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Abstract—Homogeneous manycore systems are emerging for
tera-scale computation and typically utilize Network-on-Chip
(NoC) as the communication scheme between embedded cores.
Effective defect tolerance techniques are essential to improve
the yield of such complex integrated circuits. We propose to
achieve fault tolerance by employing redundancy at the core-level
instead of at the microarchitecture level. When faulty cores exist
on-chip in this architecture, however, the physical topologies of
various manufactured chips can be significantly different. How to
reconfigure the system with the most effective NoC topology is a
relevant research problem. In this paper, we first show that this
problem is an instance of a well known NP-complete problem.
We then present novel solutions for the above problem, which not
only maximize the performance of the on-chip communication
scheme, but also provide a unified topology to Operating System
and application software running on the processor. Experimental
results show the effectiveness of the proposed techniques.

Index Terms—Defect tolerance, manycore system, network-on-
chip, core-level redundancy, topology reconfiguration.

I. INTRODUCTION

S TECHNOLOGY advances, industry has started to em-
ploy multiple cores on a single silicon die in order to im-
prove performance through parallel execution, which has the
benefits of power-efficiency and short time-to-market [1]. Sig-
nificant research has been undertaken on tera-scale computing
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that is able to integrate tens to hundreds of homogeneous pro-
cessing cores on a single chip to process massive amounts of in-
formation in parallel [2], [3]. For example, an 80-core teraflop
processor prototype was demonstrated at Intel Developer Forum
2006 [4]. Such processors containing a large number of cores are
called manycore processors (note the difference from multicore
processors that contain a small number of cores). In terms of
communication infrastructure, Network-on-Chip (NoC) is gen-
erally regarded as the most promising interconnect solution for
giga-scale Integrated Circuits (ICs) such as manycore proces-
sors [5], [49], in which the topology determines the ideal per-
formance of the on-chip network whereas the routing algorithm
and the flow control mechanism determine how much of this
potential is realized. As a result, Operating System (OS) should
understand the topology of NoC-based manycore systems to
dispatch and schedule tasks to multiple cores more effectively;
while programmers should also be aware of the topology to im-
prove the performance of parallel applications [16], [52].

There are many challenges for the architecture design of these
NoC-based manycore systems, in which fabrication yield is one
of the most serious concerns because an IC’s profitability de-
pends heavily on it [6], [7]. With the ever-increasing circuit den-
sity, obtaining high fabrication yield solely through improving
the manufacturing process is increasingly difficult and will be-
come unaffordable in the near future. For example, as stated
in [8], it would have been lucky to get yield in the range of
10-20 percent for the Cell processor if architectural help is not
provided. A more practical solution is therefore to provide de-
fect tolerance capabilities on-chip by incorporating redundant
circuits. For example, Memory Built-In-Self-Repair (MBISR)
techniques have been widely utilized in the industry and proved
to be very effective to keep the high fabrication yield of memory
circuits. Such techniques should be extended to other types of
VLSI circuits as well [9].

However, tolerating defects in the microprocessor is quite
different from tolerating defects in memory because the pro-
cessor’s internal structure is not as regular as memory cells, and
previous attempts in this domain mainly focused on introducing
microarchitecture-level redundancy (e.g., [10], [11]). This is ap-
propriate for multicore chips (e.g., a quad-core processor) in
order to keep the overhead small. When the number of on-chip
cores increases to a point that single core becomes inexpensive
when compared to the entire chip (e.g., a 64-core processor),
however, it is not necessary to tolerate defective cores at the mi-
croarchitecture level. Instead, it is more appropriate to employ
core-level redundancy in such case to reduce the complexity as-
sociated with microarchitecture-level redundancy.
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For NoC-based manycore systems with core-level redun-
dancy, faulty cores are replaced by spare ones placed on-chip.
Therefore, it is possible that the topology of the target design
is modified and different fabricated chips may have different
underlying topologies. This is a big burden for programmers
because an optimized program for one topology may not work
well for a different one and the programmers are facing various
topologies when optimizing their parallel programs.

To address the above problem, the concept of virtual topology
is reintroduced from prior network embedding problem in this
paper. A virtual topology is isomorphic with the topology of the
target design but is a degraded version. From the viewpoint of
OS and programmers, they always see a unified virtual topology
regardless of the various underlying physical topologies. This
eases the dispatching and scheduling tasks for OS and facil-
itates the optimization of parallel programs. The above issue
was briefly discussed in [12]. When compared to [12], in this
paper we re-define the problem by introducing two new met-
rics, namely Distance Factor (DF) and Congestion Factor (CF),
to evaluate the performance of different virtual topologies. We
also introduce new algorithms to tackle the problem, and con-
duct extensive simulation experiments to verify the effective-
ness of the proposed solution.

The rest of this paper is organized as follows. Section II
motivates our research work. In Section III, we formulate the
topology reconfiguration problem investigated in this paper.
Section IV reviews prior related work. Section V gives in-depth
analysis of the formulated problem, which is shown to be an
instance of a well-known NP-complete problem. The proposed
topology reconfiguration algorithm is then described in detail
in Section VI. Next, Section VII presents experimental results.
Finally, we conclude this paper in Section VIII.

II. MOTIVATION

A. Core-Level Redundancy in Homogeneous Manycore
Processors

As the internal structure is not as regular as memory cells,
previous research work on defect tolerance in microprocessors
mainly focused on introducing microarchitecture-level redun-
dancy. Redundancy improves yield while at the same time
may reduce the chip performance. Researchers thus evaluate
the effectiveness of various redundancy mechanisms using
performance averaged yield (Ypay) [10] or Yield-Adjusted
Throughput (YAT) [11]. Performance degradation is measured
by the relative Instructions Per Cycle (IPC), i.e., the ratio of the
reduced IPC to the maximum IPC of the perfect version.

For multicore and manycore processors, the chips them-
selves naturally have regularity and redundancy as they contain
a number of cores. As a result, core-level redundancy could
be employed besides microarchitecture-level redundancy. Mi-
croarchitecture- and core-level redundancy are named intra-
and inter-processor redundancy respectively in [10]. In the
former case, a core can be in any degraded states, but the
entire chip is considered bad once the available intra-processor
redundancy is exhausted in even one of its cores. In the latter
case, a core becomes useless if it contains any faults. However,
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Fig. 1. Comparison between microarchitecture- and core-level redundancy.
(a) Ypav comparison redrawn from [10] with the permission of the author.
(b) YAT comparison redrawn from [11] with the permission of the author.

as long as enough of the remaining cores are functional, the
chip is considered to be operational.

Various types of microarchitecture-level redundancies are
considered with core-level redundancy by using poisson yield
model in [10]. SPEC2000 and a speech recognition benchmark
are chosen to get the IPC reduction. The results are reproduced
and shown in Fig. 1(a). The x-axis shows the feature size and
the number of cores per chip at each technology. As can be seen
in the figure, although there are significant benefits by using
microarchitecture-level redundancy when compared to baseline
model, Ypay drops from 98% at 250 nm to 91.3% at 50 nm.
Core-level redundancy covers the entire area of the chip and
therefore Ypay increases uniformly from 85.4% to 98%. The
yield benefits offered by microarchitecture-level and core-level
redundancy crossover at 100 nm.

The authors in [11] proposed a novel defect tolerant mi-
croarchitecture (namely Rescue). Core-level redundancy (called
“core sparing” in their work), is used to compare with Rescue by
using HotSpot model and negative binomial yield model. IPC
reduction is evaluated by simulating 23 benchmark programs
from SPEC2000. It also assumes a 20%(a), 30%(b), 40%(c),
and 50%(d) growth of core complexity starting from one core
per chip at the 90 nm. The results are redrawn and shown in
Fig. 1(b). Similarly, we can observe, as technology advances,
YAT becomes increasingly lower without redundancy. At the
same time, microarchitecture-level redundancy brings YAT im-
provement, but at a smaller scale when compared to core-level
redundancy in newer technology generation. Microarchitec-
ture-level redundancy shows greater improvement under larger
core complexity growth, because the chip has fewer cores and
each defective core disables a larger portion of the chip.

From the above analysis, we can conclude that, for manycore
chips, because the number of on-chip cores is large and they are
fabricated in latest technology, the probability of an embedded
core being defective is quite small. Each degraded chip contains
amajority of fully functional cores and a small number of defec-
tive ones. Therefor, it is not necessary to tolerate defective cores
at the microarchitecture-level. Instead, it is more appropriate to
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employ core-level redundancy in such case to reduce the com-
plexity associated with microarchitecture-level redundancy.

In fact, industry has started to employ core-level redundancy
in their products recently. For example, while the Cell processor
contains eight Synergistic Processing Elements (SPEs), Sony’s
PlayStation 3 video game console considers using only seven of
them to increase the manufacturing yield [8]. This approach is
also applied in Sun’s UltraSPARC T1 processor [13], [14] and
Azul’s Vega2 chip [15].

There are two schemes to design homogeneous multicore or
manycore chips with core-level redundancy, namely As Many
As Available (AMAA) and As Many As Demand (AMAD). The
AMAA scheme, adopted in the T1 processor, degrades a chip by
disabling faulty cores only. For example, a fabricated quad-core
processor can be a full version with 4 functional cores; or it can
be degraded to a tri-core, dual-core or single-core processor de-
pending on the number of faulty cores. In AMAD scheme, also
denoted as “N + M” mechanism in this paper, adopted in the
Cell processor (N = 7, M = 1), an N-core processor is pro-
vided with M redundant cores and we always provide customers
with N operational cores. That is, it is possible that there are
fault-free cores left unused in AMAD.

It is preferred to employ the AMAA scheme in multicore to
keep the overhead small. However, as the number of on-chip
cores increases, the overhead of leaving a few redundant cores
on-chip unused is acceptable because a single core is inexpen-
sive compared to the entire chip as discussed above. In addi-
tion, with many cores implemented on-chip, we may get var-
ious types of degraded chips (with different number of faulty
cores) after fabrication and the yield of the demanded N -core
processor cannot be promised in AMAA scheme. Finally, from
a commercial point of view, it may cause some confusion in
marketing with many different degraded versions. Therefore,
for manycore processors, AMAD scheme is preferred and we
mainly focus on this scheme in this paper.

Manycore processors typically use NoC as the communica-
tion infrastructure, in which the topology determines the ideal
performance whereas the routing algorithm and the flow control
mechanism determine how much of this potential is realized.
However, in AMAD scheme, as the cores that are fabricated to
be defective are not known a priori, when they are replaced by
spare cores, the topology of the target design can be different.
For example, suppose we want to provide 9-core processors with
3 x 3 2D mesh topology to customers, as shown in Fig. 2(a).
Also, suppose 3 redundant cores (1 column) are provided to im-
prove the yield of these chips as shown in Fig. 2(b). If some
cores (no more than 3) are defective, we could still get 9-core
processors. However, as shown in Fig. 2(c), if faulty cores are
replaced by spare cores, not only the topologies that we get are
different from what we expect, but also the topologies of dif-
ferent chips can be distinct. These changed topologies become
irregular and would cause performance degradation for many-
COre processors.

B. Topology Impacts on NoC-Based Manycore Systems

In NoC-based homogeneous manycore systems, the perfor-
mance of the on-chip communication significantly affects the
efficiency of parallel applications. As a result, to minimize the
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Fig. 2. Faulty cores change the topology of target design. (a) What we expect.
(b) What we implement. (c) What we get.

communication overhead among threads or tasks, today’s OS
relies on explicit knowledge of the underlying topology [52].
For example in Microsoft Windows Server 2003, a so-called
Advanced Configuration and Power Interface (ACPI) circuit is
used to pass a description of the physical topology of the system
to OS [16]. The topology information is stored in Static Re-
source Affinity Table (SRAT), and is used by Windows when
dispatching and scheduling tasks. For example, a representative
scheme, namely Gang Scheduling [17], divides processors into
groups, in which processors of the same group have lower com-
munication overhead. Tasks that frequently communicate with
each other will be assigned to processors in the same group to
minimize communication overhead.

In addition, from the parallel programmers’ perspective, to
optimize the performance of the application software, currently
they need to know the underlying manycore’s organization [51].
For example, topology information is provided to programmers
through API functions in Windows Server 2003. This is the
communication-exposed programming for NoC platforms [49].
Such tailored programs may be not portable to other proces-
sors due to different system architectures, such as the number
of on-chip cores and their topology.

C. Physical Topology and Virtual Topology

As shown in Fig. 2, faulty cores change the target topology
and different chips may have distinct underlying topologies. It
would be rather cumbersome for OS and programmers to face
various different topologies and optimize them differently. To
address this problem, we propose to provide a unified virtual
topology regardless of the underlying one. Before introducing
the details, we first define Reference Topology as the topology
of the target design that we expect. For example, the 3 x 3 2D
mesh topology in Fig. 2(a) is the expected reference topology.

For the illustrative “9 4+ 3” manycore processor shown in
Fig. 2(b), suppose the 7th, 10th and 11th cores are defective
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Fig. 3. Physical topology and virtual topology. (a) A chip with faulty cores.
(b) The physical topology. (c) A virtual topology.

after fabrication as shown in Fig. 3(a), these cores are consid-
ered to be removed out of the chip. The remaining fault-free
cores and their interconnections construct a Physical Topology
as shown in Fig. 3(b). It should be emphasized that once a many-
core processor is taped out, its physical topology is determined
and cannot be changed during its lifetime. This is fundamen-
tally different from board-level multiprocessor systems, which
are much easier to be repaired since the target topology can be
maintained by simply replacing the faulty processor with a good
one.

Based on our AMAD scheme, a 9-core processor can still
be provided but with different topology when compared to
the reference topology. That is, we can construct a Virtual
Topology of the chip based on the given physical topology,
which is isomorphic with the reference topology. An example
is shown in Fig. 3(c), in which we construct a virfual 3 X 3 2D
mesh topology.

With the above configuration, the 3rd, the 5th, the 6th and
the 8th cores are four virtual neighbors of the 2nd core. The 3rd
core is considered to be below the 2nd core virtually, although it
locates at the 2nd core’s right-hand side physically. In addition,
while the 5th core is more than one hop away from the 2nd core,
they are considered to be adjacent in the above virtual topology.

By using virtual topology, OS and programmers always see a
unified topology that is isomorphic with the reference topology,
no matter how the underlying cores are connected physically.
This greatly simplifies task dispatching and scheduling duties
for OS and also facilitates the optimization of parallel programs.
In addition, a unified topology that isolates various physical
topologies for different chips also significantly eases marketing
process.

A similar idea has been applied in Cray T3E network [18].
If some processors fail during the operation of the system, one
or more of them may not be physically contiguous. To continue
providing applications with a contiguous range of virtual pro-
cessor numbers, the routing table along with the logical “who
am I” registers allows the nodes to be logically renamed, i.e.,
mapping from physical to virtual number. This kind of “hot
swapping” is totally transparent to users. As mentioned above,
the failure of nodes and the change of topologies in systems
such as Cray T3E are temporary and can be easily recovered
because a faulty processor is removed from the system and re-
placed while OS and user jobs are kept running on the healthy
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nodes. However, for manycore processors, defects are perma-
nent and physical topologies cannot be recovered.

It should be also noted that, depending on the architecture
design of manycore processors, there are many ways to imple-
ment the mapping from various physical topologies to their cor-
responding virtual topology. For example, one possible solu-
tion is to add a firmware layer below OS to record mapping
information which is obtained after fabrication test. This is sim-
ilar to the CORE_AVAILABLE_REG used in UltraSPARC T1
processor [13], [14]. OS and programmers always work on the
reference topology while the firmware is responsible for trans-
formation.

III. PROBLEM FORMULATION

On-chip faulty cores change the topology of the target design
and cause performance degradation for parallel applications. To
tackle this problem, we use virtual topology to provide a unified
interface to OS and programmers, no matter how the underlying
cores are connected physically. At the same time, however, as
there can be many virtual topologies for a particular physical
topology and they may affect applications differently, we should
choose the one that results in the best performance.

Since there are a wide range of applications with different
characteristics running on the NoC-based manycore systems
and they may have different requirements on the construction
of virtual topologies, it is difficult to evaluate the impact of vir-
tual topologies on various applications at the chip architecture
design stage. As a result, we evaluate the performance of virtual
topologies themselves and mainly consider the average latency
and throughput of different virtual topologies.

In order to do so, from the viewpoint of the NoC, two eval-
uation metrics are introduced in this section to model the per-
formance degradation of different virtual topologies when com-
pared to the reference topology, namely Distance Factor (DF)
and Congestion Factor (CF). For the sake of simplicity, we as-
sume the communication infrastructure to be fault-free in this
research work. This assumption can be justified since the routers
and links use much less hardware resources when compared to
the cores and are thus less vulnerable to defects [32]. Also, it
would not cause significant overhead to include fault-tolerant
features such as Triple Modular Redundancy (TMR) to protect
them.

Distance Factor: The zero-load latency T} of a topology can
be expressed as [48]: To = H x t,.+D/v+ L/b. Itis composed
of three terms. The router delay is H X ¢, for a network with
an average hop count of H and a delay of ¢, through a single
router. The time of flight is D /v for a network with an average
distance of D and a propagation velocity of v. The last one is
the serialization latency which is the time for a packet of length
L to cross a channel with bandwidth b.

For a particular physical topology, virtual topologies differ
from each other only in the average hop count H. When com-
pared to reference topology, it is obvious that the average hop
count of an irregular virtual topology becomes larger and thus
the zero-load latency becomes longer. The distance factor is
used to evaluate such degradation, in which DF,,,,» between two
nodes n and n’ is defined as the physical hops between them
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Fig. 4. CF comparison between two virtual topologies with the same DF
(DF = 2) for a given physical topology. (a) Virtual topology L. (b) Virtual
topology II.

(DF s = Hopspy ) and the distance factor of node n (DF,,)
is defined as the average distance factor between node n and all
its k virtual neighbors

k
1
DF, =+ 3 DF,.. 1
2> o

Finally, the distance factor of a virtual topology (DF) is de-
fined as the average DF',, of all nodes

DF = L Z DF,,. )

n=1

(There are in total N nodes in the virtual topology.)

The reference topology has the minimum DF as usually vir-
tual neighbors are located next to each other physically. For ex-
ample, DF is 1 in mesh and torus topologies, which means that
each pair of virtual neighbors is exactly one hop away from each
other. Larger value of DF means longer communication delay
among virtual neighbors.

Congestion Factor: For a given physical topology, it is likely
that there are several virtual topologies with the same DF values,
as shown in Fig. 4. We therefore use congestion factor to fur-
ther evaluate the performance of virtual topologies. A virtual
topology not only changes the average hop count among cores
but also affects the distribution of channel load. Traffic may be-
come unbalanced among different links. As the more balanced
the channel load, the closer the throughput of the network is to
the ideal case [48], a virtual topology that could balance traffic
more evenly across all NoC links is preferred.

According to the previous discussion, traffic distribution in
NoC-based manycore systems has the property of spatial lo-
cality, i.e., communication is more likely to happen between ad-
jacent cores rather than distant ones. We thus only consider the
case where a node only communicate with its virtual neighbors.
We define the congestion factor of a physical link / (denoted as
CF)) as follows: for any nodes n and n/, if they are virtual neigh-
bors, and [ is on one of the routing paths between them according
to the NoC’s routing mechanism (e.g., XY-routing [49]), we
add CF; by 1. For the two virtual topologies in Fig. 4, the CF,
values are shown above each physical links. It is clear that traffic
in topology I is much balanced than the one in topology II. In
topology II, some links are much congested (CF; = 11) while
some others are barely used (CF; = 0).

1177

I T 00 A A i Y

Spare cores

=
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|
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Fig. 5. System organization for manycore platform with “N + A" scheme.

Based on the above observation, we define the congestion
factor of a virtual topology (CF) as the standard deviation of
CF, of all links to indicate the traffic distribution

L-1

(There are in total L links in the physical topology.)

CF of the reference topology is 0, which means that traffic can
be more balanced across the network!. Greater CF means less
even flow distribution. Please note that even though advanced
routing algorithms can be introduced to balance channel load,
CF can be an auxiliary performance metric to evaluate the raw
flow distribution which reflects the quality of a virtual topology.

With the above two metrics, the quality of different virtual
topologies can be evaluated and compared. DF and CF might be
conflicted with each other during optimization, hence we unify
them together. The Unified Metric (UM) is defined as

UM = WpF X DF + wer X CF (4)

in which wpr and wcr are the optimization weights designated
by users (wpr + werp = 1).

Reconfiguration from physical to virtual topology is very
complex and it depends heavily on the system organizations,
such as the reference topology, the on-chip redundancy distri-
bution, etc. In this paper, we mainly focus on mesh and torus
topologies, which are the most widely used ones in NoC-based
manycore systems. We adopt a representative scalable many-
core architecture proposed by Intel as our platform model,
which integrates an array of tens to hundreds of streamlined
processing cores and accelerators connected by a scalable
NoC infrastructure [4], as shown in Fig. 5. We formulate the
topology reconfiguration problem for 2D mesh/torus topology
investigated in this paper as follows:

[Topology Reconfiguration Problem (TRP)]: For an R x C
homogeneous manycore processor with S redundant cores, sup-
pose D cores (D < S) are faulty, construct R x C coordinates
as follows:

(R—1,0) (R—1,1) (R—1,C—1)
Lo (L1 (L Co-1)
(0, 0) (0, 1) (0, C'—1)

IPlease note, congested links are usually revealed around the middle of net-
work even for uniform traffic pattern in practice, CF metric is mainly for com-
parison purpose and 0 is its ideal upper bound.
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Distribute these coordinates to (R x C' + S — D) fault-free
cores to construct a virtual topology T%irtual, in Which nodes
with coordinates (i + 1, 5), (i—1,7), (¢,j+1) and (4,5 — 1) are

four virtual neighbors of node (i, 7), and nodes without being
assigned coordinates are left unused, satisfying

UM of Tyirtual i minimized.

Two example virtual topologies for a given physical topology
are shown in Fig. 6. The values of DF and CF for these two
virtual topologies are also shown in the figure. Clearly, new
topology reconfiguration algorithm needs to be developed to se-
lect the best candidate topology. Before introducing our pro-
posed algorithms, we firstly review prior related work in this
area and then give some in-depth analysis of the above TRP
problem in the following two sections.

IV. RELATED PRIOR WORK

In this section, we briefly review related prior research work,
including the defect tolerance for memory chips and VLSI array
processors and the network embedding problems. We show the
similarities and differences between the topology reconfigura-
tion problem studied in this paper with previous work.

A. Defect Tolerance in Memory and VLSI Array Processors

Using redundant components to achieve yield improvement
has been widely applied in memory chips and VLSI array pro-
cessors for a long time.

To avoid yield loss in memory chips, spare elements, i.e.,
redundant columns, rows, words or small blocks are added to
repair faulty storage cells for almost all memories with rela-
tively high capacity [50]. In MBISR, failure bitmap informa-
tion obtained through test is stored on-chip for repair purpose.
The repair efficiency is determined by spare structure, redun-
dancy analysis and repair strategy. 2D redundancy is the most
widely used spare structure nowadays, in which both spare rows
and spare columns are employed. The objective of redundancy
analysis is to choose the minimum number of spare rows and
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columns that cover all the faulty cells. The complexity of 2D re-
dundancy analysis problem has been proved to be NP-complete
[19]. Finally, the time required to determine the repair solution
is also a crucial factor. Lots of research work has been dedicated
to the above areas [20]-[24].

A VLSI array processor integrates a large number of simple
Processing Elements (PE) on a single chip or silicon wafer.
To improve its yield, redundant PEs are often provided and
fabrication-time reconfiguration techniques are applied to
repair faulty PEs with spare ones [25]. There are generally
two approaches to reconfigure VLSI array processors, namely
the redundancy approach and the degradation approach. In
redundancy approach, some PEs are dedicated as spare parts,
and if these PEs cannot replace all the faulty ones, the chip has
to be discarded. Various reconfiguration algorithms have been
proposed in [26]-[29]. In the degradation approach, all PEs
are treated in a uniform manner to derive a fault-free subarray,
whose size is flexible. Two metrics, harvest and degradation
are commonly used to evaluate the efficiency of reconfiguration
algorithms in the degradation approach [30]-[32]. The harvest
represents how effective the fault-free PEs are utilized to con-
struct a subarray and the degradation measures the performance
loss due to a smaller fault-free subarray than the original array.

For memory chips and VLSI array processors, their physical
topologies have to be maintained the same before and after re-
configuration. The regularity of physical structures is required
by the usages of such chips. The above reconfiguration prob-
lems differ significantly from the one for homogeneous many-
core processors. This is because, every core in manycore pro-
cessors is an autonomous system and is able to communicate
with other cores through on-chip interconnection network. The
physical topology is therefore not necessary to be kept the same
after reconfiguration. Only a unified virtual topology should be
maintained as described before.

B. Network Embedding Problems

The basic idea of constructing a virtual topology based on a
physical topology for a certain purpose has been widely applied
in many research areas. A famous application is the overlay net-
works [33], which create a structured virtual topology above the
basic transport protocol level to facilitate deterministic content
search. Virtual neighbor nodes in overlay networks are defined
by identifiers derived from the stored contents. In this subsec-
tion, we briefly review the network embedding research prob-
lems that are closely related to our topology reconfiguration
problem for manycore processors.

The network embedding problem, which has been studied
extensively, is widely used for simulations between networks
with different topologies. By embedding a G(uest) network
topology into a H (ost) topology, parallel programs could have
better portability. This is because one can automatically trans-
form any parallel algorithms developed for the multiprocessor
system with topology G into an algorithm for the system
with topology H. [34] focused on embedding of any arbitrary
network into its optimum complete binary trees. [39] proposed
anew approach to embed a given torus into another given torus.
[35] studied the embedding of rings and 2D mesh into a RP(k)
network.
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An application of network embedding in parallel computing
is the mapping from virtual process topology to physical pro-
cessor topology. The virtual process topology is the abstract
of communications among processes or tasks, in which each
vertex represents process, and an edge represents the commu-
nication between two processes. To execute a parallel program,
its process topology should be constructed effectively based
on the underlying processor topology. The virtual process
topology is also supported by MPI libraries [36], [37] discussed
the mapping problem in switch-based cluster systems with
irregular topology. Ref. [38] presented techniques to recon-
figure application topology in an octagonal 2D mesh machine
topology when faults occur.

The topology reconfiguration problem studied in this paper,
and the network embedding problem belong to the more general
problem of graph embedding, i.e., constructing a guest graph
based on a host graph. As the same class of problems, however,
they are applied at different levels and should be analyzed from
different perspectives.

Topology reconfiguration lies in the hardware level. From the
perspective of manycore processor architects, they reconfigure
a virtual topology to isolate various underlying physical topolo-
gies so that they can transparently provide OS and programmers
a unified interface to ease task dispatching scheduling and ap-
plication optimization. Network embedding, however, lies in the
application level. From the perspective of application program-
mers, they assume that the underlying system topology is fixed,
and then embed their application topology based on the given
physical topology to optimize the software performance. If chip
architects do not provide a unified (virtual) topology, application
programmers should have to handle various embedding prob-
lems from their application topology to different chip physical
topologies.

It should be noted that, network embedding problems use
dilation and congestion to evaluate the performance of vir-
tual topologies [39]. Dilation of a virtual edge e in the guest
topology is the length of the corresponding physical path in the
host topology. Congestion of an edge e in the host topology
is the number of virtual edges that include that edge. Dilation
and congestion consider the worst case scenario for the guest
topology. However, we use different evaluation metrics in
the topology reconfiguration problem in NoC-based manycore
systems, i.e., DF and CF. As discussed in Section III, there are a
wide range of applications running on the NoC-based manycore
systems, it is difficult to evaluate the effect of virtual topologies
on various applications at the chip architecture design stage.
As a result, we evaluate the performance of virtual topologies
themselves. The primary evaluation metric DF, i.e., the average
hop count determines the zero-load latency of a virtual topology
while the auxiliary metric CF reflects the distribution of traffic
load and thus could affect network latency and throughput.

V. PROBLEM ANALYSIS

The objective of TRP in essence is to find a map from virtual
locations to physical cores with optimized performance. Con-
sidering the configuration shown in Fig. 3, as depicted in Fig. 7,
the example virtual topology can be achieved according to the
mapping table. For example, virtual location V' is mapped to
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Mapping table @
I — 1| v — 8 #5 #—48
I — 3| vl — 9
m —> 4 | vl —> 6 |
vV - 5 X — Vi 1 1
v irtual topo ogy

# M
#5
#1 #2

Cores in physical topology Locations in virtual topology

Fig. 7. The essence of TRP is to find a map from virtual locations to physical
cores.

the 2nd physical core. In other words, the 2nd fault-free core
is placed in virtual location V' in the virtual topology. For the
given physical topology in Fig. 7, there are 9! possible virtual
topologies with different DF and CF values, because a fault-free
core can be placed in any virtual locations.

The topology reconfiguration problem can be broken into
two related subproblems, to minimize DF and to minimize CF,
which we call TRP-I and TRP-II, respectively. In this section,
we first recast these two problems from an optimization problem
to a decision problem, and then show both of them are essen-
tially instances of known NP-complete problems.

A. TRP-I: An Instance of Quadratic Assignment Problem

According to the above analysis, the decision form of TRP-I
can be formulated as follows:

[TRP-I] Virtual locations are numbered {1,2...,n}, while
physical cores are numbered {1,2...,m},n < m. dy is the
distance (number of hops) between physical nodes k£ and [.
dip; = oo if k or [ is defective. Is there a one-to-one func-
tion f : {1,2...,n} — {1,2...,m} to construct a virtual
topology T, such that: DF(T') < B (bound B € Z™).

To ease analysis, suppose the reference topology is torus.
Each virtual location ¢ has four neighbors in torus. Ac-
cording to (1), the distance factor of i can be expressed as
DF; = (1)/(4) X2, ds(iys(j)> in which j indicates four virtual
neighbors of ¢ and d;)f(;) represents the physical distance of
node 7 and its virtual neighbors as mentioned above. The above
formulation can be similarly applied for mesh topology, except
that the coefficients for different nodes can be 1/2, 1/3, or 1/4,
as a virtual node in mesh may have 2, 3, or 4 neighbors based
on its position.

From the above, according to (2) the distance factor of the
virtual topology T is

1 n
= -2 2 d)sGy Q)

i=1 j

We now show that TRP-I is essentially an instance of
Quadratic Assignment Problem (QAP), which is a well-known
NP-complete problem [40]. QAP can be formulated as follows
[41].

[QAP] Non-negative integer cost: c;;,1 < 4,7 < n;
and distance dy;,1 < k,I < m. Is there a one-to-one
function f {1,2...,n} — {1,2...,m} such that:

i 2= cijdpaygy < B.
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A QAP instance can be expressed as
{(Cij,dkl,B>7Cij,dkl,B S Z+; 1<, <n;1<kI< m}
The famous “backboard wiring” problem [42] is a typical
application of QAP, which concerns how to place computer
components to minimize the total amount of wiring required
to connect them.

Considering a QAP instance {({c;;,dr;, B)}, let 7 and j be
virtual locations (1 < 4,7 < n) in torus, and dy; is the distance
between physical nodes k and [ as defined in TRP-I. ¢;; is de-
fined as follows:

{ Cij = 1/411,

0

if ¢ and j are virtual neighbors

, otherwise.

Then the objective of this QAP becomes
1 n
2> i) < B (6)
i=1 j

in which j are four virtual neighbors of . According to (5) and
(6), it is clear that the objective of the above QAP instance be-
comes to find a mapping function or in other words a virtual
topology (7°) with distance factor not exceeding B. As a result,
TRP-I is an instance of the quadratic assignment problem.

B. TRP-II: An Instance of Vectorial Quadratic Assignment
Problem

Similarly, the decision form of TRP-II can be formulated as
follows.

[TRP-II] Virtual locations are numbered {1,2...,n}, while
physical cores are numbered {1,2...,m}, n < m. Is there a
one-to-one function f : {1,2...,n} — {1,2...,m} to con-
struct a virtual topology 7', such that: CF(T") < B (bound
B e Z%).

In this subsection, we show that TRP-II is also an instance
of quadratic assignment problem, but with a different form. To
prove this, we first define a Vectorial Quadratic Assignment
Problem (V-QAP) as follows:

[V-QAP] Non-negative integer cost: c;;,1 < 4,5 < n; P-di-
mensional non-negative vector vg;, 1 < k,I < m, and bound
By = (Ai,As...,Ap). For two P-dimensional vectors
Vi and Vo, Vi < Vj is defined as |Vi| < |Va]. Is there a
one-to-one function f : {1,2...,n} — {1,2...,m} such
that: Z?:l ZC:;} CijVf(i)f(5) < By.

An instance of V-QAP <can be expressed as
{< Cij,P,’l}kl7BV >,¢i € Z+7vk1 and By are P-di-
mensional non-negative vectors, 1 < i,7 < n,1 < k,l < m}.
It is easy to see that V-QAP is NP-complete because QAP is
in fact one-dimensional V-QAP. We now show that TRP-II is
an instance of V-QAP. Suppose the reference topology is 2D
mesh or torus with L physical links, denoted as I1,15,13...,1r.

Definition 1: Path Vector p,s is a L-dimensional vector
(l1,l9,15...,11). If (1 < 2 < L) is on one of the paths from
physical node r to s according to the NoC’s routing mechanism
(e.g., XY-routing), [, in p,s is 1, otherwise [, is 0. A simple
example is shown in Fig. 8, in which XY-routing is used. For
example, p14 = (1,0,1,0) because packets from 1st core to
4th core pass through links /; and /3.
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#3 #4 Path vector: p,=(;, I, I3, ly)
pi2=(1,0,0,0) p:=0,1,0,0)

[, 54 | pis=0,1,00) | pn=00,0,1,1)

I / p1u=(1,0,1,0) | ps3=(0,0,0,1)
#2000 | pam0.1.0.1)
l/ @ p3=U, 1, 0,0) 174z=(0y 0,1,0)
p24=(0,0,1,0) p4:=00,0,0,1)

Fig. 8. Path vector examples.

Definition 2: Congestion Increment Vector v,.s is defined as
Ups = prs — I X dps/L. ds is the distance between physical
node 7 and s as defined in TRP-I. I is the L-dimensional unit
vector.

We now construct a V-QAP instance {<
¢ij, L,vps, VL —1x By >,1<14,7<n,1<r,s<m},in
which 7 and j are virtual locations, and ¢;; is defined as

1, if ¢ and j are virtual neighbors
Cij = .
0, otherwise.

According to the definition of V-QAP, we want to find a
one-to-one function f : {1,2...,n} — {1,2...,m} such that
2im1 X5t Civs() S VL= 1x By.

As c;; 1s 0 if ¢ and j are not virtual neighbors, the objective
then becomes 3" ) 3= vyiyr() < VL —1 x By, orin an-
other form

Ly di(i)i ()
NIt e —1 <|By| (7
/—L_1|ZZ<Pf<z>fo> x = ]1=IBv] (D

i=1 j

in which ¢ and j are virtual neighbors.
Based on the above definitions of path vector and the
congestion factor of a link in Section III, it is not difficult to

derive: 27:1 Zj Dr@) F() = (CFll; CF[_2 .. CF[L)
and (1)/(L) Z?:l Z]— df(q)f(]) = CF Then,
we can conclude from (7) after _substitution:
(1)/(VL—-1)|(CF, CFy,... CF;,) — I x CF| < |By|,
ie., CF < |By]|.

It is clear that the above constructed instance of V-QAP is
in fact to find a virtual topology (T") with congestion factor not
exceeding |By|. As a result, we have proved that TRP-II is an
instance of V-QAP.

To sum up, in this section we point out that TRP is an instance
of the quadratic assignment problem, one of the most complex
combinatorial optimization problems. We therefore do not hold
much hope for finding an exact polynomial time algorithm for
its solution. Efficient and effective heuristics are therefore intro-
duced to solve this problem, as shown in the following section.

VI. PROPOSED TOPOLOGY RECONFIGURATION ALGORITHM

In this section, an advanced Simulated Annealing (SA) al-
gorithm proposed for QAP is firstly adopted to tackle our TRP.
This algorithm, however, is quite time-consuming. We therefore
present a fast deterministic greedy algorithm, called Row Rip-
pling and Column Stealing (RRCS). Finally, a gSA algorithm is
proposed, which outperforms both SA and RRCS algorithms in
terms of computing time and the quality of results.
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It should be noted that we mainly focus on the reconfiguration
algorithms for 2D mesh/torus topologies. Other topologies (e.g.,
butterfly or fat tree topology) may require different optimization
algorithms.

A. An Adopted Simulated Annealing Algorithm (SA)

Since we have proved that topology reconfiguration problem
is an instance of the quadratic assignment problem, we can adopt
previous heuristic approaches for QAP to tackle our TRP. One
such approach that has yielded promising results is simulated
annealing [43]-[46]. We adopt one of the most efficient simu-
lated annealing implementations proposed in [43] for QAP to
tackle TRP in this paper.

Various simulated annealing algorithms generally differ
with respect to neighborhood search, annealing schedule and
termination criterion. The adopted SA algorithm uses (4) as
the cost function and random virtual topologies as initial solu-
tions. The neighborhood function employed is the widely used
“2-exchange”. For example, if the current solution is

(1,0)
(0,0)
one of its neighbors by exchanging (1,1) and ‘unused’ is

[(1,0) (1,1) } '

(0,0) Unused

Faulty unused
(0,1) (11

Faulty
(0,1)

The neighboring solutions are searched thoroughly in a fixed
order, not randomly. For the above solution, 5 x (5 — 1)/2
trials are needed to explore all its neighborhood by the sequence
(1,0)~‘unused’, (1,0) < (0,0),... ‘unused’ < (0,0), ‘un-
used’ < (0,1)...

The adopted SA algorithm uses the inhomogeneous an-
nealing with oscillation schedules, i.e., temperature is reduced
by a very small amount after every trial without any equilib-
rium test. In addition, temperature is decreased and increased
periodically, i.e., reannealing instead of the straightforward
annealing, which is the common practice of state-of-the-art
simulated annealing algorithms.

The SA algorithm in [43] uses an advanced formula to
calculate the initial and final temperatures for each iteration,
leaving two tuning control parameters, i.e., the initial (A1) and
the final (\2) temperature factors, which can be used to control
the cooling process effectively.

The algorithm terminates when the current iteration number
exceeds @, or in other words after Qn(n — 1) /2 trials, in which
n is the number of fault-free cores.

B. Row Rippling Column Stealing Algorithm (RRCS)

Simulated annealing is a kind of common technique that
can be adopted to all combinatorial optimization problems.
However, it does not consider any characteristics of the TRP
problem, such as reference topology, system architecture, etc.
Moreover, SA is quite time-consuming because it has to explore
many random solutions before achieving a satisfactory result.
As the configuration time has great impact on the chip cost, SA
is not acceptable for large scale manycore systems. As a result,
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Fig. 9. An example of RRCS algorithm.

we proposed a fast deterministic greedy algorithm, called Row
Rippling and Column Stealing (RRCS) [12].

RRCS is based on the observation that the performance
degradation of a virtual topology is mainly caused by the
physical irregularity of the virtual topology compared to the
reference topology. Therefore, RRCS algorithm tries to main-
tain the physical regularity of the virtual topologies in row and
in column unit.

To ease illustration, suppose in mesh or torus topology, there
are one column of spare cores. If a row contains only one faulty
core, i.e., faulty cores are no more than the spare ones in this
row, Row Rippling is employed to reconfigure the row, in which
a faulty core is replaced by its neighbor and the virtual position
of the core used to replace the faulty one is transferred to the next
neighboring core. This process continues until the spare one is
used to replace the last element in the row. When a row con-
tains more than one faulty cores, i.e., faulty cores are more than
the spare ones in this row, the rightmost faulty core is replaced
using rippling. The other faulty elements within the row, how-
ever, are replaced with the elements immediately beneath them.
In other words, we “steal” a fault-free core from another row
within the same column. This stolen core should be considered
faulty when the row containing it is reconfigured. An example
of using RRCS in a “16 + 4” processor with 4 x 4 mesh refer-
ence topology and one column redundancy is depicted in Fig. 9.
To configure the uppermost row, which contains 3 faulty cores,
we steal the 12th and the 13th fault-free cores for the left two
fault cores; while the rightmost one is rippling to the 20th core.
Only Row Rippling is used to configure the lowermost row as it
contains one faulty core. The achieved virtual topology is shown
above the physical topology.

In the above discussion, we provide a column of redundant
cores as an example. In practice, the number of redundant cores,
i.e., M, for an N-core processor should be carefully determined
by the designers in advance (e.g., using the analysis framework
in [47]), and may be different from the column size. This how-
ever does not affect the working mechanism of the proposed
RRCS algorithm as it only needs to compare the number of
faulty cores Ny and spare cores on each row. We are able to
generate an effective virtual topology as long as the number of
faulty cores is less than M. In the worst case, i.e., all available
cores in both the same row and the same column are exhausted,
we simply choose a nearest core to replace the faulty one.
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Fig. 10. Comparison between RRCS and gSA. (a) Physical topology. (b) Vir-
tual topology achieved by RRCS (DF = 1.660; CF = 1.428). (c) Virtual
topology achieved by ¢gSA (DF = 1.329; CF = 0.937).

C. RRCS-Guided Simulated Annealing Algorithm (gSA)

RRCS is very fast when compared to SA algorithm, but it
does not directly consider DF or CF metrics during the optimiza-
tion process. Moreover, RRCS may cause serious chain column
stealing operations for certain physical topologies and result in
undesirable virtual topologies.

For example, consider a physical topology with 6 x 6 2D
mesh reference topology and 5 spare cores located on the right-
hand side and 5 faulty cores, as shown in Fig. 10(a). The vir-
tual topology achieved by RRCS is shown in Fig. 10(b), in
which the coordinates indicates the virtual locations for the cor-
responding cores. Reconfiguration begins from row R3, causing
two stealing operations, i.e., the two CS1 from row R4. R4 then
does not have enough available cores and has to steal another
two cores, i.e., CS2 from row RS5. The process continues until
the last row RO is configured. Note that CS3 borrows relatively
distant cores to configure faulty cores in row RS5. These chain
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Fig. 11. ¢SA improvement over RRCS for different network size. (a) DF im-
provement. (b) CF improvement.

column stealing operations will generate an undesirable virtual
topology.

At the same time, RRCS is very efficient, and it can arrange
most part of the virtual topology in a good shape. We find that
by applying several 2-exchange operations on top of the topolo-
gies achieved by RRCS, the quality of the results can be greatly
improved. As a result, we propose to combine the algorithms
of RRCS and SA together. We use RRCS to quickly generate
a good initial solution point, and then apply the adopted SA al-
gorithm on top of it to explore its 2-exchange neighboring solu-
tions. We call this strategy RRCS-guided Simulated Annealing
technique (gSA).

We use gSA (wpr = 0.9, wer = 0.1) and RRCS working on
100 random physical topologies in 6 x 6 2D mesh with 5 spare
and 5 randomly distributed faulty cores and 8 X 8 2D mesh with
8 spare and 8 random faulty cores respectively. The DF and CF
improvement of gSA over RRCS are reordered from small to
large and are shown in Fig. 11. For the DF metric in 6 X 6 array,
RRCS generates the same results as gSA for the first 28 physical
topologies, i.e., no improvement, while for the other 72 cases,
S A has different levels of improvement. When the network size
increases to 8 X 8, gSA achieves greater improvement than in
6 x 6 for 80% cases. CF metric is similar. We can conclude that
RRCS is efficient since for around 20%—-35% cases, it generates
results as good as gSA. However, for many circumstances due
to chain column stealing operations, RRCS has very poor per-
formance, and gSA can improve over RRCS greatly, especially
for larger network size.

We then use SA algorithm with different parameters
working on the above 100 physical topologies in 6 x 6 and
8 x 8 mesh. The initial and final temperature factors A;
and )9 are tuned and set to be 0.5 and 0.05 respectively.
We choose 50 and 100 random solutions, i.e., SA-50 and
SA-100 with different iteration numbers, i.e., ¢ = 10 and
@ = 20 - wpp and wcy are set to be 0.9 and 0.1 respectively.
The averaged results are shown in Table I. It can be seen that,
gSA outperforms SA in all cases with very little computa-
tional time. With more random solutions and more iteration
numbers, SA improves a little but with great computing
time overhead. This is because the quality of random initial
solutions used by SA are much worse than RRCS, which is
able to focus on a good solution point very fast.
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TABLE 1
gSA IMPROVEMENT OVER SA FOR DIFFERENT NETWORK SIZE

6 x 6 2D mesh with 5 spare and 5 fault cores

SA-50 (Q=10) | SA-100 (Q=20) gSA

Time(s) 177.4 484.7 22
DF 1.538 1.483 1.319
CF 1.396 1.312 0.977

8 X 8 2D mesh with 8 spare and 8 fault cores

SA-50 (Q=10) | SA-100 (Q=20) gSA

Time(s) 484.4 3477.8 8.9
DF 1.782 1.473 1.296
CF 1.615 1.288 0.908

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

We have implemented a manycore NoC simulation platform
composed of classic pipelined virtual channel routers and
cores which generate synthetic workload. The router pipeline
has four stages, i.e., routing computation, virtual-channel
allocation, switch allocation and switch traversal, in which
each stage takes one clock cycle. Since we want to evaluate
the performance of virtual topologies, other parameters should
remain unchanged. In our experiments, each physical link has
8 virtual channels, and each virtual channel has 8 flit buffers.
Credit-based flow control is used for buffer management. To
reveal the performance of topologies themselves, the simple
dimension-order routing is used which has the minimum impact
on traffic distributions.

As execution-driven workload makes it difficult to isolate bot-
tlenecks in the network design [48] and we concern more about
the network performance, we use synthetic workload instead
of execution-driven workload. Each core in our manycore NoC
simulation platform is actually a traffic generator. As virtual
topologies are constructed based on the spatial locality of com-
munication, we adopt the neighboring traffic pattern in our ex-
periments, in which a core only exchanges information with its
neighbors. It is important to point out that the traffic patterns are
applied to virtual topologies, not to physical topologies. That is,
1-hop communication between virtual neighbors may involve
multiple physical hops.

Virtual topologies generated by reconfiguration algorithms
are in XML format to be read by the simulation platform. Each
core will then be assigned a name “c_vtz_vty_phz_phz”, in
which (vtx, vty) and (phz, phy) are its virtual and physical co-
ordinates. Each time a core sends a packet, it reads its virtual
location, looks up the mapping table stored in the simulator to
find the physical locations of its virtual neighbors and then en-
capsulates in the packets as the destination address.

B. Experiment |

In this experiment, we show how predictive of DF and CF
metrics to real performance measurements. DF is the average
hop count between virtual neighbors and thus should reflect the
average delay and throughput of the network. While CF indi-
cates traffic distribution across all the physical channels. We
use SA-1 (1 random initial solution), RRCS and ¢gSA (wpr =
0.9,wcrp = 0.1) to work on 100 different physical topologies
in 8 x 8 2D mesh with 8 spare cores and 8 randomly distributed
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Fig. 12. Comparison between SA-1, RRCS and gSA. (a) DF comparison.
(b) CF comparison.

faulty cores on-chip. We use SA-1 to keep the computational
time comparable to gSA. We choose the physical topology on
which gSA achieves the greatest improvement over SA-1 and
RRCS in this experiment. The obtained DF and CF values are
shown in Fig. 12.

Next, we import virtual topologies generated by these three
algorithms into our manycore NoC platform to get the simula-
tion performance measurements, i.e., average delay, throughput
and average occupied time of all channels as shown in Fig. 13.

Average delay is the time required for a packet to traverse
the network from source to destination. It can be observed from
Fig. 13(a), the latency of virtual topologies achieved by SA-1,
RRCS and gSA are almost the same under light traffic load. When
the network saturates, itis clear that the delay of gSA is better than
RRCS, and RRCS is better than SA-1. Network throughput is the
packets delivering rate for a particular traffic pattern. Fig. 13(b)
shows the throughput of saturation of the three algorithms. It
is clear that the throughput of gSA is higher than RRCS, while
RRCS is higher than SA-1. Compared with Fig. 12(a), we show
the effectiveness for DF as performance metrics.

Fig. 13(c) shows the percentage of occupied time of all
physical channels. More occupied time implies that more traffic
passing through that channel. We reorder these values from
small to large for easy comparison. It can be observed that the
curve for gSA has the smallest slope, which means the differ-
ences between all channels are small, i.e., the traffic is more
evenly distributed. RRCS is more steep than gSA, and SA-1 is
more steep than RRCS. Compared with Fig. 12(b), we show
that the CF metric reflects real performance measurement.

From the above we can conclude that, gSA has better per-
formance than RRCS and SA-1, not only in terms of DF and
CF metrics but also in real performance measurements, i.e., la-
tency, throughput and traffic distribution. In addition, the effec-
tiveness of DF and CF as evaluation metrics is proved with this
experiment.

C. Experiment I1

In this experiment, we evaluate the effectiveness of the pro-
posed gSA algorithm with the scale of network size. We use
the 8 x 8 2D mesh topology with 8 spare cores and 8 randomly
distributed faulty cores. We choose another larger configuration
with 10 x 10 2D mesh reference topology, 12 spare cores and 12
random faulty cores for proportional scaling. We work on 100
random physical topologies in 8 x 8 and 10 x 10 respectively.
The average improvement of gSA over RRCS for DF metric is
6.828% in 8 x 8 while 9.737% in 10 x 10 configurations. Re-
garding the CF metric, the improvement is 18.935% in 8 x 8
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Fig. 13. Simulation measurements comparison between SA-1, RRCS and gSA. (a) Average delay. (b) Throughput. (c) Traffic distribution.

Avg. delay (cycles) Throughput (% of capacity) Occupied time (%)
1000 — 0.82 70
w00 L RReS.8 : 0.8 60 | | — == RRCS-8x8 ] i
gSA-8x8 0.78 2SA-8x8 5 -
600 ;R 10x1 0.76 3: o RRCS-10x10 pi s
- RRES10:0 & 0.74 £ —— gSA-10x10 0 y ;
—— gSA-10x10 : . —— gSA-10x10 s
400 072 —. = RRCS-10x10 s
07 - gSA-8x8 0 ) /
200 : e sz
0.68 ——— RRCS-8x8 20 ..
0 0.66 10
0.42 0.52 0.62 0.72 0.82 0.92 06 08 1 12 14 16 18 2

Offered traffic (fraction of capacity)
(a)

Offered traffic (fraction of capacity)

Channels

(©)
(b)

Fig. 14. Comparison between RRCS and ¢SA for different network size. (a) Average delay. (b) Throughput. (c) Traffic distribution.

DF CF
1.3 1
1.2 0.7
1.1 04
D2 D4 D6 D8 D2 D4 D6 D8

DF CF
1.16 1
1.14 0.8
112 0.6

0.4

S2 S4 S6 S8 S10 S2 S4 S6 S8 S10

Fig. 15. The impact of different number of faulty cores and spare cores on gSA algorithm.

and 20.983% in 10 x 10 respectively. That means when network
becomes larger, gSA achieves much better improvement over
RRCS.

The average delay, throughput and traffic distribution are
shown in Fig. 14. It is clear that gSA improves over RRCS for
both network sizes. For smaller network size, i.e., 8 X 8, the
averaged delay, throughput and traffic distribution of virtual
topologies achieved by RRCS are much closer to that of gSA.
For larger network size, i.e., 10 x 10, gSA achieves much
better improvement in all measurements. Thus we can conclude
that, firstly, when network size scales, gSA achieves better
improvement; secondly, we further validate the effectiveness
of DF and CF because the level of improvement for these two
metrics and real performance measurements are similar.

D. Experiment 111

In this experiment, we evaluate the impact of different
number of faulty cores and spare cores on gSA algorithm.

Firstly, we use 8 x 8 2D mesh with one column spare cores.
We vary the number of faulty cores from 2 to 8 (i.e., D2, D4,
D6 and D8). Faulty cores are randomly distributed, leading to
various physical topologies. Results are averaged and shown in
the first two figures in Fig. 15.

It is clear that when the number of defective cores increases,
the performance of virtual topologies achieved by gSA slightly
becomes worse in terms of both DF and CF. This is expected
because the increase of faulty cores limits the solution space of
the proposed algorithm.

Next, we assume there are always 2 randomly distributed
faulty cores in 8 x 8 2D mesh and we vary the number of spare
cores from 2 to 10 (i.e., S2, S4, S6, S8 and S10). As expected,
the increase of spare cores also increases the solution space of
the gSA algorithm, and both DF and CF slightly becomes better.
However, when the number of spare cores is increased from 8
to 10, we find that DF almost remains the same while CF be-
comes much worse as in Fig. 15. This is because there are many
cores and channels left unused on-chip, traffic distribution be-
comes much uneven. Therefore, we can conclude employing
more-than-necessary number of spare cores does not facilitate
to boost the NoC-based manycore systems’ performance much
after reconfiguration.

VIII. CONCLUSION AND FUTURE WORK

Effective defect tolerance techniques are essential to improve
the yield of homogeneous manycore processors. In this paper, we
propose to employ core-level redundancy with AMAD scheme

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 20, 2009 at 20:22 from IEEE Xplore. Restrictions apply.



ZHANG et al.: ON TOPOLOGY RECONFIGURATION FOR DEFECT-TOLERANT NoC-BASED HOMOGENEOUS MANYCORE SYSTEMS 1185

to address this issue. As defective cores change the topology
of the target design, programmers may face various different
topologies when optimizing their parallel programs. This is a big
burden and may also cause confusion in marketing. We propose
to address the above problem by providing a unified topology
that is isomorphic with the target reference topology regardless
of the various possible underlying physical topologies. We
borrow the concept of virtual topology from network embedding
problem and we propose two metrics to evaluate the performance
of different virtual topologies. An effective heuristic, namely
Row Rippling Column Stealing-guided Simulated Annealing
algorithm is then presented to solve the topology reconfigura-
tion problem. The proposed algorithm is evaluated on various
topologies in a NoC-based manycore simulation platform.
Experimental results not only show the effectiveness of the
proposed gSA algorithm, but also show the effectiveness of the
two evaluation metrics used in our algorithms, i.e., DF and CF.

In our future work, we plan to investigate the topology re-
configuration problems for topologies other than mesh and torus
(e.g., butterfly topology).
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