
 1

A Robust Power Gating Structure and Power Mode
Transition Strategy for MTCMOS Design

Afshin Abdollahi
University of Southern California

afshin@usc.edu

Farzan Fallah
Fujitsu Labs. of America
farzan@us.fujitsu.com

Massoud Pedram
University of Southern California

pedram@usc.edu

Abstract - The large magnitude of supply/ground bounces, which arise from power mode

transitions in power gating structures, may cause spurious transitions in a circuit. This can result

in wrong values being latched in the circuit registers. We propose a design methodology for

limiting the maximum value of the supply/ground currents to a user-specified threshold level while

minimizing the wake up (sleep to active mode transition) time. In addition to controlling the sudden

discharge of the accumulated charge in the intermediate nodes of the circuit through the sleep

transistors during the wake up transition, we can eliminate short circuit current and spurious

switching activity during this time. This is in turn achieved by reducing the amount of charge that

must be removed from the intermediate nodes of the circuit and by turning on different parts of the

circuit in a way that causes a uniform distribution of current over the wake up time. Simulation

results show that, compared to existing wakeup scheduling methods, the proposed techniques result

in a one to two orders of magnitude improvement in the product of the maximum ground current

and the wake up time.

I. Introduction

The most obvious way of reducing the leakage power dissipation of a VLSI circuit in the

STANDBY state is to remove its supply voltage. Multi-threshold CMOS (MTCMOS) technology

provides low leakage and high performance operation by utilizing high speed, low Vt transistors

for logic cells and low leakage, high Vt devices as sleep transistors. Sleep transistors disconnect

logic cells from the power supply and/or ground to reduce the leakage in sleep mode. More

precisely, this can be done by using one PMOS transistor and one NMOS transistor in series with

the transistors of each logic block to create a virtual ground and a virtual power supply as depicted

 2

in Figure 1. In practice only one transistor is necessary. Because of the lower on-resistance, NMOS

transistors are usually used.

outin

SLEEP

SLEEP

Virtual VDD

Virtual Ground

N

P

Figure 1: Power gating circuit.

In the ACTIVE state, the sleep transistor is on. Therefore, the circuit functions as usual. In the

STANDBY state, the transistor is turned off, which disconnects the gate from the ground. To lower

the leakage, the threshold voltage of the sleep transistor must be large. Otherwise, the sleep

transistor will have a high leakage current, which will make the power gating less effective.

Additional savings may be achieved if the width of the sleep transistor is smaller than the combined

width of the transistors in the pull-down network. In practice, Dual VT CMOS or Multi-Threshold

CMOS (MTCMOS) is used for power gating [1][2]. In these technologies there are several types of

transistors with different VT values. Transistors with a low VT are used to implement the logic,

while high-VT devices are used as sleep transistors.

To guarantee the proper functionality of the circuit, the sleep transistor has to be carefully sized to

decrease the voltage drop across it when the sleep transistor is turned on. The voltage drop

decreases the effective value of the supply voltage that the logic gate receives. In addition, it

increases the threshold voltage of the pull-down transistors due to the body effect. This

 3

phenomenon in turn increases the high-to-low transition delay of the circuit. The problem can be

solved by using a large sleep transistor. On the other hand, using a large sleep transistor increases

the area overhead and the dynamic power consumed for turning the sleep transistor on and off. Note

that because of this dynamic power consumption, it is not possible to save power for very short idle

periods. There is a minimum duration of the idle time below which power saving is impossible.

Increasing the size of the sleep transistors increases this minimum duration.

Virtual Ground
SLEEP

VDD

Gate1

Gate2

Gate3

Figure 2: Using one sleep transistor for several gates.

Since using one transistor for each logic gate results in a large area and power overhead, one

transistor may be used for each group of gates as depicted in Figure 2. Notice that the size of the

sleep transistor in this figure ought to be larger than the one used in Figure 1. To find the optimum

size of the sleep transistor, it is necessary to find the vector that causes the worst case delay in the

circuit. This requires simulating the circuit under all possible input values, a task that is not possible

for large circuits.

In this technology, also called power gating, wake up latency and power plane integrity are key

concerns. Assuming a sleep/wake up signal provided from a power management unit, an important

issue is to minimize the time required to turn on the circuit upon receiving the wake up signal since

the length of wake up time can affect the overall performance of the VLSI circuit. Furthermore, the

large current flowing to ground when sleep transistors are turned on can become a major source of

 4

noise on the power distribution network, which can in turn adversely impact the performance and/or

functionality of the other parts of the circuit. There is trade off between the amount of current

flowing to ground and the transition time from the sleep mode to the active mode.

In this paper we introduce an approach for reducing the transition time from sleep mode to active

mode for a circuit part while assuring power integrity for the rest of the system by restricting the

current that flows to ground during the transition. The problem is to minimize the wakeup time

while constraining the current flowing to ground during the sleep to active mode transition. During

the process we will also consider another important objective which is limiting the number of sleep

transistors. This paper is the extended version of the conference paper publication [3].

Section 2 describes the previous work. In Section 3 we present the key observations that our

technique is based on. Section 4 presents problem statement and our method for graph modeling of

the problem. A two step solution is offered in section 5 while an improved method is introduced in

section 6. Alternative approaches for reducing the ground bounce are proposed in Section 7.

Simulation results are presented in Section 8. Section 9 concludes the paper by briefly summarizing

our results.

II. Previous Work

Optimal sizing of the sleep transistors for an arbitrary circuit to meet a performance constraint is an

important design problem. Sleep transistors cause logic cells to slow down because of the voltage

drop across the functionally-redundant sleep transistors and due to the increase in the threshold

voltages of logic cell transistors as a result of the body effect. The performance penalty of a sleep

transistor depends on its size and the amount of current that goes through it. In [4], sleep transistors

are modeled as resistors and subsequently sized according to the following approximation for

propagation delay: α)/(txddddLpd VVVVCT −−∝ where CL is the total load capacitance, Vdd is the supply

voltage, Vx is the voltage drop across the sleep transistor, Vt is the threshold voltage and α is a

constant modeling the short channel effects. This delay model is used to bound the performance

penalty for the worst case input vector. In [5], the authors propose a different method for sizing the

sleep transistors. They first size the sleep transistor of each cell to limit the performance

degradation to a specified level. Next, they merge sleep transistors whose discharge current patterns

 5

are mutually exclusive based on a unit delay model. In [6], the authors use a more precise delay

model to do the same steps. In [7], the authors propose a power gating structure to support an

intermediate power-saving mode and a traditional power cut-off mode. The idea is to add a PMOS

transistor in parallel with each NMOS sleep transistor whereby applying zero voltage to the gate of

the PMOS transistor the circuit can be put in the intermediate mode. In the intermediate mode

leakage reduction and data retention are realized. Furthermore, the magnitude of power supply

voltage fluctuations during power-mode transitions is reduced by transitioning through this

intermediate mode while changing between sleep and active modes. In the cut-off mode the gate of

the additional PMOS transistor is connected to Vdd.

None of these works attempt to minimize the wake up time and the noise generated by the power

gating structure and until recently only few researchers have addressed this problem. In [8] the

authors introduce two power mode transition techniques to reduce the ground bounce while turning

on the circuit. Instead of quickly turning on a large sleep transistor to suddenly reduce the resistance

between the virtual ground and the (actual) ground, they propose to gradually reduce the resistance

of the sleep transistor in order to limit the peak current flowing to the ground. This can be

accomplished by employing one of the following two methods:

Parallel Sleep Transistors (Parallel-ST): Use of parallel-connected sleep transistors with gradually

increasing widths (cf. Figure 3.) The sleep transistors are turned on in several time steps, starting

from the smallest one. Since the voltage of the virtual ground is initially at its maximum value, a

relatively high resistance value is used to discharge it; this limits the peak current. In the subsequent

time steps, the resistance of the path between virtual and actual grounds is reduced by turning on

wider sleep transistors.

Figure 3. Power gating structure consisting parallel sleep transistors.

SLEEP w=1/23 w=2/23 w=4/23 w=16/23

virtual ground

ground

 6

Staircase Sleep Signal (Staircase-SS): Use of a single sleep transistor, but turning it on gradually.

Initially a voltage less than Vdd is used to weakly turn on the sleep transistor and thus, somewhat

reduce the voltage of the virtual ground. In subsequent steps, the sleep transistor is turned on more

strongly to further reduce the resistance between the virtual and actual grounds.

The two methods of [8] are restricted to using one sleep signal for the entire circuit block and

provide only a temporal solution to the peak current flow problem. In contrast, in this paper, we

provide an efficient spatio-temporal solution with its supporting power gating structure (i.e., with

the ability to turn on different logic cells in the circuit block at different times.) This solution

enables us to minimize the wake up time subject to an upper bound constraint on the total

maximum current through the sleep transistors.

III. Key Observations

It is a well known fact that there is no need to have both NMOS and PMOS sleep transistors to

encapsulate a logic cell. In particular, NMOS sleep transistors can be used to separate the (actual)

ground from the virtual ground of the logic cell. Upon entering the sleep mode, a circuit block is

disconnected from the ground. This causes the voltage levels of some intermediate nodes in the

circuit block to rise toward Vdd. When the circuit block is woken up, the nodes will transition to

zero. This transition in turn causes the logic cells in the immediate fanout of the node to carry a

potentially large amount of short-circuit current as explained next. Consider the inverter chain

shown in Figure 4, which is connected to the ground through an NMOS sleep transistor.

Figure 4. A chain of four inverters with an NMOS sleep transistor.

If the input of the circuit is low, then, in the active mode (i.e., SLEEP=0), VA=VC=VE=VG=0 and

VB=VD=VDD. When entering the sleep mode, the voltages of B and D do not change, but the

voltages of C, E, and G gradually increase and will be equal to VDD if the sleep period is long

enough (note the driver of signal A is not controlled by the SLEEP signal). This happens because

SLEEP

VDD

A B C D E

G

 7

the leakage through the PMOS transistors will charge up all the floating capacitances. Figure 5

shows the voltage waveforms of nodes C, E, and G generated by HSPICE simulation. While

turning on the sleep transistor, nodes G, C and E discharge as depicted in Figure 6.

Figure 5. Voltage waveforms for nodes C, E and G of the circuit in Figure 2 when the circuit is in the
sleep mode.

Figure 6. Voltage waveforms for nodes C, E and G of the circuit in Figure 2 when the circuit is
transitioning from the sleep to active mode.

As one can see when the voltage of G quickly reaches its final value, the voltages of C and E are

still between zero and VDD. This results in a significant amount of short circuit current in the logic

cells driven by nodes C and E since these nodes turn on both transistors of the inverters present in

their fanout.

 8

Figure 7. Total current flowing to ground while turning on the circuit.

The current shown in Figure 7 flowing through the sleep transistor is the result of not only

discharging the accumulated charge in some intermediate nodes (i.e., C, E, and G in the inverter

chain example), but also the short circuit current flowing through some logic cells of the circuit

(e.g., the third inverter in the chain which is driven by signal C). The smaller the number of nodes

that are discharged, the smaller the amount of current that flows to ground.

The objective is to design a power gating structure and a wake up strategy to minimize the wakeup

time while constraining the current flowing to ground during the sleep to active mode transition.

Our approach is driven by the desire to avoid short circuit currents and spurious transitions by

turning them on at proper times. The basic idea is to turn on each cell only if the voltage levels of

the logic cells in its fanin have already reached their final values.

Consider an inverter chain with one sleep transistor per cell as depicted in Figure 8.

Figure 8. A chain of inverters with separate sleep transistors.

If we turn on the sleep transistors one at a time starting from the first inverter on the left, the short

circuit current will be zero. The reason is that when each cell is turned on, its fanout cell continues

sD sA

VDD

A B C D E

sB sC

GA GB GC GD

 9

to stay in the sleep mode. Therefore, the possible transition of the output node of the logic cell does

not result in any short circuit current in its fanout cell. Furthermore, there will be no spurious

transition in the circuit since the inputs of the logic cells that have been turned on will not change at

a later time. Figure 9 shows the total current flowing to ground while turning on the circuit of

Figure 8 by employing this wake up strategy. As we can see, compared to the data of Figure 7, the

maximum current in Figure 9 is reduced from 375µA to 280µA.

Figure 9. Total current flowing to ground while turning on the circuit.

There are several peaks in the current waveform of Figure 9. This is due to the fact that the sleep

transistors are turned on in four steps. This obviously increases the wake up time. Note that in

Figure 6, we can simultaneously turn on the first and third inverters before turning on the second

and forth inverters without producing any short circuit current. This will reduce the wake up delay

of the circuit. In the next section, we use a constraint graph to capture the zero-short-circuit current

requirement for the power gating structure.

IV. Constraint Graph and Problem Formulation

It is assumed that the circuit has been in the sleep mode for a sufficiently long period of time (about

100µs as can be seen in Figures 3) so that the output voltages of all its logic cells have risen to their

final steady state level. In addition the vector that is applied to the circuit primary inputs when

entering the sleep mode and during that time period is known. This vector, which we call the sleep

vector, remains unchanged during the wake up time.

 10

The Constraint Graph, G(V,E), is a weighted directed acyclic graph. Each vertex, vi, in the graph

corresponds to a logic cell in the circuit. There is a directed edge e(vi, vj) from vi to vj exactly if vj is

in the immediate fanout of vi and the output of vi transitions from 1 to 0 during the circuit turn-on

time under the specified sleep vector. There is a positive weight, w(i, j) = TSETTLE(vi), associated

with the edge e(vi, vj), where TSETTLE(vi) denotes the time required for the output of cell vi to settle to

its final value when its associated sleep transistor is turned on. Notice that TSETTLE(vi) values could

be incorporated in the graph as weights of nodes rather than edges. However, as will be seen later,

these weights will be combined with another set of weights that should of necessity be defined on

the edges. It is for this reason that we have defined w(i, j) as edge weights.

Its value is calculated by circuit simulation as follows. Since the sleep vector is known and each

logic cell is turned on only after all its fanin cells have settled to their final values, the input values

of the logic cell are known at the time that the sleep transistor is turned on. Therefore, we can

simulate the cell under the specific sleep vector value to find TSETTLE(vi) and the current profile of

the cell (i.e., ITURNON(vi, t)) after its sleep transistor is turned on at t=0. Notice that ITURNON(vi, t) = 0

for t<0 or t>TSETTLE(vi). Furthermore, let’s denote by TTURNON(vi) the time at which the wakeup signal

for turning on the sleep transistor associated with cell vi arrives and refer to it as the turn-on time of

cell vi. To guarantee that there is no short circuit current during the wakeup time, the following

constraint must be enforced:

TTURNON(vj) > TTURNON(vi) + TSETTLE(vi) = TTURNON(vi) + w(i,j) .

The contribution of vi to the total discharge current at time t is ITURNON(vi, t–TTURNON(vi)) and the total

turn-on current is ITURNON(t)= ΣITURNON(vi, t–TTURNON(vi)), where the summation is taken over all

cells vi. The total wakeup time, TWAKEUP, is the time that the output last cell has settled to its final

value i.e., TTURNON = max(TTURNON(vi)+ TSETTLE(vi)) where the maximum is taken over all cells vi.

The objective is to minimize TTURNON while limiting the total turn-on current by a given threshold

i.e., ITURNON(t)<IMAX . Logic cells with the same turn-on time can share a single sleep transistor. It is

beneficial to limit the number of sleep transistors since it reduces the routing complexity. In our

approach, we minimize the number of sleep transistors by matching the turn-on times of as many

logic cells as possible without violating the aforementioned constraints. Consequently, all cells in

the circuit are grouped into a minimum number of clusters. A single sleep transistor is allocated to

each logic cell cluster, and a sleep/wake up signal is assigned to each such sleep transistor. The size

of sleep transistors can be determined by using well known methods e.g., those in [5] and [6].

 11

Clustering is done in such a way that the total turn-on current of each cluster does not exceed the

given threshold IMAX. Let C1, C2, …, CM denote the clusters. Then the turn on current of cluster Ck is

(,) (,)
i k

TURNON k TURNON i MAX
v C

I C t I v t I
∈

<∑ .

A necessary condition to prevent the flow of short circuit current during the wakeup time may be

stated as follows. For cells vi and vj to belong to the same cluster, TTURNON(vj) = TTURNON(vi) i.e., no

edge can exist between vi and vj in the constraint graph. Unfortunately, this condition alone does not

guarantee zero short circuit current. The sufficiency condition shall be described in the context of

the Cluster Constraint Graph defined next.

We define a new directed graph, GC, called the Cluster Constraint Graph. Vertices of this graph

correspond to clusters C1, C2, …, CM. There is an edge from Ci to Cj in GC exactly if there is at least

one edge from some node of Ci to some node of Cj in the original constraint graph G. There is a

positive weight associated with each edge in GC. The edge weight is calculated as follows:

w(CK,CL) = max{w(vi,vj)|vi∈CK, vj∈CL}. Clearly, if there is an edge e(vi, vj) where both vi and vj are

in the same cluster, their corresponding logic cells will be turned on at the same time, and the

output of node vi will be making a falling transition. Hence, a significant amount of short circuit

current can flow through cell vj (cf. discussion following Figure 6), which is undesirable. To avoid

this scenario, we shall show below that there ought not to exist any directed path between any two

vertices in the same cluster (this path evidently goes through some vertices outside that cluster.)

Although G is acyclic (assuming combinational logic circuits), there is no guarantee that a

clustering solution will result in an acyclic GC. An example is provided in Figure 10 where there

exists a cycle between clusters CK and CL. Clearly, there is no way to schedule CK and CL to avoid

short circuit current. If CL is turned on after CK, there will be a cell vd∈CL driving another cell

vb∈CK which is already on. Therefore, cell vb will consume short circuit current. A similar problem

arises if CL is turned on first. Hence, to avoid the flow of short circuit current during the circuit

wakeup process, GC must be acyclic. To achieve this requirement, the following constraint is

enforced on the clusters. If nodes vi and vj are in the same cluster Ck, then there ought not exist any

directed path from vi to vj or vice versa in the constraint graph, G .

 12

Figure 10. (i) An example of a circuit, (ii) The constraint graph G, (iii) A cyclic cluster constraint
graph and (iv) A cycle free cluster constraint graph.

To better explain the clusters in the context of the constraint graph, we may construct G’(V, E’), the

complement of graph G(V, E), as follows. G’ is an undirected graph with vertex set V.

Furthermore, there exist an undirected edge e’(vi, vj) between vi and vj in G’ exactly if there exists

no directed path between vi and vj in graph G. The vertices that belong to the same cluster will

create a clique in graph G’(V, E’). A clustering of the cells in G(V, E) corresponds to a partitioning

of the vertices of G’(V, E’) into a number of cliques. For each clique in G’(V, E’), the summation of

turn-on currents of cells that belong to that clique should not exceed IMAX .

Consider a clustering of the cells where a sleep transistor is assigned to each cluster. The problem is

to determine the turn-on times of the clusters so as to minimize the overall circuit turn-on time

without causing short circuit current or violating the IMAX limit.

The constraint imposed on the sleep (or wake up) signal scheduling by the presence of an edge

e(CK,CL) in GC is:

TON(CK)+w(CK,CL) < TON(CL)

where TON(CK) and TON(CL) are the turn-on times of clusters CK and CL,, respectively.

0
a b c d

CK

a

d

b

c

eab

ecd

CL CK

a

c

b

d

eab

ecd

CL

a b
eab

c d
ecd

(i) (ii)

(iii) (iv)

 13

For a given ordering of clusters, TON(C1)<…<TON(CK)<TON(CK+1)< ...<TON(CM), it may be possible

to shift the current waveforms of two clusters ITURNON(CK, t) and ITURNON(CK+1, t) to overlap one

another without violating the constraint ITURNON (t)<IMAX. The question is how close TON(CK) and

TON(CK+1) can be scheduled without violating the IMAX constraint. To address this problem, we

augment GC with a new set of weighted directed edges d(CK,CK+1) as follows:

d(CK,CK+1) = min{∆T} s.t. ITURNON(CK , t)+ITURNON(CK+1, t-∆T)< IMAX

where ITURNON(CK+1,t-∆T) is the waveform ITURNON(CK+1, t) shifted right on the time axis by an

amount ∆T (cf. Figure 11).

Figure 11. Shifting clusters turn on current waveforms.

Next, we combine edge weights w(CK,CL) and d(CK,CL) to construct new edge weights, which

capture both constraints:

f(CK,CL) = max{w(CK,CL), d(CK,CL)}.

For the given ordering of M clusters, the minimum turn-on time can be described as
1

1
1

(,) ()
M

K K SETTLE M
K

f C C T C
−

+
=

+∑ , which is the weight of a path in graph GC with edges f(CK,CL) going

through each vertex exactly once plus TSETTLE(CM)= max{TSETTLE(vi)|vi∈CM}.

The next section presents an algorithm to minimize the turn on time for an arbitrary combinational

circuit.

IMAX

TTURNON(CK) TTURNON(CK+1)

ITURNON(CK,
 t−TTURNON(CK)))

d(CK,CK+1)

t

ITURNON(CK+1,
 t−TTURNON(CK+1))

 14

V. Two Step Approach for Clustering and Scheduling

With these definitions and observations the precise problem statement is as follows:

Wakeup Signal Scheduling (WSS) Problem: Cluster the logic cells into a minimum number of

clusters and find the optimum turn-on times for logic clusters in the circuit so as to minimize the

overall turn-on time TTURNON of the circuit while eliminating the short circuit current and satisfying

ITURNON (t) < IMAX for all t.

We propose an algorithm, called Wakeup Scheduler (WS), to solve the problem. The WS comprises

of two steps:

a) Logic Cell Cluster Generator: We partition logic cells in the target circuit into a number

of disjoint clusters C1, C2, …, CM and assign exactly one sleep transistor with one

sleep/wake up signal to all the cells in each cluster. The goal of clustering is to minimize

the number of clusters, M, such that the total turn-on current flowing through the sleep

transistors associated with each cluster, ITURNON (Ci), does not exceed IMAX.

b) Inter-Cluster Sleep Signal Scheduler: Consider a single sleep signal that drives the sleep

transistor of a cluster. The goal of wake up signal scheduling is to provide the ordering and

relative timing of the activation signals for the M sleep signals in the circuit to minimize the

overall wake up time while limiting the total current flowing to ground to IMAX.

In this section, we solve the WSS problem by solving each of the clustering and scheduling

problems separately and sequentially. Based on the discussion in the previous section, since short

circuit currents can be avoided by an appropriate turn-on strategy, which in turn reduces the total

ITURNON, we do clustering and scheduling in a way that short circuit currents are eliminated.

Logic Cell Clustering (LCC) Problem: Partition logic cells v1,v2,…,vN into a minimum number, M,

of clusters C1,C2,…,CM such that there is no cycle in GC and MAX(ITURON(CK)) < IMAX, for all k

where, ∑
∈

=
ki Cv

iTURNONkTURNON tvItCI),(),(.

where summation is point-wise and MAX is taken over time. Note ITURNON(CK,t) and ITURNON(vi,t)

represent the turn-on current waveforms, and not scalar current values.

 15

Notice that we aim to minimize the number of clusters in order to reduce the number of sleep

signals that are required in our proposed power gating structure. This will in turn simplify the

power management circuitry. While using one sleep signal per cluster may seem costly, it is notable

that in [10], a sleep signal tree (which is merely an inverter tree) similar to a clock tree has been

proposed to drive large sleep transistors used in power gating structures. It is, therefore, possible to

generate different timing for sleep signals going to different clusters by simply inserting delay

elements (buffers) in the sleep signal tree.

Sleep Signal Scheduling (SSS) Problem: Determine TON(Ck) values to minimize the total turn-on

time subject to ITURNON(Ck , t) < IMAX and TON(Ck)+e(Ck,Cl) < TON(Cl) constraints.

As described in the previous section, the minimum turn-on time can be described as

)(),(
1

1
1 MSETTLE

M

k
kK CTCCf +∑

−

=
+

, which is the weight of a path in graph GC that goes through each

vertex exactly once plus TSETTLE(CM). To consider the settling time of the last cluster, we add a

dummy vertex CD to the graph with no outgoing edges and the following incoming edges, f(CK,CD)

= TSETTLE(CK) for all K.

A scheduling of the clusters corresponds to a Hamiltonian path in the cluster constraint graph. More

precisely, the WSS problem may be stated as: “Find the minimum weighted directed Hamiltonian

path on graph GC with edges f(CK,CL).” Recall that a Hamiltonian path between two vertices of a

graph is one that visits each vertex of the graph exactly once [12]. Clearly, a Hamiltonian path of

GC must end up on dummy node, CD, which has no outgoing edges. The start vertex can be any

other node of GC. There are many heuristics for solving the minimum Hamiltonian path problem,

which is an NP-complete problem [12]. However, because the number of clusters is usually small

LCC Algorithm

1 For all cells vi in the circuit do {
2 For all clusters CK created so far do {
3 If adding vi to cluster CK creates a cycle in GC or

 violates the IMAX threshold for CK
4 Then goto step 2; // continue with the next cluster
5 Else {add vi to cluster Ck; update GC;

 goto step 1; // continue with the next cell }
}

6 Create a new cluster and add vi to it; Update GC;
 }

 16

even for a large circuit, use of an exhaustive search for solving the minimum Hamiltonian path is

also feasible.

The scheduling step results in the optimal turn-on times, TTURNON(CK) for a given ordering of

clusters. If the number of clusters is small, it is possible to exhaustively try all possible orderings,

and thereby, find the best ordering. Otherwise, an ordering of clusters can be arbitrarily or

heuristically selected. One heuristic could be as follows: Select an arbitrary cluster C1 as the first

cluster to be scheduled to wake up. Next find the next cluster C2 that minimizes d(C1,Ci) (i.e.,

d(C1,C2) < d(C1,Ci) for every i) and continue in the same way (i.e., at step k: d(Ck,Ck+1) < d(Ck,Ci).)

In practice since the shape of current profile of clusters is very similar, the initial ordering used in

our algorithm is not important. Note that in our method by changing the value of the maximum

current bound, the wake up time can be reduced.

VI. Simultaneous Clustering and Scheduling

In the previous section, we solved the WSS problem by solving each of the clustering and

scheduling problems separately and sequentially. However, these two steps are not independent.

The heuristic used for clustering returns only one solution out of many possible solutions. The

result of scheduling depends on the solution provided by the clustering algorithm. The optimality of

the overall result for the WSS problem depends on our choice of clustering solutions among many.

However it is not practical to examine all clustering solutions to find the minimum turn on time.

This is the main reason that in the previous we adopted the two step approach in which the

clustering is done without any regard to its effect on the scheduling part.

In this section we propose a new technique where clustering and scheduling are done

simultaneously and the overall objective (minimum turn-on) is targeted continuously throughout the

algorithm. This technique is also a heuristic but tends to produce better results compared to the two-

step approach (cf. our experimental results.)

The WSS problem is analogous to the task scheduling problem where the constraint graph

corresponds to a data flow graph and logic cells correspond to tasks. This analogy is useful in

developing our algorithm. The outline of the Simultaneous Clustering and Scheduling (SCS) is as

follows. First we determine the set of all cells (vertices), S1, that can be scheduled to turn on at t=0.

S1 includes those vertices that have no incoming edges in the constraint graph. We are to select a

subset of S1 to form the first cluster C1 which is scheduled to turn on at t=0. If the total turn-on

 17

current of cells in S1 is less than IMAX, then the first cluster C1 will include all of the cells in S1.

Otherwise, we must select C1 ⊂ S1 to minimize TSETTLE (C1). Next, we move on to cluster C2 which

will be scheduled to turn on at TON(C2) = f(C1,C2) where f(C1,C2) was defined in section 4. Again,

we identify the set, S2, of all vertices that are not in C1, but can be included in C2. In particular, each

vertex vj ⊂ S2 should either have no incoming edges or if there is an incoming edge e(vi,vj), then vi

must have already been included in C1. We select C2 ⊂ S2 to minimize f(C1,C2)+TSETTLE(C2) (in

general f(Ck ,Ck+1)+ TSETTLE(Ck+1)) subject to ITURNON(C2 , t) < IMAX. We continue in this manner to

construct C3, C4, C5, … until all cells have been placed in some cluster.

At k where C1, C2, …, Ck-1 have already been computed, Sk is easily obtained as explained next.

Recall that Sk includes all remaining vertices vj∉C1∪C2∪ …∪Ck-1 that have no incoming edge or if

there exist an edge e(vi,vj), then vi has already been included in previous clusters i.e.,

vi∈C1∪C2∪…∪Ck-1. Now, we describe how to determine Ck⊂Sk with the objective of minimizing

f(Ck ,Ck+1)+ TSETTLE(Ck+1) while not violating the constraint ITURNON(Ck , t) < IMAX. For each cell vi in

Sk if adding vi to Ck does not violate the IMAX constraint, we will include vi in Sk . Otherwise (i.e., if

adding vi to Ck violates the IMAX constraint,) we will consider replacing it with a cell vj∈Ck if such a

replacement does not violate the IMAX constraint and reduces f(Ck,Ck+1)+TSETTLE(Ck+1). In fact, we

select vj∈Ck to be a cell in Ck that results in the maximum reduction in f(Ck,Ck+1)+TSETTLE(Ck+1)

while not violating the IMAX constraint. The pseudo code of the SCS algorithm is provided below.

SCS Algorithm

Initialize V = {v1, v2, …, vn}; k = 1;
While V ≠ {} do {
 Ck = {}; Create Sk;
 For all vi in Sk do {
 If max[ITURNON(Ck∪{vi}, t)] < IMAX {
 Ck = Ck∪{vi};
 }
 Else {
 vm = arg_min[f (Ck−1 , Ck−{vj}∪{vj})+TSETTLE(Ck−{vj}∪{vj})] where min is
 taken over all vj in Ck∪{vi} that max[ITURNON(Ck−{vj}∪{vj}, t)] < IMAX ;
 Ck = Ck−{vm}∪{vi};
 }
 }
 V = V−Ck ;
 k = k+1;
}

 18

VII. Input-driven Sleep Transistor Typing

In the previous sections, we saw how the short circuit current can be avoided when turning on a

circuit. Another approach to eliminating the short circuit current during the wakeup is to judiciously

use an NMOS or a PMOS sleep transistor for each logic cell in the circuit (we call this technique

Input-driven Sleep Transistor Typing, or ISTT for short.) The basic idea is that, for the given sleep

vector, if the output of a logic cell in the circuit is logic 1, then an NMOS sleep transistor will be

used to disconnect that cell from the ground; otherwise, a PMOS sleep transistor will be used to

disconnect the output from Vdd as is shown in Figure 12.

Figure 12. Using NMOS or PMOS sleep transistors.

With this simple ISTT algorithm, we ensure that every logic cell uses the type of the sleep transistor

that minimizes the leakage current through the off-path of the logic cell through the well-known

sleep transistor induced stack effect [11]. As a result, the output of every logic cell under the given

sleep vector is driven to a hard zero or one logic level. Therefore, no logic cell will have a floating

output node (which would have resulted in intermediate signal values changing during the sleep

mode thereby causing a potentially large short-circuit current during transition to the wakeup

mode.) Furthermore, in this case, the only floating nodes in the circuit are some of the internal

nodes of logic cells (e.g., the shared diffusion area between source of the NMOS driver transistor

and drain of the NMOS sleep transistor in the first stage of the inverter chain of Figure 12). These

internal floating nodes can change during the sleep mode, and therefore, there will be some current

dissipation on wakeup time to recover their correct values. However, this current is significantly

less than the current that will flow thru the circuit when only NMOS sleep transistors are used. The

reason, is that in the latter case, not only some of the internal nodes of logic gates are floating, but

also, on average, half of the output nodes of the logic cells (which typically drive larger

sD

sA

VDD

A B C D E

sB

sC

GA GB GC GD

 19

capacitances), will be floating. Therefore, the peak current on circuit wakeup tends to be much

larger than the case with ISTT.

The shortcoming of using NMOS sleep transistors for some gates and PMOS for others is that the

delay overhead in the active mode is potentially twice that of the case with only NMOS sleep

transistors. The reason is that in ISTT method, the delays of all logic cells on the critical path of a

circuit are degraded, whereas the delays of only half of the logic cells are degraded when all sleep

transistors are NMOS type. Notice that it is possible to combine the ISTT technique with the WS

technique to achieve even better results by scattering in time the current that must flow to the

ground, thereby, reducing the peak current; (ISTT+WS.)

VIII. Simulation Results

We used HSPICE to find the delay and current profile of each logic cell in a 0.09 µm standard cell

library for a given sleep vector for all possible input combinations to the logic cell. Next we applied

our algorithm to a number of circuits from the ISCAS test benchmark suite. Table 1 provides the

amount of charge that is flowing to the ground during the wakeup time, and the amount of charge

that is sourced from the power supply during the same time. We report results for the following

techniques: a single (properly sized) NMOS device is used as the sleep transistor for the entire

circuit (named Single-N), the two techniques of reference [8] (named Staircase-SS and Parallel-

ST), the proposed WS (Wakeup Scheduler) with NMOS sleep transistors only (WS-N), the ISTT

(Input-driven Sleep Transistor Typing), and finally the ISTT+WS technique. For each technique

two columns of data are reported; one includes the amount of charge flowing to ground and the

other one is the amount of charge coming from supply voltage. The last two columns in the table

provide the number of clusters for the WS and ISTT+WS techniques. Note that for the latter, there

are two types of clusters, one for the NMOS sleep transistors and one for the PMOS sleep

transistors. Both data values are reported in the last column of Table 1 with a ‘+’ separator. All data

in the tables are generated with a 1.8V Vdd. The clock cycle time for each circuit was set to the

worst cast delay.

 20

Charge Flowing to Gnd
during Wakeup

Charge Coming from Vdd during Wakeup #
Clusters

Circuit

Single
ST

Staircase
SS

Parallel ST WS ISTT ISTT+
WS

WS ISTT+
WS

9sym 8.8 1.8 8.0 1.1 8.1 1.1 7.9 1.1 1.7 3.5 1.4 3.0 9 3+6
C432 5.5 0.7 5.4 0.6 8.3 2.0 3.8 0.7 1.5 3.2 1.4 3.5 4 2+2

C1355 10.7 1 10.3 0.9 13.9 1.3 9.2 1.6 3.7 5.2 3.7 5.6 16 5+5
C1908 24.9 7.1 21.2 3.9 18.7 2.2 19.9 3.0 4.2 8.5 4.2 8.2 15 4+8
C2670 36.0 10.4 30.0 4.5 30.0 4.5 28.0 4.0 6.2 12.2 6.1 12.4 15 4+8
C3540 55.0 22.0 48.0 11.0 39.0 4.3 41.0 6.0 7.8 14.6 8.0 17.0 21 6+11
C5315 49.9 5.97 48.5 5.2 63.2 7.0 34.5 4.5 14.3 29.4 13.4 28.7 18 5+9
C6288 83.5 23.8 68.4 12.0 61.3 10.4 48.5 6.7 18.7 38.1 16.6 36.3 14 5+6
C7552 116 41.6 94.8 21.5 127 13.9 61.5 8.9 16.2 57.6 15.3 33.1 22 6+10

Table 1. Charge sinked to Gnd or sourced from Vdd (pico Coulombs.)

We observe that the ground current dominates the supply current for techniques that use NMOS

sleep transistor only. Situation is reversed when both NMOS and PMOS sleep transistors are in use.

This is because in the former case a lot more nodes (that were incidentally charged up during the

sleep time) will have to be discharged to Gnd to assume their correct values at the onset of the

circuit wakeup. Compared to previous techniques (Single ST, Staircase SS, and Parallel ST), the

WS technique reduces the amount of charge flowing to the ground during wakeup. Further

reduction can be achieved by using a mixture of NMOS and PMOS transistors in the circuit to

reduce the number of internal nodes that need to be discharged during the wake up time. This is

seen by the significant reduction in the amount of charge that is flowing to the ground for ISTT and

ISTT+WS methods.

Table 2 shows the maximum current of the ground and supply lines for all of the above techniques.

For Parallel-ST, we have used the worst case delay of the circuit as the period of a clock signal,

which is then used to turn on the sleep transistors in multiple cycles. To make the comparisons

meaningful, we set the IMAX constraint for the WS algorithm to the best that is achieved by Parallel-

ST and Staircase-SS. As one can see, our proposed techniques reduce the maximum current of

ground more than any other technique. The Imax values for ISTT are higher than that for WS or

ISTT+WS because we have not restricted the ground current for ISTT.

 21

IGround-max ISupply-max Circuit
Single ST Staircase

SS
Parallel

ST
WS ISTT ISTT

+WS
9sym 132 9.0 22 1.0 48 1.3 22 3.3 53 87 19 196
C432 108 5.6 15 0.4 41 2.1 14 2.5 48 76 12 17

C1355 226 8.7 32 0.6 89 1.6 30 2.8 128 124 33 45
C1908 329 27.0 51 2.7 119 2.0 48 6.6 138 211 46 45
C2670 468 36.0 72 3.4 168 4.6 45 5.9 203 295 44 46
C3540 679 53.0 105 5.4 246 4.0 62 8.0 284 452 59 67
C5315 1025 47.6 144 3.4 398 6.2 125 13.7 463 718 119 116
C6288 1036 100.5 160 10.8 452 23.8 146 43.1 513 877 139 127
C7552 1391 117.2 214 11.4 703 6.5 197 20.9 811 1337 198 204

Table 2. Maximum ground and supply currents (in mA).

Table 3 shows the wakeup time and the product of the maximum ground current and the wake up

delay for all techniques.

TTURNON IGround-max × TTURNON Circuit
Single ST Staircase

SS
Parallel

ST
WS ISTT ISTT

+WS
9sym 494 65 4000 88 4000 192 624 2.4 45 13.7 252 4.8
C432 240 26 7800 117 7900 323 854 12.0 46 2.2 350 4.2

C1355 132 30 6000 192 6500 579 861 5.4 42 25.9 212 7.1
C1908 267 88 8000 408 8000 952 797 6.1 44 38.3 324 14.9
C2670 578 270 9300 670 9400 1580 1070 9.3 46 48.2 422 18.6
C3540 1500 1019 12000 1260 12100 2952 1096 68.0 47 13.4 473 27.9
C5315 1320 1353 11000 1584 11200 4457 916 115 46 21.3 446 53.1
C6288 2100 2176 18000 2880 18500 8362 1430 209 45 23.1 457 63.6
C7552 2310 3213 20000 4280 21000 14763 1680 331 83 67.3 787 156

Table 3. Wake up time (in pico Seconds), and product of the maximum ground current and wake up
time (in pico Coulombs).

In terms of the product of maximum ground current and wake up time, again our proposed

techniques (WS and/or ISTT) are superior to the previous ones by between one to two orders of

magnitude. Note that this means for a given maximum current threshold, the wake up delay of our

technique is much smaller than the other methods. From the table it is also clear that using both

NMOS and PMOS sleep transistors increases the maximum supply current, however, the amount of

charge that is flowing to the ground is significantly reduced compared to Staircase-SS and Parallel-

ST. Note that for all circuits, the wakeup time calculated by our proposed techniques was always

less than one clock period.

 22

We also used SCS algorithm for turning on the benchmark circuits. Table 4 compares the wakeup

times and maximum ground currents of SCS and WS algorithms. The table shows that the SCS

algorithm improved the wakeup delay by 10%-15% over the WS algorithm while maintaining

approximately the same IMAX. This result is expected since the SCS algorithm performs the

clustering and scheduling simultaneously.

WS SCS Circuit
TTURNON IGnd-Max TTURNON IGnd-Max

9sym 624 22 560 23
C432 854 14 768 15

C1355 861 30 740 30
C1908 797 48 710 50
C2670 1070 45 960 46
C3540 1096 62 956 62
C5315 916 125 885 124
C6288 1430 146 1240 144
C7552 1680 197 1450 192

Table 4. Wake up time (in pico Seconds), and maximum ground current (in mA.)

In another experiment for Parallel-ST and Staircase-SS methods, we uniformly distributed the sleep

signal arrival times within a single clock cycle (in data reported above we used multiple clock

cycles per ref. [8].) Next, we measured the maximum ground current and report the product of this

current and the single-cycle wakeup time. The results are reported in Table 5.

TWake-up IGround-max IGround-max × TWake-up Circuit
Staircase-SS (single cycle) Parallel-ST (single cycle)

9sym 1300 80 104 1450 180 261
C432 2500 56 139 2600 189 491

C1355 1900 122 232 2150 338 726
C1908 2300 197 452 2500 580 1451
C2670 3000 237 710 3150 639 2012
C3540 4000 355 1420 4150 993 4119
C5315 3900 438 1710 4000 1422 5690
C6288 6000 603 3618 6150 1802 11080
C7552 6500 906 5890 6700 2803 18780

Table 5. Wake up time (pico Seconds), maximum ground current (mA) and their product (pico
Coulombs).

Comparing the products of maximum ground current and wake up time of our method in Table 3

and those in Table 5, we conclude that our techniques maintain the advantage (between one and two

 23

orders of magnitude) over Staircase-SS and Parallel-ST techniques even when they are

implemented in a single cycle by between one and two orders of magnitude. Note that the wakeup

times reported in Table 5 were calculated as the summation of the time required to apply the

wakeup signals and the time required for all nodes in the circuit to settle.

IX. Conclusions

We introduced a new method for reducing the wake up time and maximum current flowing to

ground for power gating structures. One of the proposed techniques is based on effectively

clustering logic cells and scheduling wakeup signals for the clusters to achieve the mentioned

objectives. The algorithms provided in this paper have low computational complexity and yet very

effective. Experimental results for our methods showed between one and two orders of magnitude

improvement in the amount of maximum current going to ground multiplied by the wake up time

compared to the previous methods

Acknowledgment

The authors would like to thank Thomas Sidle, the VP of Advanced CAD Technologies group at

Fujitsu Labs. of America for his support of this project.

References
[1] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “ 1-V Power

Supply High-Speed Digital Circuit Technology with Multithreshold CMOS,” IEEE Journal
Solid-State Circuits 30, No. 8, August 1995, pp. 847–854.

[2] J. Kao, A. P. Chandrakasan, ``Dual-threshold voltage techniques for low-power digital
circuits,'' IEEE Journal of Solid-State Circuits, Vol. 35, July 2000, pp. 1009-1018.

[3] A. Abdollahi, F. Fallah, and M. Pedram, “An Effective Power Mode Transition Technique in
MTCMOS Circuits,” Design Automation Conference, pp. 37-42, 2005.

[4] J. Kao, A. Chandrakasan and D. Antoniadis, “Transistor Sizing Issues and Tool for Multi-
Threshold CMOS Technology,” Design Automation Conf., pp. 409-414, 1997.

[5] J. Kao, S. Narenda and A. Chandrakasan, “MTCMOS Hierarchical Sizing Based on Mutual
Exclusive Discharge Patterns,” Design Automation Conf., pp. 495 - 500, 1998.

[6] M. Anis, S. Areibi, M. Mahmoud and M. Elmasry, “Dynamic and Leakage Power Reduction in
MTCMOS Circuits Using an Automated Efficient Gate Clustering Technique,” Design
Automation Conf., pp. 480-485, 2002.

[7] S. Kim, S.V. Kosonocky, D. R. Knebel, and K. Stawiasz, “Experimental measurement of a
novel power gating structure with intermediate power saving mode,” Intl. Symp. on Low Power
Electronics and Design, pp. 20-25, 2004.

 24

[8] S. Kim, S. V. Kosonocky, Stephen, and D. R. Knebel, “Understanding and minimizing ground
bounce during mode transition of power gating structures”, Intl. Symp. on Low Power Electronics and
Design, pp. 22-25, 2003.

[9] Hyo-Sig Won, et al., “An MTCMOS Design Methodology and Its Application to Mobile
Computing,” Intl. Symp. on Low Power Electronics and Design, pp. 110-115, 2003.

[10] Usami, et al., ”Automated Selective Multi-Threshold Design for Ultra-Low Standby
Applications,” Intl. Symp. on Low Power Electronics and Design, pp. 202-206, 2002.

[11] M. Johnson, D. Somasekhar, and K. Roy, “Leakage Control with Efficient use of Transistor
Stacks in Single Threshold CMOS,” Design Automation Conf., pp. 442-445, 1999.

[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed.
Cambridge, MA: MIT Press, 2001.

