ones in it. Thus, the position
of the most significant 1 bit of (b1,b2,...,b,) is greater
than (further left) the position of the most significant 1 bit of
(a1,az,...,ay). Therefore, it is used as the control (when a
control is needed) for all corresponding Fredkin and Toffoli
gates except the last Toffoli gate, for which the control

consists of all variables which are 1 in (a1, a2,...,a,).
. If the number of ones in (by,b2,...,b,) is equal to the
number of ones in (a1, az,...,ay), it is possible to trans-

form one pattern into the other using “swap” operation only.
The set of controls while considering an intermediate pattern
(x1,22,...,%,) is taken as a minimal subset of its one
values such that this subset forms a Boolean pattern of an

order higher than (a1, az,...,ax,).
o If the number of ones in (b1, b2, ..., b,) is greater than the
number of ones in (ai,az,...,a,), apply “swaps” starting

from the right end of the pattern (b1,b2,...,b,) and then
apply the necessary Toffoli gates. The controls can be found
using the procedures described in the above cases.

Step 2" — 1: When the first 2" — 1 patterns are properly aligned,
the last pattern will by definition be correct.

Bidirectional Algorithm: The unidirectional synthesis algorithm
works from the output to input by adding gates in one direction
only. We now describe an alternative that performs the matching by
reordering rows of the truth table. It adds gates from the inputs toward
the outputs.

Toffoli Gate Application: Without loss of generality consider
gate TOF(C;z441),C = {w1,22,..., 21}, with the controls on
the first & variables and target on variable k& + 1. Then, in the input
part of the truth table the patterns (1,1,...,1, 20,1, @hyo. ..., T0)
and (1,1,...,1, %0, %045,...,2) will be interchanged.
This is the same as permuting the output patterns associated
with input patterns (1,1,...,1, ;z:(,i_,_l, ;v(,i,+2, .o, x2) and
(1,1,...,1, @041, ®p42, ..., 20) without reordering the input side
of the table.

Fredkin Gate Application: Applying the Fredkin gate
FRE(C;xkt1, h42),C = {x1,22,...,2,} results in the

following change of all patterns in the input part of the table:
0

(1,1,....1, !1:?6“, w2+2, ;L’(/i+3, RPN is interchanged with
(1,1,..., 1, 2040, ®p 1, Thyss - - -, o). This operation is equivalent
to interchanging the output patterns of the truth table associated
with the input patterns (1,1,..., 1,204, 2040, Thts,..., Ty) and
(L1, 1yad o afq, afys, ..., 20). Since gates identified in

this procedure apply to input patterns, they are added in the order
identified from the input side of the cascade.

Given the above and a procedure similar to that described for the
unidirectional algorithm, it is possible to move an output pattern to
its correct position, i.e., so that it matches the input pattern by row
interchange.

Given the unidirectional algorithm and the alternative just described,
our bidirectional synthesis algorithm proceeds as follows. For each row
of the truth table in order from (0,0,...,0), it either transforms the
output pattern to the input as described in the unidirectional algorithm,
or it performs the match by reordering rows of the truth table whichever
requires less gates. If both require the same number of gates, the gates
identified in the unidirectional approach are used.

A\
\

G
Cl t Cl
t, Db > 2 T Bi{20?
t, =
Fig. 2. Duplicate deletion rule.

IV. TEMPLATE SIMPLIFICATION TOOL

Let asize m template be a sequence of m gates (a network) that real-
izes the identity function. The template must be independent of smaller
size templates, i.e., for a given template of size m no application of any
set of templates of smaller size can decrease the number of gates. For a
template Go G ... Gy, —1 its application is one of the two operations:

Forward Application: A sequence of gates in the network
which matches the sequence GiG(it1)modm -+ G(i+k—1)modm
in the template GoG1...Gm—1 is replaced with the sequence
G(ifl)mudmG(Z',Q)mod,,l ce G(Z'Jrk)mudm, where k € A[k Z %

Reverse Application: A sequence of gates in the network which
matches the sequence G:G(;—1ymodm + - - G(i—k+1)modm is replaced
with the sequence G(it1)modm Gi+2)modm + - - Gi—k)modm, Where
k€ Mk >m/2.

It can be shown that neither forward or reverse template application
as described changes the output of the network. Each application of a
template of size m for parameter & > m /2 leads to a reduction in the
number of gates.

A classification scheme is used to reduce the number of different
templates. The classes reported here were found by hand and were ver-
ified to be complete by exhaustive enumeration.

Definition 3: A template class is defined by a set of disjoint
formulas, i.e., formulas G1(S1, B1), G2(S2, B2), ..., G (Sm, Bm),
where the following occurs.

o Depending on the number of elements in B;, G; is written as
TOF (for |B;| = 1) or FRE (for |B;| = 2).

. S; is written as a union of sets (C') and single variables () :
S;i=Ciy +Ciy + -+ Chy + i) +tiy +--- + 1.

. If | B;| = 1, it is written as a single variable, ¢;; if | B;| = 2
it is written as the union £; + .

. The C; sets are mutually disjoint, the ¢ variables are distinct

and do not appear in any C;.

In order to classify the templates, we need to discuss the box no-
tation in more detail. If a box appears in a template, there are certain
rules for changing the template network when the operation of EXOR or
SWAP is assigned to the box. If the assignment is EXOR, then the box is
substituted with the EXOR symbol as are all other box symbols on the
same line. If the assignment was SWAP, the line with the box becomes
the two lines, on which the SWAP acts. Every occurrence of a control
on the line with this box is substituted with two controls and every oc-
currence of the box symbol is substituted with SWAP. Lastly, if a box
symbol in a template is not specified, it can be either EXOR or SWAP
which are substituted into the template by the above rules.

m = 1. Clearly, there are no templates of size 1, since no single gate

realizes the identity.
2. There is one class of templates of size 2, the duplicate
deletion rule (Fig. 2). This class is a generalization of the Toffoli
gate duplicate deletion rule [15]. It is true for any gate type which
perform a self-inverse transformation. In gate-specific notation, this
class can be written as two formulas, one for two Toffoli gates
and one for two Fredkin gates: TOF(Cy,t)TOF(Cy,t) and
FRE(C1, B1)FRE(C1,B;) (By = t1 + t2) as shown in Fig. 2. As
shown, it can be written as one template using the box notation.

m = 3. There are no templates of size 3.

m = 4. There are three classes of size 4 templates. A very important
class is the passing rules (analogy of the passing rule from [15]). It

m =

768 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

Fig. 3. Passing rule class.

&3
s s O
<
LA
A\
v
<
s O
/:)i.
T ¥V
o O
/i ’
'
vy

CS
Cy
C
C
(o} 2
t G
2 t N
t 2 -
1 t Pany Pany
1 U A\
Fig. 5. Fredkin definition class, class of size 5, and class of size 6.

defines when the order of the two gates in a network can be changed.
All templates defining passing rules are shown in Fig. 3.

The second class is the semi-passing rules (Fig. 4). Its main features
are the equality of the first and third gates, and the fourth gate being
the second gate transformed by the target of the first gate.

The third class, which we call Fredkin definition (Fig. 5), is a gener-
alization of the popular network simulating Fredkin gate with Toffoli
gates [17].

m = 5. There is only one class of templates of size 5 (Fig. 5). Even
though longer matches are required, it turns out that in practice this
class is the most useful.

m = 6. There is one class of templates of size 6 (Fig. 5).

V. RESULTS

We have written a C++ program that synthesizes networks using the
bidirectional algorithm and then applies the template tool. We ran our
program for all reversible functions with 3 three variables. The column
labeled BISYNTH in Table I shows how many of these functions can
be realized with k& = 0...9 NOT, CNOT, Toffoli, SWAP and Fredkin

TABLE 1
NUMBER OF REVERSIBLE FUNCTIONS USING A SPECIFIED NUMBER OF
GATES FOR = 3

Size | BISYNTH | NCTSF NCT
0 1 1 1
1 18 18 12
2 184 184 102
3 1290 1318 625
4 5680 6474 2780
5 13209 17695 8921
6 13914 14134 | 17049
7 5503 496 6817
8 512 0 32
9 9 0 0

WA: 5.437 5.134 | 5.866

TABLE 1I

RESULTS OF BENCHMARK FUNCTION SYNTHESIS

name in out | size Toffoli Fredkin-Toffoli
317 3 3 3 6 67
4.49 4 4 4 16 1377
4mod5 4 1 5 8 8t
5mod5 5 1 6 17 107
add3 3 2 4 4 47
ham3 3 3 3 5 47t
ham?7 7 7 7 23 23t
ham15 15 | 15 15 132 132°
hwb4 4 4 4 17 117
hwb5 5 5 5 55 247
hwb6 6 6 6 126 657
hwb7 7 7 7 289 1667
d53 5 3 7 12 127
cycle2 10 | 12 | 12 | 12 19 197
cycle3_17 | 20 | 20 | 20 48 48°

gates. It took 79.69 CPU seconds on an AMD Athlon 2400+ XP com-
puter with 512 M of RAM to synthesize these 40 320 functions.

By exhaustive search, we have enumerated the optimal realiza-
tions for these functions. The results are given in the column labeled
NCTSF. The average for the optimal case is 5.134 whereas the average
for our method is 5.437, 5.9% higher.

To show the advantage of allowing Fredkin gates, we include the
optimal results for NOT, CNOT and Toffoli gates given in [18] as column
NCT. The average in this case is 5.866 which is 14.3% higher than the
optimal when Fredkin and SWAP gates are permitted.

A. Benchmarks

The algorithm does not in theory impose any limits on the number
of variables. However, since the truth table must be stored, functions
with more than 20 variables may require too much space and time.
In particular, using the computer mentioned above it took approxi-
mately 25 minutes to synthesize the network for the largest specifica-
tion, cycle3_17 which has 20 lines. Runtimes for smaller specifications
are noticeably shorter, e.g., 8.9 seconds for the second largest function
(15 lines.) For initially irreversible functions, we created a reversible
specification using methods discussed in [12], [14].

Our benchmark results are summarized in Table II. The name, in,
out, and size columns contain the name of a benchmark function, the
original number of inputs, the original number of outputs and the size,
the number of inputs and outputs, of a minimal reversible specifica-
tion [12]. Function specifications as well as the networks that we re-
ported in this paper can be found on the web [13]. The Toffoli and
Fredkin—-Toffoli columns show first the number of gates used in our de-
signs when only Toffoli gates are used, and second the number of gates
when Fredkin gates are also allowed. Superscripts in the last column

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005 769

indicate which gates are present in the design: “t” stands for Toffoli
gates only, “f” for Fredkin gates only, and “ft” indicates when the net-
work contains both Fredkin and Toffoli gates.

It is interesting to note that Fredkin gates may not help the synthesis
(ham15), but sometimes help to reduce the size of the network signif-
icantly (hwb5). Also, sometimes when Fredkin gates are allowed, the
synthesized network may not contain Fredkin gates and be smaller than
a network synthesized with the condition that Fredkin gates are not al-
lowed (5mod3). This occurs because Fredkin gates are included in the
initial synthesis but then removed during the template application.

Three of the functions used here were used as benchmarks in [1]. It
is possible to make a fair comparison of the results, since our networks
for these functions use Toffoli gates only. Both our method and the one
reported in [1] synthesized function add3 with four gates. Further, this
4-gate realization is believed to be optimal. Both methods synthesized
function rd53 with 12 gates. However, the network reported in [1] is
incorrect. Finally, we synthesized cycle2_10 with 19 gates, while [1]
presented a network with 26 gates.

VI. CONCLUSION

In this paper we presented a two-step method for the synthesis of
reversible networks using Toffoli and Fredkin gates. Our approach uses
minimal garbage.

Applying our approach to all three variable reversible functions
yielded results which are on average 5.9% above the optimal. We also
presented networks for a number of benchmark problems which show
the advantage of allowing Fredkin gates in addition to Toffoli gates.

For three variable functions, the results reported here show roughly
the same type of performance as earlier work using NOT, CNOT, and Tof-
foli gates alone. For example, Agrawal and Jha [1] report an average
of 6.10 whereas the optimal is 5.866. However, we have shown bench-
marks where our method found a purely Toffoli network superior to the
one reported in [1].

Future work will improve the efficiency of our approach by re-
placing truth tables with a more compact representation. We are
also investigating better heuristics in the synthesis procedure and
alternative methods for applying the templates.

REFERENCES

[1] A. Agrawal and N. K. Jha, “Synthesis of reversible logic,” Proc. DATE,
pp. 21384-21 385, Feb. 2004.

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]
(1]

(12]

[13]

[14]

[15]

[16]
(17]

[18]

[19]

[20]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Phys. Rev. A, vol. 52, pp. 3457-3467, 1995.
C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. De-
velopment, vol. 17, pp. 525-532, Nov. 1973.

G. W. Dueck and D. Maslov, “Reversible function synthesis with
minimum garbage outputs,” in Proc. 6th Int. Symp. Representations
and Methodology of Future Computing Technologies, Mar. 2003, pp.
154-161.

G. W. Dueck, D. Maslov, and D. M. Miller, “Transformation-based syn-
thesis of networks of Toffoli/Fredkin gates,” in Proc. IEEE Canadian
Conf. Electrical and Computer Engineering, May 2003, pp. 211-214.
X. Fei, D. Jiang-Feng, S. Ming-Jun, Z. Xian-Yi, H. Rong-Dian, and W.
Ji-Hui, “Realization of the Fredkin gate by three transition pulses in a
nuclear magnetic resonance quantum information processor,” Chinese
Phys. Lett., vol. 19, no. 8, pp. 1048-1050, 2002.

R. Feynman, “Quantum mechanical computers,” Opt. News, vol. 11, pp.
11-20, 1985.

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theoretical Phys.,
vol. 21, pp. 219-253, 1982.

K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation rules
for designing CNOT-based quantum circuits,” Proc. DAC, pp. 419-424,
Jun. 2002.

R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Res. Develop., vol. 5, pp. 183-191, 1961.

D. Maslov and G. Dueck, “Improved quantum cost for 7e-bit Toffoli
gates,” IEE Electron. Lett., vol. 39, no. 25, pp. 1790-1791, Dec. 2003.
D. Maslov and G. W. Dueck, “Garbage in reversible design of multiple
output functions,” in Proc. 6th Int. Symp. Representations and Method-
ology of Future Computing Technologies, Mar. 2003, pp. 162—170.

D. Maslov, N. Scott, and G. W. Dueck. (2004, Aug.) Reversible logic
synthesis benchmarks page. [Online]. Available: http://www.cs.uvic.ca/
~dmaslov/

D. M. Miller and G. W. Dueck, “Spectral techniques for reversible logic
synthesis,” in Proc. 6th Int. Symp. Representations and Methodology of
Future Computing Technologies, Mar. 2003, pp. 56-62.

D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” Proc. DAC, pp. 318-323, Jun.
2003.

A. Mishchenko and M. Perkowski, “Logic synthesis of reversible wave
cascades,” Proc. IWLS, pp. 197-202, Jun. 2002.

M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge, U.K.: Cambridge Univ. Press, 2000.

V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis of
reversible logic circuits,” IEEE Trans. Computer-Aided Design Integr.
Syst., vol. 22, no. 6, pp. 723-729, Jun. 2003.

T. Toffoli, “Reversible computing,” MIT Lab., Comp. Sci., Tech. Memo
MIT/LCS/TM-151, 1980.

V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, “Limits
to binary logic switch scaling—A gedanken model,” Proc. IEEE, vol.
91, no. 11, pp. 1934-1939, Nov. 2003.

