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Abstract - The large magnitude of supply/ground bounces, which arise from power mode 

transitions in power gating structures, may cause spurious transitions in a circuit. This can result 

in wrong values being latched in the circuit registers. We propose a design methodology for 

limiting the maximum value of the supply/ground currents to a user-specified threshold level while 

minimizing the wake up (sleep to active mode transition) time. In addition to controlling the sudden 

discharge of the accumulated charge in the intermediate nodes of the circuit through the sleep 

transistors during the wake up transition, we can eliminate short circuit current and spurious 

switching activity during this time. This is in turn achieved by reducing the amount of charge that 

must be removed from the intermediate nodes of the circuit and by turning on different parts of the 

circuit in a way that causes a uniform distribution of current over the wake up time. Simulation 

results show that, compared to existing wakeup scheduling methods, the proposed techniques result 

in a one to two orders of magnitude improvement in the product of the maximum ground current 

and the wake up time. 

 

I. Introduction 

The most obvious way of reducing the leakage power dissipation of a VLSI circuit in the 

STANDBY state is to remove its supply voltage. Multi-threshold CMOS (MTCMOS) technology 

provides low leakage and high performance operation by utilizing  high speed, low Vt transistors 

for logic cells and low leakage, high Vt devices as sleep transistors. Sleep transistors disconnect 

logic cells from the power supply and/or ground to reduce the leakage in sleep mode.  More 

precisely, this can be done by using one PMOS transistor and one NMOS transistor in series with 

the transistors of each logic block to create a virtual ground and a virtual power supply as depicted 
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in Figure 1. In practice only one transistor is necessary. Because of the lower on-resistance, NMOS 

transistors are usually used. 
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Figure 1: Power gating circuit. 
 

In the ACTIVE state, the sleep transistor is on. Therefore, the circuit functions as usual. In the 

STANDBY state, the transistor is turned off, which disconnects the gate from the ground. To lower 

the leakage, the threshold voltage of the sleep transistor must be large. Otherwise, the sleep 

transistor will have a high leakage current, which will make the power gating less effective. 

Additional savings may be achieved if the width of the sleep transistor is smaller than the combined 

width of the transistors in the pull-down network. In practice, Dual VT CMOS or Multi-Threshold 

CMOS (MTCMOS) is used for power gating [1][2]. In these technologies there are several types of 

transistors with different VT values. Transistors with a low VT are used to implement the logic, 

while high-VT devices are used as sleep transistors.  

To guarantee the proper functionality of the circuit, the sleep transistor has to be carefully sized to 

decrease the voltage drop across it when the sleep transistor is turned on. The voltage drop 

decreases the effective value of the supply voltage that the logic gate receives. In addition, it 

increases the threshold voltage of the pull-down transistors due to the body effect. This 
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phenomenon in turn increases the high-to-low transition delay of the circuit. The problem can be 

solved by using a large sleep transistor. On the other hand, using a large sleep transistor increases 

the area overhead and the dynamic power consumed for turning the sleep transistor on and off. Note 

that because of this dynamic power consumption, it is not possible to save power for very short idle 

periods. There is a minimum duration of the idle time below which power saving is impossible. 

Increasing the size of the sleep transistors increases this minimum duration. 
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Figure 2: Using one sleep transistor for several gates. 

Since using one transistor for each logic gate results in a large area and power overhead, one 

transistor may be used for each group of gates as depicted in Figure 2. Notice that the size of the 

sleep transistor in this figure ought to be larger than the one used in Figure 1. To find the optimum 

size of the sleep transistor, it is necessary to find the vector that causes the worst case delay in the 

circuit. This requires simulating the circuit under all possible input values, a task that is not possible 

for large circuits. 

In this technology, also called power gating, wake up latency and power plane integrity are key 

concerns. Assuming a sleep/wake up signal provided from a power management unit, an important 

issue is to minimize the time required to turn on the circuit upon receiving the wake up signal since 

the length of wake up time can affect the overall performance of the VLSI circuit. Furthermore, the 

large current flowing to ground when sleep transistors are turned on can become a major source of 
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noise on the power distribution network, which can in turn adversely impact the performance and/or 

functionality of the other parts of the circuit. There is trade off between the amount of current 

flowing to ground and the transition time from the sleep mode to the active mode. 

In this paper we introduce an approach for reducing the transition time from sleep mode to active 

mode for a circuit part while assuring power integrity for the rest of the system by restricting the 

current that flows to ground during the transition. The problem is to minimize the wakeup time 

while constraining the current flowing to ground during the sleep to active mode transition. During 

the process we will also consider another important objective which is limiting the number of sleep 

transistors. This paper is the extended version of the conference paper publication [3]. 

Section 2 describes the previous work. In Section 3 we present the key observations that our 

technique is based on. Section 4 presents problem statement and our method for graph modeling of 

the problem. A two step solution is offered in section 5 while an improved method is introduced in 

section 6. Alternative approaches for reducing the ground bounce are proposed in Section 7. 

Simulation results are presented in Section 8. Section 9 concludes the paper by briefly summarizing 

our results. 

II. Previous Work 

Optimal sizing of the sleep transistors for an arbitrary circuit to meet a performance constraint is an 

important design problem. Sleep transistors cause logic cells to slow down because of the voltage 

drop across the functionally-redundant sleep transistors and due to the increase in the threshold 

voltages of logic cell transistors as a result of the body effect. The performance penalty of a sleep 

transistor depends on its size and the amount of current that goes through it. In [4], sleep transistors 

are modeled as resistors and subsequently sized according to the following approximation for 

propagation delay: α)/( txddddLpd VVVVCT −−∝  where CL is the total load capacitance, Vdd is the supply 

voltage, Vx is the voltage drop across the sleep transistor, Vt is the threshold voltage and α is a 

constant modeling the short channel effects. This delay model is used to bound the performance 

penalty for the worst case input vector. In [5], the authors propose a different method for sizing the 

sleep transistors. They first size the sleep transistor of each cell to limit the performance 

degradation to a specified level. Next, they merge sleep transistors whose discharge current patterns 
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are mutually exclusive based on a unit delay model. In [6], the authors use a more precise delay 

model to do the same steps. In [7], the authors propose a power gating structure to support an 

intermediate power-saving mode and a traditional power cut-off mode. The idea is to add a PMOS 

transistor in parallel with each NMOS sleep transistor whereby applying zero voltage to the gate of 

the PMOS transistor the circuit can be put in the intermediate mode. In the intermediate mode 

leakage reduction and data retention are realized. Furthermore, the magnitude of power supply 

voltage fluctuations during power-mode transitions is reduced by transitioning through this 

intermediate mode while changing between sleep and active modes. In the cut-off mode the gate of 

the additional PMOS transistor is connected to Vdd.  

None of these works attempt to minimize the wake up time and the noise generated by the power 

gating structure and until recently only few researchers have addressed this problem. In [8] the 

authors introduce two power mode transition techniques to reduce the ground bounce while turning 

on the circuit. Instead of quickly turning on a large sleep transistor to suddenly reduce the resistance 

between the virtual ground and the (actual) ground, they propose to gradually reduce the resistance 

of the sleep transistor in order to limit the peak current flowing to the ground. This can be 

accomplished by employing one of the following two methods: 

Parallel Sleep Transistors (Parallel-ST): Use of parallel-connected sleep transistors with gradually 

increasing widths (cf. Figure 3.) The sleep transistors are turned on in several time steps, starting 

from the smallest one. Since the voltage of the virtual ground is initially at its maximum value, a 

relatively high resistance value is used to discharge it; this limits the peak current. In the subsequent 

time steps, the resistance of the path between virtual and actual grounds is reduced by turning on 

wider sleep transistors. 

 

 

 

Figure 3. Power gating structure consisting parallel sleep transistors. 
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Staircase Sleep Signal (Staircase-SS): Use of a single sleep transistor, but turning it on gradually. 

Initially a voltage less than Vdd is used to weakly turn on the sleep transistor and thus, somewhat 

reduce the voltage of the virtual ground. In subsequent steps, the sleep transistor is turned on more 

strongly to further reduce the resistance between the virtual and actual grounds.  

The two methods of [8] are restricted to using one sleep signal for the entire circuit block and 

provide only a temporal solution to the peak current flow problem. In contrast, in this paper, we 

provide an efficient spatio-temporal solution with its supporting power gating structure (i.e., with 

the ability to turn on different logic cells in the circuit block at different times.) This solution 

enables us to minimize the wake up time subject to an upper bound constraint on the total 

maximum current through the sleep transistors.  

III. Key Observations 

It is a well known fact that there is no need to have both NMOS and PMOS sleep transistors to 

encapsulate a logic cell. In particular, NMOS sleep transistors can be used to separate the (actual) 

ground from the virtual ground of the logic cell. Upon entering the sleep mode, a circuit block is 

disconnected from the ground. This causes the voltage levels of some intermediate nodes in the 

circuit block to rise toward Vdd. When the circuit block is woken up, the nodes will transition to 

zero. This transition in turn causes the logic cells in the immediate fanout of the node to carry a 

potentially large amount of short-circuit current as explained next. Consider the inverter chain 

shown in Figure 4, which is connected to the ground through an NMOS sleep transistor. 

 

 

 

 

 

Figure 4. A chain of four inverters with an NMOS sleep transistor. 

If the input of the circuit is low, then, in the active mode (i.e., SLEEP=0), VA=VC=VE=VG=0 and 

VB=VD=VDD. When entering the sleep mode, the voltages of B and D do not change, but the 

voltages of C, E, and G gradually increase and will be equal to VDD if the sleep period is long 

enough (note the driver of signal A is not controlled by the SLEEP signal). This happens because 
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the leakage through the PMOS transistors will charge up all the floating capacitances. Figure 5 

shows the voltage waveforms of nodes C, E, and G generated by HSPICE simulation. While 

turning on the sleep transistor, nodes G, C and E discharge as depicted in Figure 6. 

 

Figure 5. Voltage waveforms for nodes C, E and G of the circuit in Figure 2 when the circuit is in the 
sleep mode. 

 

Figure 6. Voltage waveforms for nodes C, E and G of the circuit in Figure 2 when the circuit is 
transitioning from the sleep to active mode. 

As one can see when the voltage of G quickly reaches its final value, the voltages of C and E are 

still between zero and VDD. This results in a significant amount of short circuit current in the logic 

cells driven by nodes C and E since these nodes turn on both transistors of the inverters present in 

their fanout.  
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Figure 7. Total current flowing to ground while turning on the circuit. 

The current shown in Figure 7 flowing through the sleep transistor is the result of not only 

discharging the accumulated charge in some intermediate nodes (i.e., C, E, and G in the inverter 

chain example), but also the short circuit current flowing through some logic cells of the circuit 

(e.g., the third inverter in the chain which is driven by signal C). The smaller the number of nodes 

that are discharged, the smaller the amount of current that flows to ground. 

The objective is to design a power gating structure and a wake up strategy to minimize the wakeup 

time while constraining the current flowing to ground during the sleep to active mode transition. 

Our approach is driven by the desire to avoid short circuit currents and spurious transitions by 

turning them on at proper times. The basic idea is to turn on each cell only if the voltage levels of 

the logic cells in its fanin have already reached their final values.  

Consider an inverter chain with one sleep transistor per cell as depicted in Figure 8. 

 

 

 

 

 

 

Figure 8. A chain of inverters with separate sleep transistors. 

If we turn on the sleep transistors one at a time starting from the first inverter on the left, the short 

circuit current will be zero. The reason is that when each cell is turned on, its fanout cell continues 
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to stay in the sleep mode. Therefore, the possible transition of the output node of the logic cell does 

not result in any short circuit current in its fanout cell. Furthermore, there will be no spurious 

transition in the circuit since the inputs of the logic cells that have been turned on will not change at 

a later time. Figure 9 shows the total current flowing to ground while turning on the circuit of 

Figure 8 by employing this wake up strategy. As we can see, compared to the data of Figure 7, the 

maximum current in Figure 9 is reduced from 375µA to 280µA.  

 

Figure 9. Total current flowing to ground while turning on the circuit. 

There are several peaks in the current waveform of Figure 9. This is due to the fact that the sleep 

transistors are turned on in four steps. This obviously increases the wake up time. Note that in 

Figure 6, we can simultaneously turn on the first and third inverters before turning on the second 

and forth inverters without producing any short circuit current. This will reduce the wake up delay 

of the circuit. In the next section, we use a constraint graph to capture the zero-short-circuit current 

requirement for the power gating structure.  

IV. Constraint Graph and Problem Formulation  

It is assumed that the circuit has been in the sleep mode for a sufficiently long period of time (about 

100µs as can be seen in Figures 3) so that the output voltages of all its logic cells have risen to their 

final steady state level. In addition the vector that is applied to the circuit primary inputs when 

entering the sleep mode and during that time period is known. This vector, which we call the sleep 

vector, remains unchanged during the wake up time.  
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The Constraint Graph, G(V,E), is a weighted directed acyclic graph. Each vertex, vi, in the graph 

corresponds to a logic cell in the circuit. There is a directed edge e(vi, vj) from vi to vj exactly if vj is 

in the immediate fanout of vi and the output of vi transitions from 1 to 0 during the circuit turn-on 

time under the specified sleep vector. There is a positive weight, w(i, j) = TSETTLE(vi), associated 

with the edge e(vi, vj), where TSETTLE(vi) denotes the time required for the output of cell vi to settle to 

its final value when its associated sleep transistor is turned on. Notice that TSETTLE(vi) values could 

be incorporated in the graph as weights of nodes rather than edges. However, as will be seen later, 

these weights will be combined with another set of weights that should of necessity be defined on 

the edges. It is for this reason that we have defined w(i, j) as edge weights.  

Its value is calculated by circuit simulation as follows. Since the sleep vector is known and each 

logic cell is turned on only after all its fanin cells have settled to their final values, the input values 

of the logic cell are known at the time that the sleep transistor is turned on. Therefore, we can 

simulate the cell under the specific sleep vector value to find TSETTLE(vi) and the current profile of 

the cell (i.e., ITURNON(vi, t)) after its sleep transistor is turned on at t=0. Notice that ITURNON(vi, t) = 0 

for t<0 or t>TSETTLE(vi). Furthermore, let’s denote by TTURNON(vi) the time at which the wakeup signal 

for turning on the sleep transistor associated with cell vi arrives and refer to it as the turn-on time of 

cell vi. To guarantee that there is no short circuit current during the wakeup time, the following 

constraint must be enforced:  

TTURNON(vj) > TTURNON(vi) + TSETTLE(vi) = TTURNON(vi) + w(i,j) . 

The contribution of vi to the total discharge current at time t is ITURNON(vi, t–TTURNON(vi)) and the total 

turn-on current is  ITURNON(t)= ΣITURNON(vi, t–TTURNON(vi)),  where the summation is taken over all 

cells vi. The total wakeup time, TWAKEUP, is the time that the output last cell has settled to its final 

value i.e., TTURNON = max(TTURNON(vi)+ TSETTLE(vi)) where the maximum is taken over all cells vi. 

The objective is to minimize TTURNON while limiting the total turn-on current by a given threshold 

i.e.,  ITURNON(t)<IMAX . Logic cells with the same turn-on time can share a single sleep transistor. It is 

beneficial to limit the number of sleep transistors since it reduces the routing complexity. In our 

approach, we minimize the number of sleep transistors by matching the turn-on times of as many 

logic cells as possible without violating the aforementioned constraints. Consequently, all cells in 

the circuit are grouped into a minimum number of clusters. A single sleep transistor is allocated to 

each logic cell cluster, and a sleep/wake up signal is assigned to each such sleep transistor. The size 

of sleep transistors can be determined by using well known methods e.g., those in [5] and [6]. 
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Clustering is done in such a way that the total turn-on current of each cluster does not exceed the 

given threshold IMAX. Let C1, C2, …, CM  denote the clusters. Then the turn on current of cluster Ck is 

( , ) ( , )
i k

TURNON k TURNON i MAX
v C

I C t I v t I
∈

<∑ . 

A necessary condition to prevent the flow of short circuit current during the wakeup time may be 

stated as follows. For cells vi and vj to belong to the same cluster, TTURNON(vj) = TTURNON(vi) i.e.,  no 

edge can exist between vi and vj in the constraint graph. Unfortunately, this condition alone does not 

guarantee zero short circuit current. The sufficiency condition shall be described in the context of 

the Cluster Constraint Graph defined next. 

We define a new directed graph, GC, called the Cluster Constraint Graph. Vertices of this graph 

correspond to clusters C1, C2, …, CM. There is an edge from Ci to Cj in GC exactly if there is at least 

one edge from some node of Ci to some node of Cj in the original constraint graph G. There is a 

positive weight associated with each edge in GC. The edge weight is calculated as follows:   

w(CK,CL) = max{w(vi,vj)|vi∈CK, vj∈CL}. Clearly, if there is an edge e(vi, vj) where both vi and vj are 

in the same cluster, their corresponding logic cells will be turned on at the same time, and the 

output of node vi will be making a falling transition. Hence, a significant amount of short circuit 

current can flow through cell vj (cf. discussion following Figure 6), which is undesirable. To avoid 

this scenario, we shall show below that there ought not to exist any directed path between any two 

vertices in the same cluster (this path evidently goes through some vertices outside that cluster.) 

Although G is acyclic (assuming combinational logic circuits), there is no guarantee that a 

clustering solution will result in an acyclic GC. An example is provided in Figure 10 where there 

exists a cycle between clusters CK and CL. Clearly, there is no way to schedule CK and CL to avoid 

short circuit current. If CL is turned on after CK, there will be a cell vd∈CL driving another cell 

vb∈CK which is already on. Therefore, cell vb will consume short circuit current. A similar problem 

arises if CL is turned on first. Hence, to avoid the flow of short circuit current during the circuit 

wakeup process, GC must be acyclic. To achieve this requirement, the following constraint is 

enforced on the clusters. If nodes vi and vj are in the same cluster Ck, then there ought not exist any 

directed path from vi to vj or vice versa in the constraint graph, G . 
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Figure 10.  (i) An example of a circuit, (ii) The constraint graph G, (iii) A cyclic cluster constraint 
graph and (iv) A cycle free cluster constraint graph.  

To better explain the clusters in the context of the constraint graph, we may construct G’(V, E’), the 

complement of graph G(V, E), as follows.  G’ is an undirected graph with vertex set V. 

Furthermore, there exist an undirected edge e’(vi, vj) between vi and vj in G’ exactly if there exists 

no directed path between vi and vj in graph G. The vertices that belong to the same cluster will 

create a clique in graph G’(V, E’). A clustering of the cells in G(V, E) corresponds to a partitioning 

of the vertices of G’(V, E’) into a number of cliques. For each clique in G’(V, E’), the summation of 

turn-on currents of cells that belong to that clique should not exceed IMAX . 

Consider a clustering of the cells where a sleep transistor is assigned to each cluster. The problem is 

to determine the turn-on times of the clusters so as to minimize the overall circuit turn-on time 

without causing short circuit current or violating the IMAX  limit.  

The constraint imposed on the sleep (or wake up) signal scheduling by the presence of an edge 

e(CK,CL) in GC is:  

TON(CK)+w(CK,CL) < TON(CL)  

where TON(CK) and TON(CL) are the turn-on times of clusters CK and CL,, respectively. 
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For a given ordering of clusters, TON(C1)<…<TON(CK)<TON(CK+1)< ...<TON(CM), it may be possible 

to shift the current waveforms of two clusters ITURNON(CK, t) and ITURNON(CK+1, t) to overlap one 

another without violating the constraint ITURNON (t)<IMAX. The question is how close TON(CK) and 

TON(CK+1) can be scheduled without violating the IMAX constraint. To address this problem, we 

augment GC with a new set of weighted directed edges d(CK,CK+1) as follows: 

d(CK,CK+1) = min{∆T} s.t.  ITURNON(CK , t)+ITURNON(CK+1, t-∆T)< IMAX 

where ITURNON(CK+1,t-∆T) is the waveform ITURNON(CK+1, t) shifted right on the time axis by an 

amount ∆T (cf. Figure 11).  

 

 

 

 

 

 

 

 

Figure 11. Shifting clusters turn on current waveforms. 

Next, we combine edge weights w(CK,CL) and d(CK,CL) to construct new edge weights, which 

capture both constraints: 

f(CK,CL) = max{w(CK,CL), d(CK,CL)}. 

For the given ordering of M clusters, the minimum turn-on time can be described as 
1

1
1

( , ) ( )
M

K K SETTLE M
K

f C C T C
−

+
=

+∑ , which is the weight of a path in graph GC with edges f(CK,CL) going 

through each vertex exactly once plus TSETTLE(CM)= max{TSETTLE(vi)|vi∈CM}. 

The next section presents an algorithm to minimize the turn on time for an arbitrary combinational 

circuit. 

IMAX 

TTURNON(CK) TTURNON(CK+1) 

ITURNON(CK, 
 t−TTURNON(CK))) 

d(CK,CK+1) 

t 

ITURNON(CK+1, 
 t−TTURNON(CK+1)) 



 14

V. Two Step Approach for Clustering and Scheduling  

With these definitions and observations the precise problem statement is as follows: 

Wakeup Signal Scheduling (WSS) Problem: Cluster the logic cells into a minimum number of 

clusters and  find the optimum turn-on times for logic clusters in the circuit so as to minimize the 

overall turn-on time TTURNON of the circuit while eliminating the short circuit current and satisfying 

ITURNON (t) < IMAX for all t.  

We propose an algorithm, called Wakeup Scheduler (WS), to solve the problem. The WS comprises 

of two steps: 

a) Logic Cell Cluster Generator: We partition logic cells in the target circuit into a number 

of disjoint clusters C1, C2, …, CM and assign exactly one sleep transistor with one 

sleep/wake up signal to all the cells in each cluster. The goal of clustering is to minimize 

the number of clusters, M, such that the total turn-on current flowing through the sleep 

transistors associated with each cluster, ITURNON (Ci), does not exceed IMAX. 

b) Inter-Cluster Sleep Signal Scheduler: Consider a single sleep signal that drives the sleep 

transistor of a cluster. The goal of wake up signal scheduling is to provide the ordering and 

relative timing of the activation signals for the M sleep signals in the circuit to minimize the 

overall wake up time while limiting the total current flowing to ground to IMAX.  

In this section, we solve the WSS problem by solving each of the clustering and scheduling 

problems separately and sequentially. Based on the discussion in the previous section, since short 

circuit currents can be avoided by an appropriate turn-on strategy, which in turn reduces the total 

ITURNON, we do clustering and scheduling in a way that short circuit currents are eliminated.  

Logic Cell Clustering (LCC) Problem: Partition logic cells v1,v2,…,vN  into a minimum number, M, 

of clusters C1,C2,…,CM such that there is no cycle in GC and MAX(ITURON(CK)) <  IMAX, for all k 

where, ∑
∈

=
ki Cv

iTURNONkTURNON tvItCI ),(),( . 

where summation is point-wise and MAX is taken over time. Note ITURNON(CK,t) and ITURNON(vi,t) 

represent the turn-on current waveforms, and not scalar current values. 
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Notice that we aim to minimize the number of clusters in order to reduce the number of sleep 

signals that are required in our proposed power gating structure. This will in turn simplify the 

power management circuitry. While using one sleep signal per cluster may seem costly, it is notable 

that in [10], a sleep signal tree (which is merely an inverter tree) similar to a clock tree has been 

proposed to drive large sleep transistors used in power gating structures. It is, therefore, possible to 

generate different timing for sleep signals going to different clusters by simply inserting delay 

elements (buffers) in the sleep signal tree.  

Sleep Signal Scheduling (SSS) Problem: Determine TON(Ck) values to minimize the total turn-on 

time subject to ITURNON(Ck , t) <  IMAX  and TON(Ck)+e(Ck,Cl) < TON(Cl) constraints. 

As described in the previous section, the minimum turn-on time can be described as 

)(),(
1

1
1 MSETTLE

M

k
kK CTCCf +∑

−

=
+

, which is the weight of a path in graph GC that goes through each 

vertex exactly once plus TSETTLE(CM). To consider the settling time of the last cluster, we add a 

dummy vertex CD to the graph with no outgoing edges and the following incoming edges, f(CK,CD) 

= TSETTLE(CK) for all K. 

A scheduling of the clusters corresponds to a Hamiltonian path in the cluster constraint graph. More 

precisely, the WSS problem may be stated as: “Find the minimum weighted directed Hamiltonian 

path on graph GC with edges f(CK,CL).” Recall that a Hamiltonian path between two vertices of a 

graph is one that visits each vertex of the graph exactly once [12]. Clearly, a Hamiltonian path of 

GC must end up on dummy node, CD, which has no outgoing edges. The start vertex can be any 

other node of GC. There are many heuristics for solving the minimum Hamiltonian path problem, 

which is an NP-complete problem [12]. However, because the number of clusters is usually small 

LCC Algorithm 
 
1 For all cells vi in the circuit do { 
2      For all clusters CK created so far do {  
3 If adding vi to cluster CK creates a cycle in GC or 

    violates the IMAX threshold for CK  
4 Then goto step 2; // continue with the next cluster 
5 Else {add vi to cluster Ck; update GC;  

    goto step 1; // continue with the next cell }  
} 

6      Create a new cluster and add vi to it; Update GC;  
   }  
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even for a large circuit, use of an exhaustive search for solving the minimum Hamiltonian path is 

also feasible.  

The scheduling step results in the optimal turn-on times, TTURNON(CK) for a given ordering of 

clusters. If the number of clusters is small, it is possible to exhaustively try all possible orderings, 

and thereby, find the best ordering. Otherwise, an ordering of clusters can be arbitrarily or 

heuristically selected. One heuristic could be as follows: Select an arbitrary cluster C1 as the first 

cluster to be scheduled to wake up. Next find the next cluster C2 that minimizes d(C1,Ci) (i.e., 

d(C1,C2) < d(C1,Ci) for every i) and continue in the same way (i.e., at step k: d(Ck,Ck+1) < d(Ck,Ci).)  

In practice since the shape of current profile of clusters is very similar, the initial ordering used in 

our algorithm is not important. Note that in our method by changing the value of the maximum 

current bound, the wake up time can be reduced. 

VI. Simultaneous Clustering and Scheduling 

In the previous section, we solved the WSS problem by solving each of the clustering and 

scheduling problems separately and sequentially. However, these two steps are not independent. 

The heuristic used for clustering returns only one solution out of many possible solutions. The 

result of scheduling depends on the solution provided by the clustering algorithm. The optimality of 

the overall result for the WSS problem depends on our choice of clustering solutions among many. 

However it is not practical to examine all clustering solutions to find the minimum turn on time. 

This is the main reason that in the previous we adopted the two step approach in which the 

clustering is done without any regard to its effect on the scheduling part.  

In this section we propose a new technique where clustering and scheduling are done 

simultaneously and the overall objective (minimum turn-on) is targeted continuously throughout the 

algorithm. This technique is also a heuristic but tends to produce better results compared to the two-

step approach (cf. our experimental results.) 

The WSS problem is analogous to the task scheduling problem where the constraint graph 

corresponds to a data flow graph and logic cells correspond to tasks. This analogy is useful in 

developing our algorithm. The outline of the Simultaneous Clustering and Scheduling (SCS) is as 

follows. First we determine the set of all cells (vertices), S1, that can be scheduled to turn on at t=0. 

S1 includes those vertices that have no incoming edges in the constraint graph. We are to select a 

subset of S1 to form the first cluster C1 which is scheduled to turn on at t=0. If the total turn-on 
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current of cells in S1 is less than IMAX, then the first cluster C1 will include all of the cells in S1. 

Otherwise, we must select C1 ⊂ S1 to minimize TSETTLE (C1). Next, we move on to cluster C2 which 

will be scheduled to turn on at TON(C2) = f(C1,C2) where f(C1,C2) was defined in section 4. Again, 

we identify the set, S2, of all vertices that are not in C1, but can be included in C2. In particular, each 

vertex vj ⊂ S2 should either have no incoming edges or if there is an incoming edge e(vi,vj), then vi 

must have already been included in C1. We select C2 ⊂ S2 to minimize f(C1,C2)+TSETTLE(C2) (in 

general f(Ck ,Ck+1)+ TSETTLE(Ck+1)) subject to ITURNON(C2 , t) <  IMAX. We continue in this manner to 

construct C3, C4, C5, … until all cells have been placed in some cluster.  

At k where C1, C2, …, Ck-1 have already been computed, Sk is easily obtained as explained next. 

Recall that Sk includes all remaining vertices vj∉C1∪C2∪ …∪Ck-1  that have no incoming edge or if 

there exist an edge e(vi,vj), then vi has already been included in previous clusters i.e.,  

vi∈C1∪C2∪…∪Ck-1. Now, we describe how to determine Ck⊂Sk with the objective of minimizing 

f(Ck ,Ck+1)+ TSETTLE(Ck+1) while not violating the constraint ITURNON(Ck , t) <  IMAX. For each cell vi in 

Sk if adding vi to Ck does not violate the IMAX constraint, we will include vi in Sk . Otherwise (i.e., if 

adding vi to Ck violates the IMAX constraint,) we will consider replacing it with a cell vj∈Ck if such a 

replacement does not violate the IMAX constraint and reduces f(Ck,Ck+1)+TSETTLE(Ck+1). In fact, we 

select vj∈Ck  to be a cell in Ck that results in the maximum reduction in f(Ck,Ck+1)+TSETTLE(Ck+1) 

while not violating the IMAX constraint. The pseudo code of the SCS algorithm is provided below. 

 

SCS Algorithm 
 
Initialize V = {v1, v2, …, vn}; k = 1; 
While V ≠ {} do { 
     Ck = {}; Create Sk; 
     For all vi in Sk do { 
           If max[ITURNON(Ck∪{vi}, t)] < IMAX { 
                Ck = Ck∪{vi}; 
           } 
           Else { 
                vm = arg_min[f (Ck−1 , Ck−{vj}∪{vj})+TSETTLE(Ck−{vj}∪{vj})] where min is  
                taken  over all vj in Ck∪{vi} that max[ITURNON(Ck−{vj}∪{vj}, t)] < IMAX ; 
                Ck = Ck−{vm}∪{vi}; 
           } 
     } 
     V = V−Ck ; 
     k = k+1; 
} 
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VII. Input-driven Sleep Transistor Typing 

In the previous sections, we saw how the short circuit current can be avoided when turning on a 

circuit. Another approach to eliminating the short circuit current during the wakeup is to judiciously 

use an NMOS or a PMOS sleep transistor for each logic cell in the circuit (we call this technique 

Input-driven Sleep Transistor Typing, or ISTT for short.) The basic idea is that, for the given sleep 

vector, if the output of a logic cell in the circuit is logic 1, then an NMOS sleep transistor will be 

used to disconnect that cell from the ground; otherwise, a PMOS sleep transistor will be used to 

disconnect the output from Vdd as is shown in Figure 12. 

 

 

 

 

 

Figure 12. Using NMOS or PMOS sleep transistors. 

With this simple ISTT algorithm, we ensure that every logic cell uses the type of the sleep transistor 

that minimizes the leakage current through the off-path of the logic cell through the well-known 

sleep transistor induced stack effect [11]. As a result, the output of every logic cell under the given 

sleep vector is driven to a hard zero or one logic level. Therefore, no logic cell will have a floating 

output node (which would have resulted in intermediate signal values changing during the sleep 

mode thereby causing a potentially large short-circuit current during transition to the wakeup 

mode.) Furthermore, in this case, the only floating nodes in the circuit are some of the internal 

nodes of logic cells (e.g., the shared diffusion area between source of the NMOS driver transistor 

and drain of the NMOS sleep transistor in the first stage of the inverter chain of Figure 12). These 

internal floating nodes can change during the sleep mode, and therefore, there will be some current 

dissipation on wakeup time to recover their correct values. However, this current is significantly 

less than the current that will flow thru the circuit when only NMOS sleep transistors are used. The 

reason, is that in the latter case, not only some of the internal nodes of logic gates are floating, but 

also, on average, half of the output nodes of the logic cells (which typically drive larger 
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capacitances), will be floating.  Therefore, the peak current on circuit wakeup tends to be much 

larger than the case with ISTT. 

The shortcoming of using NMOS sleep transistors for some gates and PMOS for others is that the 

delay overhead in the active mode is potentially twice that of the case with only NMOS sleep 

transistors. The reason is that in ISTT method, the delays of all logic cells on the critical path of a 

circuit are degraded, whereas the delays of only half of the logic cells are degraded when all sleep 

transistors are NMOS type. Notice that it is possible to combine the ISTT technique with the WS 

technique to achieve even better results by scattering in time the current that must flow to the 

ground, thereby, reducing the peak current; (ISTT+WS.) 

VIII. Simulation Results 

We used HSPICE to find the delay and current profile of each logic cell in a 0.09 µm standard cell 

library for a given sleep vector for all possible input combinations to the logic cell. Next we applied 

our algorithm to a number of circuits from the ISCAS test benchmark suite. Table 1 provides the 

amount of charge that is flowing to the ground during the wakeup time, and the amount of charge 

that is sourced from the power supply during the same time. We report results for the following 

techniques: a single (properly sized) NMOS device is used as the sleep transistor for the entire 

circuit (named Single-N), the two techniques of reference [8] (named Staircase-SS and Parallel-

ST), the proposed WS (Wakeup Scheduler) with NMOS sleep transistors only (WS-N), the ISTT 

(Input-driven Sleep Transistor Typing), and finally the ISTT+WS technique. For each technique 

two columns of data are reported; one includes the amount of charge flowing to ground and the 

other one is the amount of charge coming from supply voltage. The last two columns in the table 

provide the number of clusters for the WS and ISTT+WS techniques. Note that for the latter, there 

are two types of clusters, one for the NMOS sleep transistors and one for the PMOS sleep 

transistors. Both data values are reported in the last column of Table 1 with a ‘+’ separator. All data 

in the tables are generated with a 1.8V Vdd. The clock cycle time for each circuit was set to the 

worst cast delay.  
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Charge Flowing to Gnd   
during Wakeup 

Charge Coming from Vdd during Wakeup #  
Clusters 

Circuit 

Single  
ST 

Staircase  
SS 

Parallel ST WS ISTT ISTT+ 
WS 

WS ISTT+ 
WS 

9sym 8.8 1.8 8.0 1.1 8.1 1.1 7.9 1.1 1.7 3.5 1.4 3.0 9 3+6 
C432 5.5 0.7 5.4 0.6 8.3 2.0 3.8 0.7 1.5 3.2 1.4 3.5 4 2+2 

C1355 10.7 1 10.3 0.9 13.9 1.3 9.2 1.6 3.7 5.2 3.7 5.6 16 5+5 
C1908 24.9 7.1 21.2 3.9 18.7 2.2 19.9 3.0 4.2 8.5 4.2 8.2 15 4+8 
C2670 36.0 10.4 30.0 4.5 30.0 4.5 28.0 4.0 6.2 12.2 6.1 12.4 15 4+8 
C3540 55.0 22.0 48.0 11.0 39.0 4.3 41.0 6.0 7.8 14.6 8.0 17.0 21 6+11 
C5315 49.9 5.97 48.5 5.2 63.2 7.0 34.5 4.5 14.3 29.4 13.4 28.7 18 5+9 
C6288 83.5 23.8 68.4 12.0 61.3 10.4 48.5 6.7 18.7 38.1 16.6 36.3 14 5+6 
C7552 116 41.6 94.8 21.5 127 13.9 61.5 8.9 16.2 57.6 15.3 33.1 22 6+10 

Table 1. Charge sinked to Gnd or sourced from Vdd (pico Coulombs.) 

We observe that the ground current dominates the supply current for techniques that use NMOS 

sleep transistor only. Situation is reversed when both NMOS and PMOS sleep transistors are in use. 

This is because in the former case a lot more nodes (that were incidentally charged up during the 

sleep time) will have to be discharged to Gnd to assume their correct values at the onset of the 

circuit wakeup.  Compared to previous techniques (Single ST, Staircase SS, and Parallel ST), the 

WS technique reduces the amount of charge flowing to the ground during wakeup. Further 

reduction can be achieved by using a mixture of NMOS and PMOS transistors in the circuit to 

reduce the number of internal nodes that need to be discharged during the wake up time. This is 

seen by the significant reduction in the amount of charge that is flowing to the ground for ISTT and 

ISTT+WS methods.  

Table 2 shows the maximum current of the ground and supply lines for all of the above techniques. 

For Parallel-ST, we have used the worst case delay of the circuit as the period of a clock signal, 

which is then used to turn on the sleep transistors in multiple cycles. To make the comparisons 

meaningful, we set the IMAX constraint for the WS algorithm to the best that is achieved by Parallel-

ST and Staircase-SS. As one can see, our proposed techniques reduce the maximum current of 

ground more than any other technique. The Imax values for ISTT are higher than that for WS or 

ISTT+WS because we have not restricted the ground current for ISTT. 
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IGround-max ISupply-max  Circuit 
Single ST Staircase 

SS 
Parallel 

ST 
WS ISTT ISTT 

+WS 
9sym 132 9.0 22 1.0 48 1.3 22 3.3 53 87 19 196
C432 108 5.6 15 0.4 41 2.1 14 2.5 48 76 12 17 

C1355 226 8.7 32 0.6 89 1.6 30 2.8 128 124 33 45 
C1908 329 27.0 51 2.7 119 2.0 48 6.6 138 211 46 45 
C2670 468 36.0 72 3.4 168 4.6 45 5.9 203 295 44 46 
C3540 679 53.0 105 5.4 246 4.0 62 8.0 284 452 59 67 
C5315 1025 47.6 144 3.4 398 6.2 125 13.7 463 718 119 116
C6288 1036 100.5 160 10.8 452 23.8 146 43.1 513 877 139 127
C7552 1391 117.2 214 11.4 703 6.5 197 20.9 811 1337 198 204

Table 2. Maximum ground and supply currents (in mA).  

Table 3 shows the wakeup time and the product of the maximum ground current and the wake up 

delay for all techniques. 

 

TTURNON IGround-max × TTURNON Circuit 
Single ST Staircase 

SS 
Parallel 

ST 
WS ISTT ISTT 

+WS 
9sym 494 65 4000 88 4000 192 624 2.4 45 13.7 252 4.8 
C432 240 26 7800 117 7900 323 854 12.0 46 2.2 350 4.2 

C1355 132 30 6000 192 6500 579 861 5.4 42 25.9 212 7.1 
C1908 267 88 8000 408 8000 952 797 6.1 44 38.3 324 14.9
C2670 578 270 9300 670 9400 1580 1070 9.3 46 48.2 422 18.6
C3540 1500 1019 12000 1260 12100 2952 1096 68.0 47 13.4 473 27.9
C5315 1320 1353 11000 1584 11200 4457 916 115 46 21.3 446 53.1
C6288 2100 2176 18000 2880 18500 8362 1430 209 45 23.1 457 63.6
C7552 2310 3213 20000 4280 21000 14763 1680 331 83 67.3 787 156 

Table 3. Wake up time (in pico Seconds), and product  of the maximum ground current and wake up 
time (in pico Coulombs). 

In terms of the product of maximum ground current and wake up time, again our proposed 

techniques (WS and/or ISTT) are superior to the previous ones by between one to two orders of 

magnitude. Note that this means for a given maximum current threshold, the wake up delay of our 

technique is much smaller than the other methods. From the table it is also clear that using both 

NMOS and PMOS sleep transistors increases the maximum supply current, however, the amount of 

charge that is flowing to the ground is significantly reduced compared to Staircase-SS and Parallel-

ST. Note that for all circuits, the wakeup time calculated by our proposed techniques was always 

less than one clock period. 
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We also used SCS algorithm for turning on the benchmark circuits. Table 4 compares the wakeup 

times and maximum ground currents of SCS and WS algorithms. The table shows that the SCS 

algorithm improved the wakeup delay by 10%-15% over the WS algorithm while maintaining 

approximately the same IMAX. This result is expected since the SCS algorithm performs the 

clustering and scheduling simultaneously. 

WS SCS  Circuit
TTURNON IGnd-Max TTURNON IGnd-Max 

9sym 624 22 560 23 
C432 854 14 768 15 

C1355 861 30 740 30 
C1908 797 48 710 50 
C2670 1070 45 960 46 
C3540 1096 62 956 62 
C5315 916 125 885 124 
C6288 1430 146 1240 144 
C7552 1680 197 1450 192 

Table 4. Wake up time (in pico Seconds), and  maximum ground current (in mA.) 

In another experiment for Parallel-ST and Staircase-SS methods, we uniformly distributed the sleep 

signal arrival times within a single clock cycle (in data reported above we used multiple clock 

cycles per ref. [8].) Next, we measured the maximum ground current and report the product of this 

current and the single-cycle wakeup time. The results are reported in Table 5.  

TWake-up IGround-max IGround-max × TWake-up Circuit 
Staircase-SS (single cycle) Parallel-ST (single cycle) 

9sym 1300 80 104 1450 180 261 
C432 2500 56 139 2600 189 491 

C1355 1900 122 232 2150 338 726 
C1908 2300 197 452 2500 580 1451 
C2670 3000 237 710 3150 639 2012 
C3540 4000 355 1420 4150 993 4119 
C5315 3900 438 1710 4000 1422 5690 
C6288 6000 603 3618 6150 1802 11080 
C7552 6500 906 5890 6700 2803 18780 

Table 5. Wake up time (pico Seconds),  maximum ground current (mA) and their product (pico 
Coulombs). 

Comparing the products of maximum ground current and wake up time of our method in Table 3 

and those in Table 5, we conclude that our techniques maintain the advantage (between one and two 
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orders of magnitude) over Staircase-SS and Parallel-ST techniques even when they are 

implemented in a single cycle by between one and two orders of magnitude. Note that the wakeup 

times reported in Table 5 were calculated as the summation of the time required to apply the 

wakeup signals and the time required for all nodes in the circuit to settle. 

IX. Conclusions 

We introduced a new method for reducing the wake up time and maximum current flowing to 

ground for power gating structures. One of the proposed techniques is based on effectively 

clustering logic cells and scheduling wakeup signals for the clusters to achieve the mentioned 

objectives. The algorithms provided in this paper have low computational complexity and yet very 

effective. Experimental results for our methods showed between one and two orders of magnitude 

improvement in the amount of maximum current going to ground multiplied by the wake up time 

compared to the previous methods 
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