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Efficient Modeling of Transmission Lines With
Electromagnetic Wave Coupling by Using
the Finite Difference Quadrature Method
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Abstract—This paper proposes an efficient numerical technique,
called the finite difference quadrature (FDQ) method, to model
the transmission line with radiated electromagnetic (EM) wave
noise coupling. A discrete modeling approach, the FDQ method
adapts coarse grid points along the transmission line to compute
the finite difference between adjacent grid points. A global ap-
proximation scheme is formulated in the form of a weighted sum
of quantities beyond the local grid points. Unlike the Gaussian
quadrature method that computes numerical integrals by using
global approximation framework, the FDQ method uses a global
quadrature method to construct the approximation schemes for
the computation of, however, numerical finite differences. As a
global approximation technique, the FDQ method has superior
numerical dispersion to the finite difference (FD) method, and,
therefore, needs much sparser grid points than the FD method
to achieve comparable accuracy. Equivalent voltage and current
sources are derived, exciting the transmission line at the grid
points. Equivalent circuit models are consequently derived to rep-
resent the transmission line subject to radiated electromagnetic
wave noise. The FDQ-based equivalent models can be integrated
into a simulator like SPICE.

Index Terms—Electromagnetic (EM) wave illuminating, ex-
ternal field coupling, finite difference quadrature (FDQ) method,
interconnect modeling, transient simulation, transmission lines
(TL).

1. INTRODUCTION

LECTROMAGNETIC interference (EMI) problems have

been a great concern in high-speed digital systems and
plenty of works have been done to handle the electromagnetic
compatibility (EMC). Depending on different propagation ap-
proaches, there are conducted EMI noise, capacitive/inductive
coupling EMI noise, and radiated electromagnetic (EM) wave
noise. Conducted and coupling EMI problems have been studied
most in the literature since fast operation and large integration
scale started making the interconnect effect an important issue
in high-speed systems two decades ago. In addition to having
the on-chip and on-board effects of delay, crosstalk, and re-
flection, electrically long interconnects pose the antenna effect,
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when they receive considerable dose of incident electromag-
netic (EM) waves emitted by other electronic devices [1]. Fast
clocking rate and short rise time result in signals with wave-
lengths comparable to interconnect sizes that increase the ra-
diation efficiency of the conducting traces, while the shrinking
feature size and the increasing integration scale lead to higher
EMI susceptibility among the circuit parts. The antenna-effect
EMI problem becomes a more serious challenge to signal in-
tegrity with progressive Vpp down-scaling.

With the traditional EMC problems being involved most with
cabling, there are a few scenarios in which the external EM
waves are coupled to transmission lines (TL) in the high-speed
systems. The interconnects on printed circuit board (PCB) il-
luminated by EM waves are in the first scenario. As the PCB
routing generally involves long interconnects, the EM wave cou-
pling most likely happens in this case, which is in the category
of PCB level EMI problem. In the second scenario the pack-
aging structures, like the pad/pin and the leadframe, are sub-
ject to EM wave coupling. The packaging structures have elec-
trically large sizes to pick up the illuminating EM wave and
the resultant EMI noise travels inside the chips and interferes
with signals. This situation is in the packaging level EMI prob-
lems. In the third scenario, the on-chip long interconnects, like
power/ground lines and clocking lines, have the antenna effect
in which the induced voltages and currents due to EM wave
pose the sources of noise. Also, in the large array structures, like
RAM/ROM, the horizontal and vertical data tracks are long and,
therefore, may be sensitive to the external interference. These
cases are the on-chip level EMI problems.

EM wave coupling to transmission lines can happen at any
level as discussed before. The problem has been handled by
using 3-D full-wave solvers like finite-difference time-domain
(FDTD) methods. In the circuit oriented EMI application,
FDTD models the lumped devices as grid or subgrid elements
having the explicit integration scheme as FDTD required
[2]. Following the Courant constraints, the FDTD theoreti-
cally gives accurate results as it directly simulates the wave
phenomena represented by electric field and magnetic field.
However, in view of circuit design and circuit simulation,
direct full-wave technique, usually having 3-D scale, is com-
putationally expensive and, therefore, prohibitive in most of
the cases. This is especially true when handling the on-chip
problem where the operation frequencies are much higher than
those on off-chip or PCB. Furthermore, full-wave solvers may
suffer from numerical instability when incorporated into circuit
simulators, due to its tiny step size determined by the Courant
condition.
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On the other hand, the transmission line representation of the
interconnects is shown to be still valid even at a relatively high
frequency, provided that the return path is well designed, which
is always observed in practical CMOS and PCB designs. This
fact justifies the situation that equivalent circuit modeling, based
on the quasi-TEM assumption, is one of the mainstream ap-
proaches to solve the problem of external field coupling to trans-
mission lines [3], [4]. In the equivalent circuit modeling, the in-
cident EM waves illuminating the transmission lines are equiv-
alently modeled as either lumped sources or terminal sources.
The effects of the incident field are represented as forcing func-
tions added into the transmission line equations, and, conse-
quently, they are formulated and incorporated into the circuit
simulators altogether with other devices. Compared to the field
solvers, the equivalent circuit approach is computationally ef-
ficient and numerically accurate as long as the quasi-TEM as-
sumption is valid.

In the equivalent lumped source approach [5], [6] that is
mathematically based on the finite difference (FD) methods,
the transmission lines are segmented into small sections,
each of which is represented by lumped elements, and the
equivalent sources of the external EM wave are added at each
small section. As the FD methods have low-order accuracy,
the electrical length of each section has to be a considerably
small fraction (1/12-1/20) of the minimum wave length of the
signal; therefore, the equivalent models consist of an excessive
number of lumped elements. On the contrary, the equivalent
terminal source approach [7], [8] adapts the equivalent sources
of the external EM wave only at the input and the output
ends of the model by integrating the EM wave effect along
the entire transmission line, therefore, reduces the number of
the internal nodes of the equivalent models. Terminal source
modeling methods, e.g., the method of characteristics (MC)
[7] and the Padé approximation of the exponential matrices
[8], are efficient in some cases since they bypass the internal
grid point process. However, as the terminal source modeling
methods lack the flexibility of numerical computation due to
their use of integral involving transcendental functions, their
applications are limited either to lossless transmission lines or
uniform transmission lines.

In spite of the numerical flexibility of FD methods, the
problem with FD modeling is that, although we are only in-
terested in a small number of grid points, especially the end
points, the grid points have to be dense enough to accurately
represent the derivatives along the transmission lines, which
leads to large sparse matrices. The drawback of low-order
finite methods can be removed by using the high-order finite
methods or pseudospectral methods [9], [10]. The mathemat-
ical fundamental of finite difference schemes is the Taylor
series expansion. The scheme of a low-order finite method is
determined by low-order Taylor series, while the scheme of
high-order finite method is determined by high-order Taylor
series. In general, the high-order schemes have a high order of
truncation error. Thus, to achieve the same order of accuracy,
the mesh size used by the high-order schemes can be much
smaller than that used by low-order schemes. As a result, the
high-order schemes can obtain accurate numerical solutions
using much fewer mesh points.
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On the other hand, numerical integration (quadrature) is more
stable and reliable than differentiation. An integral approxima-
tion framework includes the global grid points over the entire
domain, while a differential one includes only the local grid
points. Given an electromagnetic problem, integral approaches,
like Gaussian quadrature, generally give more accurate solu-
tions than the differentiation approaches that use local approxi-
mation [11]. In this paper, the finite difference quadrature (FDQ)
method is proposed to model transmission lines. The idea of the
FDQ method is to quickly compute the finite difference between
two neighboring grid points by estimating a weighted linear sum
of derivatives at a small set of global grid points belonging to
the domain. The weighted linear sum is like the numerical inte-
gral in the Gaussian quadrature method, yet it is to compute the
finite differences rather than the integrals.

This paper develops the FDQ method to model transmission
lines and the radiated EM wave coupling in the following steps.
At first, the effects of the incident EM wave are mathematically
represented by forcing functions on the right-hand side of
the Telegrapher’s equations governing the transmission lines.
Starting from transmission line equations in the frequency
domain, FDQ discretizes the ordinary differential equations
(ODEs) as algebraic equations which give the discrete model of
the transmission lines. Due to the globality of its approximation
scheme, FDQ has remarkably improved numerical dispersion,
and high accuracy can be obtained using a small number of grid
points, which reduces the modeling complexity. The radiated
EM wave noises are then modeled as equivalent sources ex-
citing at the grid points. The number of the equivalent sources,
which is the same as that of the grid points, is much less than
the number of grid points in the FD method, and, therefore,
maintains a balance between accuracy and efficiency. The
transmission line is thus modeled as a multiport device and its
time domain model is obtained by applying inverse Laplace
transform.

The organization of this paper is as follows. In Section II, the
quasi- TEM formulations of transmission lines with the incident
EM waves (represented by the forcing functions) are briefly re-
viewed. The mechanism of the FDQ method is developed and
its numerical properties are shown in Section III. In Section IV,
numerical examples are presented and the results by a variety
of FDQ methods have been compared with the results obtained
using HSPICE.

II. QUASI-TEM FORMULATIONS OF EM WAVE
COUPLING TO TL

A. Formulations Under Quasi-TEM Assumption

The quasi-TEM assumption of TLs is equivalent to the condi-
tion that the dimensions of TLs cross-sectional sizes are much
smaller than a wavelength A of the external EM wave. Under
such a condition, the principal propagation mode of the TLs
is TEM, and can be accurately described by the Telegrapher’s
equations. Theoretical analysis and experimental results have
shown that the external EM wave illuminating can be modeled
as forcing terms which are added in the Telegrapher’s equations
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Fig. 1. MTL illuminated by EM wave.

[1], [12]-[15]. Let the illuminating EM wave be represented in
the Cartesian coordinate system by

E™(s) = B (s)a, + EV(s)a, + EX(s)a. (1)

and the TLs stretch along the x direction. Assume that the refer-
ence of conductor (defined as line 0) is collinear with the x-axis
(see Fig. 1). By assuming a quasi-TEM mode of propagation
along an MTL consisting of m + 1 conductors, the voltages
V(z,s) and currents I(z, s) along the conductors can be rep-
resented by the s-domain Telegrapher’s equations [1]

d d
%V(x./ s)+ L(m)EI(x./ s)+ R(z)I(z,s)=Vy(z,s) (2)

d d
%I(LIZ’/S)-FC(.Z‘)EV((BS) +G($)V($S):If($8) 3

where L(z), C(z), R(z), and G(z) denote the per-unit-length
(PUL) inductance, capacitance, resistance, and conductance
m X m matrices at point z, respectively. The m-dimensional
vector forcing functions Vy(z,t) and If(z,t) represent the
distributed voltages and distributed currents due to the incident
EM wave, which are given by

Vi(z,s) = Vfi(x,s) = |-ZVi(s)+ Ej(s)| &

Ii(e,s) = | Ii(3,5) | = —(G+5C) | Vi(s)| (5

where V];i(x, s) and I }(m, s) are the s-domain forcing voltage
and current at point 2 of the sth line, respectively

A1 .
Vi = [ B d
A0

= [ @, - B a6
Ja,

is the transverse voltage difference due to the transverse com-
ponents of the incident electric field intensity vector £*, where
Ay denotes the point (x,0,0), and A; the point (z, y;, z;), and

Ej(x,s) = EP(x,4i, 2i,8) — EY(2,0,0,5)  (7)
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Fig. 2. Formulation of MTL illuminated by EM wave.

is the contribution of the longitudinal component of the incident
electric field.

B. Plane Wave

Consider a transient electromagnetic plane wave whose prop-
agation direction Sis —a, as shown in the spherical coordinate
system (7,0, ¢) (see Fig. 2). The wave propagates in free space
with propagation velocity

U= —0oly = VzQy + Vyly + V0, )
where vg = /10€o. The s-domain representation of the wave is
Einc(x,y,z, s) = é'Eoe_SE'F 9
where L is the waveform of the field and
€= ey, + eyly +e.0.

is the unit vector representing the polarization of the electric
field in the Cartesian coordinate system

7= 20y + Yy + 20
is the position vector
k= —ki, = kpiy + kyiy + k.d.

is the wave vector.
The components of ¢ along the -, y-, and z-axes are

e, = sinfgsin
e, = —sinfgcosfcos¢p — cosfgsin ¢

ey = — sinfg cosfsin ¢ + cos O cos ¢. (10)

The components of the phase in the Cartesian coordinate
system are

k., =—kcost

kr =—ksinf cos ¢
ky, = —ksin fsin ¢. (11)
With the previous definitions, (9) becomes

Einc(s) = Eo(epbs + eyay + ezdz)e_s(k"”*'kyy*'k:z). (12)

In the time-domain, the wave in (9) is represented by

E(z,y,2,t) = @Bo(t — kpw — kyy — k=2)  (13)
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where the wave components along the axes are denoted by

. :i _ _cosﬂ
v, v
ey — 1 _ _sinﬂcosqﬁ
Vg v
ky:i:_sinﬂsincz)' (14)
Uy v

C. Equivalent Sources to TL With Reference Line

By using the previous definitions, the transverse field contri-
butions in (6) for the 2th conductor are derived as

+

. A +6_ST1 -1
7 —sk.x
Vi(z,s) = Epe Py ————
—sT;

(15)

and the longitudinal field contributions in (7) for the sth con-
ductor are
—87'1.+ _ 1)

mih =kyyi + k.2

p;-" =eylYi + €2

Ei(z,s) = Ege **=%¢, (e (16)

where

Substituting (15) and (16) into (4) and (5) results

_srt kzp+
s _q 7 . 17
)<—¢j_+e>] a7

—ST.

n
If(2,8) = (G + sC)Ege *F=" leq—_‘__p;"] . (19

Vy(x,s) = Ege™ k=" [(e

Inverse Laplace transform gives the time-domain counter-
parts of (17) and (18) as

Vi(z,t)= Kk_”’z +ew> [Eo(t—kza: — Ti+) —Eo(t—kx.il?):|-

T; ]
19)

i [ _

If(z,t)=G #/0 [EO (T—kxx—T;_)—Eo(T—ka)}dT

+C [% [Eo (t—koz — 7;7) —Eo(t—kzx)]] :

(20)

For the quasi-TEM assumption under which the dimensions
of TLs cross-sectional sizes are much smaller than the longitu-
dinal sizes, i.e., ¥;, 2z; < x, we take the first two items of the
following series expansion of e~*7¢:

2
efs‘rq.Jr -1 ST-+ _ (STi )
2

then (17) and (18) become

Vi(z,s) = sEge ke [kfpj' - 6x7+]

%

It(z,5) = — (G + sC)Ege "% [pi].

21
(22)
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In the time-domain, (21) and (22) become

Vi, t) = | (kept — ear?) L Eo(t - kx:v)] (23)

ot

If(z,t) = =G [p Eo(t — kyz)] — C [pf%Eg(t — kxa:)]

(24)

D. Egquivalent Sources to TL With Infinite Ground Plane

Assume that the reference is an infinite and perfect conductor
plane located in the =y plane. For an incident wave represented
in (12), the reflected wave is represented by [16]

Ef(s) = Eo(—epin — eyiy +e. i, e ke thy=k:2) - (75)
The total fields are thus

E;Ot(S) — EOez (e—sk:z + BSkZZ) e—s(kxm—‘rkyy)
E;Ot(s) = Eye, (e—skzz _ eskzz) e—s(kzx+kyy)

E;’Ot(s) :EOey (e—sk:z _ eskzz) e—s(kmaz—‘rkyy). (26)

Similarly, the transverse field contributions in (6) for the ith
conductor are derived in this case as

—s‘ri+ -1

) —sk,x € 7657; -1
Vi(z,s) = Foe™ (Pf — to; - ) 27)

—ST; ST,

and the longitudinal field contributions in (7) for the +th con-
ductor in this case are

Ei(s) = Ege~**=%¢, (6_577+ - 6”7) (28)

where
Ti_ = kyy7 — kzz,
7 = eyyi — exzi.

Substituting (27) and (28) into (4) and (5) results

Vi(z,s) = Ege” k="

. _
=T ] ST, ]
X [m(ﬁe — )
d 7;
et -

I;(z,5) = — (G +5C) x Hoe~"*=

ST.+

e T —1 et —1
X [pf T Tt = ] (30)

(29)

—ST; ST,

In the time-domain, (29) and (30) become

Vi(z,t) = K% + ez) Eo (t — kyx — Ti’)}

— 7-1

N Kkr___ - ex) By (t— kyx +fr,i‘)}

Ti

+ Kkmp: - k:f) Eo(t - kmm)}

-7 i

€19
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T

t -
_G[/ﬂ_i
Jo T;

+C {i_i [Eo (t = kot — 77) — Eo(t — kxx)]}

tp-‘r
1f<x,t>=G[/ 5
J0

Eq (T—kyz—1;") —Eo(T—kxw)‘| dT]

Eo(t—kpz+77)— Eo(T— kwx)]dT]

3

T;

e [& [Eo (t — ki +7) — Eolt - m)]] .
(32)

If we take the first two items of the Taylor series expansions
of e=*7 and eTi , (29) and (30) are simplified as

Vi(z,8) =sEoe™ %" . 2[kpe,yi — exkyyi]
If(z,8) = — (G 4 sC)Eope ™" " . 2 [e,ui] .

(33)
(34)

The time-domain counterparts of (33) and (34) are

0
Vi(z,t) =2 [(eykzyz — emkyyi)aEg(t — k‘zw)} (35)

If(z,s) = — 2G [eyyi Eo(t — ky))

—2C [eyyi%Eg(t - kﬂ:)} . (36)

III. FDQ METHOD

A. Motivation

The FD methods have been fully developed in the literature
and are widely used to numerically solve differential equations.
Consider a smooth function f(z) defined on the domain [0, 1],
which is divided by grid points {x;,i = 1,...,n}, then the
central FD framework is given by

f(@iv1) = f(zi1) = h%f(:c,;) (37
where h = x,41 — x;_1 is the distance between two adjacent
grid points. This framework is a local approximation in that the
finite difference is only represented by the immediately neigh-
boring grid points. Despite its wide popularity and uses, it re-
quires very dense grid points and, therefore, takes computation-
ally prohibitive time to solve large problems. The general ap-
proximation framework of Gaussian quadrature is shown as

b n
10~ @) = [ Lar=Y s G9)
va i=1

where ¢;’s are the coefficients which are determined by the or-
thogonal polynomials in the particular Gaussian rules. Com-
pared to the FD framework in (37), the Gaussian Quadrature
in (38) is a global approximation in that the difference between
u(a) and u(b) is represented by all the grid points over the en-
tire domain.
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Fig. 3. FDQ framework.

The proposed method is to integrate the finite difference and
quadrature methods, the general framework of which is shown
by

n

flwiga) = flw) =) Cikwik%f(ﬂvk)

k=1

(39)

where w;;’s are the weighted coefficients. The right-hand side
representation is apparently a global quadrature approximation,
which is the same as that in (38); however, it is to compute the
finite difference at the left-hand side. The FDQ coefficients cj.’s
are determined by using testing function approach, similarly to
the Galerkin’s method.

Once the positions of grid points are fixed, the corresponding
FDQ coefficients are completely determined, which are fixed
constants, no matter in what applications the differential equa-
tions appear. In general, the set of grid points are selected care-
fully so that they are symmetric with respect to the center of the
domain; alternatively, they can be equally spacing points over
the domain. Next, we develop the FDQ method by showing the
approximation scheme and applying it to a simple transmission
line with EM wave coupling.

B. FDQ Modeling by an Example

For simplicity, the FDQ modeling approach is first developed
on a simple example of a uniform two-wire TL with one of the
wires being the reference. A direct numerical technique, FDQ
methods do not need to decouple the MTL, therefore, its appli-
cation to nonuniform and/or multiconductor TL is straightfor-
ward extended. Assume that a TL stretches from O to d along the
z-axis of a Cartesian coordinate system, where d is the length
of the line. With V(z,s) and I(z, s) being, respectively, the
Laplace-domain voltage and current vectors at point x, the nor-
malized Telegrapher’s equations in s-domain can be written as

%V(x, s)= — (sL+ R)I(z,s) + V¢(z,s) (40)
%I(m, s)=—(sC+ G \V(x,s)+ If(z,s) (41

where R(z), L(z), G(z), and C(z) are the per-unit-length
(PUL) parameters, representing resistance, inductance, con-
ductance, and capacitance parameters, respectively.

As shown in Fig. 3, we choose to equally discretize the trans-
mission line to N small sections, each of which has the length
of Az = d/N. There are two sets of grid points: one set are at
integer-spatial positions as z; = tAx, 7 = 0,..., N, the other
set are those at half-spatial positions as ;1,2 = (i 4 1/2)Axz,
i =0,...,(N —1). The grid points are numbered in such a
way that the voltages are evaluated at integer-spatial positions
as V; = V(z4,8),4 = 0,...,N, and the currents are evalu-

ated at half-spatial positions as I; 1 /o = I(2;41/2,5). In addi-
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tion, the currents Iy = I(0,s) and Iy = I(d, s) are input and
output currents at the port, respectively. For clarity of the inter-
mediate use in the context, we define the intermediate voltages
Vigr2 = V(2ig1/2,8),% = 0,...,(N — 1) and the interme-
diate currents I; = I(z;,s),i=1,...,(N —1).

For the finite difference of voltage, the FDQ approximation
framework is

N-1
d

Visi — Vi = Az Z @ik = Viy1/2,

1=0,..
dx ' ’
k=0

(N =1).

(42)
For the finite difference of voltage, the FDQ approximation
framework is

N
d
I — I 10=A bir—I, i=1,...,(N—-1
i+1/2 i—1/2 l“kzzo kdx k 4 ( )
(43)
for internal grid points and
Y d
Nypy—To=Az) bo =1 (44)
k=0
Y d
In—In_ipp =AY b T 45)

k=0

for the left and right boundary schemes, respectively.
Substituting (40) and (41) into (42)—(45), we obtain

N-1
Vi = Vi=Az )y ai
k=0
X [(SL + R)Ik+1/2 + Vf(xk+1/27 8)]7
i=0,...(N—1) @46)

N
Iijijp—Licip =Ax Y bix[(sC + G)Vi + If(x, 5)],
k=0
i=1,..

for the internal grid points and

N
Iy —Io =Ax Y bor[(sC + G)Vi + Ip(wx, )] (48)
k=0
]\T
In —In_1jp =Ax Z bnel(sC + G)Vi + I (x, 5)]
k=0
(49)

for the boundary points.

Equations (46)—(49) are the FDQ approximation framework
of the two-wire TL in s-domain. The weighting coefficients a;;,
i, =0,...,(N —1)and b;j,4,j = 0,..., N are determined
by using the weighting residual method, a test-function-based
approach similar to Galerkin’s method is employed. Consider
the following function set:

(50)

defined in the domain [0, 1]. In order for (42) to be exact in the
N -dimensional subspace, every item in the function set ™, n =
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0,..., N serves as a test function to fit (42). Substituting every

function 2™ into (42), and noting that in this case V; = [x”]zzm ,
Vit1/2 = [xn]z:xkﬂ/g, it follows:

N1
-1
TP —ay = E aikna:zﬂ/? (51
k=0

It is observed that the N in (51) (n = 0,...,N) consti-
tute a Vandermonde matrix equation for a given ¢, with a;;’s
being the unknowns. Due to the property of Vandermonde ma-
trix equation, the coefficient a;9, a;1, . . ., ai(N—1) are uniquely
determined by solving the previous equations. Repeatedly ap-

plying the same process to i = 0,...,(N — 1), an N x N
matrix of coefficients is obtained
aopo ao1 ao(N-1)
A= : (52)
A(N-1)0 (N-1)1 AQ(N—-1)(N-1)

According to Galerkin’s method, the approximation scheme
in (51) has an accuracy O(Az™¥*1), where Az is the mesh size
between two grid points.

Similarly, substituting the first (N + 2) functions of z”
into (43)—-(45) results the Vandermonde matrix equation
n=20,...,N)

N
Tiy1ya = Ti1js = Z bixnzy . (53)
k=0

Repeatedly solving the previous Vandermonde matrix equa-
tion fori = 0,..., N leads to an (N + 1) x (N + 1) matrix of
coefficients
boo  bo1 bon

B= (54)

bvo bai bvn

The approximation scheme
O(AzN+2),

Once the positions of the grid points are fixed, the previous
testing-function approach leads to constant FDQ coefficient
matrices, no matter in what applications the TL equations
appear. With the precalculated coefficient matrices, (46)—(49)
are rewritten as

in (53) has an accuracy

AR ARE )
where
Z(s)=sL+R
Y(s)=sC+ G
V=[V, % vn T
I=[1ip Iiy1p2 In_1p2]"
Vi =[Vi(x12) Vilw141/2) Vi(en_1/2)]"
L = [Ipwo) Ip@) - Ip(an))"
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where P is an N x (N + 1) matrix

-1 1
P7 is the transpose matrix of P, and b is an (N + 1) x 2
connecting matrix of the external exiting current sources
T
b— 10 ... 0 O
10 0 ... 0 -1
Note that Iy and Iy are the external exciting current sources.

C. General FDQ Approximation Framework

As shown, both A and B in (52) and (54) are dense matrices.
If their ranks are large, solving (55) will be computationally
expensive. Nonetheless, if N is large, the closed-form formula
to compute a;; (or b;;) in the Vandermonde matrix equation
formed by (51) [or (53)] will not be available, and the condition
number of the Vandermonde matrix equation will be very large
and therefore ill-conditioned. As a result, it is suggested that the
previous approach with the dense matrices A and B are only
applicable to small scale problems, where N is no more than
12 and the electrical length of transmission line is less than 3
wavelengths.

In order to apply the FDQ technique to large scale problem
where the electrical size could be as large as 40 wavelengths, we
modify the original FDQ method such that it takes the scheme
as shown before at the boundary grid points while it adopts the
following central FDQ scheme at other grid points.

Shown in Fig. 4, associated with function f(z) defined on
the domain there are two types of uniformly spaced grid points:
those on integer grid points (z = iAz) and those on half integer
gird points (z = (i + 1/2)Axz). Note that in Fig. 4 the sub-
scripts of f index the position of function values, e.g., fi11/2 =
f(xiy1/2) and f; = f(x;). We first show how to derive the
central FDQ framework for the finite difference at half integer
grid points, i.e., (fi11/2 — fi—1/2). Suppose a sliding window
centers at the ¢th grid point and holds n grid points, where 7
is an odd number because the n grid points are symmetrically
distributed with respect to the sth grid point. That means, the
sliding window spans from the (¢ — n/2)th point to (i + n/2)th
point. The central FDQ framework at half integer grid points
follows:

(n—1)/2

d
> ¢j it

j=—(n-1)/2

fiv12 — fii1p = Ax (56)

where the coefficients from c_(,_1)/2 t0 ¢(n_1)/2 are deter-
mined by using the test functions in (50) and solving the Vande-
monde matrix equations as shown in Section III-B. In order to
determine the n coefficients, test functions up to ™ in (50) are
needed; therefore, the approximation framework has accuracy
order O(Ax™T1). It is easy to verify that the scheme is sym-
metric with respect to f;, i.€., c_(n—_1)/2 = ¢(n—1)/2 and so on.
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f 12 f f+1/2
& @ @ @
fiz  fi2 f 1 54 » f,+1 firz  fir3

Fig. 4. FDQ central framework.

Depending on different widths of the sliding window in
Fig. 4, the FDQ approximation schemes in (56) and (62) have
different approximation orders. In the following, the central
FDQ approximation scheme with nth order is denoted as
FDQn.

The simplest case is n = 1, which reduces (56) to

ft+1/2—fL 1/2—A$ fz (57)

Apparently, this scheme is that of the central finite difference
having accuracy order O(Ax?) (FDQ2 or FD2).
If n = 3, (56) becomes

Jix12 = fic1y2

1d 11 d
= Aw (24d fit Bttt

1 d

4 dn f1+1> (58)

This scheme has accuracy order O(Az*) (FDQ4). Actually,
this approximation scheme is exactly the Ty operator in the lit-
erature [17].

If n = 5 and n = 7, respectively, (56) becomes, respectively,
(FDQ6)

17 d
5760 da

863 d

od
1440 dx

+ fi+—= " df
960 dz’* " 1440 dg”

17 d 4
T 5760 dz T

fi+1/2 - fi—l/2 =Ax <— fiz2 Jic1

(59)

and (FDQS)

Jic1y2
B x( 367 d
967630 dr
6361

107520 dm
6361

107520 dx
L3607 d ;
967680 dz '

Similarly, higher order FDQ schemes can be developed. How-
ever, as higher order FDQ schemes span wider in the z direction
and, therefore, cover more grid points, the application may be-
come inconvenient.

To evaluate the numerical dispersion of the approximation
schemes, next, we show the Fourier analysis. Assume that f is

Jig1/2 —

281 d

53760 4z 2
215641 d

241920 dm
281

53760 dz f 2

fi—s —

fz 1+
f7+1

—fi

(60)
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Fig. 5. Numerical dispersion of FDQ central framework.
TABLE 1
NUMBER OF CELLS PER WAVELENGTH FOR DIFFERENT FDQ SCHEMES
Error (%) || FD2 | FDQ4 | FDQ6 | FDQ8 | FDQI0
1 12.8 4.6 3.5 3.1 2.9
0.1 40.8 8.2 53 4.3 3.8

of the form of e~7(“*=k%) which describes a plane wave prop-
agating in the 4+ direction. If we plug the wave representation
into (57), it follows:

(552)
()

The LHS is the wave number of the plane wave, while the
RHS is the wave number of the approximation scheme. The
normalized wave number of the FD2 scheme is, therefore,
sin(kAxz/2)/(kAx/2). Similarly, the normalized wave num-
bers of the FDQ4, FDQ6, and FDQS8 schemes can be derived.
Fig. 5 shows the comparison of the normalized wave numbers
versus kAz for the approximation schemes.

Obviously, FD2 scheme has very limited spectral band-
width when compared to other FDQ schemes, and higher
FDQ schemes have wider spectral bandwidth. Based on the
normalized wave number we can observe the accuracy of the
approximation schemes corresponding to the density of the grid
points. Note that kAx = 2r/CPW, where CPW = \/Ax is
the number of cells per wavelength. Table I shows the required
CPWs at the phase errors of 1% and 0.1%, respectively.

It is demonstrated that, with the order of the FDQ scheme
going to higher, the resolution it needed approaches the Nyquist
limit CPW of 2.

Similarly, the FDQ approximation scheme at integer grid
points can be derived

(61)

k = sin

(n—1)/2 d
fin—fi=Dx Y7 i firp (62)
j=—(n-1)/2

Mathematical analysis finds that the FDQ schemes at integer-
grid points [see (62)] have the same coefficients as those at half-
grid points [see (56)], consequently, (62) has the same numerical
dispersion as their counterpart (56).
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Given a required accuracy, an nth order FDQ central scheme
and its required number of CPWs can be selected according to
Table I for large scale transmission line problems. The central
schemes in (62) and (56) can then be applied to transmission
line modeling at the central grid points where the approximation
frameworks can fit. At the boundary points where the frame-
works do not fit, the nth order FDQ frameworks are determined
following the approach described in Section III-B. As a result,
we obtain a matrix equation that has the same form as (55), ex-
cept that matrices A and B in this case are as follows:

[ aoo ap(n—1) T
C(n—-1)/2 C(n+1)/2
A =
C(n—1)/2 C(n+1)/2
L A(N—-1)(N—n+1) A(N—-1)(N—-1)
(63)
[ boo bo(n—1) |
C(n—1)/2 C(n+1)/2
B= (64)
C(n—1)/2 C(n+1)/2
L bn(N—n+1) by

It is shown that each row of matrices A and B has n entries
located around the diagonal.

IV. FDQ MODELING OF NONUNIFORM TLS

In order to concisely express some of the manipulations re-
quired in a matrix, the following terminologies are defined here
at first.

For an mn x m function matrix F(x) whose entries are func-
tions f;;j(x), 4,5 = 1,..., m, defined on the domain z € [0, d],
the integer grid points are x; = tAx,7 =0, ..., N, and the half
grid points are z;41/2 = (i + 1/2)Ax,i = 0,...,(N - 1),
where Az = d/N.

Definition 1: An integer-grid-point discretization operator
D; discretizes F(x) into an (N + 1)m X (N + 1)m block di-
agonal matrix, with the blocks being the matrices F () defined
at the grid points {zg, z1, .. ., x N }, respectively

D;(F) = diag{F(z0),F(z1),...,F(azn)}.

Definition 2: In the special case of m = 1 in Definition 1, an
integer-grid-point discretization operator D discretizes a func-
tion f(x) into an (N + 1) x (N + 1) diagonal matrix

D (f) = diag{f(xo), f(x1), ..., f(xn)}-

Definition 3: A half-grid-point discretization operator D g
discretizes F(x) into an Nm x N'm block diagonal matrix, with
the blocks being the matrices F(z) defined at the grid points

{®1/2,T141/2, -, TN_1/2}, respectively

Dy (F) = diag{F(z1/2), F(z141/2), ... . F(an_1/2)}.
(67)

(65)

(66)
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Fig. 6. FDQ framework of MTL.

Definition 4: In the special case of m = 1 in Definition 3,
a half-grid-point discretization operator D iy discretizes a func-
tion f(x) into an N x N diagonal matrix

Du(f) = diag{f(z1/2), f(z141/2),-- -, f(TN=1/2)}. (68)

Definition 5: Given two matrices X = [z;;],7 = 1,...,m,
j=1,...,nand Y = [y;5], ¢ =1,...,p,5 = 1,...,q, the
Kronecker Product X ® Y is an mp X ng matrix [18]

z11Y  z12Y 21, Y
1Y x22Y TonY

XY = ; } . (69)
Tm1Y ZTm2Y Ton Y

A. Nonuniform Two-Wire TL

Based on (55), the frequency-domain Telegrapher’s equations
of a two-wire transmission line are straightforward transformed
into

PT A%

A -Dyg(R)||1I
n B-D;(C) 0 A%
s 0 A-Dy(L)|| I

|0 B||Vy n b|| I

T |A 0 I 0| |In
where the variables and matrices are defined as in (55), except
that the following matrices are defined by (66) and (68):

[B : [;)I(G)

(70)

B. Nonuniform MTLs

The governing equations of a general (m + 1) MTL (see
Fig. 6) are shown in (2) and (3), where V(z, s) and I(z, s) rep-
resent the distributed /n-dimensional voltage vector and current
vector, respectively

V(z) = [Vi(z,s)
I(z) = [z, s)

Vi(z, s)
Ii(z, )

Vo (a,s)|"
(a2, s)]"
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where V(z, s) and I'(x, s) are the distributed voltage and cur-
rent at the ¢th line of the (m + 1) MTL. The PUL parameters
R(z), L(z), C(z), and G(z) are (m X m) matrices

[ R (x) R'™ ()
Raw)=| z

| R (x) R™ ()

[ L' (x) L™ ()
Lw)=| s

| L™ (x) Lmm(z)

[ CH(x) cim(x)
o= z

| C™(z) cmm(x) |

[ GH(2) Gt (z) ]
G=| z

| G (z) G () |

Using Definition 5, (70) can be straightforward extended to
the MTLs

BeD/(G) [PeU]" ‘:/
{ PeU A®DH(R)]{I] ~
=[P aenaw)[1]

e PRk o

where U is an m x m unit matrix, Dg(R), Dg (L), D;(C),
D;(G) are defined as in (65) and (67)

Dy (L) :diag{L(x1/2)aL(ﬂ?1+1/2): .- '7L(37N71/2)}
DH R) = dlag{R(mlﬂ)/ R(.Z’1+1/2), ey R(xN—l/Z}
) =diag{C(z9),C(z1),...,C(azn}

)

?

?

G) =diag{G(w¢), G(z1),...,G(zn)}

where V and I are m N - dimensional vectors

V=[Vy, - V; vyl"
1= [11/2 11‘,+1/2 IN—1/2]T
where
Vi= [V Vil =[Viz) V(i) ]
L= [Ii1+1/2 I o]
= [T'(%it1/2) I"™(%i41/2) ]

where V and 17 are (N — 1)m-dimensional and Nm-dimen-
sional vectors, respectively

<> T
V= [Vi(z1ya) - Vi(wiziya) - Vi(en_1/2)]

Ty = (o). Ty(ws) - Ty(aon)]”
where

Vi(@iy1y2) = [Vi(@igry2) - Vi (@ig1)2)]
Ly (z:) = [Lj(xi) - If (22)]

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25, 2008 at 21:42 from IEEE Xplore. Restrictions apply.



1298

e
Vr @112

Fig. 7. Equivalent circuit of two-wire TL.

and Iy and Iy are m-dimensional vectors

"

m 1T
T

10:[]& [3

IN:[[}V I}L‘v

Inverse Laplace transforms of (70) and (71) lead to first-order
ordinary differential equations, which represent the time domain
models of interconnects. The time domain responses at the ends
of transmission lines can be obtained by solving ordinary dif-
ferential equations.

C. Equivalent Circuit Models

The frequency-domain equations derived earlier can be
transformed into the time domain. On the other hand, a model
practically offers more flexibility if it can be integrated with
simulators like SPICE. In order for the FDQ-based models to
be incorporated into SPICE simulators, the equivalent circuit
models are derived.

In (70), if we define

Ve=A.(Dg(R)+sDu(L))
T
[V Vi Vi
= [VB(JTI/Q) R Vs($i+1/2) o Vs(xN—l/Q)]
I =B - (D;(G) + sD;(C))
=g I8 5]

= [I*(x0) -+ I*(wi) -+ I°(an)]"
Vi=A-V;

T

T
= [Vfu/z) Vi Vf(N—1/2>] )

€ e e T
I, =B-1,

e € € T
= []fo...[ﬁ...]fN]
e € € T
= [I5(zo) - I5(zi) - I5(zn)] (72)
then we obtain
Vier = Vi =V o + Vg o
Livijo = Licapp =17 + 13, (73)

Equation (73) is represented by the equivalent circuit shown
as in Fig. 7.

Based on (71), the equivalent circuit model of MTLs can be
similarly derived.
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60mm

Fig. 8. Example for FDQ modeling accuracy.

V. NUMERICAL EXPERIMENTS

According to [19], the maximum frequency of interest is eval-
uated as

0.35

fmax =

i (74)

where ¢, is the rise time of the input waveform. The maximum
frequency determines the minimum wavelength within the spec-
tral range of interest.

It is well established that for the finite difference method, a
resolution of more than a dozen cells per wavelength is needed
for required accuracy [11], which is also shown in Table I. In
contrast, the FDQ schemes need much fewer cells per wave-
length to achieve the same accuracy (see Table I), which ap-
proaches the Nyquist limit of two sample cells per wavelength.
The intrinsic reason for the improvement is the global approx-
imation. It is demonstrated in Table I that the more global the
FDQ scheme is, the closer it approaches the Nyquist limit to
achieve the required accuracy.

In large scale computation by using finite differencing, the
key to improving computational efficiency is to reduce the grid
points per wavelength while maintaining required accuracy. The
FDQ method carries out the task of resolution reduction without
loss of accuracy. On the other hand, the approximation globality
is achieved at the cost of denser matrices. For example, both
FDQ and FD modelings can result in the modified nodal analysis
(MNA) equations as (55), but the difference is that A and B are
tridiagonal, pentadiagonal, and so on matrices for (global) FDQ
modeling, while they are simply diagonal matrices for (local)
FD modeling. As very high order FDQ schemes not only are
unnecessary, but also increase computational expense, the FDQ
order usually should be no more than ten in practical application.

The first example discussed as follows is to test the FDQ
modeling heuristic about the required resolutions as shown in
Table I. In the circuit shown in Fig. 8, the length of the TL is
6 cm, and the PUL parameters are [ = 360 nH/m, ¢ = 100 pF/m,
r = 1k2/m, and ¢ = 1 mS/m. The applied voltage source
has an internal resistance of 100 €2, and the load is a capaci-
tance of 1 pF. We compare the frequency domain responses at
the load capacitance by respectively applying the FD2, FDQ4,
and FDQ6 schemes to the TL.

Assuming that the input trapezoidal signal has a rise/fall time
of 25 ps, the maximum frequency is determined as fiax =
14 GHz by using (74). The propagation velocity along the line
is v =1/Vle = 5/3 x 10® m/s; therefore, the minimum wave-
length of interest is Amin = v/ fmax = 1.2 cm and the length of
the TL is 6 in.

First, we use the FD2, FDQ4, and FDQ6 schemes that have
1% phase error as in Table I. The numbers of cells required for
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Fig. 9. Comparison of FDQ modeling accuracy at 1% phase error.

FD2, FDQ4, and FDQ6 are, respectively, 64, 23, and 17. The
frequency domain responses are shown in Fig. 9. As expected,
both the FD2 method and the FDQ method give agreeable re-
sults with the accurate value from dc to 14 GHz; however, the
numbers of CPW for the FDQ methods are just a small fraction
of that of the FD method.

If we use the FD2, FDQ4, and FDQ6 schemes that have 0.1%
phase error as in Table I, The numbers of cells required for FD2,
FDQ4, and FDQG6 are, respectively, 204, 41, and 27. The fre-
quency domain responses are shown in Fig. 10. All the results
are agreeable from dc to more than 14 GHz, while the numbers
of CPW for FDQ4 and FDQG6 are significantly reduced com-
pared to that of the FD2 scheme.

The second example is about a microstrip TL on PCB car-
rying a supply voltage of 1.6 V to a VLSI chip. The equivalent
circuit is shown as in Fig. 11(a). The PUL parameters of the TL
are [ = 340 nH/m, ¢ = 130 pF/m, and r = 110€2/m. The TL
is illustrated by EM wave, shown as in Fig. 11(b), from a light-
ning 1 km away [20]. Note that the EM wave is composed of
Gaussian pulses and high-frequency components. The pins and
bonding wires are represented by inductance and capacitance
[21], while the on-chip supply rails are represented by effective
resistance and effective capacitance [22].
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Fig. 10. Comparison of FDQ modeling accuracy at 0.1% phase error.

For the induced wave on the TL, the velocity is determined
by the distributed inductance and capacitance as v = 1/ Vie =
1.5 x 10® mys. Assuming that the maximum frequency of in-
terest is fiuax = 50 GHz, the minimum wavelength is A, =
v / f max — 3 mm.

If the length of the TL is 3 cm, then the number of min-
imum wavelength is 10. If we use the original FDQ scheme
by sampling two grid points per wavelength, the TL is seg-
mented into 20 sections with 19 internal grid points. Conse-
quently, there are 10 voltage differences and 11 current differ-
ences according to (46)—(49). The matrices A (10 x 10) and B
(11 x 11) are obtained by solving sets of 10 x 10 and 11 x 11
Vandermande equations, respectively. In this computation, the
10 x 10 and 11 x 11 Vandermande equations have condition
numbers of 1.1558 x 10® and 8.8348 x 10%, respectively.

If the length of the TL is 6 cm, then the number of minimum
wavelength is 20. The TL needs to be segmented into 40 sec-
tions and the matrices A and B would have dimensions 20 x 20
and 21 x 21 if the straightforward process were followed. How-
ever, the 20 x 20 and 21 x 21 Vandermande equations have the
condition numbers of 8.5457 x10'® and 4.2989 x10"", which
are very ill-conditioned and, therefore, may lead to inaccurate
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Fig. 11. Circuit of power supply TL with (a) EM wave illumination of
(b) incident EM wave.

results. Nevertheless, the large dense matrices make the numer-
ical computation inefficient as the computation effort increases
on a cubic basis to handle dense matrices. In order to overcome
the difficulties, the compact FDQ scheme FDQ6 are employed.

Let the EM wave have the propagation configuration as f =
45°, 0 = 45°, and ¢ = —90°. We use the finite-difference-
quadrature time-domain (FDQTD) method to compute the pre-
vious problems. For simplicity, the backward Euler method is
used for time-domain discretization. Fig. 12 shows the com-
puting results for the TLs length of (a) 3, (b) 6, and (c) 12 cm, re-
spectively. On an ULTRA-10 SUN workstation, it, respectively,
takes 184.3,300.6, and 675.6 s to perform the computations. It is
demonstrated in Fig. 12 that the voltage supply at pins and pads
can be affected significantly by the strong incident EM wave.

The next example is a TL carrying data from a function unit
on PCB to the chip. The length of the TL is 2 cm and the TL has
the same PUL parameters as in the first example. The circuit and
the illuminating EM wave are shown in Fig. 13, respectively.
Instead of performing the FDQ method in the time domain, we
represent the TL using the equivalent circuit as shown in Fig. 7
and use HSPICE to simulate the entire circuit.
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Fig. 12. Transient responses at the Pin and the Pad of the circuit in Fig. 11 with
TL lengths (a) 3, (b) 6, and (c) 12 cm, respectively.

The transmitted data have rise/fall times of 0.1 ns. Assuming
that the maximum frequency of interest is 20 GHz, the minimum
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Fig. 13. Circuit of data transmission into chip through (a) TL with (b) incident
EM wave.

wavelength is, therefore, 0.75 cm. The FDQ6 scheme needs a
resolution of 3.5 points per wavelength if the phase accuracy of
99% is required. The simulation results are shown in Fig. 14. In
(a) are the waveforms at the pin and in (b) are those at the pad.
The results show that the illuminating EM wave, especially the
high-frequency components, can completely fail the data trans-
mission through the TL.

VI. CONCLUSION

An efficient numerical approximation technique, FDQ
method, to proposed to model external field coupling to uni-
form or nonuniform TLs. A discrete modeling approach, FDQ
adapts grid points along the transmission lines to compute
the finite difference between adjacent grid points. Similarly
to the Gaussian quadrature method to compute the numerical
integrals, the FDQ method uses the global quadrature method
to construct the approximation frames for the computation of
numerical finite differences. To further reduce the computa-
tional expense of the FDQ method, the compact FDQ schemes
are derived and their numerical dispersion is studied by using
Fourier analysis. FDQ needs much sparser grid points than the
finite difference (FD) methods do to achieve required accuracy.
Equivalent voltage and current sources are derived, exciting the
TLs at the grid points. Equivalent circuit models are therefore
derived to represent the TLs illuminated by external electro-
magnetic waves. The FDQ-based equivalent models can be
integrated into a simulator like SPICE. Numerical experiments
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Fig. 14. Transient responses (a) at Pin and (b) at Pad of circuit in Fig. 13 with
EM wave interference on TL.

show that FDQ-based modeling is an effective way to model
the external EM wave coupling to the integrated circuits.
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