
628 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 6, JUNE 2008

L-CBF: A Low-Power, Fast Counting
Bloom Filter Architecture

Elham Safi, Student Member, IEEE, Andreas Moshovos, Senior Member, IEEE, and
Andreas Veneris, Senior Member, IEEE

Abstract—An increasing number of architectural techniques
have relied on hardware counting bloom filters (CBFs) to improve
upon the energy, delay, and complexity of various processor struc-
tures. CBFs improve the energy and speed of membership tests by
maintaining an imprecise and compact representation of a large
set to be searched. This paper studies the energy, delay, and area
characteristics of two implementations for CBFs using full custom
layouts in a commercial 0.13- m fabrication technology. One im-
plementation, S-CBF, uses an SRAM array of counts and a shared
up/down counter. Our proposed implementation, L-CBF, utilizes
an array of up/down linear feedback shift registers and local zero
detectors. Circuit simulations show that for a 1 K-entry CBF with
a 15-bit count per entry, L-CBF compared to S-CBF is 3.7 or
1.6 faster and requires 2.3 or 1.4 less energy depending on
the operation. Additionally, this paper presents analytical energy
and delay models for L-CBF. These models can estimate energy
and delay of various CBF organizations during architectural level
explorations when a physical level implementation is not available.
Our results demonstrate that for a variety of L-CBF organizations,
the estimations by analytical models are within 5% and 10% of
Spectre simulation results for delay and energy, respectively.

Index Terms—Computer architecture, counting bloom filters,
implementation, low power, microprocessors.

I. INTRODUCTION

A N increasing number of architectural techniques have re-
lied on hardware counting bloom filters (CBFs) to im-

prove upon the power, delay, and complexity of various pro-
cessor structures. For example, CBFs have been used to im-
prove performance and power in snoop-coherent multiprocessor
or multi-core systems [1], [2]. CBFs have been also utilized to
improve the scalability of load/store scheduling queues [3] and
to reduce instruction replays by assisting in early miss determi-
nation at the L1 data cache [4]. In these applications, CBFs help
eliminate broadcasts over the interconnection network in multi-
processor systems [1]; CBFs also help reduce accesses to much
larger and thus much slower and power-hungry content address-
able memories [3], or cache tag arrays [1], [2], [4].

In all aforementioned hardware applications, CBFs improve
the energy and speed of membership tests. Checking whether a

Manuscript received February 1, 2007; revised June 18, 2007. This work was
supported in part by an NSERC Discovery Grant, by a Canada Foundation for
Innovation Equipment Grant, and by funds from the University of Toronto. This
paper appeared in part in the Proceedings of the 2006 International Symposium
on Low Power Electronics Design, Tegernsee, Bavaria, Germany, October 4–6,
2006, pp. 250–255.

The authors are with the Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ON M5S 3G4 Canada (e-mail: elham@eecg.
toronto.edu; moshovos@eecg.toronto.edu; veneris@eecg.toronto.edu).

Digital Object Identifier 10.1109/TVLSI.2008.2000244

memory block is currently cached is an example of a member-
ship test in processors [4]. The CBF provides a definite answer
for most, but not necessarily for all, membership tests. As such,
the CBF does not replace entirely the underlying conventional
mechanism (e.g., cache tags), but it dynamically bypasses the
conventional mechanism, which can be slow and power hungry,
as frequently as possible. Accordingly, the benefits obtained
through the use of CBFs depend on two factors. The first factor
is how frequently a CBF can be utilized. Architectural tech-
niques and application behavior determine how many member-
ship tests can be serviced by the CBF. The second factor is the
energy and delay characteristics of the CBF. The more member-
ship tests are serviced by the CBF “alone” and the more speed
and energy efficient the CBF implementation is, the higher the
benefits.

This work focuses exclusively on the second factor as it in-
vestigates implementations of a CBF that improve its energy and
delay characteristics. A key contribution of this work is the in-
troduction of L-CBF. L-CBF is an energy- and delay-efficient
implementation that utilizes an array of up/down linear feed-
back shift registers (LFSRs) and local zero detectors. Previous
work assumes a straightforward SRAM-based implementation
that we will refer to it as S-CBF [2]. We investigate the en-
ergy, delay, and area characteristics of L-CBF and S-CBF im-
plementations in a commercial 0.13- m CMOS technology. We
demonstrate that depending on the type of operation, L-CBF
compared to S-CBF is 3.7 or 1.6 faster and requires 2.3
or 1.4 less energy. This work also presents analytical energy
and delay models for L-CBF. These analytical models can es-
timate energy and delay of various CBF organizations early in
the design stage during architectural level explorations. These
explorations are performed well before the physical level im-
plementation phase in a design flow. Comparisons show that the
estimations by the models are within 5% and 10% of Spectre cir-
cuit simulation results for delay and energy, respectively.

The significant contributions of this work are as follows.
1) It proposes L-CBF, a novel, energy- and speed-efficient
implementation for CBFs. 2) It compares the energy, delay, and
area of two CBF implementations, L-CBF and S-CBF, using
their circuit-level implementations and full-custom layouts
in 0.13- m fabrication technology. 3) It presents analytical
delay and energy models for L-CBF and compares the model
estimations against simulation results.

The rest of this paper is organized as follows. Section II
reviews CBFs and their previously assumed implementation,
S-CBF. Section III-B presents L-CBF, our novel implemen-
tation. Section IV discusses the analytical delay and energy

1063-8210/$25.00 © 2008 IEEE

SAFI et al.: L-CBF: A LOW-POWER, FAST COUNTING BLOOM FILTER ARCHITECTURE 629

Fig. 1. CBF as a black box.

models of L-CBF. Section V presents the experimental results.
Section VI summarizes our findings.

II. CBFS

This section reviews CBFs and their characteristics. Addi-
tionally, it discusses the previously assumed implementation for
the CBFs, which has not been investigated at the physical level.

A. Introduction to CBFs

1) CBF as a Black Box: As shown in Fig. 1, a CBF is con-
ceptually an array of counts indexed via a hash function of
the element under membership test. A CBF has three opera-
tions: 1) increment count (INC); 2) decrement count (DEC); and
3) test if the count is zero (PROBE). The first two operations in-
crement or decrement the corresponding count by one, and the
third one checks if the count is zero and returns true or false
(single-bit output). We will refer to the first two operations as
updates and to the third one as a probe. A CBF is characterized
by its number of entries and the width of the count per entry.

2) CBF Characteristics: Membership tests using CBFs are
performed by probe operations. In response to a membership
test, a CBF provides one of the following two answers: 1) “def-
inite no,” indicating that the element is definitely not a member
of the large set and 2) “I don’t know,” implying that the CBF
cannot assist in a membership test, and the large set must be
searched.

The CBF is capable of producing the desired answer to a
membership test much faster and saves power on two condi-
tions. First, accessing the CBF is significantly faster and re-
quires much less energy than accessing the large set. Second,
most membership tests are serviced by the CBF. The later is in-
vestigated by studying the application behavior. For instance,
when CBF is exploited as a miss predictor, previous work [4]
shows that more than 95% of the accesses to the cache tag array
are serviced by the CBF.

The CBF uses an imprecise representation of the large set to
be searched. Ideally, in the CBF, a separate entry would exist for
every element of the set. In this case, the CBF would be capable
of precisely representing any set. However, this would require a
prohibitively large array negating any benefits. In practice, the
CBF is a small array and the element addresses are hashed onto
this small array. Because of hashing, multiple addresses may
map onto the same array entry. Hence, the CBF constitutes an
imprecise representation of the content of the large set and keeps
a superset of the existing elements. This impreciseness is the
reason of the “I don’t know” answers by the CBF. To reduce
the frequency of such answers, and hence improving accuracy,
multiple CBFs with different hash functions can be used.

Fig. 2. S-CBF architecture: an SRAM holds the CBF counts; INC/DEC: read-
modify-write sequences; PROBE: read-compare sequence.

An “I don’t know” answer to a membership test incurs power
and delay penalty since in case of such an answer, the large set
must be checked in addition to the CBF. The delay penalty oc-
curs if the CBF and the large set accesses are serialized. This
delay penalty can be avoided if we probe the CBF and the large
set in parallel; in this case, power benefits will be possible only if
the in-progress access to the large set can be terminated once the
CBF provides a definite answer. These overheads do not con-
cern us as often CBF can provide the definite answer. To verify
this, the interested reader could refer to [1]–[4] for examples of
CBF applications in computer architecture.

3) CBF Functionality: The CBF operates as follows. Ini-
tially, all counts are set to zero and the large set is empty. When
an element is inserted into, or deleted from the large set, the cor-
responding CBF count is incremented, or decremented by one.
To test whether an element currently exists in the large set, the
corresponding CBF count is inspected. If the count is zero, the
element is definitely not in the large set; otherwise, CBF cannot
assist and the large set must be searched.

B. S-CBF: SRAM-Based CBF Implementation

Previous work assumes a CBF implementation consisting of
an SRAM array of counts, a shared up/down counter, a zero-
comparator, and a small controller [2]. We will refer to this im-
plementation as S-CBF. The architecture of S-CBF is depicted
in Fig. 2. Updates are implemented as read-modify-write se-
quences as follows: 1) the count is read from the SRAM; 2) it
is adjusted using the counter; and 3) it is written back to the
SRAM. The probe operation is implemented as a read from the
SRAM, and a compare with zero using the zero-comparator. A
small controller coordinates this sequence of actions.

An optimization was proposed to speedup probe operations
and to reduce their power [2]. Specifically, an extra bit is
added to each count. When the count is nonzero the is set
to false and when the count is zero, the is set to true. Probes
can now simply inspect . The bits can be implemented as
a separate SRAM structure which is faster and requires much

630 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 6, JUNE 2008

less power. This type of optimization is compatible with both
S-CBF and L-CBF architectures.

III. L-CBF: A NOVEL LFSR-BASED CBF IMPLEMENTATION

Section V demonstrates quantitatively that much of the
energy in S-CBF is consumed on the SRAM’s bitlines and
wordlines. Additionally, in S-CBF, both delay and energy
suffer as updates require two SRAM accesses per operation.
The shared counter may increase the energy and the delay fur-
ther. We could avoid accesses over long bitlines by building an
array of up/down counters with local zero detectors. In this way,
CBF operations would be localized and there would be no need
to read/write values over long bitlines. L-CBF is such a design.
For the CBF, the actual count values are not important and
we only care whether a count is “zero” or “nonzero.” Hence,
any counter that provides a deterministic up/down sequence
can be a choice of counter for the CBF. L-CBF consists of an
array of up/down LFSRs with embedded zero detectors. L-CBF
employs up/down LFSRs that offer a better delay, power, and
complexity tradeoff than other synchronous up/down counters
with the same count sequence length (see Section III-A2).

As Section V demonstrates, L-CBF significantly reduces en-
ergy and delay compared to S-CBF at the cost of more area. The
increase in area though is a minor concern in modern processor
designs given the abundance of on-chip resources and the very
small area of the CBF compared to most other processor struc-
tures (e.g., caches and branch predictors).

The rest of this section reviews up/down (reversible) LFSRs
and discusses the architecture of L-CBF.

A. LFSRs

A maximum-length -bit LFSR sequences through
states. It goes through all possible code permutations except
one. The LFSR consists of a shift register and a few embedded
XNOR gates fed by a feedback loop. Each LFSR has the fol-
lowing defining parameters:

• width, or size, of the LFSR (it is equal to the number of bits
in the shift register);

• number and positions of taps (taps are special locations in
the LFSR that have a connection with the feedback loop);

• initial state of the LFSR which can be any value except one
(all ones for XNOR feedback).

Without the loss of generality, we restrict our attention to the
Galois implementation of LFSRs [6]. State transitions proceed
as follows. The non-tapped bits are shifted from the previous
position. The tapped bits are XNORed with the feedback loop
before being shifted to the next position. The combination of
the taps and their locations can be represented by a polynomial
(see Section I). Fig. 3 shows an 8-bit maximum-length Galois
LFSR, its taps, and polynomial.

By appropriately selecting the tap locations it is always pos-
sible to build a maximum-length LFSR of any width with either
two or four taps [1], [6]. Additionally, ignoring wire length de-
lays and the fan-out of the feedback path, the delays of the max-
imum-length LFSR is independent of its width (size) [5], [6].
As Section V-B shows, delay increases only slightly with size,
primarily due to increased capacitance on the control lines.

Fig. 3. Eight-bit maximum-length LFSR.

Fig. 4. Three-bit maximum-length up/down LFSR.

1) Up/Down LFSRs: The tap locations for a max-
imum-length, unidirectional -bit LFSR can be represented by
a primitive polynomial as depicted in (1)

(1)

In (1), corresponds to the output of the bit of the shift
register and the constants are either 0 (no tap) or 1 (tap).
Given , a primitive polynomial for an LFSR generates
the reverse sequence as depicted in (2) [7]

(2)

The superposition of the two LFSRs (the original and its re-
verse) forms a reversible “up/down” LFSR. The up/down LFSR
consists of a shift register similar to the one used for the unidi-
rectional LFSR; a 2-to-1 multiplexer per bit to control the shift
direction; and twice as many XNOR gates as the unidirectional
LFSR. Fig. 4 shows the construction of a 3-bit maximum-length
up/down LFSR. It also depicts the polynomials and count se-
quence of both up and down directions. In general, it is possible
to construct a maximum-length up/down LFSR of any width
with two or six XNOR gates (i.e., four or eight taps) [6]. Ref-
erence [6] reports tap positions for up to 168.

2) Comparison With Other Up/Down Counters: In this
section, we compare LFSR counters with other synchronous
up/down counters that could be a choice of counter for CBFs.
We restrict our discussion to synchronous up/down counters of
width with a count sequence of at least states.

The simplest type of synchronous counter is the binary
modulo- -bit counter. For this counter, speed and area are
conflicting qualities due to carry propagation. For example,
the -bit ripple-carry synchronous counter, one of the simplest

SAFI et al.: L-CBF: A LOW-POWER, FAST COUNTING BLOOM FILTER ARCHITECTURE 631

Fig. 5. Architecture of L-CBF; the basic cells of an up/down LFSR: (a) the two-phase flip-flop; (b) the 2-to-1 multiplexer; (c) XNOR gate; and (d) a bit-slice of the
embedded zero detector.

counters, has a delay of [5]. Counters with a Manchester
carry-chain, carry-lookahead and binary tree carry propaga-
tion [8] have delay of though at the cost of more
energy and area. In applications where the count sequence is
unimportant [e.g., pointers of circular first-inputs–first-outputs
(FIFOs) and frequency dividers], an LFSR counter offers a
speed-power-area efficient solution. The delay of an LFSR is
nearly independent of its size. Specifically, the LFSR delay
consists of a flip-flop delay, an XNOR gate delay, and a feedback
loop delay. The feedback loop delay is the propagation delay
of the last flip-flop output to the input of the furthest XNOR

gate from the last flip-flop. Ignoring secondary effects on the
feedback path, the delay of an n-bit maximum length LFSR
is O(1) and independent of the counter size [5], [6]. These
characteristics make LFSRs a suitable counter choice for CBFs.

B. L-CBF Implementation

Fig. 5 depicts the high-level organization of L-CBF. L-CBF
includes a hierarchical decoder and a hierarchical output mul-
tiplexer. The core of the design is an array of up/down LFSRs
and zero detectors. The L-CBF design is divided into several
partitions where each row of a partition consists of an up/down
LFSR and a zero detector.

L-CBF accepts three inputs and produces a single-bit output
is-zero. The input operation select specifies the type of opera-
tion: INC, DEC, PROBE, and IDLE. The input address specifies
the address in question and the input reset is used to initialize all
LFSRs to the zero state. The LFSRs utilize two non-overlapping
phase clocks generated internally from an external clock.

We use a hierarchical decoder for decoding the address to
minimize the energy-delay product [9]. The decoder consists
of a predecoding stage, a global decoder to select the appro-
priate partition, and a set of local decoders, one per partition.
Each partition has a shared local is-zero output. A hierarchical
multiplexer collects the local is-zero signals and provides the
single-bit is-zero output.

Fig. 5 also depicts the basic cells of each up/down LFSR
and zero decoder. Shown are the flip-flop used in the shift
registers, the multiplexer that controls the direction of change

(“up”/”down”), the XNOR gate, and a bit-slice of the zero de-
coder. Further details on L-CBF implementation are presented
in Section IV.

1) Multi-Porting: Some applications require simultaneous
operations from the CBF. In the simplest implementation, the
CBF can be banked to support simultaneous accesses to dif-
ferent banks. This mirrors the organization of high-performance
caches that are often banked to support multiple accesses instead
of being truly multi-ported. True multi-porting is straightfor-
ward by selective resource replication in case of simultaneous
accesses to different counts. For S-CBF, we need an SRAM with
multiple read and write ports and multiple shared up/down coun-
ters. For L-CBF, we need to replicate the decoder, the zero de-
tectors, and the output multiplexer.

When multiple accesses map to the same count, multi-porting
is not straightforward. A simple solution detects such accesses
and serializes them. Alternatively, circuitry can be added to de-
termine the collective effect of all accesses. For example, for two
simultaneous increment operations, the net effect is to increase
the counter by two. For S-CBF, this circuitry can be embedded
into the shared counter. For L-CBF, the capability of shifting by
multiple cells in one cycle is required. This work does not con-
sider these enhancements.

IV. ANALYTICAL MODELS

Analytical models help computer architects to estimate the
energy and delay of various architectural alternatives under ex-
ploration. To the best of our knowledge, there are no such ana-
lytical models for CBFs. This section presents analytical models
of the worst case delay and energy (dynamic and leakage) for
the L-CBF implementation. These analytical models can be in-
corporated in architecture level power-performance simulators
such as Wattch [20].

The models predict L-CBF’s delay and energy as a function
of entry count, entry width and the number of banks. The models
were extrapolated starting from our L-CBF’s full custom imple-
mentation in a 0.13- m CMOS process (detailed in Section V).
The utility of the analytical models is in estimating the energy
and delay of L-CBF organizations without having a physical
level implementation.

632 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 6, JUNE 2008

Fig. 6. RC circuit analysis along the critical path of L-CBF. (Decoder and row clock driver.)

TABLE I
ANALYTICAL MODEL INPUT PARAMETERS

In our implementation and models, the gates are sized to have
equal rise and fall delays. The models do not account for the ex-
ternal loads as they are independent of the CBF implementation.
While it is feasible to extend the models to predict delay and en-
ergy for other technologies, this extension is not a focus of this
work.

The rest of this section is organized as follows. Section IV-A
discusses the methodology used for developing analytical
models and the input parameters of the models. Section IV-B
and IV-C present the delay and energy models, respectively.
Discussing the accuracy of the models is postponed until
Section V-C, where we compare the model estimations with
simulation results.

A. Methodology

To model delay and energy per operation, we decompose
L-CBF into several equivalent resistance–capacitance (RC)
circuits. We use the methodology of CACTI [19] to estimate
equivalent “on” resistance and capacitance. References [14]
and [15] detail how and , , , and

are estimated. Information such as transistor sizes
and the length of interconnects, required for capacitance and
resistance estimations, is extracted from our layout. Transistors
are scaled to minimize the energy-delay product for larger
CBFs.

Table I lists the input parameters of the analytical model that
fall under three broad classes: externally visible organizational
parameters, internal organizational parameters, and technology
specific parameters. The externally visible L-CBF organization
is defined by the total number of entries (NoE) and the width of
each entry count (WoE). Internally, L-CBF can be partitioned
into banks of NoRP rows to balance or improve power and
delay.

B. Delay Model

This section presents an analytical model for the worst case
delay of L-CBF. Figs. 6–8 depict the RC circuit analysis for the
delay along the critical path. For clarity, we assign a label to each
element in the path and use it as a subscript to identify the cor-
responding resistance and capacitance. The type of gates (e.g.,
inverter) and capacitors (e.g., drain: ; source: ; gate:) are
also denoted in the subscripts. We model the delay of CBF op-
erations separately. The delay of an update operation consists of
the decoder delay, the row clock driver delay, and the up/down
LFSR delay. The delay of a probe operation is comprised of
the decoder delay, the zero detector delay, and the output multi-
plexer delay. The following sections discuss the delay analysis
for each component (e.g., decoder) focusing on resistance and
capacitance estimation. Then, we present the analytical delay
models of CBF operations.

1) Component Delay—Decoder: Fig. 6(a)–(f) show the sim-
plified critical path of the decoder and the equivalent RC cir-
cuit. To estimate the RC delay, we determine the number and
size of transistors and interconnects that appear along the crit-
ical path. These are a function of NoE and NoRP. The decoder
utilizes a hierarchical architecture. In the predecode stage, each
3-to-8 decoder generates a 1-of-8 code for every three address
bits. If the number of address bits is not divisible by three, a
2-to-4 decoder or an inverter is used. Each -to- decoder is
implemented using NAND gates and inverters to comple-
ment the address inputs. In the second stage, the predecode stage
outputs are combined using NOR gates. When beneficial, an in-
verter chain is used at the predecode stage’s output to reduce
delay.

The decoder delay is the interval between the moment the
address input passes the INV(ED1)’ threshold voltage and the

SAFI et al.: L-CBF: A LOW-POWER, FAST COUNTING BLOOM FILTER ARCHITECTURE 633

Fig. 7. RC circuit analysis along the critical path of L-CBF. (Up/down LFSR.)

moment the NOR (ED3)’ output reaches the threshold voltage of
the following NAND (ED4). Equations (3)–(11) calculate sub-
sequently the number of address bits , the number of
3-to-8 decoders , the number NOR gates , the
fan-in of a NOR gate as a function of . The for-
mulas Extra-2to4 and Extra-inv calculate whether an additional
2-to-4 decoder or an inverter is required when the number of ad-
dress bits is not divisible by three. The formula
calculates the number of NOR gates that are fed by a NAND gate.
The wire length between the NOR gates and the corresponding
resistance and capacitance are calculated by (10) and (11).

2) Component Delay—Row Clock Driver: Fig. 6(e) and (f)
show the simplified critical path of the row clock driver and
its equivalent RC circuit, respectively. The NAND gate (ED4)
performs clock gating. Its inputs are the global clock, decoder
output and operation select. If a row is selected and the operation
is an INC or DEC, the clock signal is applied to the addressed
up/down LFSR. The worst case delay occurs when the clock
signal is delivered to the last DFF. The wire length between
the row clock driver and the last DFF is proportional to
the LFSR width. This is also true for the length of the LFSR
feedback path . Both and are calculated by (12).
This wire length is used for estimating equivalent resistance and
capacitance.

3) Component Delay—Up/Down LFSR: The delay of an
up/down LFSR is comprised of a DFF delay, a 2-to-1 multi-
plexer delay, an XNOR gate delay, and a feedback path delay.
Fig. 7(a)–(d) show the equivalent RC circuit for the up/down
LFSR. The feedback path delay is the propagation delay of
the last DFF’s output to the furthest XNOR gate from it. As
addressed in Section III-A, a maximum-length -bit up/down
LFSR requires at most six XNORs [6]. The length of feedback
path for a maximum-length WoE-bit up/down LFSR is given
by (12)

(3)

(4)

- (5)

- - - - (6)

(7)

- - - -

- (8)

- - if is divisible by (9)

m wire length between two NOR gates fed

by the same NAND gate in the

predecode stage extracted from the layout

(10)

Ohm

Farad
Farad

m
m (11)

m width of DFF width of Mux

width of DFF width of XNOR

width of MUX (12)

4) Operation Delay: Increment and Decrement: The delay
of the update operation consists of the decoder delay, the clock
driver delay, and the up/down LFSR delay. All the gates are
sized to have the same rise and fall delay. The delay of update
operation is calculated by (13), where through are time
constants that are given in Figs. 6 and 7, respectively

(13)

634 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 6, JUNE 2008

Fig. 8. RC circuit analysis along the critical path of L-CBF. (Zero detector and output multiplexer.)

5) Component Delay—Zero Detector and Output Multi-
plexer: The zero detectors of every set of NoRP rows in a
partition have a shared output. This output is steered to the
single-bit output, is-zero, through the output multiplexer.

A probe proceeds in three stages: 1) decode and precharge;
2) evaluation; and 3) transfer to the output. The decoding stage is
the same for update and probe operations. The precharging stage
is concurrent with the decoding stage. In the precharge stage,
the shared output of a partition is charged to the supply voltage

. During the evaluation stage, based on the current value of
the associated up/down LFSR, the partition output is discharged
to zero or stays at . The output of the selected partition is
transferred to the is-zero output by the output multiplexer.

6) Operation Delay—Probe: Fig. 8(a)–(d) depict the equiva-
lent RC circuits for the zero detector and the output multiplexer.
The delay of the probe operation consists of the decoder delay,
the zero detector delay, and the output multiplexer delay. The
delay is calculated by (14), where to are time constants
that are presented in Figs. 6 and 8

(14)

C. Energy Model

There are four sources of the power dissipation in L-CBF.
First is the dynamic switching power due to the charging and
discharging circuit capacitances. Second is the leakage power
from reverse-biased diodes and subthreshold conduction. Third
is the short-circuit power because of finite signal rise/fall times.
Fourth is the static biasing power found in some types of logic
styles (i.e., pseudo-nMOS). For the given technology, circuit
simulations suggest that the first two are the principal sources
of energy consumption.

1) Dynamic Power: Dynamic power is the result of the gates’
output transitions. Output transitions cause a capacitive load
driven by the gate to be charged or discharged. To estimate the
energy per operation, we add up the gate (e.g., NAND) and in-
terconnect capacitances in the signal path for each component.
The energy dissipated per transition (0-to-1 or 1-to-0) is given
by (15), where is the load capacitance, is the supply
voltage, and is the voltage swing of the output

(15)

The analytical energy models use the capacitance estimations of
the delay RC analysis section. For instance, the decoder energy
is calculated by (16)

(16)

The same methodology is used for the remaining components.

D. Leakage Power

This section discusses the leakage power calculation method-
ology. To calculate the leakage current in a MOSFET, similar to
[16], we use the model proposed by Zhang et al. [17] given by
(17)

(17)

As shown in [16], for a given threshold voltage and
temperature , all terms except the width are constant
for all the transistors in a given fabrication technology. Hence,
(17) can be reduced to (18), where is the leakage current of a
unit width transistor at a given and

(18)

As in [17], we identify the distribution of the inputs for each
component (e.g., single transistors or gates) based on the oper-
ation characteristics of L-CBF. Then, we derive for
each component at different input states by simulation and we
consider the worst case. Finally, we sum the for all
components.

As an example, we discuss the methodology of leakage cur-
rent calculation for the decoder. The same methodology is used
for the other components. In L-CBF, by activating the enable
signal during the update and probe, the 3-to-8 predecoder’s out-
puts are triggered (stage one), and the output of one of the NOR

gates will take the logic value of one (stage two). We modeled

SAFI et al.: L-CBF: A LOW-POWER, FAST COUNTING BLOOM FILTER ARCHITECTURE 635

the worst case leakage current in these two stages as given by
(19) and (20), respectively. The leakage current for the decoder
is given by (21). Multiplying the by gives the leakage
power estimation

(19)

(20)

(21)

V. EXPERIMENTAL RESULTS

This section compares the energy, delay, and area of S-CBF
and L-CBF. Moreover, this section compares the analytical
model estimations against simulation results for L-CBF.

We compare S-CBF and L-CBF on a per operation basis.
Both designs are implemented using the Cadence(R) tool set in
a commercial 0.13- m fabrication technology. We developed
a transistor-level implementation and a full-custom layout for
both designs that were optimized for the energy-delay product.
We employed Spectre for circuit simulations. This is a vendor
recommended simulator for design validation prior to manufac-
turing.

The rest of this section is organized as follows. We initially
consider a 1 K-entry CBF with 15-bit counts as this configura-
tion is representative of the CBFs used in previous proposals
[2], [4]. Then, we present results for other CBF configurations.
In Section V-A, we compare the energy, delay and area of
the two designs for all CBF operations (updates and probes).
In Section V-B, we study how energy and delay change as
the number of entries and the width of the counters vary. In
Section V-C, we discuss the accuracy of analytical models.

A. Delay and Energy Per Operation

We compare implementations of a 1 K-entry, 15-bit count
per entry CBF. For S-CBF, an SRAM with a total capacity of
15 Kbits is used. The SRAM is partitioned to minimize the en-
ergy-delay product. For S-CBF, we do not consider the delay
and energy overhead of the shared counter since our goal is
to demonstrate that L-CBF consumes less energy and is also
faster. To further reduce energy for probes in S-CBF, we in-
troduce an extra bit per entry which is updated only when the
count changes from, or to, zero as described in Section II-B
(-bits). On a probe, we only read this bit. Furthermore, we
apply a number of delay and power optimizations on S-CBF
[9]–[12]. In detail, we implement the divided word line (DWL)
technique which adopts a two-stage hierarchical row decoder
structure. The DWL technique improves speed and power [10],
[12]. Moreover, we reduce power further via pulse operation
techniques for the word-lines, the periphery circuits and the
sense amplifiers [12]. We also use multistage static CMOS de-
coding [9] and current-mode read and write operations to further
reduce power [12]. For L-CBF, we utilize 16-bit LFSRs such
that the LFSR can count at least values.

Table II shows the delay in picoseconds, the energy (static and
dynamic) per operation in picojoules, and the area in square mil-
limeters for both L-CBF and S-CBF. The last column reports
the ratio of S-CBF over L-CBF per metric. The two rows per
category report, respectively, measurements for the update and

TABLE II
ENERGY, DELAY, AND AREA OF S-CBF AND L-CBF IMPLEMENTATIONS FOR

A 1 K-ENTRY, 15-BIT CBF

probe operations. For delay and energy, we report the worst case
which is measured by selecting appropriate inputs. The delay
and energy of the shared counter of S-CBF is not included; oth-
erwise, the actual delay and energy of S-CBF would be higher.

As observed from Table II, L-CBF is 3.7 and 1.6 faster than
S-CBF during update and probe operations, respectively. In ad-
dition, L-CBF consumes 2.3 or 1.4 less energy than S-CBF
for update and probe operations, respectively. These significant
gains in speed and energy consumption come at the expense of
more area. L-CBF requires about 3.2 more area than S-CBF.
However, as discussed in Section III, area is less of a concern in
modern microprocessor designs.

Disregarding the overhead (delay and energy) of the shared
counter, the measurements for S-CBF are optimistic. An
up/down 15-bit LFSR counter has a delay of 240 ps and energy
per update of 25 FJ. If this LFSR was used as the shared counter
for S-CBF, L-CBF would be 4.3 or 1.98 faster than S-CBF
for updates and probes, respectively (relative energy remains
virtually the same).

1) Per Component Energy Breakdown: Fig. 9 shows a per
component breakdown of energy consumption for S-CBF and
L-CBF. Most of the energy (79% and 74%, respectively, for up-
dates and probes) in S-CBF is consumed by the memory core
(worldlines, bitlines, and SRAM cells). The decoder and the
sense-amplifiers consume considerably less energy. This is ex-
pected as we applied aggressive energy and delay optimizations
to these components. For L-CBF, during probes, about 50% of
the total energy is dissipated in inactive components, the LFSR
array and row drivers. For L-CBF, during updates, 50% of the
total energy is dissipated in non-active LFSRs, row drivers, zero
detectors, and output multiplexer.

2) Per Component Delay Breakdown: Fig. 10 shows a per
component breakdown of delay for both S-CBF and L-CBF for
updates and probes. In S-CBF, the update operation delay con-
sists of the decoder delay, the SRAM read access delay (ex-
cluding the decoder delay) and the SRAM write access delay
(excluding the decoder delay). In detail, the update operation
delay consists of the decoder delay, the read-wordline delay,
the read-bitline delay, the read-sense amplifier delay, the read-
output multiplexer delay, the write-write driver delay, the write-
wordline delay, the write-bitline delay, and the precharge delay.
The precharge delay is included as the update operation involves
a read-modify-write sequence. In S-CBF, significant part of the
delay belongs to the memory core, demonstrating that signifi-
cant potential exists for improvements with L-CBF.

For L-CBF, the delay of the update operation consists of the
decoder delay, the row clock driver delay, and the up/down
LFSR delay. For L-CBF, the probe operation delay is comprised

636 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 6, JUNE 2008

Fig. 9. Per component energy consumption for S-CBF and L-CBF. Breakdown
for (INC/DEC) and probe (PROBE).

Fig. 10. Per component delay breakdown for S-CBF and L-CBF. Breakdown
for (INC/DEC) and probe (PROBE).

of the decoder delay, the zero detector delay, and the output
multiplexer delay. In L-CBF, the delay is balanced across the
LFSR core and the decoder demonstrating that the L-CBF
successfully reduces delay compared to S-CBF.

B. Sensitivity Analysis

This section investigates delay and energy variation as a func-
tion of the number of entries and count width for both L-CBF
and S-CBF.

1) Energy Per Operation: Fig. 11 reports the energy per op-
eration for CBFs as a function of entry count for 64 through
1-K entries in power of two steps. We observe that L-CBF con-
sistently consumes less energy than S-CBF and the relative dif-
ference increases slightly for larger entry counts.

Fig. 12 reports the energy per operation as a function of count
width in the range of four to 16 bits for a 64-entry CBF. Along
L-CBF measurements, we also report the number of taps needed
by each count width (either four or eight). We observe that
the energy of L-CBF scales better than that of S-CBF. Com-
munication in L-CBF is primarily between adjacent cells. For
this reason, increasing the number of cells does not impact the

Fig. 11. Energy per operation as a function of the number of entries for L-CBF
and S-CBF with 15-bit counts.

Fig. 12. Energy per operation as a function of count width for L-CBF and
S-CBF for a 64-entry CBF.

overall energy significantly. The energy of S-CBF increases at a
greater rate because additional bitlines and sense amplifiers are
introduced and the wordlines become longer. Fig. 12 shows that
changing the number of taps from four to eight in LFSRs does
not significantly impact energy.

2) Delay: Fig. 13 reports the delay for CBFs of 64 through
1-K entries in power of two steps. As the number of entries in-
creases, the size and the delay of the decoder increase and so
does the size and delay of the output multiplexer. L-CBF is con-
sistently faster than S-CBF. The difference in speed increases
slightly with the number of entries.

Fig. 14 reports the delay as a function of LFSR width in the
range of four to 16 bits for a 64-entry CBF. We observe a negli-
gible increase in the update operation as the width increases. For
larger LFSR widths there are three potential sources of increased
delay: the row clock driver, the LFSR feedback loop and the
embedded zero detector. Increasing the LFSR width elongates
the clock driver wire for each row and consequently the clock
driver’s load. By resizing the row driver or by adding a buffer
chain it is possible to avoid any significant increase in delay at
the cost of more energy. As the counter width increases, so does

SAFI et al.: L-CBF: A LOW-POWER, FAST COUNTING BLOOM FILTER ARCHITECTURE 637

Fig. 13. Delay as a function of number of entries for L-CBF and S-CBF
with15-bit counts.

Fig. 14. Delay as a function of count width for L-CBF and S-CBF for a 64-entry
CBF.

the length of the feedback loop and the delay of the LFSR. As
discussed earlier, in practice, this increase is negligible for the
widths considered in this study. Increasing the LFSR width in-
creases the number of the inputs for zero detector, and hence
the delay of it. We observe that the delay of L-CBF increases
slightly for wider counts compared to S-CBF.

C. On the Accuracy of the Analytical Models

This section discusses the accuracy of the analytical models.
In this analysis, the relative estimation error is calculated by (22)

Error
Analytical Simulation

Simulation
(22)

Figs. 15 and 16 compare circuit measurements with analyt-
ical model estimations for energy and delay as a function of
L-CBF’s entry count. The circuit measurements are reproduced
from Figs. 11 and 13, respectively. The worst case relative
error per operations is also depicted. The worst case relative
error for energy and delay is respectively within 10% and
5% of the Spectre simulation results. As observed, the error
is monotonic and the estimations are in agreement with the
simulation results in predicting the trend of delay and energy
per operation variations.

Fig. 15. Energy per operation as a function of number of entries for L-CBF
with 15-bit counts: simulation results and model estimations.

Fig. 16. Delay as a function of number of entries for L-CBF with 15-bit counts:
simulation results and model estimations.

Analytical model estimations may differ from simulation re-
sults because of several factors. Comparisons of the model es-
timated and layout extracted capacitances show that about 5%
of the error is due to capacitance estimation inaccuracy. The
formulas used to calculate gate and diffusion capacitances are
over-simplified and the capacitances are assumed to be voltage
independent. The energy model exhibits a worst case error of
about 10%. The leakage power model accounts for 4.5% of this
error. Leakage current largely depends on the state of the circuit
Hence, it is difficult to quantify the leakage power accurately
without circuit simulations.

VI. CONCLUSION

In this paper, we investigate physical level implementations
of CBFs and we propose L-CBF. L-CBF is a novel implemen-
tation consisting of an array of up/down LFSRs and zero de-
tectors. We compare L-CBF with S-CBF. S-CBF is the previ-
ously assumed implementation consisting of an SRAM array

638 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 6, JUNE 2008

of counts and a shared counter. We evaluate the energy, delay,
and area of L-CBF and S-CBF in a commercial fabrication tech-
nology. L-CBF is superior to S-CBF in both delay and speed at
the expense of more area. Additionally, we present analytical
delay and energy models for L-CBF. These models facilitate
estimation of the delay and energy variation for CBFs during
architectural level investigations when physical level implemen-
tation is not yet available. Comparisons demonstrate that the es-
timations provided by the models are in satisfying agreement
with the simulation results.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers of
this paper and the reviewers of its earlier conference version for
their helpful comments. The authors would also like to thank M.
Haji Rostam and N. Azizi for their help in physical-level design
and simulation.

REFERENCES

[1] A. Moshovos, “RegionScout: Exploiting coarse-grain sharing in
snoop-coherence,” in Proc. Ann. Int. Symp. Comput. Arch., Jun. 2005,
pp. 234–245.

[2] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary, “Jetty:
Filtering snoops for reduced energy consumption in smp servers,” in
Proc. Ann. Int. Conf. High-Performance Comput. Arch., Feb. 2001,
pp. 85–96.

[3] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W.
Keckler, “Scalable hardware memory disambiguation for high-ILP
processors,” IEEE Micro, vol. 24, no. 6, pp. 118–127, Nov. 2004.

[4] J. K. Peir, S. C. Lai, S. L. Lu, J. Stark, and K. Lai, “Bloom filtering
cache misses for accurate data speculation and prefetching,” in Proc.
Ann. Int. Conf. Supercomput., Jun. 2002, pp. 189–198.

[5] M. R. Stan, “Synchronous up/down counter with clock period inde-
pendent of counter size,” in Proc. Ann. Symp. Comput. Arithmetic, Jul.
1997, pp. 274–281.

[6] P. Alfke, “Efficient shift registers, LFSR counters, and long pseudo-
random sequence generators,” Xilinx, San Jose, CA, Appl. Note 052,
Jul. 1996.

[7] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in test for VLSI:
Pseudorandom techniques. New York: Wiley, 1987.

[8] M. R. Stan, A. F. Tenca, and M. D. Ercegovac, “Long and fast up/down
counters,” IEEE Trans. Comput., vol. 47, no. 7, pp. 722–735, Jul. 1998.

[9] B. S. Amrutur and M. A. Horowitz, “Fast low-power decoders for
RAMs,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1506–1515,
Oct. 2001.

[10] B. S. Amrutur, “Design and analysis of fast low power SRAMs,” Ph.D.
dissertation, Elect. Eng. Dept., Stanford Univ., Stanford, CA, 1999.

[11] B. S. Amrutur and M. A. Horowitz, “Speed and power scaling of
SRAM’s,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 175–185,
Feb. 2000.

[12] M. Margala, “Low-power SRAM circuit design,” in Proc. IEEE Work-
shop Memory Technol., Design Test., Aug. 1999, pp. 115–122.

[13] D. Burger and T. Austin, The Simplescalar Tool Set v2.0 Comput. Sci.
Dept., Univ. Wisconsin-Madison, Madison, Tech. Rep. UW-CS-97-
1342, 1997.

[14] H. E. W. Neil and D. Harris, Principles of CMOS VLSI Design, 3rd
ed. Reading, MA: Addison Wesley, 2004.

[15] D. A. Hodges, H. G. Jackson, and R. A. Saleh, Analysis and Design of
Digital Integrated Circuits, 3rd ed. New York: McGraw-Hill, 2004.

[16] M. Mamidipaka, K. Khouri, N. Dutt, and M. Abadir, “Analytical
models for leakage power estimation of memory array structures,” in
Proc. Int. Conf. Hardw./Softw. Co-Design Syst. Synth., Sep. 2004, pp.
146–151.

[17] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
“Hotleakage: A temperature-aware model of subthreshold and gate
leakage for architects,” Univ. Virginia, Charlottesville, Tech. Rep.
CS-2003-05, 2003.

[18] X. N. Chen and L. S. Peh, “Leakage power modeling and optimization
of interconnection network,” in Proc. Int. Symp. Low Power Electron.
Des., Aug. 2003, pp. 90–95.

[19] S. Wilton and N. Jouppi, “An enhanced access and cycle time model
for on-chip caches,” 1994.

[20] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural level power analysis and optimizations,” in Proc. Ann. Int.
Symp. Comput. Arch., Jun. 2000, pp. 83–94.

[21] E. Safi, A. Moshovos, and A. Veneris, “L-CBF: A fast, low-power
counting bloom filter architecture,” in Proc. Ann. Int. Symp. Low Power
Electron. Des., Oct. 2006, pp. 250–255.

Elham Safi (S’05) received the B.Sc. and M.Sc. de-
grees in computer hardware engineering and com-
puter architecture from the University of Tehran, Iran.
She is currently pursuing the Ph.D. degree in elec-
trical and computer engineering from the University
of Toronto, Toronto, ON, Canada.

Her research interests include computer architec-
ture with emphasis on hardware design and imple-
mentation.

Andreas Moshovos (S’96–M’99–SM’05) received
the Ptyhion degree and the M.Sc. degree in computer
science from the University of Crete, Hellas, Greece,
and the Ph.D. degree in computer science from the
University of Wisconsin-Madison, Madison.

He is an Associate Professor with the Department
of Electrical and Computer Engineering, University
of Toronto. His research interests include microarchi-
tectural optimizations for high-performance proces-
sors and systems.

He is a member of the Association for Computing
Machinery (ACM).

Andreas Veneris (S’96–M’99–SM’05) received the
Diploma in computer engineering and informatics
from the University of Patras, Patras, Greece, the
M.S. degree in computer science from the University
of Southern California, Los Angeles, and the Ph.D.
degree in computer science from the University of
Illinois at Urbana-Champaign (UIUC), Urbana.

He is currently an Associate Professor, cross-ap-
pointed with the Department of Electrical and Com-
puter Engineering and Department of Computer Sci-
ence, University of Toronto, Toronto, ON, Canada.

His research interests include computer-aided design for the debugging, verifi-
cation, synthesis and test of digital circuits and systems as well as data structures
and combinatorics.

He is a member of the Association for Computing Machinery (ACM), the
American Association for the Advancement of Science (AAAS), the Technical
Chamber of Greece, and the Planetary Society.

