
Configuration Compression for
FPGA-based Embedded Systems�

Andreas Dandalis
Electrical Engineering - Systems
University of Southern California

3740 McClintock Avenue, EEB 234
Los Angeles, CA 90089-2562

dandalis@usc.edu

Viktor K. Prasanna
Electrical Engineering - Systems
University of Southern California

3740 McClintock Avenue, EEB 200
Los Angeles, CA 90089-2562

prasanna@ganges.usc.edu

ABSTRACT
FPGAs are a promising technology for developing
high-performance embedded systems. The density and per-
formance of FPGAs have drastically improved over the past
few years. Consequently, the size of the con�guration bit-
streams has also increased considerably. As a result, the
cost-e�ectiveness of FPGA-based embedded systems is sig-
ni�cantly a�ected by the memory required for storing var-
ious FPGA con�gurations. This paper proposes a novel
compression technique that reduces the memory required for
storing FPGA con�gurations and results in high decompres-
sion e�ciency. Decompression e�ciency corresponds to the
decompression hardware cost as well as the decompression
rate. The proposed technique is applicable to any SRAM-
based FPGA device since con�guration bit-streams are pro-
cessed as raw data. The required decompression hardware
is simple and is independent of the individual semantics of
con�guration bit-streams or speci�c features of the on-chip
con�guration mechanism. Moreover, the time to con�gure
the device is not a�ected by our compression technique. Us-
ing our technique, we demonstrate up to 41% savings in
memory for con�guration bit-streams of several real-world
applications.

1. INTRODUCTION
The enormous growth of embedded applications has made

embedded systems an essential component in products that
emerge in almost every aspect of our life: digital TVs, game
consoles, network routers, cellular base-stations, digital com-
munication devices, printers, digital copiers, multifunctional
equipment, house appliances, etc. For example, from 200
million units shipped in the year 1997, the DSP embedded

�This work is supported by the DARPA Adaptive Comput-
ing Systems program under contract no. DABT63-99-1-0004
monitored by Fort Huachuca and in part by the National
Science Foundation under grant no. CCR-9900613.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA 2001, February 11-13, 2001, Monterey, CA, USA.
Copyright 2001 ACM 1-58113-341-3/01/0002 ..$5.00

systems market has been forecast to grow to 1,200 million
units in the year 2001 [13]. The goal of embedded systems is
to perform a set of speci�c tasks to improve the functionality
of larger systems. As a result, they are usually not visible to
the end-user since they are embedded in larger systems. Em-
bedded systems usually consist of a processing unit, memory
to store data and programs, and an I/O interface to commu-
nicate with other components of the larger system. Their
complexity depends on the complexity of the tasks they per-
form. The main characteristics of an embedded system are
raw computational power and cost-e�ectiveness. The cost-
e�ectiveness of an embedded system includes characteristics
such as product lifetime, overall price, and power consump-
tion, among others.
The unique combination of hardware-like performance

with software-like
exibility make FPGAs a highly promis-
ing solution for embedded systems. Typical FPGA-based
embedded systems have FPGA devices as their processing
unit, memory to store data and FPGA con�gurations, and
an I/O interface to transmit and receive data. FPGA-based
embedded systems can sustain high processing rates while
providing a high degree of
exibility required in dynami-
cally changing environments. FPGAs can be recon�gured
on demand to support multiple algorithms and standards.
Thus, the degree of system
exibility strongly depends on
the amount of con�guration data that can be stored in the
�eld. However, the size of the con�guration bit-stream has
increased considerably over the past few years. For exam-
ple, the size of the con�guration bit-stream of the VIRTEX
series FPGAs, range from 0:6 Mbits to 16 Mbits [14]. As a
result, storing con�guration bit-streams in an FPGA-based
embedded system becomes a critical problem drastically af-
fecting the cost-e�ectiveness of the system.
In this paper, we propose a novel compression technique

to reduce the memory requirements for storing con�gura-
tion bit-streams in FPGA-based embedded systems. By
compressing con�guration bit-streams, signi�cant savings in
memory requirements can be achieved. The con�guration
compression occurs o�-line. At runtime, decompression oc-
curs and the decompressed data is fed to the on-chip con�g-
uration mechanism to con�gure the device. The major per-
formance requirements of the compression problem are the
decompression hardware cost and the decompression rate.
The above requirements distinguish our compression prob-
lem from conventional software-based applications. We are
not aware of any prior work that addresses the con�gura-

173

tion compression problem of FPGA-based embedded sys-
tems with respect to the cost and speed requirements.
Our compression technique is applicable to any SRAM-

based FPGA device since it does not depend on speci�c
features of the con�guration mechanism. The con�guration
bit-streams are processed as raw data without considering
individual semantics. As a result, both complete and par-
tial con�guration schemes can be supported. The required
decompression hardware is simple and independent of the
con�guration format or characteristics of the con�guration
mechanism. In addition, the achieved compression ratio is
independent of the decompression hardware and depends
only on the entropy of the con�guration bit-stream. Finally,
the time to con�gure an FPGA depends only on the data
rate of the on-chip con�guration mechanism, the speed of
the memory that stores the con�guration data, and the size
of the con�guration bit-stream. The decompression process
does not add any overhead to the con�guration time.
The proposed compression technique is based on the prin-

ciples of dictionary-based compression algorithms. Even
though statistical methods can achieve higher compression
ratios, we propose a dictionary-based approach because sta-
tistical methods lead to high decompression hardware cost.
The dictionary corresponds to con�guration data that is
stored in the memory. In our scheme, the dictionary is
derived based on the well-known LZW compression algo-
rithm [11]. However, a major deviation from LZW -based
algorithms is the calculation of the compression ratio. Our
compression technique proposes a novel way of construct-
ing the dictionary to signi�cantly improve the compression
ratio. In addition, our technique delivers the decompressed
data in order. On the contrary, in conventional LZW -based
algorithms, the decompressed data is delivered in reverse
order. By using a stack, the original data is reconstructed.
The latter signi�cantly a�ects the decompression rate of a
hardware implementation.
Using our technique, we demonstrated 11�41% savings in

memory for con�guration bit-streams of several real-world
applications. The con�guration bit-streams corresponded to
cryptographic and digital signal processing algorithms. Our
target architecture was VIRTEX series FPGAs [14]. The
size of the con�guration bit-streams ranged from 1:7 Mbits
to 6:1 Mbits.
An overview of the con�guration of SRAM-based FPGAs

is given in Section 2. In Section 3, various aspects of com-
pression techniques and the constraints imposed by embed-
ded systems are presented. Our novel compression technique
is described in Section 4. Experimental results are demon-
strated in Section 5 and related work is described in Section
6. Finally, in Section 7, possible extensions to our work are
described.

2. FPGA CONFIGURATION
An FPGA con�guration determines the functionality of

the FPGA device. An FPGA device is con�gured by load-
ing a con�guration bit-stream into its internal con�guration
memory. An internal controller manages the con�guration
memory as well as the con�guration data transfer via the
I/O interface. Throughout this paper, we refer to both the
con�guration memory and its controller as the con�guration
mechanism. Based on the technology of the internal con�gu-
ration memory, FPGAs can be permanently con�gured once
or can be recon�gured in the �eld. For example, Anti-Fuse

technology allows one-time programmability while SRAM
technology allows reprogrammability.
In this paper, we focus on SRAM-based FPGAs. In SRAM-

based FPGAs, the contents of the internal con�guration
memory are reset after power-up. As a result, the internal
con�guration memory cannot be used for storing con�gu-
ration data permanently. Using partial con�guration, only
a part of the contents of the internal con�guration mem-
ory is modi�ed. As a result, the con�guration time can be
signi�cantly reduced compared with the con�guration time
required for a complete recon�guration. Moreover, partial
con�guration can occur at runtime without interrupting the
computations that an FPGA performs. SRAM-based FP-
GAs require external devices to initiate and control the con-
�guration process. Usually, the con�guration data is stored
in an external memory and an external controller supervises
the con�guration process.
The time required to con�gure an FPGA depends on the

size of the con�guration bit-stream, the clock rate and the
operation mode of the con�guration mechanism, and the
throughput of the external memory that stores the con�gu-
ration bit-stream. Typical sizes of con�guration bit-streams
range from 0:6 Mbits to 16 Mbits [1, 2, 14] depending on the
density of the device. The clock rate of the con�guration
mechanism determines the rate at which the con�guration
data is delivered to the FPGA device. The con�guration
data can be transferred to the con�guration mechanism se-
rially or in parallel. Parallel modes of con�guration result in
faster con�guration time. Typical values of data rates can
be as high as 480 Mbits/sec [1, 2, 14]. Thus, the external
memory that stores the con�guration bit-stream should be
able to sustain the data rate of the con�guration mechanism.
Otherwise, the memory becomes a performance bottleneck
and the time to con�gure the device increases. The latter
could be critical for applications where an FPGA is con�g-
ured on-demand based on run-time parameters.
Con�guration bit-streams consist of data to be stored in

the internal con�guration memory as well as instructions
to the con�guration mechanism. The data con�gures the
FPGA architecture, that is, the con�gurable logic blocks,
the interconnection network, the I/O pins, etc. The instruc-
tions control the functionality of the con�guration mecha-
nism. Typically, instructions are used for initializing the
con�guration mechanism, synchronizing clock rates, and de-
termining the memory addresses at which the data will be
written. The format of a con�guration bit-stream depends
on the characteristics of the con�guration mechanism as well
as the characteristics of the FPGA architecture. As a re-
sult, the bit-stream format varies among di�erent vendors
or, even among di�erent FPGA families of the same vendor.

3. COMPRESSION TECHNIQUES: APPLI-
CABILITY & IMPLEMENTATION COST

Data compression has been extensively studied in the past.
Numerous compression algorithms have been proposed to
reduce the size of data to be stored or transmitted over a
network. The e�ectiveness of a compression technique is
characterized by the achieved compression ratio, that is, the
ratio of the size of the compressed data to the size of the orig-
inal data. However, depending on the application, metrics
such as processing rate, implementation cost, and adaptabil-
ity may become critical performance issues. In this section,

174

we will discuss compression techniques and the requirements
to be met for compressing FPGA con�gurations in FPGA-
based embedded systems.
In general, a compression technique can be either lossless

or lossy. Lossless compression techniques reconstruct the
exact original data after decompression. Lossless techniques
are used in applications where any loss of information after
decompression is critical. On the contrary, lossy compres-
sion techniques eliminate certain information of the original
data after decompression. Lossy techniques are primarily
used in image, video, and audio applications. For con�gu-
ration compression, the con�guration bit-stream should be
reconstructed without loss of any information and thus, a
lossless compression technique should be used. Otherwise,
the functionality of the FPGA may be altered or, even worse,
the FPGA may be damaged.
Lossless compression techniques are based on statistical

methods or dictionary-based schemes. For any given data,
statistical methods can result in better compression ratios
than any dictionary-based scheme [11]. Using statistical
methods, a symbol in the original data is encoded with a
number of bits proportional to the probability of its occur-
rence. By encoding the most frequently-occurring symbols
with fewer bits than their binary representation requires, the
data is compressed. The compression ratio depends on the
entropy of the original data as well as the accuracy of the
model that is utilized to derive the statistical information of
the given data. However, the complexity of the decompres-
sion hardware can signi�cantly increase the cost of such an
approach. In the context of embedded systems, dedicated
decompression hardware (e.g., CAM memory) is required to
align codewords of di�erent lengths as well as determine the
output of a codeword.
In dictionary-based compression schemes, single codewords

encode variable-length strings of symbols [11]. The code-
words form an index to a phrase dictionary. Decompression
occurs by parsing the dictionary with respect to its index.
Compression is achieved if the codewords require smaller
number of bits than the strings of symbols that they replace.
Contrary to statistical methods, dictionary-based schemes
require signi�cantly simpler decompression hardware. Only
memory read operations are required during decompression
and high decompression rates can be achieved. The latter
suggests that, in the context of FPGA-based embedded sys-
tems, a dictionary-based scheme would result in fairly low
implementation cost.
In Figure 1, a typical architecture of FPGA-based embed-

ded systems is shown. These systems consist of an FPGA
device(s), memory to store data and FPGA con�gurations, a
con�guration controller to supervise the con�guration pro-
cess, and an I/O interface to send and receive data. The
con�gurations are compressed o�-line by a general-purpose
computer and the compressed data is stored in the embed-
ded system. Besides the memory requirements for the com-
pressed data, additional memory may be required during
decompression. For example, in LZ -based algorithms [11],
the dictionary can be reconstructed on the
y based on the
index. As a result, in software-based applications, only the
index is stored or transmitted. Thus, only the index is con-
sidered in the calculation of the compression ratio. However,
in the context of embedded systems, the memory require-
ments to store the dictionary should also be considered.
At runtime, decompression occurs and the original con-

FPGA

Configuration

Memory

Configuration

Controller
Bit-Stream

Memory

Data

I/O

Figure 1: FPGA-based embedded system architec-
ture

�guration bit-stream is delivered to the FPGA con�gura-
tion mechanism. As a result, the decompression hardware
cost and the decompression rate become major requirements
of the compression problem. The decompression hardware
cost may a�ect the cost of the system. In addition, if the
decompression rate can not sustain the data rate of the con-
�guration mechanism, the time to con�gure the FPGA will
increase.

4. OUR COMPRESSION TECHNIQUE
Our compression technique is based on the principles of

dictionary-based compression algorithms. Even though sta-
tistical methods can achieve higher compression ratios [11],
we propose a dictionary-based approach because dictionary-
based schemes lead to simpler and faster decompression hard-
ware. In our approach, the dictionary corresponds to con-
�guration data and the index corresponds to the way the
dictionary is read in order to reconstruct a con�guration
bit-stream. In Figure 2, an overview of our con�guration
compression technique is shown. The input con�guration
bit-stream is read sequentially in the reverse order. Then,
the dictionary and the index are derived based on the prin-
ciples of the well-known LZW compression algorithm [11].
In general, �nding a dictionary that results in optimal com-
pression has exponential complexity [11]. By deleting non-
referenced nodes and by merging common pre�x strings, a
compact representation of the dictionary is achieved. Fi-
nally, a heuristic is applied that further enhances the dic-
tionary representation and leads to savings in memory. The
original con�guration bit-stream can be reconstructed by
parsing the dictionary with respect to the index in reverse-
order. The achieved compression ratio is the ratio of the
total memory requirements (i.e., dictionary and index) to
the size of the bit-stream. In the following, we describe in
detail our compression technique as well as the decompres-
sion method.
In [6], we have demonstrated preliminary con�guration

compression results using a dictionary-based approach. How-
ever, the approach that is proposed in this paper is signif-
icantly di�erent than the one proposed in [6]. In [6], the

175

Dictionary
Construction

LZW

Merge common prefix strings

Delete non-referenced nodes

Compact

Selectively delete substrings

Selectively delete nodes
Heuristic

Reverse
Order

Reverse
Order

Configuration

Bit-Stream

DICTIONARY

DICTIONARY INDEX

DICTIONARY INDEX

INDEXINDEX

Representation

Figure 2: Our con�guration compression technique

decompressed strings are delivered in the reverse order. In
addition, the heuristic proposed in [6] only deletes all the
leaf nodes from all the su�x trees without considering how
the index size is a�ected. However, in this paper, a di�er-
ent approach is proposed. Our goal is to delete strings and
individual nodes in a bottom-up approach considering the
overall savings in memory, that is, both the dictionary and
the index memory. As a result, by applying our technique
to the con�guration bit-streams in [6], the memory require-
ments for storing the dictionary and the index can be further
improved by 6 � 13 % (see Section 5).

4.1 Basic LZW Algorithm
The LZW algorithm is an adaptive dictionary encoder,

that is, the coding technique of LZW is based on the input
data already encoded. The input to the algorithm is a se-
quence of binary symbols. A symbol can be a single bit or
a data word. Symbols are processed sequentially. By com-
bining consecutive symbols, strings are formed. In our case,
the input is the con�guration bit-stream. Moreover, the bit-
length of the symbol determines the way the bit-stream is
processed (e.g., bit-by-bit, byte-by-byte). The main idea of
LZW is to replace the longest possible string of symbols
with a reference to an existing dictionary entry. As a result,
the derived index consists of pointers to the dictionary.
Initially, the dictionary is preloaded with entries for all

the symbols of the input alphabet (Algorithm 1). For ex-
ample, if the symbol is a byte, the dictionary is preloaded
with entries for 0 � 255. One symbol s is read at a time.
A temporary string S is utilized during compression. If the
string Ss is not found in the dictionary, the code for S is
added to the index and Ss becomes a new entry to the dictio-
nary. The dictionary contains all the previously seen strings.
There is no restriction on the size of the dictionary, so more
and more phrases are generated as encoding proceeds. If the
string Ss is found in the dictionary, a new symbol is read.
The procedure terminates when all the input data has been
read.
In software-based applications, only the index is consid-

ered in the calculation of the compression ratio. The main
advantage of LZW (and any LZ-based algorithm) is that
the dictionary can be reconstructed based on the index. As
a result, only the index is stored in a secondary storage me-
dia or transmitted. The dictionary is reconstructed on-line
and the extra memory required is provided by the \host".

Algorithm 1: The LZW algorithm [10]
Input: An input stream of symbols IN.
Output: The dictionary and the index.

dictionary input alphabet symbols
S = NULL

repeat
s read a symbol from IN

if Ss exists in the dictionary
S Ss

else
output the code for S
add Ss to the dictionary
S s

end
until (all input data is read)

However, in embedded systems, no secondary storage media
is available and the extra required memory has to be con-
sidered in the calculation of the compression ratio. Also,
note that the dictionary includes phrases that are not refer-
enced by its index. This happens because, as compression
proceeds, LZW keeps all the strings that are seen for the
�rst time. This is performed regardless of whether these
strings will be referenced or not. This is not a problem in
software-based applications since the size of the dictionary
is not considered in the calculation of the compression ratio.

4.2 Compact Dictionary Construction
In our approach, we propose a compact memory repre-

sentation for the dictionary. In general, the dictionary is
a forest of su�x trees (i.e., one tree for each symbol of
the input alphabet). Each string in a tree is stored in
the memory as a singly-linked list. The root of a tree is
the head of all the lists in that tree. Every entry in the
memory consists of a symbol and an address to a pre�x
string and every string is associated with an entry. A string
is read by traversing the corresponding list from the ad-
dress of its associated memory entry to the head of the
list. Furthermore, dictionary entries that are not referenced
in the index are deleted and not stored in the memory.

C

U

O

T

I

R

O

M

A

P

T

N

E

COMPUTE

COMPUTER

COMPUTATION

Figure 3: An illustrative example of our dictionary
representation

176

C

O

M

P

U

T

A

T

I

O

N

E

R

0001

0010

0011

0100

0101

0111

1000

1001

1010

1011

1100

1101

1110

0000

0001

0010

0011

0100

0101

0111

1000

1001

1010

1011

0111

1101

1100

1110

1101

...

...

...

...

COMPUTATION

COMPUTER

COMPUTE

Dictionary Index

Figure 4: An illustrative example of memory orga-
nization for the dictionary and the index

Finally, common pre�x strings are merged as one string.
An example of our dictionary representation is shown in
Figure 3. For illustrative purposes, we consider letters as
symbols. The root of the tree is the symbol \C". Each
one of the strings \COMPUTE", \COMPUTER", and
\COMPUTATION" is associated with a node. Since the
string \COMPUT" is a common pre�x string, it is only
represented once in the memory. In Figure 4, the memory
organization for storing the dictionary and the index of the
above example is shown. The memory requirements for the
dictionary are ndictionary � (datasymbol + dlog2 ndictionarye)
bits, where ndictionary is the number of memory entries of
the dictionary and datasymbol is the number of bits required
to represent a symbol. Similarly, the memory requirements
for the index are nindex�dlog2 ndictionarye bits, where nindex
is the number of memory entries of the index.
From the above example, we notice that during decom-

pression, the decompressed strings are delivered in reverse
order. In fact, in software-based implementations [11], a
stack is used to deliver each decompressed string in the right
order. However, in the considered embedded environment,
additional hardware is required to implement the stack. In
addition, the size of the stack should be as large as the length
of the longest string in the dictionary. Moreover, the time
overhead to reverse the order of the decompressed strings
would a�ect the time to con�gure the FPGA. In our scheme,
to avoid the use of a stack, we derive the dictionary after
reversing the order of the con�guration bit-stream. During
decompression, the con�guration bit-stream is reconstructed
by parsing the index in the reverse order. In this way, the de-
compressed strings are delivered in order and the exact orig-
inal bit-stream is reconstructed. We have performed several
experiments to examine the impact of compressing a reverse-
ordered con�guration bit-stream instead of the original one.
Our experiments suggest that the memory requirements for
both the dictionary and the index are very close to each
other in both cases (i.e., variation less than �1%).

4.3 Enhancement of the Dictionary Represen-
tation

After deriving the dictionary and its index, we reduce the

R

E

COMPUTER

QUALCOM

C

U

O

T

M

P

M

O

L

Q

C

U

A

QUALCOM

M

O

L

Q

C

U

A

R

E

U

T

PPUTER

COM

Figure 5: An illustrative example of enhancing the
dictionary representation

memory requirements of the dictionary by selectively decom-
posing strings in the dictionary. In the following, a pre�x
string corresponds to a path from any node up to the tree
root. Similarly, a su�x string corresponds to a path from a
leaf node up to any node. Finally, a substring corresponds
to a path between any two arbitrary nodes.
The main idea is to replace frequently-occurring substrings

by a new or an existing substring. As a result, while mem-
ory savings can be achieved for the dictionary, additional
codewords are also introduced leading to index expansion.
For example, consider the pre�x strings \COMPUTER"
and \QUALCOM" (see Figure 5). Again, for illustrative
purposes, we consider letters as symbols. Since \COM" is
a common substring, by storing it in the memory only once,
the dictionary size can be reduced. However, one additional
codeword is required for \COMPUTER" since it is decom-
posed in two substrings (i.e., \COM" and \PUTER"). In
general, the problem of decomposing substrings that can
result in maximum savings in memory has exponential com-
plexity.
In the following, a 2-phase greedy heuristic is described

that selectively decomposes substrings to achieve overall mem-
ory savings. A bottom-up approach is used that prunes the
su�x trees starting from the leaf nodes and replaces deleted
su�x strings by new (or existing) pre�x strings. We concen-
trate only on su�x strings that include nodes pointed at by
only one su�x string. Otherwise, the su�x string extends
over large number of pre�x strings resulting in lower possi-
bility for potential savings in memory. Using our heuristic,
80 � 85% of the nodes in all su�x trees were examined for
the bit-streams considered in our experiments (see Section
5).
In the �rst phase, we delete su�x strings that can lead to

potential savings in memory (see Algorithm 2). Initially, we
identify repeated su�x strings that appear across all the suf-
�x trees of the dictionary. As mentioned earlier, the number
of su�x trees in the dictionary equals the number of sym-
bols of the input alphabet. For each distinct su�x string
si, the potential savings in memory cost(si) are computed.
The cost(si) depends on the potential savings in dictionary
memory and the potential index expansion assuming that
si is deleted from all the su�x trees. Only su�x strings si
with non-negative cost(si) are deleted. By reducing the dic-
tionary size, the number of bits that is required to address
the dictionary (i.e., dlog2 ndictionarye) can decrease too. As
a result, the word-length of both the dictionary and index

177

Algorithm 2: Our Heuristic: Phase 1.
Input: A dictionary Din and an index Iin.
Output: Enhanced dictionary Dtemp and index Itemp.

STRINGS=fsu�x strings in Din containing nodes that
are pointed at by only one su�x stringg
U=fsi: si�STRINGS ^ (if i 6= j) si 6= sj)g
Ul=fsi: si�U ^ length(si)=lg
/* L = max length(si)
/* datadictionary : word-length for the dictionary memory
/* dataindex: word-length for the index memory
/* ni: node of si with the highest distance from a leaf node
/* ti: # of x�STRINGS : x = si
/* ci: # of times ni is referenced by the index
if 9 pre�x string x�Din : x = si
ai = 0

else
ai = 1

end
cost(si) = (ti � ai) � (datadictionary)� ci � dataindex
Sdelete = NULL

for l = 1::L
Stemp = NULL

8si : si�fUl [Ug
if cost(si) � 0
Sdelete = Sdelete [fsig

else
Stemp = Stemp [Ul[fx�STRINGS : si = xg

end
U = U � Stemp

end
delete fx�STRINGS : x = y ^ y�Sdeleteg
Snew = fnew pre�x strings that replace the deleted substringsg
Dtemp = Din� fdeleted substringsg [Snew
Itemp = frestore Iin due to deleted substringsg

memories can decrease resulting in further savings in mem-
ory.
In the second phase, we selectively delete individual

nodes of the su�x trees in order to decrease the number
of bits required to address the dictionary (see Algorithm 3).
The deletion of nodes results in index expansion. However,
the memory requirements due to the increase of index size
can be potentially amortized by the decrease of the word-
length of both the dictionary and the index memories. The
goal is to reduce the dictionary size while introducing min-
imum number of new codewords. Initially, nodes ni of the
same distance across all the su�x trees are sorted with re-
spect to the number of codeword splits cost(ni) (i.e., num-
ber of new codewords introduced if the node will be deleted).
Then, starting from the leaf nodes, we mark individual nodes
according to their cost(ni). A marked node is eligible to be
deleted. Nodes with smaller number of codeword splits are
marked �rst. We continue to mark nodes until we achieve
a 1 bit savings in addressing the dictionary. If the index
expansion results in increasing the total memory require-
ments, the marked nodes are not deleted and the procedure
is terminated. Otherwise, the marked nodes are deleted and
the procedure is repeated.

Algorithm 3: Our Heuristic: Phase 2.
Input: Dtemp and Itemp from Algorirthm 2.
Output: Enhanced dictionary Denh and index Ienh.

N = fni : ni�si ^ si�fDtemp \ STRINGSgg
/* STRINGS is the same set of strings as in Algorithm 2
/* ni: dictionary node
cost(ni) = # of times ni is referenced by the index
depth(ni) = distance from a leaf node
sort N in terms of depth(ni) /* ascending order
sort ni of same depth in terms of cost(ni) /* ascending order
Nm = NULL

ntemp =j Dtemp j �2
dlog

2
jDtemp je�1 /* j � j= # of nodes in �

while j N j� ntemp

repeat
mark consecutive nodes in N

with respect to sorting
Nm = fmarked nodesg

until (# of marked nodes �
P

cost(ni)� � == ntemp)
/*
P

cost(ni): summation of costs of the marked nodes
/* �: # of nodes required to replace su�x strings that
/* will be deleted if marked nodes are deleted

if (deletion of marked nodes results in overall savings)
N = N �Nm

j Dtemp j 2dlog2 jDtemp je�1

ntemp 2dlog2jDtemp je�1

else
BREAK

end
end
delete fmarked nodesg
Snew =fnew pre�x strings that replace the deleted su�x stringsg
Denh = Dtemp � fmarked nodesg [Snew
Ienh = frestore Itemp due to deleted substringsg

4.4 Configuration Decompression
Decompression occurs at power-up or at runtime. The

original con�guration bit-stream is reconstructed by pars-
ing the dictionary with respect to the index. As shown in
Figure 6(b), the contents of the index (i.e., codewords) are
read sequentially. A codeword corresponds to an address to
the dictionary memory. For each codeword, all the symbols
of the associated string are read from the dictionary mem-
ory and then the next codeword is read. A comparator is
used to decide if the output data of the dictionary mem-
ory corresponds to a root node, that is, all the symbols of
a string have been read. Depending on the output of the
comparator, a new codeword is read or the last-read pointer
is used to address the dictionary memory.
In Figure 6, both a typical scheme and our

compression-based scheme for storing and reading the con-
�guration bit-stream are shown. Typically, the con�gura-
tion bit-stream is stored in memory. It is important to de-
liver the bit-stream sequentially otherwise the con�guration
mechanism will not be initialized correctly and the con�g-
uration process will fail. Depending on the con�guration
mode, data is delivered serially or in parallel. In our scheme,
the only hardware overhead introduced is a comparator and
a multiplexer. The output of the decompression process is

178

Dictionary
Memory

Index
Memory

Configuration
Bit-Stream
Memory

Counteraddress

data to FPGA
configuration
mechanism

 ?=0

Counter

to FPGA
configuration
mechanism

address addressM
U
X

data

symbol

data
pointer

(a) Typical read of the configuration bit-stream

(b) Decompression-based reconstruction of the configuration bit-stream

Figure 6: Our con�guration decompression ap-
proach

identical to the data delivered by the conventional scheme.
Moreover, the data rate for delivering the con�guration data
is the same for both the schemes and depends only on the
memory bandwidth. The decompression process does not
add any time overhead to the con�guration time.

5. EXPERIMENTS & COMPRESSION RE-
SULTS

Our con�guration compression technique was applied to
con�guration bit-streams of several real-world applications.
The target architecture was the VIRTEX series FPGAs [14].
For mapping onto the VIRTEX devices, we used the Foun-
dation Series v2.1i software development tool. Each applica-
tion was mapped onto the smallest VIRTEX device that met
the area requirements of the corresponding implementation.
The size of the con�guration bit-streams ranged from 1:7
Mbits to 6:1 Mbits. In Table 1, the con�guration bit-stream
sizes for each implementation are shown.
The considered con�guration bit-streams corresponded to

implementations of cryptographic and signal processing al-
gorithms. The cryptographic algorithms were the �nal can-
didates of the Advanced Encryption Standard (AES):
MARS, RC6, Rijndael, Serpent, and Twofish. Their im-
plementations included a key-scheduling unit, a control unit,
and one round of the cryptographic core that was used iter-
atively. Implementation details of the AES algorithms can
be found in [5]. We have also implemented digital signal
processing algorithms using the logic cores provided with
the Foundation 2.1i software tool [14]. A 1024� and a 512�
point complex FFT were implemented that were able to
perform IFFT too. In addition, four 256�tap FIR �lters

were mapped onto the same device. In the latter implemen-
tation, all �lters can process data concurrently. Finally, a
1024�tap FIR �lter was also implemented.
The con�guration bit-streams were processed byte� by�

byte during compression, that is, the symbol for the dictio-
nary entries was chosen to be an 8-bit word. As a result, the
decompressed data is delivered as 8-bit words and, thus, par-
allel modes of con�guration can be supported. Note that the
maximum number of bits used in parallel modes of con�gu-
ration is typically 8 bits [1, 2, 14]. If the con�guration mode
requires less than 8 bits (e.g., serial mode), an 8�to�n bit
converter can be used, where n is the number of bits required
by the con�guration mode. In this work, for each con�gu-
ration bit-stream, we do not attempt to �nd the optimal
bit-length for the symbol that leads to the best compression
results.
The compression results are shown in Tables 1 and 2.

The results are organized with respect to the optimization
stages of our technique (see Figure 2). The results shown for
LZW correspond to the construction of the dictionary and
the index using the LZW algorithm. The only di�erence
compared to Figure 2 is that the LZW results include the
optimization of merging common pre�x strings in the dictio-
nary. Hence, the results shown for Compact correspond to
the deletion of the non-referenced nodes in the dictionary.
Finally, the results shown for Heuristic correspond to the
optimizations performed by our heuristic and are also the
overall results of our compression technique.
In Table 1, the achieved compression ratios are shown.

The compression ratio is the ratio of the total memory re-
quirements (i.e., memory to store dictionary and index) to
the bit-stream size. In addition, in Table 1, lower bounds
on the compression ratios are shown. For our compression
technique, the lower bound for each bit-stream corresponds
to the entropy of the bit-stream with respect to the LZW
compression algorithm. As mentioned in Section 3, the com-
pression ratio is a�ected by the entropy of the data to be
compressed [11]. We have calculated the lower bound by di-
viding the index size derived using LZW by the bit-stream
size. Therefore, the lower bound corresponded to the com-
pression ratio that can be achieved by LZW for software-
based applications (assuming 8� bit symbols).
In Table 2, the compression results are shown in terms

of the memory requirements. The memory requirements
for the dictionary are ndictionary � (8 + dlog2 ndictionarye)
bits, where ndictionary is the number of memory entries of
the dictionary. Similarly, the memory requirements for the
index are nindex�dlog2 ndictionarye bits, where nindex is the
number of memory entries of the index and dlog2 ndictionarye
is the number of bits required to address the dictionary.
LZW In software-based applications, only the index is

considered in the calculation of the compression ratio. In ad-
dition, statistical encoding schemes are utilized for further
compressing the index. As a result, in typical LZW appli-
cations, superior compression ratios (i.e., 10 � 20 %) have
been achieved by using commercially available software pro-
grams (e.g., compress; gzip). However, such commercial
programs are not applicable to our compression problem.
As discussed earlier, in the context of embedded environ-
ments, both the dictionary and the index are considered in
the calculation of the compression ratio. The size of the
derived dictionaries was comparable to the size of the orig-
inal bit-streams. Therefore, negative compression occurred,

179

Table 1: Compression ratios for the con�guration bit-streams

179 %
119 %
198 %
165 %
186 %
140 %
159 %
180 %
177 %

 96 %
 69 %
104 %
 95 %
103 %
 85 %
 89 %
 97 %
 96 %

 82 %
 59 %
 89 %
 79 %
 86 %
 68 %
 72 %
 80 %
 79 %

MARS
RC6

Rijndael
Serpent
Twofish
FFT-256
FFT-1024

4 x FIR-256
FIR-1024

LZW Compact Heuristic

Compression ratioImplementation

3608000
2546080
3608000
2546080
6127712
1751810
1751840
1751840
1751840

Bit-stream
size (bits)

 73 %
 48 %
 81 %
 67 %
 76 %
 56 %
 64 %
 73 %
 71 %

Lower Bound

Table 2: Dictionary and Index memory requirements.

3827070 26
1811575 25
4231448 26
2511275 25
6746558 26
1479408 24
1657900 25
1883900 25
1849725 25

1116912 24
 667575 23
1149840 24
 826152 24
1919550 25
564144 23
574034 23

 575897 23
 580612 23

172032 21
172032 21
172032 21
172032 21
360448 22
81920 20
81920 20
81920 20
81920 20

2644920 18
1227536 17
2924874 18
1703332 17
4666104 18
 982192 16
1123037 17
1276717 17
1253478 17

2351040 16
1083120 15
2599888 16
1603136 16
4406876 17
920805 15
990915 15

1126515 15
1106010 15

2968618 13
1516596 13
3227981 13
2017720 13
5273846 14
1107396 12
1181964 12
1330044 12
1303416 12

MARS
RC6

Rijndael
Serpent
Twofish
FFT-256
FFT-1024

4 x FIR-256
FIR-1024

LZW Compact Heuristic LZW Compact Heuristic

Index
memory requirements & word-length

(bits)

Dictionary
memory requirements & word-length

(bits)

Implementation

that is, the memory requirements for the dictionary and the
index were greater than the bit-stream size.
Compact By deleting the non-referenced nodes in the

dictionary, the number of the dictionary entries was reduced
by a factor of 2:4 � 3:4. As a result, the number of bits
required to address the dictionaries was also reduced by 1
to 2 bits a�ecting the word-length of both the dictionary and
the index memories accordingly. Compared with the LZW
results, the memory requirements for the dictionaries were
reduced by a factor of 2:5 � 3:7. In addition, the memory
requirements for the indices were also reduced by 6� 13 %
even though the number of codewords remained the same.
Overall, the compression ratios achieved at this optimization
stage were 69 � 104 %.
Heuristic Finally, the overall savings in memory were

further improved by our heuristic. The goal of our heuristic
was to reduce the size of the dictionary at the expense of the
index expansion. Indeed, compared to the Compact results,
the dictionary entries were reduced by a factor of 2:9� 6:2
while the number of codewords was increased by 35� 50 %.
The number of bits required to address the dictionary was
reduced by 2 to 3 bits a�ecting the word-length of both
the dictionary and the index memories accordingly. As a
result, even though the number of codewords was increased,
the total memory requirements were reduced. Compared
with the Compact results, the memory requirements of the
dictionaries were further reduced by a factor of 3:2 � 7:1
while the memory requirement of the indices were increased

by 18�40 %. Overall, the compression ratios achieved at this
optimization stage were 59 � 89 %. Our heuristic improved
the compression ratios provided by the Compact results by
14 � 20 %.
Considering the compression ratios achieved by LZW and

the lower bounds on them, our compression technique per-
forms well. The improvements over the LZW results were
signi�cant. On the average, our technique reduced the dic-
tionary memory requirements by 94:5 % while the index
memory requirements were increased by 11:5 %. As a re-
sult, our compression results were close to the lower bounds.
On the average, our compression ratios were higher than
the lower bounds by 14:5 %. Overall, our compression tech-
nique reduced the memory requirements of the con�guration
bit-streams by 0:35 � 1:04 Mbits. The savings in memory
corresponded to 11 � 41 % of the original bit-streams.

6. RELATED WORK
Various lossless compression techniques have been exten-

sively studied in the literature. The majority of these tech-
niques have been developed for software-based applications.
However, in embedded systems, the implementation cost be-
comes a very signi�cant issue. In [9, 10], dictionary-based
compression techniques were utilized for code minimization
in embedded processors.
In [10], a �xed-size dictionary was used for compressing

programs. The technique was applied to several instruction
sets (i.e., PowerPC, ARM, i386). The size of the programs

180

was in the order of hundreds of bits. No detailed infor-
mation was provided regarding the algorithm used to build
the dictionary. The authors mainly focused on tuning the
dictionary parameters to achieve better compression results
based on the speci�c set of programs. However, such an
approach is unlikely to achieve the same results for FPGA
con�gurations where the bit-stream is a data �le and not an
instruction-based program. In addition, Hu�man encoding
was used for compressing the codewords. As a result, dedi-
cated hardware resources were needed for decompressing the
codewords.
In [9], the dictionary was built by solving a set-covering

problem. The dictionary representation was based on the
External Pointer Macro compression model. According to
this model, a phrase is called by pointing to a memory ad-
dress and reading as many consecutive memory addresses
as the phrase length. A heuristic was developed to merge
dictionary entries by subsuming a dictionary entry i by an-
other entry j if i = j. While this heuristic results in a
minimal-size dictionary (i.e., minimal number of entries),
it also results in entries of maximal-length. This happens
because the goal was to substitute maximal number of en-
tries by keeping the ones that \cover" maximal number of
them. Hence, the longest phrases were kept in the dictio-
nary. Moreover, the size of the considered programs was
0.5-10 Kbits and the achieved compression ratios (i.e. size
of the compressed program as fraction of the original pro-
gram) were approximately 85-95 %. Since the technique in
[9] was developed for code size minimization, it is not fair to
make any compression ratio comparisons with our results.
Work related to FPGA con�guration compression has been

reported in [7, 8]. In [7], the proposed technique took advan-
tage of the characteristics of the con�guration mechanism of
the Xilinx XC6200 architecture. Therefore, the technique is
applicable only to that architecture. In [8], runlength com-
pression techniques for con�gurations have been described.
Again, the techniques were developed speci�cally for the Xil-
inx XC6200 architecture. Addresses were compressed using
runlength encoding while data was compressed using LZ

compression (sliding-window method [11]). Dedicated on-
chip hardware was required for both methods. A set of con-
�guration bit-streams (2� 88 Kbits) were used to �ne-tune
the parameters of the proposed methods. A 16�bit size win-
dow was used in the LZ implementation. While this window
size led to good results for these bit-streams, it is impractical
for larger con�guration bit-streams. Moreover, a �ne-tuned
scheme for larger con�guration bit-streams would lead to
larger size windows. As stated in [8], larger size windows
impose a fairly high hardware penalty with respect to the
bu�er size as well as the supporting hardware.

7. CONCLUSIONS
In this paper, a novel con�guration compression technique

was proposed. Our goal was to reduce the memory required
to store con�gurations in FPGA-based embedded systems
and achieve high decompression e�ciency. Decompression
e�ciency corresponds to the decompression hardware cost
as well as the decompression rate. Although data compres-
sion has been extensively studied in the past, we are not
aware of any prior work that addresses con�guration com-
pression for FPGA-based embedded systems with respect
to the cost and speed requirements. Our compression tech-
nique is applicable to any SRAM-based FPGA device since

it does not depend on speci�c features of the con�guration
mechanism. The con�guration bit-streams are processed as
raw data without considering individual semantics. Hence,
both complete and partial con�guration schemes can be sup-
ported. The required decompression hardware is simple and
does not depend on the individual semantics of con�guration
bit-streams or speci�c features of the con�guration mecha-
nism. Moreover, the decompression process does not a�ect
the time to con�gure the device. Using our technique, we
have demonstrated 11�41 % savings in memory for various
con�guration bit-streams of real-world applications. Consid-
ering the lower bounds derived for the compression ratios,
the achieved compression ratios were higher than the lower
bounds by 14:5 % on the average.
Future work includes the enhancement of our technique by

incorporating a unified-dictionary, that is, deriving a single
dictionary for a set of con�gurations. The latter will result in
simpli�ed memory organization since the word-length of the
index memory will be the same across di�erent algorithms.
Possible solutions could be to process all con�guration bit-
streams as one entity or to process each con�guration bit-
stream individually and merge their dictionaries later. For
updating the embedded system with a new con�guration,
only the index is derived based on the unified dictionary.
In addition, we plan to develop a skeleton-based approach

for our compression technique. A skeleton is the \intersec-
tion" of a set of con�guration bit-streams. By removing the
data redundancy of the skeleton in the bit-streams, savings
in memory can be achieved. The original con�gurations are
reconstructed based on the skeleton. Given a set of con-
�gurations, we plan to address the problem of deriving a
skeleton to maximize the savings in memory and/or to mini-
mize the con�guration time by using partial recon�guration.
Related problems are also addressed by the USCMAARCII

project (http://maarcII.usc.edu). This project is develop-
ing novel mapping techniques to exploit dynamic recon�g-
uration and facilitate run-time mapping using con�gurable
computing devices and architectures [3, 4, 12].

8. REFERENCES
[1] Altera PLD Devices,

http://www.altera.com/html/products/about.html

[2] Atmel FPGA,
http://www.atmel.com/atmel/products/prod3.htm

[3] K. Bondalapati and V. K. Prasanna, \Loop Pipelining
and Optimization for Run Time Recon�guration",
Recon�gurable Architectures Workshop, May 2000.

[4] A. Dandalis, \Dynamic Logic Synthesis for
Recon�gurable Devices", PhD Thesis, Dept. of
Electrical Engineering, University of Southern
California. Under Preparation.

[5] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, \A
Comparative Study of Performance of AES Final
Candidates Using FPGAs", Workshop on
Cryptographic Hardware and Embedded Systems,
August 2000.

[6] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, \An
Adaptive Cryptographic Engine for IPSec
Architectures", IEEE Symposium on
Field-Programming Custom Computing Machines,
April 2000.

[7] S. Hauck, Z. Li, and E. J. Schwabe, \Con�guration
Compression for the Xilinx XC6200 FPGA", IEEE

181

Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 18, No. 8, pp. 1107-1113,
August, 1999.

[8] S. Hauck, W. D. Wilson, \Runlength Compression
Techniques for FPGA Con�gurations", IEEE
Symposium on Field-Programmable Custom
Computing Machines, April 1999.

[9] S. Laio, S. Devadas, and K. Keutzer, \A
Text-Compression-Based Method for Code Size
Minimization in Embedded Systems", ACM
Transactions on Design Automation of Electronic
Systems, Vol. 4, No. 1, pp. 12-38, January 1999.

[10] C. Lefurgy, P. Bird, I-C. Cheng, and T. Mudge,
\Improving Code Density Using Compression
Techniques", 29th Annual IEEE/ACM Symposium on
Microarchitecture, December 1997.

[11] M. Nelson, J-L. Gaily, \The Data Compression Book",
M&T Books, New York, 1996.

[12] R. Sidhu, S. Wadhwa, A. Mei, and V. K. Prasanna,
\A Self-Recon�gurable Gate Array Architecture",
International Conference on Field Programmable
Logic and Applications, September 2000.

[13] World Semiconductor Trade Statistics Organization,
http://www.wsts.org

[14] Xilinx Virtex Series FPGAs,
http://www.xilinx.com/products/virtex.htm

182

	Main Page
	FPGA'01
	Front Matter
	Table of Contents
	Author Index

