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Abstract— Dynamic voltage selection and adaptive body bi-
asing have been shown to reduce dynamic and leakage power
consumption effectively. In this paper, we optimally solvethe
combined supply voltage and body bias selection problem for
multi-processor systems with imposed time constraints, explicitly
taking into account the transition overheads implied by changing
voltage levels. Both energy and time overheads are considered.
The voltage selection technique achieves energy efficiencyby
simultaneously scaling the supply and body bias voltages in
the case of processors and buses with repeaters, while energy
efficiency on fat wires is achieved through dynamic voltage swing
scaling. We investigate the continuous voltage selection as well
as its discrete counterpart, and we prove strong NP-hardness in
the discrete case. Furthermore, the continuous voltage selection
problem is solved using nonlinear programming with polynomial
time complexity, while for the discrete problem we use mixed
integer linear programming and a polynomial time heuristic.
We propose an approach that combines voltage selection and
processor shutdown in order to optimize the total energy.

I. I NTRODUCTION

Embedded computing systems need to be energy efficient,
yet they have to deliver adequate performance to computa-
tional expensive applications, such as voice processing and
multimedia. The workload imposed on such an embedded
system is non-uniform over time. This introduces slack times
during which the system can reduce its performance to
save energy. Two system-level approaches that allow an en-
ergy/performance trade-off during run-time of the application
are dynamic voltage selection (DVS) [1], [2], [3] and adaptive
body biasing (ABB) [4], [2]. While DVS aims to reduce
the dynamic power consumption by scaling down operational
frequency and circuit supply voltageVdd, ABB is effective
in reducing the leakage power by scaling down frequency
and increasing the threshold voltageVth through body-biasing.
Up to date, most research efforts at the system-level were
devoted to DVS, since the dynamic power componenthad
been dominating. Nonetheless, the trend in deep-submicron
CMOS technology to reduce the supply voltage levels and
consequently the threshold voltages (in order to maintain peak
performance) is resulting in the fact that a substantial portion
of the overall power dissipation will be due to leakage currents
[5], [4]. This makes the adaptive body-biasing approach and
its combination with dynamic voltage selection attractivefor
energy-efficient designs in the foreseeable future.

Voltage selection approaches can be broadly classified into
on-line and off-line techniques. In the following, we restrict
ourselves to the off-line techniques since the presented ap-
proaches fall into this category, where the scaled supply
voltages are calculated at design time and then applied at run-
time according to the pre-calculated voltage schedule.

There has been a considerable amount of work on dynamic
voltage selection. Yao et al. [3] proposed the first DVS
approach for single processor systems which can change the
supply voltage over a continuous range. Ishihara and Yasuura
[1] modeled the discrete voltage selection problem using an
integer linear programming (ILP) formulation. Kwon and Kim
[6] proposed a linear programming (LP) solution for the dis-
crete voltage selection problem with uniform and non-uniform
switched capacitance. Although this work gives the impression
that the problem can be solved optimally in polynomial time,
we will show in this paper that the discrete voltage selection
problem is indeed strongly NP-hard and, hence, no optimal
solution can be found in polynomial time, for example using
LP. Dynamic voltage selection has also been successfully
applied to heterogeneous distributed systems, mostly using
heuristics [7], [8], [9]. Zhang et al. [10] approached continuous
supply voltage selection in distributed systems using an ILP
formulation. They solved the discrete version of the problem
through an approximation.

While the approaches mentioned above scale only the
supply voltageVdd and neglect leakage power consumption,
Kim and Roy [4] proposed an adaptive body-biasing ap-
proach (in their work referred to as dynamicVth scaling)
for active leakage power reduction. They demonstrate that
the efficiency of ABB will become, with advancing CMOS
technology, comparable to DVS. Duarte et al. [11] analyze
the effectiveness of supply and threshold voltage selection,
and show that simultaneously adjusting both voltages provides
the highest savings. Martin et al. [2] presented an approach
for combined dynamic voltage selection and adaptive body-
biasing. At this point we should emphasize that, as opposed
to these three approaches, we investigate in this paper how to
select voltages for a set of tasks, possibly with dependencies,
which are executed on multi-processor systems under real-
time constraints. Furthermore, as opposed to our work, the
techniques mentioned aboveneglectthe energy and time over-
heads imposed by voltage transitions. Noticeable exceptions
are [12], [13], [14], yet their algorithms ignore leakage power



dissipation and body-biasing, and further they do not guarantee
optimality. In this work, we consider simultaneous supply
voltage selection and body biasing, in order to minimize
dynamic as well as leakage energy. In particular, we inves-
tigate four different notions of the combined dynamic voltage
selection and adaptive body-biasing problem — considering
continuous and discrete voltage selection with and without
transition overheads. A similar problem for continuous voltage
selection has been recently formulated in [15]. However, it
is solved using a suboptimal heuristic. The combination of
dynamic supply voltage selection and processor shutdown was
presented in [16] for single processor systems. The authors
demostrate the existence of a critical speed, under which
scaling the processor frequency becomes energy inefficient,
due to the fact that the leakage energy increases faster than
the dynamic energy decreases. The leakage energy reduction
is achieved there by shutting down the processor during the
idle intervals, without performing adaptive body biasing.

To fully exploit the potential performance provided by
multiprocessor architectures (e.g. systems-on-a-chip),com-
munication has to take place over high performance buses,
which interconnect the individual components, in order to
prevent performance degradation through unnecessary con-
tention. Such global buses require a substantial portion of
energy, on top of the energy dissipated by the computational
components [17], [18]. The minimization of the overall energy
consumption requires the combined optimization of both the
energy dissipated by the computational processors as well as
the energy consumed by the interconnection infrastructure.

A negative side-effect of the shrinking feature sizes is the
increasingRC delay of on-chip wiring [19], [18]. The main
reason behind this trend is the ever-increasing line resistance.
In order to maintain high performance it becomes necessary
to “speed-up” the interconnects. Two implementation styles
which can be applied to reduce the propagation delay are:
(a) The insertion ofrepeatersand (b) the usage offat wires.
In principle, repeaters split long wires into shorter (faster)
segments [19], [20], [18] and fat wires reduce the wire
resistance [17], [18]. Techniques for the determination ofthe
optimal quantity of repeaters are introduced in [19], [20].An
approach to calculate the optimal voltage swing on fat wires
has been proposed in [17]. Similar to processors with supply
voltage selection capability, approaches for link voltagescaling
were presented in [21], [22]. An approach for communication
speed selection was outlined in [23]. Another possibility to
reduce communication energy is the usage of bus encoding
techniques [24]. In [25], it was demonstrated that shared-
bus splitting, which dynamically breaks down long, global
buses into smaller, local segments, also helps to improve
energy savings. An estimation framework for communication
switching activity was introduced in [26].

Until now, energy estimation for system-level communica-
tion was treated in a largely simplified manner, [23], [27], and
based on naive models that ignore essential aspects such as
bus implementation technique (repeaters, fat wires), leakage
power, and voltage swing adaption. This, however, very often
leads to oversimplifications which affect the correctness and
relevance of the proposed approaches and, consequently, the

accuracy of results. On the other hand, issues like optimal
voltage swing and increased leakage power due to repeaters are
not considered at all for implementations of voltage-scalable
embedded systems. We have presented preliminary results
regarding processor voltage selection and simulataneous pro-
cessor and communication voltage selection in [28] and [29].

Our contributions are the following:

(a) We consider both supply voltage and body-bias voltage
selection at the system-level, where several tasks with
dependencies execute a time-constrained application on a
multi-processor system.

(b) Four different voltage selection schemes are formulated
as nonlinear programming (NLP) and mixed integer linear
programming (MILP) problems which can be solved
optimally. The formulations are equally applicable to
single and multi-processor systems.

(c) We prove that discrete voltage selection with and without
the consideration of transition overheads in terms of
energy and time is strongly NP-hard, while the continuous
voltage selection cases can be solved in polynomial time
(with an arbitrary given approximationε > 0).

(d) We solve the combined voltage selection problem for
processing elements and communications links. To allow
an effective voltage selection on the communication links,
we outline a set of delay and energy models. Further,
we take into account the possibility of dynamic voltage
swing scaling on fat wires and address the leakage power
dissipation in bus repeaters.

(e) Since voltage selection for components that operate with
discrete voltages is proofed to be NP-hard, we introduce
a simple yet effective heuristic based on the NLP formu-
lation for the continuous voltage selection problem.

(f) We study the combined voltage selection and processor
shutdown problem. In particular, we demonstrate that the
processor shutdown is an NP complete problem even
isolated from the voltage selection. We propose two
solutions that integrate the shutdown with the continuous
and respectively with the discrete voltage selection.

As mentioned earlier, in this paper we will concentrate on
off-line voltage selection techniques, that make use of the
static slack existing in the application. In [30] we presented
an efficient technique that dynamically makes use of slack
created online, due to the fact that tasks execute less then
their worst case number of clock cycles. Although the details
of that technique are beyond the scope of this paper, in section
X we will briefly introduce its principles and illustrate its
effectiveness in conjunction with the shutdown procedure.

The remainder of this paper is organized as follows: Pre-
liminaries regarding the system specification, the processor
power and delay models are given in Sections II and III.
This is followed by a motivational example in Section IV.
The four investigated processor voltage selection problems
are formulated in Section V. Continuous and discrete voltage
selection problems are discussed in Sections VI and VII,
respectively. We study the combined voltage selection and
shutdown problem in Section VIII. Power and delay models
for the communication links are given and the general problem



Fig. 1. System models

of voltage selection for processors and the communication
is addressed in Section IX. Extensive experimental results
are presented in Section X, and conclusions are drawn in
Section XI.

II. SYSTEM AND APPLICATION MODEL

In this paper we consider embedded systems which are real-
ized as heterogeneous distributed architectures. Such architec-
tures consist of several different processing elements (PEs),
such as programmable microprocessors, ASIPs, FPGAs, and
ASICs, some of which feature DVS and ABB capability. These
computational components communicate via an infrastructure
of communication links (CLs), like buses and point-to-point
connections. We defineP andL to be the sets of all processing
elements and all links, respectively. An example architecture
is shown in Fig. 1(a). The functionality of applications is
captured by task graphsG(Π,Γ). Nodes τ ∈ Π in these
directed acyclic graphs represent computational tasks, while
edgesγ ∈ Γ indicate data dependencies between these tasks
(communications). Tasksτi require in the worst caseNCi clock
cycles to be executed, depending on the PE to which they are
mapped. Further, tasks are annotated with deadlinesdli that
have to be met at run-time.

If two dependent tasks are assigned to different PEs,px and
py with x 6= y, then the communication takes place over a CL,
involving a certain amount of time and power.

We assume that the task graph is mapped and scheduled on
the target architecture, i.e., it is known where and in which
order tasks and communications take place. Fig. 1(a) shows an
example task graph that has been mapped onto an architecture
and Fig. 1(b) depicts a possible execution order.

To tie the execution order into the application model, we
perform the following transformation on the original task
graph. First, all communications that take place over communi-
cation links are captured by communication tasks, as indicated
by squares in Fig. 1(c). For instance, communicationγ1−2 is
replaced by taskτ6 and the edges connectingτ6 to τ1 andτ2 are
introduced.K defines the set of all such communication tasks
andC the set of graph edges obtained after the introduction
of the communication tasks. Furthermore, we denote with
T = Π∪K the set of all computations and communications.
Second, on top of the precedence relations given by data
dependencies between tasks, we introduce additional prece-
dence relationsr ∈ R , generated as result of scheduling tasks
mapped to the same PE and communications mapped on the
same CL. In Fig. 1(c) the dependenciesR are represented as
dotted edges. We define the set of all edges asE = C ∪R .

We construct the mapped and scheduled task graphG(T ,E).
Further, we define the setE• ⊆E of edges, as follows: an edge
(i, j) ∈ E• if it connects taskτi with its immediate successor
τ j (according to the schedule), whereτi andτ j are mapped on
the same PE or CL.

III. PROCESSORPOWER AND DELAY MODELS

Digital CMOS circuitry has two major sources of power dissi-
pation: (a) dynamic powerPdyn, which is dissipated whenever
active computations are carried out (switching of logic states),
and (b) leakage powerPleak which is consumed whenever the
circuit is powered, even if no computations are performed. The
dynamic power is expressed by [31], [2],

Pdyn = Ce f f · f ·V2
dd (1)

where Ce f f , f , and Vdd denote the effective charged ca-
pacitance, operational frequency, and circuit supply voltage,
respectively. Although, until recently, dynamic power dissi-
pation had been dominating, the trend to reduce the overall
circuit supply voltage and consequently threshold voltageis
raising concerns about the leakage currents. For near future
technology (< 65nm) it is expected that leakage will account
for a significant part of the total power. The leakage power is
given by [2],

Pleak = Lg ·Vdd ·K3 ·e
K4·Vdd ·eK5·Vbs + |Vbs| · IJu (2)

whereVbs is the body-bias voltage andIJu represents the body
junction leakage current (constant for a given technology). The
fitting parametersK3, K4 and K5 denote circuit technology
dependent constants andLg reflects the number of gates. For
clarity reasons we maintain the same indices as used in [2],
where also actual values for these constants are given. Please
note that the leakage power is stronger influenced byVbs than
by Vdd, due to the fact that the constantK5 is larger than the
constantK4 (e.g., for the Crusoe processor described in [2],
K5 = 4.19 while K4 = 1.83).

Nevertheless, scaling the supply and the body-bias voltage
for power saving, has a side-effect on the circuit delayd and
hence the operational frequency [31], [2]:

f =
1
d

=
((1+K1) ·Vdd+K2 ·Vbs−Vth1)

α

K6 ·Ld ·Vdd
(3)

whereα reflects the velocity saturation imposed by the used
technology (common values 1.4 ≤ α ≤ 2), Ld is the logic
depth, andK1, K2, K6 andVth1 are circuit dependent constants.

Another important issue, which often is overlooked, is
the consideration of transition overheads, i.e., each timethe
processor’s supply and body bias voltage are altered, the
change requires a certain amount of extra energy and time.
These energyεk, j and delayδk, j overheads, when switching
from Vddk to Vddj and fromVbsk to Vbsj , are given by [2],

εk, j = Cr · |Vddk −Vddj |
2 +Cs · |Vbsk −Vbsj |

2 (4)

δk, j = max(pVdd · |Vddk −Vddj |, pVbs· |Vbsk −Vbsj |) (5)

where Cr denotes power rail capacitance, andCs the total
substrate and well capacitance. Since transition times forVdd

andVbs are different, the two constantspVdd andpVbs are used



Fig. 2. Influence ofVbs scaling

to calculate both time overheads independently. Considering
that supply and body-bias voltage can be scaled in parallel,
the transition overheadδk, j depends on the maximum time
required to reach the new voltage levels.

In the following, we assume that the processors can op-
erate in several execution modes. An execution modemz is
characterized by a pair of supply and body bias voltages:
mz = (Vddz,Vbsz). As a result, an execution mode has an
associated frequency and power consumption (dynamic and
leakage) that can be calculated using Eq. 3 and respectively
Eq. 1 and 2. Upon a mode change, the corresponding delay
and energy penalties are computed using Eq. 5 and 4.

Tasks that are mapped on different processors communicate
over one or more shared buses. In sections 4-8 we assume that
the buses are not voltage scalable and thus working at a given
frequency. Each communication task has a fixed execution
time and energy consumption depeding proportionally on the
amount of communication. For simplicity of the explanations,
in sections 4-8 we will not differentiate between computation
and communication tasks. A more refined communication
model, as well as the benefits of simultaneously scaling
the voltages of the processors and communication links is
introduced in Section IX.

IV. M OTIVATIONAL EXAMPLES

A. Optimizing the Dynamic and Leakage Energy

Fig. 2 shows two optimal voltage schedules for a set of
three tasks (τ1, τ2, andτ3), executing in two possible voltage
modes. While the first schedule relies onVdd scaling only
(i.e.,Vbs is kept constant), the second schedule corresponds to
the simultaneous scaling ofVdd andVbs. Please note that the
figures depict the dynamic and the leakage power dissipation
as a function of time. For simplicity we neglect transition
overheads in this example. Further, we consider processor
parameters that correspond to CMOS technology (< 70nm)
which leads to a leakage power consumption close to 40%
of the total power consumed (at the mode with the highest
performance).

Let us consider the first schedule in which the tasks are
executed either atVdd1 = 1.8V, or Vdd2 = 1.5V, while Vbs1

andVbs2 are kept at 0V. In accordance, the system dissipates
Pdyn1 = 100mW and Pleak1 = 75mW in mode 1 running at
700MHz, while Pdyn2 = 49mW and Pleak2 = 45mW in mode
2 running at 525MHz, as observable from the figure. We have
also indicated the individual energy consumed in each of the
active modes, separating between dynamic and leakage energy.

Fig. 3. Influence of transition overheads

The total leakage and dynamic energies of the schedule in
Fig. 2(a) are 13.56µJ and 16.17µJ, respectively. This results
in a total energy consumption of 29.73µJ.

Consider now the schedule given in Fig. 2(b), where tasks
are executed at two different voltage settings forVdd andVbs

(m1 = (1.8V,0V) andm2 = (1.5V,−0.4V)). Since the voltage
settings for modem1 did not change, the system runs at
700MHz and dissipatesPdyn1 = 100mW and Pleak1 = 75mW.
In mode m2 the system performs at 480Mhz and dissipates
Pdyn2 = 49mW and Pleak2 = 5mW. There are two main dif-
ferences to observe compared to the schedule in Fig. 2(a).
Firstly, the leakage power consumption during modem2 is
considerably smaller than in Fig. 2(a); this is due to the fact
that in modem2 the leakage is reduced through a body-bias
voltage of−0.4V (see Eq. (2)). Secondly, the high voltage
mode m1 is active for a longer time; this can be explained
by the fact that scalingVbs during modem2 requires the
reduction of the operational frequency (see Eq. (3)). Hence,
in order to meet the system deadline, the high performance
mode m1 has to compensate for this delay. Although here
the dynamic energy was increased from 16.17µJ to 18.0µJ,
compared to the first schedule, the leakage was reduced from
13.56µJ to 8.02µJ. The overall energy dissipation is 26.02µJ,
a reduction by 12.5%. This example illustrates the advantage
of simultaneousVdd andVbs scaling compared toVdd scaling
only.

B. Considering the Transition Overheads

We consider a single processor system that offers three voltage
modes,m1 = (1.8V,−0.3V), m2 = (1.5V,−0.45V), andm3 =
(1.2V,−0.8V), wheremz = (Vddz,Vbsz). The rail and substrate
capacitance are given asCr = 10µF and Cs = 40µF. The
processor needs to execute two consecutive tasks(τ1 and
τ2) with a deadline of 0.225ms. Fig. 3(a) shows a possible
voltage schedule. Each of the two tasks is executed in two
different modes: taskτ1 executes first in modem2 and then
in mode m1, while task τ2 is initially executed in mode
m3 and then in modem2. The total energy consumption of



this schedule isE = 9+ 15+ 4.5+ 7.5 = 36µJ. However, if
this voltage schedule is applied to areal voltage-scalable
processor, the resulting schedule will be affected by transition
overheads, as shown in Fig. 3(b). The processor requires
a given time to adapt to the new execution mode. During
this adaption no computations can be performed [32], [33],
which increases the schedule length such that the imposed
deadline is violated. Moreover, transitions do not only require
time, they also cause an additional energy dissipation. For
instance, in the given schedule, the first transition overheadO1

from modem2 and m1 requires an energy of 10µF · (1.8V −
1.5V)2 + 40µF · (0.3V − 0.45V)2 = 1.8µJ, based on Eq. (4).
Similarly, the energy overheads for transitionsO2 andO3 can
be calculated as 13.6µJ and 5.8µJ, respectively. The overall
energy dissipation of the schedule from Fig. 3(b) accumulates
to 36+1.8+13.6+5.8= 57.2µJ.

Compared to the schedule in Fig. 3(a), the mode activation
order in Fig. 3(c) has been swapped for both tasks. As
long as the transition overheads are neglected, the energy
consumption of the two schedules is identical. However,
applying the second activation order to a real processor would
result in the schedule shown in Fig. 3(d). We can observe
that this schedule exhibits only two mode transitions (O1

and O3) within the tasks (intra switches), while the switch
between the two tasks (inter switch) has been eliminated. The
overall energy consumption has been reduced toE = 43.6µJ,
a reduction by 23.8% compared to the schedule given in
Fig. 3(b). Further, the elimination of transitionO2 reduces
the overall schedule length, such that the imposed deadline
is satisfied. With this example we have illustrated the effects
that transition overheads can have on the energy consumption
and the timing behavior and the impact of taking them into
consideration when elaborating the voltage schedule.

V. PROBLEM FORMULATION

Consider a set of tasksT = {τi} with precedence constraints,
that have been mapped and scheduled on a set of variable
voltage processors. For each taskτi its deadlinedli , its worst
case number of clock cycles to be executedNCi and the
switched capacitanceCe f fi are given. Each processor can vary
its supply voltageVdd andbody bias voltageVbs within certain
continuous ranges (for the continuous problem), or, withina
set of discrete voltage pairsmz = {(Vddz,Vbsz)} (for the discrete
problem). The power dissipations (leakage and dynamic) and
the cycle time (processor speed) depend on the selected voltage
pair (mode). Tasks are executed cycle by cycle, and each cycle
can potentially execute at a different voltage pair, i.e., at a
different speed. Our goal is to find voltage pair assignments
for each task such that the individual task deadlines are met
and the total energy consumption is minimal. Furthermore,
whenever the processor has to alter the settings forVdd and/or
Vbs, a transition overhead in terms of energy and time is
required (see Eqs. (4) and (5)).

For reasons of clarity we introduce the following four
distinctive problems which will be considered in this paper:
(a) Continuous voltage selection with no consideration of
transition overheads (CNOH), (b) continuous voltage selection

with consideration of transition overheads (COH), (c) discrete
voltage selection with no consideration of transition overheads
(DNOH), and (d) discrete voltage scaling with consideration
of transition overheads (DOH).

VI. OPTIMAL CONTINUOUS VOLTAGE SELECTION

In this section we consider that the supply and body-bias
voltage of the processors can be selected within a certain
continuous range. We first formulate the problem neglecting
transition overheads (Section VI-A, CNOH) and then extend
this formulation to include the energy and delay overheads
(Section VI-B, COH).

A. Continuous Voltage Selection without Overheads (CNOH)

We model the continuous voltage selection problem, excluding
the consideration of transition overheads (the CNOH problem),
using the following nonlinear problem formulation.
Minimize

|T |

∑
k=1

(

NCk ·Ce f fk ·V
2
ddk

︸ ︷︷ ︸

Edynk

+Lg(K3 ·Vddk ·e
K4·Vddk ·eK5·Vbsk + IJu · |Vbsk |) · tk

︸ ︷︷ ︸

Eleakk

)

(6)

subject to

tk = NCk ·
(K6 ·Ld ·Vddk)

((1+K1) ·Vddk +K2 ·Vbsk −Vth1)
α (7)

Dk + tk ≤ Dl ∀(k, l) ∈ E (8)

Dk + tk ≤ dlk ∀ τk that have a deadline (9)

Dk ≥ 0 (10)

Vddmin ≤Vddk ≤Vddmax and Vbsmin ≤Vbsk ≤Vbsmax (11)

The variables that need to be determined are the task execution
times tk, the task start timesDk as well as the voltagesVddk

and Vbsk. The total energy consumption, which is the sum
of dynamic and leakage energy, has to be minimized, as in
Eq. (6)1. The task execution time has to be equivalent to the
number of clock cycles of the task multiplied by the circuit
delay for a particularVddk and Vbsk setting, as expressed by
Eq. (7). Given the execution time of the tasks, it becomes
possible to express the precedence constraints between tasks
(Eq. (8)), i.e., a taskτl can only start its execution after all
its predecessor tasksτk have finished their execution (Dk + tk).
Predecessors of taskτl are all tasksτk for which there exists
an edge(k, l) ∈ E in the mapped and scheduled task graph.
Similarly, tasks with deadlines have to be completed (Dk + tk)
before their deadlinesdlk (Eq. (9)). Task start times have to
be positive (Eq. (10)) and the imposed voltage ranges should
be respected (Eq. (11)). It should be noted that the objective
(Eq. (6)) as well as the task execution time (Eq. (7)) are convex
functions. Hence, the problem falls into the class of general
convex nonlinear optimization problems. Such problems can
be efficiently solved in polynomial time (given an arbitrary
precisionε > 0), [35].

1Note thatabsandmaxoperations cannot be used directly in mathematical
programming, yet there exist standard techniques to overcome this limitation
by equivalent formulations [34].



B. Continuous Voltage Selection with Overheads (COH)

In this section we modify the previous formulation in order
to take transition overheads into account (COH problem). The
following formulation highlights the modifications.

Minimize
|T |

∑
k=1

(Edynk +Eleakk)

︸ ︷︷ ︸

Task energy dissipation

+ ∑
(k, j)∈E•

εk, j

︸ ︷︷ ︸

Transition energy overhead

(12)

subject to

Dk + tk + δk, j ≤ D j ∀(k, j) ∈ E• (13)

δk, j = max(pVdd · |Vddk −Vddj |, pVbs· |Vbsk −Vbsj |) (14)

The objective function Eq. (12) now additionally accounts
for the transition overheads in terms of energy. The energy
overheads can be calculated according to Eq. (4) for all con-
secutive tasksτk andτ j on the same processor (E• is defined
in Section II). However, scaling voltages does not only require
energy but it introduces delay overheads as well. Therefore,
we introduce an additional constraint similar to Eq. (8), which
states that a taskτ j can only start after the execution of its
predecessorτk (Dk + tk) on the same processor and after the
new voltage mode is reached (δk, j ). This constraint is given in
Eq. (13). The delay penaltiesδk, j are introduced as a set of new
variables and are constrained subject to Eq. (14). Similar to
the CNOH formulation, the COH model is a convex nonlinear
problem, i.e., it can be solved in polynomial time.

VII. OPTIMAL DISCRETEVOLTAGE SELECTION

The approaches presented in the previous section provide a
theoretical upper bound on the possible energy savings. In
reality, however, processors are restricted to a discrete set of
Vdd and Vbs voltage pairs. In this section we investigate the
discrete voltage selection problem without and with the con-
sideration of overheads. We will also analyze the complexity
of the discrete voltage selection problem.

A. Problem Complexity

Theorem 1:The discrete voltage selection problem is NP-
hard.

Proof: We proof by restriction. The discrete time-cost
trade-off (DTCT) problem is known to be NP-hard [36]. By
restricting the discrete voltage selection problem (DNOH)to
contain only tasks that require an execution of one clock
cycle, it becomes identical to the DTCT problem. Hence,
DTCT ∈ DNOH which leads to the conclusion DNOH∈ NP.

The details of the proof are given in [34]. The problem is
NP-hard, even if restricted it to supply voltage selection (with-
out adaptive body-biasing) and even if transition overheads
are neglected. It should be noted that this finding renders the
conclusion of [6]2 impossible, which states that the discrete

2The flaw in [6] lies in the fact that the number of clock cycles spent in a
mode is not restricted to be integer.

Fig. 4. Discrete mode model

voltage selection problem (considered in [6] without body-
biasing and overheads) can be solved optimally in polynomial
time.

B. Discrete Voltage Selection without Overheads (DNOH)

In the following we will give a mixed integer linear program-
ming (MILP) formulation for the discrete voltage selection
problem without overheads (DNOH). We consider that pro-
cessors can run in different modesm∈ M . Each modem
is characterized by a voltage pair(Vddm,Vbsm), which deter-
mines the operational frequencyfm, the normalized dynamic
power Pdnomm, and the leakage power dissipationPleakm. The
frequency and the leakage power are given by Eqs. (3) and
(2), respectively. The normalized dynamic power is given by
Pdnomm = fm ·V2

ddm
. Accordingly, the dynamic power of a task

τk operating in modem is computed asCe f fk ·Pdnomm. Based
on these definitions, the problem is formulated as follows:
Minimize

|T |

∑
k=1

∑
m∈M

(

Ce f fk ·Pdnomm · tk,m+Pleakm · tk,m
)

(15)

subject to

Dk + ∑
m∈M

tk,m ≤ dlk (16)

Dk + ∑
m∈M

tk,m ≤ Dl ∀(k, l) ∈ E (17)

ck,m = tk,m · fm and ∑
m∈M

ck,m = NCk ck,m ∈ N (18)

Dk ≥ 0 and tk,m ≥ 0 (19)

The total energy consumption, expressed by Eq. (15), is given
by two sums. The inner sum indicates the energy dissipated
by an individual taskτk, depending on the timetk,m spent in
each modem. The outer sum adds up the energy of all tasks.
Unlike the continuous voltage selection case, we do not obtain
the voltageVdd andVbs directly, but rather we find out how
much time to spend in each of the modes. Therefore, task
execution timetk,m and the number of clock cyclesck,m spent
within a mode become the variables in the MILP formulation.
The number of clock cyclesck,m is restricted to the integer
domain. We exemplify this model graphically in Figures 4(a)
and 4(b). The first figure shows the schedule of two tasks



executing each at two different voltage settings (two modes
out of three possible). Taskτ1 executes for 20 clock cycles in
modem2 and for 10 clock cycles inm1, while taskτ2 runs
for 5 clock cycles inm3 and 15 clock cycles inm2. The same
is captured in Fig. 4(b) in what we call a mode model. The
modes that are not active during a task’s runtime have the
corresponding time and number of clock cycles 0 (modem3

for τ1 andm1 for τ2). The overall execution time of taskτk is
given as the sum of the times spent in each mode (∑m∈M tk,m).
Eq. (16) ensures that all the deadlines are met and Eq. (17)
maintains the correct execution order given by the precedence
relations. The relation between execution time and number of
clock cycles as well as the requirement to execute all clock
cycles of a task are expressed in Eq. (18). Additionally, task
start timesDk and task execution times have to be positive
(Eq. (19)).

C. Discrete Voltage Selection with Overheads (DOH)

We now proceed with the incorporation of transition overheads
into the MILP formulation given in Section VII-B. The order
in which the modes are activated has an influence on the
transition overheads, as we have illustrated in Section IV-
B. Nevertheless, the formulation in Section VII-B does not
capture the order in which modes are activated, it solely
expresses how many clock cycles are spent in each mode. We
introduce the following extensions needed in order to take both
delay and energy overheads into account. Givenm operational
modes, the execution of a single taskτk can be subdivided into
m subtasksτs

k,s= 1, ...,m. Each subtask is executed in one and
only one of them modes. Subtasks are further subdivided into
m slices, each corresponding to a mode. This results inm·m
slices for each task. Fig. 4(c) depicts this model, showing that
task τ1 runs first in modem2, then in modem1, and thatτ2

runs first in modem3, then inm2. This ordering is captured by
the subtasks: the first subtask ofτ1 executes 20 clock cycles in
modem2, the second subtask executes one clock cycle inm1

and the remaining 9 cycles are executed by the last subtask in
modem1; τ2 executes in its first subtask 4 clock cycles in mode
m3, 1 clock cycle is executed during the second subtask in
modem3, and the last subtask executes 15 clock cycles in the
modem2. Note that there is no overhead between subsequent
subtasks that run in the same mode. The following gives the
modified MILP formulation:
Minimize

|T |

∑
k=1

∑
s∈M

∑
m∈M

(

Ce f fk ·Pdnomm · tk,s,m+Pleakm · tk,s,m
)

︸ ︷︷ ︸

Task energy dissipation

+
|T |

∑
k=1

∑
s∈M

∑
i∈M

∑
j∈M

(

bk,s,i, j ·EPi, j

)

︸ ︷︷ ︸

Transition energy overhead

(20)

subject to
δk = ∑

s∈M ∗
∑

i∈M
∑

j∈M

bk,s,i, j ·DPi, j (21)

Fig. 5. VS heuristic: mode reordering

δk,l = ∑
i∈M

∑
j∈M

bk,m,i, j ·DPi, j where(k, l) ∈ E• (22)

Dk + ∑
s∈M

∑
m∈M

tk,s,m+ δk ≤ dlk (23)

Dk + ∑
s∈M

∑
m∈M

tk,s,m+δk +δpl,l ≤ Dl ∀(k, l) ∈E ,(pl, l) ∈E•

(24)
ck,s,i = tk,s,i · fi s∈M , i ∈M , ck,s,i ∈ N (25)

∑
s∈M

∑
i∈M

ck,s,i = NCk (26)

In order to capture the energy overheads in the objective
function (Eq. (20)), we introduce the boolean variablesbk,s,i, j .
In addition, we introduce an energy penalty matrix EP, which
contains the energy overheads for all possible mode transi-
tions, i.e., EPi, j denotes the energy overhead necessary to
change form modei to j. These overheads are precomputed
based on the available modes (voltage pairs) and Eq. (4). The
overall energy overhead is given by all intratask and intertask
transitions. The intratask and intertask delay overheads,given
in Eq. (21) and (22), are calculated based on a delay penalty
matrixDPi, j , which, similarly to the energy penalty matrix, can
be precomputed based on the available modes and Eq. (5). For
a taskτk and for each of its subtasksτs

k, except the last one,
the variablebk,s,i, j = 1 if mode i of subtaskτs

k and modej of
τs+1

k are both active (s in 1, ..., |M |−1, i, j in 1, ...,m). These
are used in order to capture the intratask overheads, as in
Eq. (21). For intertask overheads, we are interested in the last
mode of taskτk and the first mode of the subsequent taskτl

(running on the same processor). Therefore,bk,m,i, j = 1 if the
modei of the last subtaskτm

k and the modej of first subtask
τ1

l are both active. For the example given in Fig. 4(c),b1,1,2,1,
b1,2,1,1, b1,3,1,3, b2,1,3,3, b2,2,3,2 are all 1 and the rest are 0.
Deadlines and precedence relations, taking the delay overheads
into account, have to be respected according to Eq. (23) and
(24). Here ∑s∈M ∑m∈M tk,s,m represents the total execution
time of a taskτk, based on the number of cycles in each of the
subtasks and modes. Eq. (25) and (26) are a reformulation of
Eq. (18), which expresses the relation between the execution
time and the number of clock cycles and the requirement to
execute all clock cycles of a task. To ease the explanation, the
above given MILP formulation has been simplified to a certain
degree. We have omitted here details on the computation of
the b variables as well as the constraints that make sure that
one and only one mode is used by a subtask. The complete
MILP model can be found in [34].



Fig. 6. Schedules with idle times

D. Discrete Voltage Selection Heuristic

As shown earlier, discrete voltage selection is NP-hard. Thus,
solving it using the presented MILP formulation for large
instances is time consuming. We propose a heuristic to ef-
fectively solve the discrete voltage selection problem. The
main idea behind this heuristic is to perform a continuous
voltage selection (as outlined in Section VI). As a result
of this calculation, for each task, a continuous voltage pair
(Vddcon,Vbscon), as well as the corresponding frequencyfcon will
be determined. Using the approach introduced in [1], for each
task the two surrounding discrete performance modes are cho-
sen such thatfd1 < fcon< fd2. That is, the execution of a task
is split into two regions withtd1 and td2 being the execution
times in the mode withfd1 and fd2, respectively. Fig. 5(a)
and 5(b) illustrate this transformation for an applicationwith
three tasks. In the continuous scaling case, Fig. 5(a), eachtask
executes at a single voltage level, i.e., the voltages are changed
only between tasks. In the discrete case, the voltage setting is
changed during the task execution. Of course, the required
time overheadδi for the mode change has to be considered as
well, i.e., t i = t i

d1 + t i
d2 + δi , where t i is the execution time

with continuous voltage setting of the taskτi . In general,
executing tasks in two performance modes, determined as
above, leads to close to optimal discrete voltage selection.
Having determined the discrete performance mode settings,
the inter-task transition overheads are reduced by reordering
the mode sequence of each task. We reorder the modes in
a greedy manner, such that the inter-task overhead between
consecutive tasks is minimized. This is outlined in Fig. 5(c).
While this reordering technique is optimal for processors that
offer two performance modes, this is not true for components
with three or more modes. Nevertheless, as demonstrated by
our experiments, this heuristic is fast and efficient.

VIII. V OLTAGE SELECTION WITH PROCESSORSHUTDOWN

In this section we discuss the integration of two system level
energy minimization techniques: voltage selection and pro-
cessor shutdown. Voltage selection is effective in minimizing
the active energy consumption (the energy consumed while
executing a certain task). However, specially in multiprocessor
environments, processors alternate between active and idle
periods. During idle times, a certain amount of energy, pro-
portional to the length of the idle period is consumed. A
solution for saving this energy is to shutdown the processor.
The transition to the shutdown state and from shutdown back
to operation implies a time and an energy overhead.

Idle times may be present due to multiple reasons, even
after performing voltage selection. Consider, for example, the

Fig. 7. Voltage Selection with Shutdown

three tasks in Fig. 6(a). If the application runs on a single
processor system at the lowest speed, it still finishes before the
deadline, as depicted in Fig. 6(b). In the idle interval between
the finishing time and the deadline, the processor consumes
energy. In this situation, we could shut down the processor and
thus save energy. In the case of a single processor system with
tasks that do not have arbitrary arrival times, deciding weather
or not to shutdown and for how long is relatively easy. In [16],
the notion of threshold time interval is defined as the minimul
length of an idle period that would provide energy savings
by shuting down. A shutdown is decided if the idle interval
available is larger than the threshold time.

Imagine now a more complex case, when the application
runs on two processors, as in Fig. 6(c). Due to dependencies
between tasks that are mapped on different processors, there is
a certain amount of slack that cannot be exploited by voltage
selection. For example, taskτ2 can start only after taskτ1 has
finished. Consequently, there is an idle interval onCPU1 from
time 0, until the start ofτ2. Deciding in this case weather or
not to shutdown is a complex problem that will be addressed
in the following section.

Even though voltage selection aims at optimizing the ac-
tive energy, while processor shutdown minimizes the energy
consumed during idle periods, these two techniques are not
orthgonal. Let us consider an application consisting of 3 tasks,
τ1, τ2 and τ3, as in Fig. 7(a). The tasks are mapped on
two processorsCPU1 andCPU2. The resulting schedule, after
performing voltage selection is depicted in Fig. 7(b), withall
the 3 tasks running at the lowest speeds. Taskτ1 is running for
2ms with 200mW, while τ2 and τ3 run at 400mW for 1.5ms
and respectively 2ms. A brief analysis of the idle times present
after voltage selection on both processors, allows us to further
reduce the energy consumption by shutting downCPU1 after
the execution ofτ1 and ofCPU2 afterτ3. The energy overhead
for shutdown is 75µJ onCPU1 and 125µJ onCPU2. We notice
the idle interval of 0.5msonCPU2, between the executions of
τ2 and τ3. The idle power onCPU2 is 250mW, resulting in
an energy consumption of 125µJ. Please note that the energy
consumed during this idle period equals the energy overhead
of a shutdown, so it would not pay off to shutdown afterτ2.
However, let us consider the possibility of runningτ1 faster,
such that it finishes in 1.5ms. The power consumption that
corresponds to this frequency is 300mW. This slight increase
on CPU1 is compensated by the fact that we can now execute
task τ3 immediately afterτ2, use one shutdown operation to
exploit all the idle time onCPU2 and thus save 125µJ.



A. Processor Shutdown: Problem Complexity

The shutdown problem without voltage selection (SNVS) is
formulated as follows:

Consider a set of tasks with precedence constraintsT = {τi}
that have been mapped and scheduled on a set of processors.
Each processor operates at a given fixed frequency. For
each taskτi , its deadlinedli and number of clock cycles
to be executedNCi are given. The start time of each task
is variable (with the constraints imposed by the precedences
in the scheduled task graph). When a processor is idle, an
amount of energy proportional to the length of the idle interval
is consumed. In order to save energy, during such an idle
interval the particular processor can be shut down. A shutdown
operation comes with a fixed time and energy penalty. Our
goal is to minimize the energy consumed by the system while
the processors are idle. This translates into spending as most
as possible of the idle time in the shutdown state. In order to
be energy efficient, the best solution will assign the task start
times such that idle times are grouped together in big intervals
that can be covered with few shutdown operations.

Theorem 2:The shutdown problem (SNVS) is NP-
complete.
The proof is given in [34]. It is based on the fact that
the multiple choice continuous knapsack problem can be
reduced to the SNVS problem. If the simple shutdown problem
without performing voltage selection is NP complete, then the
combined voltage selection problem with shutdown (even in
the case with continuous voltages) is NP complete as well.

B. Continuous Voltage Selection with Processor Shutdown
(CVSSH)

In this section we present an exact integer nonlinear formu-
lation as well as a polynomial time heuristic for the voltage
selection with processor shutdown3. The following gives the
modified nonlinear programming formulation (CVSSH):
Minimize

|T |

∑
k=1

NCk ·Ce f fk ·V
2
ddk

︸ ︷︷ ︸

Edyn

+
|T |

∑
k=1

Lg · (K3 ·Vddk ·e
K4·Vddk ·eK5·Vbsk + IJu · |Vbsk|) · tk

︸ ︷︷ ︸

Eleak

+
|T |

∑
k=1

xik · tidlek ·Pidlek +xsk · (Esohk + to f fk ·Po f fk)

︸ ︷︷ ︸

Eidle+Eo f f

(27)

subject to

tk = NCk ·
(K6 ·Ld ·Vddk)

((1+K1) ·Vddk +K2 ·Vbsk −Vth1)
α (28)

3For simplicity of the presentation, we omit here the consideration of
voltage transition overheads. Nevertheless, these overheads can be easily
included, as shown in section VI-B

Dk + tk ≤ Dl ∀(k, l) ∈ E−E•(29)

Dk + tk +xik · tidlek = Dl ∀(k, l) ∈ E• (30)

Dk + tk +xsk ·Tsohk + to f fk = Dl ∀(k, l) ∈ E• (31)

xik +xsk = 1 ∀τk (32)

Dk + tk ≤ dlk ∀ τk with dl (33)

Dk ≥ 0 (34)

xik,xsk ∈ {0,1} (35)

Vddmin ≤Vddk ≤Vddmax and Vbsmin ≤Vbsk ≤Vbsmax (36)

There are two noticeable differences between this formulation
and the one in section VI-A: the inclusion in the objective
(Eq. 27) of the energy spent during idle and shutdown intervals
and Eq. 31 and 30 introduced in order to account for the idle
and off times.Pidlek, Po f fk, Esohk and Tsohk are constants for
each taskτk and capture the power consumed by the processor
on which τk is mapped, during idle and shutdown time
intervals and respectively the energy and the time overhead
associated to a shutdown operation. Please note the usage in
Eq. 27, 30 and 31 of binary variablesxik andxsk, associated to
each task, with the following semantics: if taskτk is followed
by a shutdown, thenxsk = 1 and xik = 0, otherwisexik = 1
andxsk = 0. In case of a shutdown,to f fk captures the amount
of time the processor is off. If there is no shutdown after the
execution ofτk, tidlek captures the amount of idle time (tidlek

is 0 if the next task starts immediately afterτk).
The binary variablesxik and xsk change the complexity of

this nonlinear programming formulation, compared to the ones
presented in sections VI-A and VI-B. While the problems
presented there are convex nonlinear, the CVSSH problem is
integer nonlinear. Indeed, as shown in the previous section, the
voltage selection with shutdown problem is NP complete, even
in the case when continuous voltage selection is used. There-
fore, in the following, we propose a heuristic to efficiently
solve the problem.

Let us consider particular instances of the CVSSH problem,
where xik and xsk are given constants for each taskτk.
We denote this simplified problem CVSI. Such a particular
instance can be solved in polynomial time and computes
the optimal voltages for a system in which we know the
position of the shutdown operations. For example, ifxik = 1,
for all the tasksτk, CVSI computes the task voltages such
that the energy is minimized, taking into account the idle
energy, without performing any shutdown. Running CVSI for
all possible combinations forxsk andxik and selecting the one
with the minimum energy, provides the optimal solution for the
voltage selection with shutdown problem. This is, practically,
not possible, of course. We will present in the following
a heuristic that solves the CVSSH problem in polynomial
time. The pseudocode of the heuristic is given in Fig. 8. The
algorithm takes as input the mapped and scheduled task graph
with each task characterized as in section V. It returns, the
supply and body bias voltage for each task as well as the
position and length of each shutdown operation and idle time.

As a first step (line 02), we perform voltage selection, using
the CVSI nonlinear formulation. This will optimize the active
and idle energy, without performing any shutdown operation



Algorithm: CONT VS SHUT HEU

Input: - Mapped and scheduled task graph
- For each task: NCk, Ce f fk, dlk

Output:- Vddk, Vbsk, xsk, xik, to f fk, tidlek

01: for all τk xsk = 0, xik = 1
02: Ecurrent=call CVSI
03: while(1) {
04: for all τk EFTk=earliest start time(τk)
05: for all τk LSTk=latest start time(τk)
06: for all (k, l) ∈ E• tidlek = LSTl −EFTk
07: if ∀τk tidlek ·Pidlek ≤ Esohk break
08: *select τk with tidlek ·Pidlek = max{tidlel ·Pidlel |τl ∈ T }
09: set xsk = 1,xik = 0
10: Ecurrent=call CVSI
11: }
12: while(1) {
13: for all τk EFTk=earliest start time(τk)
14: for all τk LSTk=latest start time(τk)
15: for all (k, l),(l ,m) ∈ E• tidlek,l ,m = LSTm− tl −EFTk

16: if ∀(k, l),(l ,m) ∈ E•, tidlek,l ,m ·Pidle ≤ Esohk break
17: *select set σk,l ,m with

tidlek,l ,m ·Pidlek = max{tidleh,i, j ·Pidleh|(h, i),(i, j) ∈ E•}
18: set xsk = 1,xik = 0,xsl = 0,xil = 1
19: E1=call CVSI
20: set xsk = 0,xik = 1,xsl = 1,xil = 0
21: E2=call CVSI
22: *set (xsk = 1,xsl = 0) if E1 > Ecurrent&E1 > E2
23: *set (xsk = 0,xsl = 1) if E2 > Ecurrent&E2 > E1
24: *set (xsk = 0,xsl = 0) if E1 < Ecurrent&E2 < Ecurrent
25: Ecurrent = min{Ecurrent,E1,E2}
26: }
27: return (Vddk, Vbsk,xsk,xik,to f fk, tidlek)

Fig. 8. Voltage Selection with Shutdown Heuristic

(xsk = 0 andxik = 1).
In a second step, (lines 03-11), the idle intervals are in-

spected one by one, and, if an interval is large enough (line 08)
a shutdown is introduced. In more detail, we find iteratively
the idle time with the highest energy that is large enough to
allow a shutdown. For this purpose, we compute, for each task
τk, the earliest finishing timeEFTk and the latest start time
LSTk (line 04-05), assuming that each task is running at a fixed
speed using the voltages computed by CVSI at line 02 or in
the previous iteration at line 10. We select for shutdown the
idle time that consumes the most energy (line 08-09). We set
the corresponding binary variablesxsk = 1 andxik = 0 in order
to schedule a shutdown after the taskτk. Then we run CVSI
with the updated values forxi andxs (line 10). At each new
iteration the global energy consumption is improved.

When the algorithm exits the loop from lines 03-11, there is
no idle interval that is large enough to produce energy savings
by a shutdown (line 07). However, in principle, there are two
ways to further reduce the consumed energy:

1) Increase the voltages of some tasks such that the idle
intervals following them become longer and, thus, can be
exploited by shutdowns.

2) Increase the voltages of some tasks such that several idle
intervals can be merged and exploited by a single shutdown.

The first alternative can be excluded based on a simple
reasoning. Let us assume that we have a taskτk that runs in
modem1 and consumes a certain amount energyE1

k . Taskτk

is followed by an idle interval of lengtht1
idlek

, that is too small

to provide savings via shutdown:t1
idlek

·Pidlek < Esohk. The total
energy consumed in this case isE1

k + t1
idlek

·Pidlek . Consider
that we increase the speed ofτk by running it with execution
mode m2 instead ofm1. In this caseτk will consume E2

k
(E2

k > E1
k ) and the idle interval becomes long enough to make

a shutdown operation efficient. As a result the total energy is
E2

k +Esohk. SinceE2
k > E1

k andEsohk > t1
idlek

·Pidlek, the energy
of the system obtained by runningτk in execution modem2

with a shutdown during the idle time is actually higher than
the energy of the system obtained by runningτk in execution
modem1 without a shutdown. As a conclusion, increasing the
speed of a task such that an idle interval becomes large enough
for a shutdown does not provide any energy savings.

The second alternative is illustrated in Fig. 7. The energy
is reduced by speeding up certain tasks in order to create
the possibility of merging several small idle intervals. Inthis
way, the resulting idle interval can be exploited by a single
shutdown operation. This alternative is explored as the third
step of our heuristic (lines 12-26). We inspect all the groups
of three consecutive tasks mapped on the same processor,
τk, τl and τm with (k, l),(l ,m) ∈ E• and explore the savings
achievable by mergingtidlek and tidlel . More exactly, for all
sets of three tasksσk,l ,m = {(τk,τl ,τm)|(k, l),(l ,m) ∈ E•}, we
compute the maximum set idle timetidlek,l ,m as the difference
between the latest start time of taskτm, the execution time
of τl and the earliest finishing time ofτk (line 15). We
select the setσk,l ,m with the highest energy (line 17). For
this set, there are two candidate locations of the shutdown
operation: after the execution ofτk or after the execution ofτl .
Our algorithm explores both possibilities (lines 18-21). Using
CVSI, we first compute the energy considering the showdown
after τk (E1) and secondly afterτl (E2). If both E1 andE2 are
higher then the energy obtained without a shutdown afterτk

and τl , no shutdown is scheduled during this iteration (line
24). Otherwise, the algorithm schedules a shutdown afterτk

or after τl (lines 22-23). The global energy is improved at
each iteration (line 25). The loop exits when no idle time
corresponding to a set is large enough to produce savings via
shutdown (line 16).

This heuristic relies on a continuous formulation for the
computation of the task voltages. We use the heuristic pre-
sented in section VII-D in order to translate the computed
voltage levels into the discrete ones available on the proces-
sors.

IX. COMBINED VOLTAGE SELECTION FORPROCESSORS

AND COMMUNICATION L INKS

In this section, we consider the supply and body bias voltage
selection problem for processors and communication links.We
introduce a set of communication models for energy and delay
estimation. We study two different bus implementations and
show the implication of the bus implementation type on the
voltage selection strategy. We introduce a nonlinear modelof
the continuous voltage selection problem, which is optimally
solvable in polynomial time, while for the discrete voltage
selection case we use a heuristic similar to the one presented
in section VII-D. For simplicity of the explanation, we have



not considered the processor shutdown during the formulation
of the optimization problems in this section, however, the
extension is straightforward.

A. Voltage Selection on Repeater-Based Buses

Consider an architecture consisting of two voltage-scalable
processing elements (CPU1 and CPU2) that communicate via
a repeater-based, shared bus (CL1), which also allows voltage
selection. CPU1 executes taskτ1 and CPU2 runsτ2. Task
τ2 can only start after receiving data fromτ1, and it has to
finish execution before a deadline of 2ms. Fig. 9(a) shows
the schedule for this system, considering an execution at the
nominal voltage settings (highest supply voltage and body bias
voltage). The diagram shows the energy dissipation (dynamic

Fig. 9. Voltage selection on a repeater-based bus

and leakage) of the individual components. For clarity we
assume in this example that the processors as well as the
repeaters of the bus have the same nominal voltage values
(Vdd = 1.8V and Vbs = 0V). Furthermore, we assume that
the supply voltages and the body bias voltages of all com-
ponents can be varied continuously in the ranges[0.6,1.8]V
and [−1,0]V, respectively. Given the power consumptions
at the nominal voltages, we can compute a total energy
consumption of the tasks and communication in the initial
schedule as(156+ 103)mW· 0.5ms+ (90+ 80)mW· 0.5ms+
(125+ 90)mW· 0.5ms= 323µJ. As can be observed, at the
nominal voltages the system over-performs, leading to a slack
of 0.5ms.

We can exploit this slack by scaling the voltages of
the processing elements. Using the technique described in
section VI, the resulting voltages for tasksτ1 and τ2 are
(1.43V,−0.42V) and (1.54V,−0.49V), respectively. The cor-
responding, voltage scaled schedule is shown in Fig. 9(b).
The dynamic and leakage power consumptions of the tasks
are reduced to(72mW,5mW) and(65mW,4mW); however, the
execution times have increased to 0.79ms and 0.71ms. With
these settings, the system dissipates 195µJ, a reduction by 39%
compared to the energy at nominal voltages.

To demonstrate the importance of combined voltage se-
lection of the processors and the repeater-based bus, we
have produced the schedule in Fig. 9(c). The optimal
voltage settings can be calculated as(1.48V,−0.42V) for
CPU1, (1.77V,−0.61V) for CPU2, and(1.59V,−0.50V) for
the bus repeaters. Correspondingly the power dissipations
are(81mW,5.6mW), (73.8mW,4.9mW) and(55.8mW,16mW)

thereby, reducing the overall system energy dissipation to
163µJ. This is a reduction of 49% compared to the nominal
energy consumption, which is 10% more than in the case when
only the PEs are voltage scaled.

B. Voltage Swing Selection on Fat Wire Buses

In this example, we illustrate the influence that a dynamic
variation of the voltage swing (the voltage on the wire) has
on the energy efficiency of the bus. Fig. 10 shows the total
power consumption of a fat wire bus (including drivers and
receivers), depending on the voltage swing at which data is
sent. These plots have been generated via SPICE simulations
using the Berkeley predictive 70nmCMOS technology library.
The two plots show the total power consumption on the bus for
two different voltage settings of the bus drivers and receivers.
For example, if the driver connected to CPU1 and the receiver
at CPU2 operate at 1.0V, the lowest bus power dissipation
(0.55mW) is achieved by a voltage swing of 0.14V. Let us

Fig. 10. Optimum swing on a fat wire bus

assume that the voltages of the driver and receiver are changed
during run-time to 1.8V due to voltage selection. The bus
power/voltage swing relation for this situation is indicated by
the dashed line. As we can observe, by keeping the voltage
swing at 0.14V, the power dissipation on the bus will be
4.5mW. However, inspecting the plot reveals that it is possible
to reduce the bus power dissipation by changing the voltage
swing from 0.14V to 0.6V. At this voltage swing, the bus
dissipates a power of 2.2mW, i.e., a 51% reduction can be
achieved by changing the voltage swing.

Now assume that the driver and receiver voltages are
changed back from 1.8V to 1.0V. Keeping the swing at 0.6V
results in a power of 0.83mW, which is, compared to the
optimal 0.55mW at 0.14V, 33% higher than necessary.

C. Communication Models

We consider a bus-based communication system as in Fig. 11.
Whenever the processorCPU1 sends data toCPU2 over the
bus,Vdd1 is converted to the bus voltageVdd3 by the bus adapter
of CPU1. At the destination processorCPU2, Vdd3 is converted
to Vdd2. Each voltage conversion in the bus adapter requires
an energy overhead, which is:

Eadapter= Cadapter· (VddCPU −Vddbus)
2 (37)



Fig. 11. Interconnect structures

Thus, the total energy consumed when communicating be-
tween two processorsCPU1 andCPU2 over the bus is:

Ecomm= Eadapter1 +Ebus+Eadapter2 (38)

Feature size scaling in deep-submicron circuits is responsible
for an increasing wire delay of the global interconnects. This
is mainly due to higher wire resistances caused by a shrinking
cross-sectional area. Two approaches to cope with this problem
have been proposed: (a) the usage of repeaters [19], [20] and
(b) the usage of fat wires [17], [18]. The bus energyEbus in
Eq. (38) depends on which of these two approaches is used.

1) Repeater-Based Bus:The wire delay depends quadrati-
cally on the wire length, which can be approximated using an
RC model. In order to reduce this quadratic dependency, it is
possible to break the wire into smaller segments by inserting
repeaters. The authors in [18] estimate an increasing number
of repeaters with technology scaling down. For instance, up
to 138 repeaters are used in 50nm technology for a corner-
to-corner wire with a die size of 750mm2. Repeaters are
implemented as simple CMOS inverter circuits (Fig. 11(b)).
In accordance, the power dissipated by a bus implemented
with repeaters is given by,

Prep= N ·(sτ ·Crep ·V
2
dd · f

︸ ︷︷ ︸

Pdyn

+Vdd ·K3 ·e
K4·Vdd ·eK5·Vbs+ |Vbs| · IJu

︸ ︷︷ ︸

Pleak

)

(39)
whereN is the number of repeaters,sτ is the average switching
activity caused by communication taskτ ∈K , Crep is the load
capacity of a repeater (the sum of the output capacity of a
repeaterCd, the wire capacityCw, and the input capacity of the
next repeaterCg), andVdd, Vbs, and f are the supply voltage,
body bias voltage, and the frequency at which the repeaters
operate. Further, the constantsK3, K4, K5, and IJu depend on
the repeater circuits (see section III).

The bus speed is constrained by the repeater frequency.
Since repeaters are implemented as CMOS inverters, we use
Eq. (3) to approximate the operational frequencyf of the bus.
The execution time of a communicationτ ∈ K is given by,

t =

⌈
NBτ

Wbus

⌉

·
1
f

(40)

where NBτ denotes the number of bits to be transmitted by
communicationτ and Wbus is the width of the bus (i.e. the
number of bits transmitted with each clock cycle). Accordingly
to Eq. (39) and (40), the bus energy dissipation is given by
Ebus = Prep · t. Scaling the supply and body bias voltage of
the repeaters requires also an overhead in terms of energy and
time, similar to the overheads required by processor voltage
selection (see Eq. (4) and (5)).

2) Fat Wire-Based Bus:Another approach for reducing the
wire delay is to increase the physical dimensions of the wire,
instead of scaling them down with technology. The usage of
“fat” wires, on the top metal layer, has been proposed in [17].
The main advantage of such wires is their low resistance. Pro-
vided thatL ·Rw/Z0 < 2ln2 (L is the wire length,Rw is the wire
resistance per unit length andZ0 its characteristic impedance),
they exhibit a transmission line behavior, as opposed to theRC
behavior in the repeater-based architecture. Using fat wires, the
transmission speed approaches the physical limits (the speed of
light in the particular dielectric). However, only a limited wire
length can be accomplished with the available width of the
top metal layer. For example, for a 4mm long wire in 180nm
technology, the authors in [37] obtained a fat wire width of
2µm on the top metal layer.

The dynamic power consumption of a fat wire-based bus is
mainly due to its large line capacitance. This capacitance is
driven by a driver, with the dynamic power consumption:

Pdridyn = sτ · f · (Cdri +Cw) ·V2
dd (41)

wheresτ is the switching activity caused by communication
taskτ ∈K , f is the bus frequency, andCdri andCw represent
the capacitance of the driver and the wire, respectively.

One way to limit the dynamic power is to transmit data at
a lower voltage swing,Vsw, instead of using the higher bus
voltageVdd. Correspondingly, the dynamic power consumed
by the driver is given by:

Pdridyn =

{
sτ · f · (Cdri +Cw) ·Vdd ·Vsw if Vsw is generated on chip

sτ · f · (Cdri +Cw) ·V2
sw otherwise

(42)
The driver dissipates a non-negligible leakage power

Pdri leak = Lg · (Vdd ·K3 ·e
K4·Vdd ·eK5·Vbs + |Vbs| · IJu) (43)

Since the lower swing corresponds to lower signal values,
a receiver has to restore the “original” signal. This requires
an amplification, for which a dynamic and a leakage power
consumption can be calculated as:

Precdyn = sτ · f ·Crec ·V
2
dd (44)

Precleak = Lg · (Vdd ·K3 ·e
K4·Vdd ·eKL·(Vdd/2−Vsw/2) ·eK5·Vbs + |Vbs| · IJu)

(45)
Please note that the leakage power exponentially depends on
the difference between the bus voltageVdd and the voltage
swing Vsw (KL is a technology dependent parameter), i.e., a
lower voltage swing results in a higher static energy (while
the dynamic power is reduced, Eq. 42). In order to find
the most efficient solution we need to find an appropriate
voltage swing that minimizes the total bus powerPbus =
Pdridyn + Pdri leak + Precdyn + Precleak. Using the optimal voltage



swing can significantly reduce the power consumption of the
bus [37], [17].

The speed at which the data can be transmitted over the
fat wires can be considered to be independent of the voltage
swing Vsw. Yet, the bus driver and receiver circuits introduce
a delay that depends on the voltagesVdd andVbs. This delayd
and the corresponding operational frequency can be calculated
according to Eq. (3). In order to lower the power dissipationof
the drivers and receivers, it is possible to reduceVdd and/or to
increaseVbs, which, in turn, necessitates the reduction of the
bus speed. However, it is important to note that the optimal
voltage swing depends on theVdd and Vbs settings of the
drivers and receivers (see Fig. 10). Since these settings are
dynamically changed during run-time via voltage selection,
the value of the optimal voltage swing changes as well during
run-time, and has to be adapted accordingly.

In addition to the transition overheads in terms of energy
and time, which are required when scaling the voltages of the
drivers and receivers (see Eq. (4) and (5)), the dynamic scaling
of the voltage swing necessitates additional overheads. For a
transition fromVswj to Vswk these overheads in energy and time
are given by,

εk, j = Cwr · (Vswk −Vswj )
2 and δk, j = pVsw· |Vswk −Vswj |

(46)
whereCwr is the wire power rail capacitance andpVsw is the
time/voltage slope.

D. Problem Formulation

We assume that all computation tasks and communications
have been mapped and scheduled onto the target architecture.
For each computation taskτi ∈ Π its deadlinedli , its worst-
case number of clock cycles to be executedNCi , and the
switched capacitanceCe f fi are given. Each processor can
vary its supply voltageVdd and body bias voltageVbs within
certain continuous ranges (for the continuous voltage selection
problem), or within a set of discrete voltages pairsmz =
{(Vddz,Vbsz)} (for the discrete voltage selection problem). A
transition between two different performance modes on a
processor requires a time and an energy overhead.

For each communication taskτk ∈ K , the number of bytes
NBk is given. Depending on the employed bus implementation
style, either using repeaters or fat wires, we have to distinguish
between two subproblems:
Repeater Implementation:The communication speed as well
as the communication power on bus architectures implemented
through repeaters depend on the supply voltage and body bias
voltage. Similar to processing elements, these voltages can
be varied within a continuous range, or within a set of dis-
crete voltage pairsmz = {(Vddz,Vbsz)}, and transitions between
different bus performance modes require an energy and time
overhead. Furthermore, an energy overhead is required to adapt
the bus voltage to the processor voltage.
Fat Wire Implementation: If communication is performed
over fat wires, it is necessary to dynamically adapt the voltage
swing at which data is transfered. Furthermore, in order to
reduce the power dissipated by the bus drivers and receivers,
it is possible to dynamically scale the supply and body bias

voltage of these components. While the voltage swing can be
scaled without an influence on the bus speed, the operational
speed of the bus drivers and receivers is affected through
voltage selection, i.e., the bus performance has to be adjusted
in accordance to the driver/receiver speed. In the case of
continuous voltage selection, the value for the voltage swing,
the supply voltage, and the body bias voltage can be changed
within a continuous range. On the other hand, for the discrete
voltage selection case, the components operate across setsof
discrete voltages, referred to as modes. For the voltage swing
this set isnz = {Vswz} and for the bus drivers and receiver
the set ismz = {(Vddz,Vbsz)}. Of course, changing the voltage
swing value as well as the supply and body bias voltages
requires an energy and time overhead. �

Our overall goal is to find mode assignments for each
processing and communication task, such that the individual
task deadlines are satisfied and the total energy consumption,
including overheads, is minimal.

E. Voltage Selection with Processors and Communication
Links

We introduce a nonlinear programming model of the contin-
uous voltage selection problem formulated in section IX-D
which is optimally solvable in polynomial time, as follows:

Minimize
|Π|

∑
k

Edynk +Eleakk

︸ ︷︷ ︸

computation

+
|K |

∑
k

Edynk +Eleakk

︸ ︷︷ ︸

communication

+ ∑
(k, j)∈E•

εk, j

︸ ︷︷ ︸

overhead

(47)

subject to

tk =







NCk ·
(K6·Ld·Vddk

)

((1+K1)·Vddk
+K2·Vbsk

−Vth1
)α if τk ∈ Π

⌈ NBk
Wbus

⌉
·

(K6·Ld·Vddk
)

((1+K1)·Vddk
+K2·Vbsk

−Vth1
)α if τk ∈K

(48)

Dk + tk ≤ Dl ∀(k, l) ∈ E (49)

Dk + tk + δk,l ≤ Dl ∀(k, l) ∈ E• (50)

Dk + tk ≤ dlk ∀τk ∈ Π with a deadline (51)

Dk ≥ 0 (52)

Vddmin ≤ Vddk ≤Vddmax (53)

Vbsmin ≤ Vbsk ≤Vbsmax (54)

Vswmin ≤ Vswk ≤Vswmax (55)

The variables that need to be determined are the task and
communication execution timestk, the start timesDk, as well
as the voltagesVddk, Vbsk, and Vswk. The whole formulation
can be explained as follows. The total energy consumption
(Eq. (47)), with its three contributors (energy consumption
of tasks, communication, and voltage transitions) has to be
minimized. For all these energies both their dynamic and active
leakage components are considered. The dynamic energy of
tasks and communications is given by the following equations
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(derived from the equations discussed in Section III):

Edynk
=







NCk ·sk ·Ce f fk ·V
2
ddk

if τk ∈ Π
∑N

⌈ NBk
Wbus

⌉
·sk ·Crep ·V2

ddk
if τk ∈K on repeaters

⌈ NBk
Wbus

⌉
·sk ·Cf at ·Vddk

·Vswk if τk ∈K on fat wires (intern)
⌈ NBk

Wbus

⌉
·sk ·Cf at ·V2

swk
if τk ∈K on fat wires (extern)

(56)
where Crep = Cd +Cw +Cg and Cf at = Cdri +Cw +Crec are
the total capacitances that have to be charged by bus imple-
mentation either repeater-based or fat wire-based, respectively.
Furthermore, in the case of fat wire implementations we
have to distinguish between the chip-intern or chip-extern
generation of the voltage swing.

The leakage power dissipation of processors and repeater-
based buses is:

Eleakk = Lg(K3 ·Vddk ·e
K4·Vddk ·eK5·Vbsk + IJu · |Vbsk|) · tk (57)

For fat wire-based buses we need to additionally account for
the leakage in the receiver (see Eq. (43) and (45)), given by,

Eleakk = (Pdri leak +Precleak) · tk (58)

The energy overhead due to voltage transitions is given by
Eq. (4) and (46).

The constraints are similar to the ones in section VI,
expressing the execution order imposed by the scheduling and
task graph dependencies, as well as the time constraints.

We use a heuristic similar to the one presented in section
VII-D in order to translate the computed continuous voltages
into the discrete ones available for the processors and buses.

X. EXPERIMENTAL RESULTS

We have conducted several experiments using numerous gen-
erated benchmarks as well as two real-life examples, in order
to demonstrate the efficiency of the presented approaches.

A. Vdd and Vbs Selection on the Processors

The first set of experiments was conducted in order to
demonstrate the achievable energy savings when comparing
the classicVdd selection with simultaneousVdd and Vbs se-
lection. The automatically generated benchmarks consist of
100 task graphs containing between 50 and 150 tasks, which
are mapped and scheduled onto architectures composed of 2

to 3 processors (we have considered that all processors are
Crusoe TM5600). The technology dependent parameters of
these processors were considered to correspond to a CMOS
fabrication in 70nm, for which the leakage power represents
50% of the total power consumed, [2]. For experimental
purpose the amount of deadline slack in each benchmark
was varied over a range 0 to 90%, using a 10% increment,
resulting in 900 performed evaluations. The continuous voltage
ranges were set to 0.6V ≤ Vdd ≤ 1.8V and −1V ≤ Vbs ≤ 0.
The values forCr , Cs, pVdd, and pVbs were set to 10µF,
40µF, 100µs/V, and 100µs/V, respectively. Fig. 12(a) shows
the outcomes for the continuous voltage selection with and
without the consideration of transition overheads. The figure
shows the percentage of total energy consumed (relative to the
baseline energy) as a function of the available slack withinthe
application. As a baseline we consider the energy consumption
at the nominal (highest) voltage forVdd and Vbs. It is easy
to observe the advantage of the combined voltage selection
scheme over the classical voltage selection, with a difference
of up to 40%. These observations hold with and without the
consideration of overheads. Regarding the influence of the
overhead on the overall energy consumption, we can see that
the savings are around 1% for the combined scheme and
2% for the Vdd-only selection. These moderate amounts of
additional savings have a straightforward explanation: Within
the continuous scheme (which from a practical point of view
is unrealistic), the voltage differences between tasks arelikely
to be small, i.e., large overheads are avoided (see Eq. (4) and
Eq. (5)).

We have further evaluated the discrete voltage selection
scheme. Here the processors could switch between three
different voltage settings(1.8,0), (1.5,−0.4), and(1.2,−0.6)
for the combined scheme, and 1.8, 1.5, and 1.2 for the
classicalVdd selection. The results are given in Fig 12(b). As
in the continuous case, we can observe the difference between
the classical supply voltage selection and the more efficient
combined selection scheme. For low amounts of slack (around
10%), the savings for the combined selection are significantly
lower than in the continuous case. The reason for this is that,
due to the small slack available, the processors have to run
in the highest voltage mode, which does not reduce leakage
power. Further, we can see that with increasing slack, the



overall energy approaches the theoretical minimum given by
the continuous case, since more time is spent in the energy-
efficient modem3. It is interesting to observe the influence of
the transition overheads, in particular when not much system
slack is available. In this situation the unnecessary switching
between voltages to exploit the ”small” amounts of slack
causes an increased energy overhead. Compare, for instance,
the cases where the combinedVdd and Vbs selection has
been optimized with and without considering the overheads.
Between 10% to 40% of slack, the consideration of transition
overheads results in solutions with up to 12% higher savings.
Of course, with an increasing amount of slack, the number
of tasks executed at the lowest voltage setting increases, and
hence the number of transitions is decreased. As a result, the
influence of the transition overheads reduces.

It should be noted that the reported results for the discrete
scheme have been evaluated using graphs with at most 80
tasks (without overhead, DNOH) and 40 tasks (with over-
head, DOH), since the required optimization times become
intractable, as a result of the NP-hardness of the problem
(Section VII-A). To overcome this problem we have addition-
ally investigated the voltage selection heuristic proposed in
Section VII-D. The results of the heuristic are shown by the
dotted line in Fig 12(b) and, as we can be seen, they are close
to the optimal (maximum 8% deviation) solution. Moreover,
due to its relatively reduced polynomial time complexity, it can
be applied to large instances of the problem. At this point it
is interesting to note that the optimization times for individual
applications with up to 300 tasks using continuous voltage
selection were below 1 minute, using the MOSEK optimiza-
tion software [38] on a 2GHz AMD Athlon PC. Typically, for
task graphs with less then 100 tasks, the optimization time is
below 15 seconds. The discrete voltage selection without the
consideration of the transition overheads, runs between 5 and
20 minutes, for tasks graphs with less then 90 tasks. When
considering the overheads during the discrete optimization, an
important parameter that affects the optimization time, besides
the number of tasks, is the number of execution modes. We
were not able to solve optimally task graphs with more then 30
tasks, considering 3 or more execution modes. Even for such a
small number of tasks, the optimization time is around 1 hour.
The proposed heuristic for discrete voltages, however, hasa
runtime comparable to the continuous voltage optimization,
making it suitable for large applications.

B. Voltage Selection with Processor Shutdown

Using the same setup as in the previous experiments, we have
studied the achievable energy savings that can be obtained by
using the proposed voltage selection with shutdown, presented
in Section VIII-B. We have assumed that the overheads for a
shutdown operation areEsoh = 300µJ and tsoh = 1ms, as in
[16]. The results are presented in Fig. 13. On the x axis, we
have varied the amount of available deadline slack. We plotted
with the continuous line the energy savings achievable by the
combined voltage selection and shutdown heuristic presented
in section VIII-B, relative to a system that is optimized using
solely DVS and ABB, without shutdown. In order the measure

Fig. 13. Voltage Selection with Shutdown

the quality of the heuristic, we have also represented with
a dotted line the results obtained by an optimal solution.
As we can observe from Fig. 13, if the amount of slack is
low, shutting down does not yield additional energy savings.
However, the additional benefit of the shutdown is significant
for larger amounts of slack. For example, for systems having
30% slack, the additional savings obtained with shutdown,
relative to DVS and ABB are only 2%. When the available
slack is above 60%, the savings due to shutdown range from
10% to almost 30%. It is interesting to note that the proposed
heuristic yields results that are close to the optimal solution.

C. Combined Voltage Selection for Processors and Commu-
nication

We have conducted a set of experiments in order to validate
the presented techniques for combined processor and bus
voltage selection. The automatically generated benchmarks
consist of 120 task graphs containing between 50 and 300
tasks, which are mapped and scheduled onto architectures
composed of 2 to 5 processors, interconnected via 1 to 4
buses either implemented repeater-based or fat wire-based.
The continuous voltage ranges were set to 0.6V ≤Vdd ≤ 1.8V
and −1V ≤ Vbs ≤ 0, while the discrete voltage levels are
mz = {(1.8,0),(1.4,−0.2),(0.8,−0.6),(0.6,−1)}. The voltage
ranges for repeater-based systems are identical to the possi-
ble processor voltage settings. For the fat wire-based buses
the continuous voltage swing can be set between 0.2 and
1V, and for the discrete case it can be adjusted tomz =
0.2,0.3,0.4,0.6,1V. The amount of deadline slack in each
benchmark was varied over a range 0 to 100%, using a 10%
increment. Furthermore, the amount of communication within
the generated benchmarks was varied between 10 to 50% of
the total execution time, with an increment of 10%. Overall,
these experiments resulted in 2400 performed evaluations.

The first set of experiments was conducted with the aim
to investigate the energy savings that are achievable when
dynamically scaling the supply voltage as well as body bias
voltage of bus repeaters. The 32bit-wide bus architecture under
consideration consisted of 27 repeaters per bit-line of which
each has a total length of 27.4mm. The capacitance of a
single wire including the repeaters was estimated as 7.2pF,
using the power optimized data from [39]. Fig. 14(a) shows
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the outcomes of three system configurations for different
amounts of system slack. All plots have been normalized
against the energy dissipation at nominal (highest) voltages.
The first plot gives the energy consumption for systems in
which the repeaters’ voltages are kept fixed, while the supply
voltage (but not the body-bias voltage) of the processors is
dynamically scaled. The second plot represents a system in
which the repeater settings are still kept fixed, while combined
Vdd and Vbs scaling is applied to the processors. The third
plot indicates the systems in which the repeater-based bus
as well as the processors are scaled by changingVdd and
Vbs. Please note that Fig. 14(a) gives the energy values for
systems with a communication amount of 30%, compared to
the total execution time. Inspecting the graphs reveals that
the highest energy savings are achieved by considering the
combinedVdd andVbs continuous voltage selection scheme on
the buses as well as on the processors (plot 3). We can also
observe that the energy efficiency is increased by approx. 12%
if combined voltage selection is applied on the bus (difference
between plot 2 and 3). Generally, the combinedVdd andVbs

scaling yields higher energy saving (around 30%) than theVdd-
only scaling (difference between plot 1 and 2). the results for
continuous voltage selection, it is interesting to note that the
proposed heuristic for discrete voltage selection (Section VII-
D) achieves results that are within 4% of the values obtained
at continuous voltage levels. It is important to note that
the efficiency difference of about 12% on average, between
implementations with and without bus voltage selection is
preserved also when discrete voltage levels are used.

In the second set of experiments, shown in Fig. 14(b), we
investigate the achievable energy savings on a fat wire-based
bus system, assuming the same bus-width as in the previous
experiment. Since fat wires are considered to be suitable only
for short distance connections, we consider a length of 4mm
with a single line capacitance of 609f F. Similarly to the
previous experiments, the plots 1 and 2 represent systems in
which only the processing elements are scaled (Vdd only for
plot 1 and combinedVdd andVbs for plot 2), while the third
plot indicates systems in which the processors and buses are
voltage scaled in terms ofVdd, Vbs, and Vsw. As expected,
the fully voltage scalable systems, achieve the best energy
savings, with reductions between 4% to 18% compared to
systems with fixed bus voltages. Again, applying the heuristic

for discrete voltage selection shows that results comparable to
the continuous case (within 4%) can be achieved.

Please note that we do not advocate here repeater-based or
fat wire-based approaches and do not try to show that one
is better than the other. What we do show is that energy
savings can be achieved if voltage selection is applied on
the communication links and that the communication energy
models are highly dependent on the actual technique used to
implement the communication lines. The experiments have
also shown that with an increasing amount of communication
data, the bus voltage selection approach achieves increasingly
higher energy reductions. If, for example, the time spent for
communications is around 15% of the total execution time, the
energy savings due to bus voltage scaling are around 10%.
With communication time around 30%, the energy savings
become around 16%.

D. Real-Life Examples

We have conducted experiments on two real-life applications:
a GSM voice codec and a generic multimedia system (MMS),
that includes a H263 video encoder and decoder and MP3
audio encoder and decoder . Details regarding these appli-
cations can be found in [40] and [41]. The GSM voice
codec consists of 87 tasks and is considered to run on an
architecture composed of 3 processing elements with two volt-
age modes ((1.8V,−0.1V) and (1.0V,−0.6)). At the highest
voltage mode, the application reveals a deadline slack close
to 10%. Switching overheads are characterized byCr = 1µF,
Cs = 4µF, pVdd = 10µs/V, and pVbs= 10µs/V. Tab. I shows
the results in terms of dynamicEdyn, leakageEleak, overheadε,
and total energyEactive (Columns 2–5). Each line represents a
different voltage selection approach. Line 2 (Nominal) is used
as a baseline and corresponds to an execution at the nominal
voltages. Lines 3 and 4 give the results for the classicalVdd

selection, without (DVDDNOH) and with (DVDDOH) the
consideration of overheads. As we can see, the consideration
of overheads achieves higher energy saving (10.7%) than the
overhead neglecting optimization (8.7%). The results given in
lines 5 and 6 correspond to the combinedVdd andVbs selection
schemes. Again we distinguish between overheads neglecting
(DNOH) and overhead considering (DOH) approaches. If
the overheads are neglected, the energy consumption can
be reduced by 22%, yet taking the overheads into account



Edyn Eleak ε Eactive Reduction
Approach (mJ) (mJ) (mJ) (mJ) (%)

Nominal 1.342 0.620 non 1.962 —
DVDDNOH 1.185 0.560 0.047 1.792 8.7
DVDDOH 1.190 0.560 0.003 1.753 10.7
DNOH 1.253 0.230 0.048 1.531 22.0
DOH 1.255 0.230 0.002 1.487 24.3
Heuristic 1.271 0.250 0.008 1.529 22.1

TABLE I

OPTIMIZATION RESULTS FOR THEGSM CODEC

results in a reduction of 24.3%, solely achieved by decreasing
the transition overheads. Compared to the classical voltage
selection scheme, the combined selection achieved a further
reduction of 14%. The last line shows the results of the
proposed heuristic approach. It should be noted that, sincethe
problem is NP hard, such heuristic techniques are needed when
dealing with larger cases (increased number of voltage modes
and tasks). In the GSM application, although the number
of tasks is relatively large, we considered only two voltage
modes. Therefore the optimal solutions could be obtained for
the DOH problem.

We have performed the same set of experiments on the
MMS system consisting of 38 tasks that is considered to
run on an architecture composed of 4 processors with four
voltage modes ((1.8V,0.0V), (1.6V,−0.8), (1.3V,−0.9) and
(1.0V,−0.9)). At the highest voltage mode, the application
reveals a deadline slack close to 40%. Tab. II shows the
results in terms of dynamicEdyn, leakageEleak, overheadε,
and totalEactive energy (Columns 2–5). As with the GSM,

Edyn Eleak ε Eactive Reduction
Approach (mJ) (mJ) (mJ) (mJ) (%)

Nominal 14.88 12.05 non 26.93 —
DVDDNOH 11.33 9.45 0.68 21.46 20.4
DVDDOH 11.31 9.46 0.0001 20.77 22.9
DNOH 11.40 7.18 0.89 19.47 27.7
DOH 11.41 7.18 0.01 18.60 31.0
Heuristic 11.62 7.30 0.40 19.32 29.3

TABLE II

OPTIMIZATION RESULTS FOR THEMMS SYSTEM

the consideration of overheads achieves higher energy savings
(22.9% for the Vdd-only selection and respectively 31.0%
for the combined approach) than the overhead neglecting
optimization (20.4 and respectively 27.7%). Compared to
the classical voltage selection scheme (22.9% savings), the
combined selection achieved a further reduction of 8.1%.

We have performed a set of experiments on each of the
two real-life applications in order to show the efficiency
of the proposed voltage selection with processor shutdown
technique. The voltage modes are the same for GSM codec
and respectively for the MMS system as the ones used in the
previous experiments. The results are presented in tables III

and IV. Each line represents a different approach. The first
line (Nominal) is the baseline and represents an execution at
the highest voltages, without any processor shutdown. The re-
maining four lines represent the resulting energy consumptions
for supply voltage selection without (DVddNoSH) and with
shutdown (DVddSH) and respectively the supply and body
bias selection without (DVddVbsNoSH) and with shutdown
(DVddVbsSH). For each approach we list the active (Eactive),
idle and total energy (Eidle) consumption. The overheads for a
shutdown operation are estimated in [16] asEsoh= 300µJ and
tsoh= 1ms. If we use these values for the GSM voice codec,
we can not perform do any shutdown, due to the little amount
of slack available after voltage selection. If we consider
lower shutdown overheads (Esoh= 90µJ andtsoh= 0.3ms), we
obtain the results presented in table III. As we can see, even
considering a reduced overhead, the energy can be improved
via shutdown by only 4%. It is interesting to compare the
active and idle energy values resulted after performing voltage
selection without and with processor shutdown from the lines 4
and 5 in table III. As we can see, the active energy is slightly
increased when we perform the shutdown (from 1.48mJ to
1.50mJ), while the idle energy is reduced (from 0.93mJ
to 0.70mJ). This means that a situation similar to the one
described in Fig. 7 is encountered during the optimization (the
voltages for a task are increased in order to allow the merging
of several idle intervals into one big shutdown period). The
difference between the total energy (Etotal) and the sum of
active (Eactive) and idle (Eidle) energies represents the energy
corresponding to the shutdown overheads plus the low energy
consumed in the shutdown state. A simple calculation shows
that only one shutdown is perfomed in case of the GSM voice
codec.

A similar experiment was performed for the MMS. We have
used the shutdown overheads estimated in [16] (Esoh= 300µJ
and tsoh = 1ms). The results are presented in table IV. It is
interesting to note that performing shutdown in conjunction
with supply voltage selection provides a reduction of 9%, com-
pared to a reduction of 5% obtained by the shutdown with the
combinedVdd andVbs selection. This is due to the fact that the
combined supply and body bias voltage selection exploits more
slack than the supply-only voltage selection, thus leavingless
idle time for potential shutdown operations. As opposed to the
GSM voice codec, the optimization determines 5 shutdowns
for the MMS.

The relatively reduced energy savings achievable by shut-
down are due to the small amount of static slack available.
Exploiting the dynamic slack, resulted online from the tasks
that execute less then their worst case number of clock cycles,
provides an additional opportunity for shutdowns. This is due
to the fact that considering the dynamic slack in addition to
the static one, provides a higher chance to find, online, large
idle periods that can be exploited for shutdown. We have
presented in [30] an online voltage selection technique that
can make use of dynamic slack. The technique is based on
an offline calculation of look-up tables that are used online
for voltage selection. The calculation of the tables is based on
the equations presented in this paper. Applied on top of such
an approach, a strategy which includes shutdown produces its



entire potential. For example, for the MMS system, in the
case that the average execution time of the tasks is half of the
worst case, we can achieve a further energy reduction of 60%
by using the shutdown.

Eactive Eidle Etotal Reduction
Approach (mJ) (mJ) (mJ) (%)

Nominal 1.96 1.02 2.98 —
DVddNoSH 1.74 0.93 2.68 10
DVddSH 1.75 0.62 2.56 14
DVddVbsNoSH 1.48 0.93 2.41 19
DVddVbsSH 1.50 0.70 2.30 23

TABLE III

RESULTS FOR THEGSM CODEC WITH SHUTDOWN

Eactive Eidle Etotal Reduction
Approach (mJ) (mJ) (mJ) (%)

Nominal 26.93 6.94 33.87 —
DVddNoSH 20.78 4.83 25.61 25
DVddSH 20.83 0.20 22.53 34
DVddVbsNoSH 18.55 4.78 23.33 32
DVddVbsSH 19.85 0.20 21.56 37

TABLE IV

RESULTS FOR THEMMS SYSTEM WITH SHUTDOWN

In the previous experiments, communication energy has
been ignored. Another set of experiments was performed on
the two benchmarks in order to highlight the importance of
combined processor and communication links’ scaling. The
GSM codec is considered to run on an architecture composed
of 3 processors (with two voltage modes ((1.8V,−0.1V) and
(1.0V,−0.6V))), communicating over a repeater-based shared
bus. At the nomimal voltages, the communication accounts
for 15% of the total energy consumption. Tab. V shows the
resulting total energy consumptions for six different situations.
The first column denotes the used voltage selection technique

Approach VS type Etot (mJ) Reduc. (%)

Nominal — 2.273 —
CPU (Vdd) cont. 2.091 9
CPU (Vdd,Vbs) cont. 1.831 20
Heu.CPU (Vdd,Vbs) disc. 1.887 17
CPU+BUS (Vdd,Vbs) cont. 1.665 27
Heu.CPU+BUS(Vdd,Vbs) disc. 1.723 24

TABLE V

RESULTS FOR THEGSM CODEC CONSIDERING THE COMMUNICATION

and the second indicates if continuous or discrete voltages
were considered. The third and fourth column give the energy
consumption and achieved reduction in percentage for each
scaling approach. For instance, according to the second row,
the system dissipates an energy of 2.273µJ at nominal voltage
settings, i.e., without any voltage selection. This value serves

as a baseline for the reductions indicated in the fourth column.
The third and fourths row present the results of systems in
which the bus remains unscaled while the processors are either
Vdd or Vdd and Vbs scaled over a continuous range. As we
can observe, savings of 9 and 20% are achieved. In order to
adapt the continuous selected voltages towards the two discrete
voltage settings at which the processor can possibly run, we
apply our heuristic outlined in Section VII-D. The achieved
reduction in the discrete case is 17% (row 5). Nevertheless,as
shown by the values given in row 6, it is possible to further
reduce the energy by scaling the repeater-based bus. Compared
to the baseline, a saving of 27% is achieved. Using the
discrete voltage heuristic, the final energy dissipation results
in 1.723µJ, which is 24% below the unscaled system.

The MMS system is mapped on 4 processors that communi-
cate over two repeater-based buses. At the nomimal voltages,
the communication accounts for 25% of the total energy
consumption. The results are presented in table VI.

Approach VS type Etot (mJ) Reduc. (%)

Nominal — 35.01 —
CPU (Vdd) cont. 28.99 18
CPU (Vdd,Vbs) cont. 26.05 26
Heu.CPU (Vdd,Vbs) disc. 26.82 24
CPU+BUS (Vdd,Vbs) cont. 22.94 35
Heu.CPU+BUS(Vdd,Vbs) disc. 23.48 33

TABLE VI

RESULTS FOR THEMMS SYSTEM CONSIDERING THE COMMUNICATION

XI. CONCLUSIONS

Energy reduction techniques, such as supply voltage selection
and adaptive body-biasing can be effectively exploited at the
system-level. In this paper, we have investigated different
alternatives of the combined supply voltage selection, adaptive
body-biasing and processor shutdown problems at the system-
level. These include the consideration of transition overheads
as well as the discretization of the supply and threshold
voltage levels. We have shown that nonlinear programming
and mixed integer linear programming formulations can be
used to solve these problems. Further, the NP-hardness of the
discrete voltage selection case was shown, and a heuristic to
efficiently solve the problem has been proposed. Similarly,
if the shutdown of processors is considered, the problem
becomes NP complete. Therefore, we have proposed an ef-
ficient heuristic to solve this problem. The voltage selection
technique achieves additional efficiency by simultaneously
scaling the voltages of processors and communication. We
have investigated two alternatives, considering both buses with
repeaters and fat wires. Several generated benchmark examples
as well as two real-life applications were used to show the
applicability of the introduced approaches.

In this paper we have focused on the voltage selection
problem. The solutions presented and the heuristics proposed
can be included in design space exploration frameworks that
also perform other system level optimizations, such as task



mapping and scheduling. This has been demonstrated by
integrating our work in the frameworks proposed in [42], [43].
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