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Abstract—Shrinking technology nodes combined with the need
for higher clock speeds have made it increasingly difficult to
distribute a single global clock across a chip while meeting the
power requirements of the design. Globally asynchronous locally
synchronous (GALS) design style can help achieve low power
consumption and modularity of a design while greatly reducing
the number of global interconnects. Such multiple clock domain
architectures can benefit from having frequency/voltage values
assigned to each domain based on workload requirements. The
work presented in this paper proposes a new hardware-based
approach to dynamically change the frequencies and potentially
voltages of a voltage-frequency island (VFI) system driven by a dy-
namic workload. This technique tries to change the frequency of a
synchronous island such that it will have efficient power utilization
while satisfying performance constraints. In recent years, there
have been major developments, both in industry and academia, in
the field of multiprocessor systems. Such multiprocessor systems
are very good candidates for VFI design style implementation,
where one or more processors can be part of a single VFI. To
demonstrate the feasibility of our proposed method, we have im-
plemented a multiprocessor system for a field-programmable gate
array (FPGA) platform that uses independently generated clocks
for each processor. The results from the FPGA platform confirm
the claim that the power consumption of a system can potentially
be reduced while maintaining the performance of many applica-
tions. Our work concentrates primarily on embedded systems, but
the idea can be explored for general-purpose computing as well.

Index Terms—Dynamic voltage and frequency scaling (DVFS),
globally asynchronous locally synchronous (GALS), power man-
agement, voltage-frequency islands (VFIs).

I. INTRODUCTION

HE continuous increase in clock frequencies, along with
T technology scaling, has made the distribution of a single
global clock to various parts of a chip increasingly difficult. The
large numbers of power-hungry buffers that are needed to main-
tain small skew requirements elevate the power consumption
of a chip significantly. Design styles based on a globally asyn-
chronous locally synchronous (GALS) methodology alleviate
the problem of clock distribution by having multiple clocks,
each of which can be distributed to a relatively small portion
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Fig. 1. Throughput versus power for a module in a system.

of the chip. The prospect of having different clock frequen-
cies for each domain also enables design of power-aware ar-
chitectures. Voltage-frequency islands (VFIs) not only enable
frequency scaling, but also voltage scaling. The combined ef-
fect of frequency and voltage scaling helps to reduce the power
consumption of a chip significantly. The power savings are not
only in the clock distribution network, but also in the overall de-
sign. Such VFI-based architectures rely on clocks for local syn-
chronization of data, but the communication between different
blocks is handled asynchronously.

Most of the designs have irregular workloads when the actual
work performed by each block in the system is compared. In
general, there are a few modules that are the bottlenecks of the
system while most others are idle for large periods of time. As
shown in Fig. 1, in a system operating at throughput level ThpI
and power level P8, there is some power wasted since the lower
power level P5 already meets the performance requirements of
the system. Such slack in power of various modules can be ex-
ploited by decoupling them into independent VFIs. The finer
control of frequency and voltage of these VFIs can enable con-
version of slack in performance into power savings without ac-
tual loss in performance. Such a distributed approach is neces-
sary as the global scaling of single frequency and voltage may
not be able to keep up with the power/energy constraints im-
posed by cooling and battery technologies.

Assignment of frequency and voltage values to each of the
VFIs can be done by using either offline or online methods. Of-
fline methods can be used when the behavior of the application is
very predictable for various input conditions and the worst-case
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behavior is not very different from average-case behavior. How-
ever, such an approach is not very suitable for applications that
show large variations in their behavior for different input condi-
tions. For such systems, online methods are more suitable. Dy-
namic voltage and frequency scaling (DVFS) schemes can be
used to adapt the system to meet the performance requirements
of a dynamically changing workload while consuming the min-
imum possible power required to meet the performance targets.

A. Paper Contribution

In the first part of this paper, we present an online, hard-
ware-based control mechanism for dynamically selecting the
operating speed and voltages for individual VFIs in a VFI-based
system. The idea behind the hardware-based approach is to
have the necessary blocks in the system monitor the application
workload at a fine-grain level. The information collected at such
a fine-grain level can be used to make local, as well as global
decisions about the new frequency and voltage values of var-
ious VFIs. To this end, we present a detailed architecture based
on mixed-clock/mixed-voltage first-input—first-output (FIFO) to
enable dynamic scaling of frequency and voltage of various
VFIs. As opposed to existing schemes that monitor only FIFO
occupancy to determine scaling factors [1]-[3], our approach
takes into account the workload dynamics and relies on a com-
bination of producer/consumer stall and FIFO occupancy mon-
itoring. In addition, the approach is cost minimal as it relies
on counters associated with stall events, as opposed to complex
schemes relying on control theoretic approaches (e.g., propor-
tional-integral-derivative (PID) controllers [4]). This approach
not only enables use of local information to calculate the new
frequencies/voltages of various VFIs, but also provides flexi-
bility to take global decisions based on queue dynamics of var-
ious FIFOs in the system.

The second part of this paper discusses multiprocessor sys-
tems that have each processor assigned to an independent VFI.
We consider some typical applications like JPEG, MPEG-2
Encoder, and Software Defined Radio in our approach. Each
of these applications is divided into multiple tasks with each
task running on a MicroBlaze processor [5]. The frequency of
each of these MicroBlaze processors can be independently con-
trolled. By implementing such a system on an FPGA platform,
we demonstrate the feasibility of our approach. We use Xilinx
Virtex-II Pro device on a Xilinx University Program (XUP)
board for our experiments.

The run-time dynamics of a real system is very complex
and requires a detailed treatment. This paper proposes a simple
DVES algorithm that can be used along with our proposed
hardware approach. Even though our algorithm can be con-
figured for simple applications, it does not consider all the
possible workload variations of real applications. Our work
concentrates more on the hardware aspects of a DVFS system
that can be used as a platform for implementation of various
DVEFS algorithms [6]. In addition, the hardware platform can
also be improved to eliminate the need for significant offline
analysis and run realtime applications with random bursts of
data, different buffer size requirements, etc. In our proposed
approach, the hardware overhead is a small fraction of the
overall design and can be controlled during the design process.

Based on the number of frequency levels desired for the system,
there will be a tradeoff between the total energy savings and the
hardware overhead. There might be a point where the additional
hardware to support more number of frequencies might actually
degrade the total energy consumption. Finding this optimum
point is outside the scope of this paper. The timing overhead
in our algorithm is only a few hundred instructions and it is
very small compared to the application. However, the proposed
algorithm is a simple one and may not be suitable for all appli-
cations. Algorithms that suit certain applications can be used
in our proposed hardware platform. Based on the closeness of
actual energy consumption to the ideal one, a tradeoff between
the speed of the algorithm and energy savings can be selected.

B. Paper Organization

The rest of this paper is organized as follows. Related work
and contribution of this paper are presented in Section II.
Section III discusses the problem formulation and assumptions
made in this paper. In Section IV, we present the theoretical
basis for our method and how it can be used to configure an en-
tire system for low power. Our proposed architecture to enable
DVES in a system is discussed in Section V. In Section VI,
we provide the experimental results for software radio and
MPEG-2 encoder benchmarks. Section VII discusses the issues
related to implementing a synthesizable DVFS system using
PicoBlaze processors. In Section VIII, we show how some of
the applications can be implemented on an FPGA platform
using MicroBlaze processors. Final conclusion and summary
of our research are provided in Section IX.

II. RELATED WORK

Previous approaches based on availability of data channel in
multiple clock systems (e.g., [7]), only gate the clock to the syn-
chronous module. While this approach can reduce total power
consumption, voltage scaling is not used as each synchronous
module still operates at a fixed frequency. Also, too many pauses
in the clock produce sharp variations in power consumption, po-
tentially degrading the battery performance [8]. Our approach
changes the clock frequency to minimize the idle time spent
waiting for FIFOs.

There have been several proposals to implement VFIs in
modern systems such as multiple clock domain processors [1],
[3]. Such architectures allow a system designer to implement
local DVES algorithms [4], but most of these approaches as-
sume hardware control is done via FIFO occupancy monitoring
which can provide incorrect decisions, as it will be seen in the
sequel. Some of the online algorithms are inherently nonlinear
[4] requiring detailed analysis of queue behavior before an
actual hardware could be implemented. Our method provides
a flexible hardware platform that can be used to enable DVFS
for VFI systems with simple data patterns while also providing
methods to support more complicated workloads. The problem
of voltage/speed selection in VFI systems has been addressed
before [9] via providing an offline algorithm and a dynamic
online algorithm with limited efficiency. In our approach, the
benefits of DVFS are exploited at finer granularity level, while
maintaining the possibility of global adaptation.
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III. PRELIMINARIES AND ASSUMPTIONS

Without loss of generality, we consider the case of systems
comprised of a number of synchronous cores, intellectual prop-
erties (IPs) or processing elements (PEs) (homogeneous or het-
erogeneous). In the case of VFI-based systems, PEs can only be
assigned to a single VFI (in other words, cores cannot belong to
more than one VFI).

A VFI might consist of a single PE or may include a group of
PEs. We assume that power in the case of VFI systems is sup-
plied by an off- or on-chip source and can be controlled indepen-
dently for a VFI. This may be achieved by using either on-chip
voltage regulators or multiple power grids [10]. Since each VFI
is locally synchronous, it is assumed to be clocked using a ring
oscillator controlled by the intra-island supply voltage using
a digital phased lock loop [11], [12]. Communication is im-
plemented via a modified version of mixed-clock FIFOs [13]
that also allows for voltage level conversion. We assume that
the allocation and mapping of various processes or computa-
tional kernels of the application to PEs, as well as the number
and types of the communication links and PEs have already
been determined. We also assume that the processes have al-
ready been scheduled on their respective processing elements.
For VFI systems, a bounded number of storage cells is avail-
able in the mixed-clock FIFOs used between two communi-
cating PEs. To this end, the system comprised of communica-
tion cores is modeled using a component graph. In a component
graph G(V, E), cores are modeled as communicating processes
(nodes) that have associated communication channels between
them (edges).

We will assume the following, without loss of generality.

 The component graph G(V, FE) is characterized by the set
of nodes represented as V' = {1, 2,...,n} and edges rep-
resented as £ = {(¢,7) | 7 precedes j}.

* Although the underlying component graph model may in-
clude feedback paths, in the initial theoretical treatment
we restrict ourselves to directed acyclic graphs (DAGS).
General graphs have been shown to be reducible to acyclic
component graphs by lumping strongly connected com-
ponents (SCCs) including feedback loops into supernodes
[9], [14]. As shown in [14], the processing rates of these
supernodes (and thus, their latencies in cycle counts) can
be found by averaging across all nodes in the SCC. How-
ever, the case of feedback loops is addressed and discussed
in Section V-C.

* The component graph includes a single source node (s) and
a single sink node (.S). Graphs including multiple sinks or
source nodes can be reduced to this case by adding dummy,
zero-latency source (sink) nodes feeding into (from) the
actual source (sink) nodes.

IV. COMMUNICATION ARCHITECTURE

In this section, we describe the use of mixed-clock FIFO as a
point-to-point communication architecture for connecting syn-
chronous islands in a GALS system.

A. Producer-Consumer Model

In a VFI design, a mixed-clock/mixed-voltage FIFO provides
a communication channel between two VFIs. One of the VFIs

Fig. 2. VFI-based component graph as in [9] with cores (PEs) characterized by
local speeds/voltages.
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Fig. 3. Producer consumer model. Data (din) is written into the FIFO only if
the write request (write) is asserted and the FIFO is not full (full). Similarly,
data (dout) is read from the FIFO only if the read request (read) is asserted and
the FIFO is not empty (empty).

(producer) writes data into the FIFO while the other one (con-
sumer) reads data from the FIFO [13]. For proper operation of
the design, it is required that a producer does not write data
into the FIFO if it is full. Similarly, a consumer should not read
data from a FIFO if it is empty. The producer and part of the
mixed-clock FIFO share a clock (producer clock) while the con-
sumer and the other part of the mixed-clock FIFO share the other
clock (consumer clock). Such a clock domain partition is shown
in Fig. 3.

B. Rate Matching

Considering a simple producer-consumer model of a mixed-
clock FIFO, the behavior for ideal frequency of operation can
be derived based on the read and write data rates.

The time interval between any two write operations by the
producer can be written as, T}, = a,,/ f,, where a,, is the number
of clock cycles between any two write operations by the pro-
ducer and f,, is the frequency of operation of the producer. Sim-
ilarly, the time interval between any two read operations by the
consumer can be written as 7. = a./ f., where a. is the number
of clock cycles between any two read operations by the con-
sumer and f. is the frequency of operation of the consumer.

If T}, is equal to T, then the FIFO utilization will be constant
most of the time. However, if 1, < T, the FIFO will tend to
become full. Hence, once the FIFO is full, the producer will have
to wait until the consumer has taken at least one data item out
of the FIFO. Therefore, we can write

T,=T,+T, (M

where T, is the time spent by the producer waiting for an empty
slot in the FIFO. To operate the system near optimal operating
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point, this time 7}, should be minimized and made zero in an
ideal case. For such a case, we can write

Qe a
TC:T],Z‘:>—C: P
c pr

where T); is the ideal time interval between any two write op-
erations by the producer while f,; is the ideal clock frequency
of the producer. k is the ratio of consumer clock frequency to
producer clock frequency. Thus, we can also write ideal clock
frequency of the producer as follows: f,; = Sf,, where S =
(ap/ac)/k is the frequency step factor by which the producer
frequency should be scaled so that the wasted power is mini-
mized. The choice of the new clock frequency should be made
conservatively, such that there is no drop in overall throughput.
For example, if a, = 2, a. = 6, and f, = f., the ideal
speed of the producer should be f,; = (1/3)f,. The optimal
available frequency should be chosen such that it is the closest,
largest value available such that no throughput loss is experi-
enced, e.g., in this case, if a value of fav.ii = f,/2 is available,
the producer will still be slow enough to reduce waiting time
T, but fast enough to not decrease the throughput. If, how-
ever, a, = 2 and a. = 3, the ideal producer speed would be
fpi = (2/3)fp and a favait = f,/2 available frequency will not
guarantee the throughput constraint. Hence, it is always neces-
sary to have fp; < favail. This analysis can be similarly applied
to the case of 1}, > I¢, where the FIFO will tend to become
empty. In this case, the frequency of the consumer should be
kept just enough to operate the FIFO near empty state, without
having to experience any throughput reduction.

a Qa
= fpi = a_pfc = fpi = a_pkfp (2)

C. Problem Formulation

The goal of the work presented in this paper is to reduce the
total energy consumption as well as power consumption of a
system represented by a component graph G(V, E) subject to
rate or throughput constraints.

The energy consumption per sample for every processing el-
ement in the component graph G(V, E) is given by

-V
Ei(Vi) = Cix Ni x Vi® 4 ¢ % mi % Vi % exp <Tt> )

where the first term corresponds to dynamic power and the
second term corresponds to static (leakage) power consumed
while core PE; is not actively executing a process. C; is pro-
portional to the switched capacitance of PE;, IV; is the number
of active execution cycles for PE;, ¢; is proportional to the
number of off-devices in PE;, n; is the number of idle cycles
for processing a sample, k is a technology dependent constant,
while V; and V; are the voltage supply and threshold voltage
for PE;, respectively [15].

The cycle time for the PE; core in G(V, E) can be written as

Vi

(Vi) = Ki %
(Vi) *(Vi—Vt)a

“4)

where K; and « are design and technology dependent parame-
ters [16]. Thus, from (4), we get the worst case execution time of
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a process on PE; at voltage V; as (W; is the worst case number
of cycles for the process mapped on PE;)

WCET;(V;) = Wi x 1y(Vi) = %
iVt

(%)
For a system to operate as per the requirements of an appli-
cation workload, it is needed that
WCET;(V;) < T; (6)
where T is the required time period of every VFI core. Most of
the modern systems are not only designed for worst case work-
load conditions, but also operate at peak performance all the
time to be able to handle the worst case workload. As a result,
for an average workload we get WCET;(V;) < T;. This results
in smaller 7;(V;) and hence larger V; which leads to higher en-
ergy consumption. To reduce the amount of the wasted energy,
WCET;(V;) should be as close as possible to T3, i.e.,
Minimize (7; — WCET;(V;)). @)
By taking WCET,(V;) closer to T;, the amount of time
wasted T, (1) waiting for the communication channel
is minimized. The reverse is also true, ie., T, —0 =
(T; — WCET;(V;)) — 0. Operating each PE at its ideal fre-
quency/voltage, the amount of time wasted 7, is minimized
resulting in minimum energy and power consumption. How-
ever, based on the available system configuration settings of a
real system (for example, number of available frequency and
voltage levels), the optimal achievable solution will be close,
but not identical to the ideal one. Our hardware-based ap-
proach tries to find this optimal solution based on dynamically
changing speeds/voltages driven by the workload.

V. FIFO LINK ARCHITECTURE

The derivations shown in Section IV can be used to calcu-
late the ideal frequencies of the producer and the consumer
under dynamically changing workload. However, in a complex
system, the values of a, and a. are likely to change due to
varying workload conditions. Also, the overhead of com-
putations to find the value of the frequency step factor (see
Section 1V) is likely to be significant. We propose an architec-
ture that can predict the value of the frequency step factor (and
hence the ideal frequency) on the fly.

A. Proposed Architecture

To implement such a logic for estimating the optimal oper-
ating frequency, we take advantage of the fact that when the pro-
ducer/consumer is not operating at the ideal frequency, the FIFO
will always operate near full/empty state. We call these mostly
full and mostly empty conditions. A simple way to monitor the
FIFO utilization is to check the full and empty signals and mea-
sure the amount of time they are asserted: the larger the time of
assertion of any one of these signals, the greater the deviation
of the frequencies of producer (or consumer) from the ideal fre-
quency. However, full/empty signals do not accurately represent
the need for scaling up or down the speed/voltage of a VFL. It
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Fig. 5. Dynamic frequency scaling architecture.

can happen that even though the full signal is asserted, the pro-
ducer/consumer does not have any data to write/read into/from
the FIFO. Thus, taking the decision to slow down a VFI only
based on the FIFO occupancy can prove to be incorrect.

Fig. 4 shows an example of a producer writing data into a
FIFO. For the time interval between ¢1 and t5, the full signal
is asserted for time period [t2, t4]. However, the time period
where producer is actually waiting for the FIFO to have an
empty slot is [t3, t4]. If the frequency step factor is calculated
based on the full signal alone, it is likely to overestimate the
frequency decrease and can potentially reduce the throughput
of the system. A similar argument applies to the empty signal.
A more accurate estimation can be achieved if a signal (called
stall signal) generated by a producer/consumer is used to esti-
mate the ideal frequency. This signal is asserted whenever the
producer/consumer has data to write/read to/from the FIFO, but
the FIFO is full/empty. Fig. 5 shows the architecture that can
predict the ideal frequency based on this method. The stall mon-
itors count the number of clock cycles (S¢-for the producer part
or S.-for the consumer part) the stall signal from producer/con-
sumer is asserted in a sampling window T5ample. The frequency
step factor can then be calculated based on the non-zero values
of S. and S¢. While in steady-state it is impossible to have both
Se and S¢ non-zero (i.e., both consumer and producer of a FIFO
link stalling at the same time), when cumulative stalls are ac-
counted for, this could happen, e.g., for bursty traffic: the pro-
ducer might stall during the beginning of the sample interval
Tsample, While the consumer might stall during the last part of it.
In such a case, if the amount of stalling is the same on both ends,
scaling the speeds of producer/consumer will not remove this
problem. On the other hand, usually, in a sampling interval it is
always the case that either the producer stalls due to a full FIFO
or a consumer stalls due to an empty FIFO. To capture both
of these cases, the frequency step factor can be calculated as
S = 1—|S.—S¢|/Tsample- If only one of producer or consumer
stalls, then the scaling factor is computed according to S¢ or S,

respectively. If both stall at different times during the sampling
interval, then the difference is used to smooth out any differ-
ences between the two rates. For a producer, if Sy > S, > 0,
then

fnew = fcurr * S ®)

where fpew i8S the new frequency while f.,, is the current fre-
quency. However, if S, > S > 0, then

_ fcurr
fnew - S (9)

as in this case, the consumer is experiencing stalls and producer
needs to increase the frequency. The reverse (i.e., changing di-
vision to multiplication and vice versa) is true for consumer.
However, for each FIFO link, only one of the producer or con-
sumer modules will be scaled up or down to keep the throughput
constraint, while minimizing wasted power during stalls. This
approach is described next.

B. Throughput Constraint and Scaling State

In general, throughput constrained systems require an output
rate to be satisfied for correct operation. It can either be a user
parameter or a system parameter. For example, in the case of
the system in Fig. 2, the sink node S needs to have a certain rate
of generating data items. Examples of throughput constrained
applications include most media processing, data communica-
tion systems, digital-to-analog converters, etc. However, many
times, the constraint is given at the input—that is, the incoming
data items must be processed at a certain rate to ensure correct
operation. Such an example is an analog-to-digital converter.
Irrespective of where the rate constraint is specified (source
s or sink S in Fig. 2), based on it, we can determine how
each producer/consumer port can be configured for possible
scaling up or down of the corresponding VFI, as described in
Section V-A. Let us consider the more common case of output
rate constrained systems depicted in Fig. 6. For the producer
port of the sink node .S, there is no FIFO link associated with
it, but a stall monitor can be used to determine if the data is
produced at the required rate. If not, a corresponding scaling
factor can be associated with the sink: Ss = Ts_sbserved/Ts,
where T's_opserved 18 the observed period between data items
being produced and T’ is the required value. For the rest of
the nodes, we need to consider all incoming and outgoing
ports associated with each FIFO link. Intuitively, if throughput
constraints are propagated from the outputs to the inputs, we
need to maintain required throughput in the downstream VFIs
while allowing only producers to be scaled (up or down), while
the consumer port is assumed to be fixed. We call this state
associated with the producer port dvfs_en_prod, and the one
associated with the consumer fixed since it is not allowed to
change speeds/voltages based on stall information related to
that FIFO link.

In Fig. 6, the assignment of port states for VFIs 4, 5, 6, and S
is shown (similar for the other nodes 1, 2, 3, and s) for an output
rate constrained system. Similarly, for an input rate constrained
system, each consumer in a FIFO link would be in a state of
dvfs_en_cons (consumer is allowed to scale) and each producer
would be in a fixed state (no scaling).
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P

Fig. 6. VFI-based component graph with FIFO configuration.

C. Functionality of Clock Control Logic

We are now ready to determine what is the correct scaling
factor for each VFI, given the constraints on the output (or input)
rate and given that multiple scaling factors may be determined
from multiple incoming/outgoing FIFOs. We need to keep in
mind that the FIFO link architecture depicted in Fig. 5 might
be replicated many times, for each producer-consumer channel.
More precisely, the Clock Control Logic gets the prediction
value from both stall monitors associated with the FIFO. As de-
scribed previously [see (8) and (9)], in the case of the producer,
the stall information from the consumer is used to increase the
frequency of that domain if the current frequency is not able to
meet the throughput requirements of the design (similar for the
consumer).

For each VFI, there might be multiple producer and con-
sumer ports as data may be coming from multiple sources or
distributed to multiple sinks. In addition, for each VFI, there
are as many stall monitors, associated with producer ports, as
there are outgoing FIFOs, and as many stall monitors, associ-
ated with consumer ports, as there are incoming FIFOs. Fig. 5
shows a single one-to-one FIFO link, hence, there is only one
stall monitor on each side of the FIFO. Since the Clock Con-
trol Logic module controls the frequency and voltage of a single
VFI, there are as many Clock Control Logic blocks as VFIs
in the system, but they will have to receive as many Sy and
S. signals as there are stall monitors for each FIFO link inter-
face of that VFI. The decision as to what the prevailing scaling
factor is for a given VFI when multiple incoming/outgoing FIFO
links dictate different scaling factors is taken conservatively.
To ensure that the throughput is not reduced, the highest fre-
quency/voltage is considered. Each VFI can have multiple pro-
ducer or consumer ports, but out of these, only a subset are
configured in dvfs_en_prod (or dvfs_en_cons) state. Only these
ports and the scaling factor associated with their stall moni-
tors are considered in determining the prevailing scaling factor
by taking the maximum resulting speed among these. For ex-
ample, in the example depicted in Fig. 6, the new speed/voltage
for node 5 depends on the resulting speeds/voltages determined
by the FIFO links (5, S) and (5, 6). Assuming that based on
(8) and (9) , frew,5(5, S) and frew,5(5, 6) are the new poten-
tial clock speeds, the final clock speed (and associated voltage)
is taken such that frew,5 = max(foew,5(5, S), fuew,5(5, 6)).
For all the other nodes (VFIs), there is only one port configured
as dvfs_en_prod, and based on it and its associated new clock

Inputs: Component Graph G; Sink rate R = 1/Ts or source
rate r = 1/T%s; Discrete speed/voltage levels (f1, V1), ..., (fs, Vs);
Outputs: Speed/voltage assignment (f1,V1), ..., (fn, Va)
Vi € G at time ¢
1. Let (f;, Vi) = (f, V) Vi € G where f = maz;(f;),
V = maz;(V;)
2. For all FIFO links (¢, )
If system is sink constrained then
state_prod(i, j) = dvfs_en_prod; state_cons(i,j) = fized;
else //source constrained
state_prod(i,j) = fized; state_cons(i,j) = dvfs_en_cons;
3. Repeat every Tsgmple Cycles
If system is sink constrained then
Ss = Ts_observed/Ts; fs = fs/Ss;
set corresponding Vg;
else //source constrained
Ss = s_observed/Ts; fs = fs/Ss§
set corresponding Vs;
For all FIFO links (i, j)
Si,j =1—|Se_i,j = Sf_i,jl/Tsample;
If Se_i,; < Sf_.;,j then S; ; = 1/85;,5;
If system is sink constrained
For all nodes ¢ with successors j
and state_prod(i,j) = dvfs_en_prod
fi = max;(f;/Ss,;); set corresponding V;
Else // system is source constrained
For all nodes j with predecessors %
and state_cons(i,j) = dvfs_en_cons
f; = maz;(f; * Si,;5); set corresponding V;
4. until (source is idle)

Fig. 7. Algorithm for dynamic speed/voltage selection.

speed, the final speed/voltage is assigned. Based on these ob-
servations, the detailed algorithm for the speed/voltage selection
of an output (input) rate constrained VFI system is described in
Fig. 7.

VI. EXPERIMENTAL RESULTS

Embedded applications can be very effectively partitioned
into tasks with various, but well defined functionalities. With
clearly defined computational boundaries, they are very good
candidates for being mapped onto a VFI system. Most of these
applications can be represented as task graphs. Embedded Sys-
tems Synthesis Benchmarks Suite (E3S) based on benchmarks
from The Embedded Microprocessor Benchmark Consortium
contains a set of task graphs representing various applications
including, but not limited to automotive, consumer, networking,
etc. The task graphs available in E3S benchmark suite contain
the information about the applications, constraints and various
processors that can be used to map the various tasks.

We created a tool (Topology Generation Tool), that can con-
vert task graphs into behavioral Verilog. This program takes .tgff
files [17] as inputs and converts all the tasks to behavioral Ver-
ilog models of producer/consumer while all the edges are con-
verted to FIFO links. The tool uses the processor information
from the task graphs to assign the delays of each of the pro-
ducer/consumer. With the help of this tool, a designer can test
many types of applications just by specifying high level descrip-
tion in the form of task graphs. The generated Verilog can be
simulated using any Verilog simulator.

To test our proposed DVFS architecture of a FIFO link, we
used Software Defined Radio and MPEG-2 Encoder as driver
applications. These applications were represented as task graphs
and implemented as behavioral Verilog models which were used
to determine the benefits of the online voltage/frequency scaling
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Fig. 8. Partitioned software radio.

for each module. T, mple Was set to 5000 clock cycles for each
of these benchmarks. The dynamic power is determined by a
simple relative V f2 comparison of various blocks. The different
algorithms are compared for each block, and hence the power
consumption can be compared by using only voltage and fre-
quency without actually calculating the absolute power.

A. Software Radio

Software defined radio application can basically be parti-
tioned into five components—namely source, low pass filter
(LPF), demodulator, equalizer (EQ), and sink (see Fig. 8).
Each of these nodes can be represented as a producer consumer
model. Samples are generated at a fixed rate by the source
which therefore defines the throughput constraint. The samples
pass through various blocks finally reaching the sink node.

A base configuration of Hitachi SH3 cores running at the
clock frequency of 60 MHz and supply voltage of 3.3 V
along with an offline algorithm [9] (with six levels of voltage
and frequency) was used for comparison purposes. The six
voltage-frequency pairs (in volts, megahertz) chosen were
(3.3,60), (2.9,52), (2.5,45), (2.1,38), (1.7,31), and (1.3,23). The
results were obtained for a required sample rate of 1 kHz. As
it can be seen from Fig. 9, some of the modules like Demod,
Equalizer, and Sink show significant savings in power, while
the second instance of the pipelined LPF modules, which is the
bottleneck in the system, shows no improvement at all. How-
ever, the overall improvement is still around 50% and compares
well with the offline method. When there are infinite levels
of frequency and voltage levels available, the power saving
are greater than those with finite levels (six frequency-voltage
pairs) as expected (up to 55% power savings).

B. MPEG-2 Encoder

The MPEG-2 Encoder is broken down into six components
namely the motion estimator (ME), motion predictor (Pred),
DCT and quantization block, IDCT and inverse quantization
block, the variable length encoding (VLC) block, and the
sink. For MPEG-2 Encoder, a base configuration with ARM
cores running at a clock frequency of 133 MHz and supply
voltage of 1.6 V was chosen (see Fig. 10). The same offline
algorithm [9] was used for comparison purposes (with six
voltage-frequency pairs). The six voltage-frequency pairs (in
volts, megahertz) chosen were (1.6,133), (1.4,117), (1.2,100),
(1.0,83), (0.85,70), and (0.65,54). The results were obtained
for frame processing rate of 3.5 f/s with 99 macroblocks per
frame. Fig. 11 shows that all blocks, except DCT and IDCT,
show a large improvement in power consumption. DCT being
the bottleneck of the system, operates at highest available

100
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Fig. 9. Dynamic power consumption in software defined radio.
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Fig. 10. Partitioned MPEG-2 encoder.
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Fig. 11. Dynamic power consumption in MPEG-2 encoder.

frequency and voltage. For IDCT, our proposed method per-
forms better than the offline method due to precise detection
of workload behavior, providing additional 30%—40% power
savings locally and 8% additional power savings globally. For
infinite levels of voltage and frequency, the power improvement
for Pred, VLC and Sink is close to 99%, even though it seems
100% in Fig. 11. The voltage and frequency values for Pred,
VLC, and Sink for this case are (0.07, 6.02), (0.17, 14.36), and
(0.02, 1.32), respectively. Such low values tend to give almost
100% of improvement in dynamic power. The overall savings
in power are close to 65% for all the three cases with infinite
frequency-voltage levels showing more improvement over the
finite case (six frequency-voltage pairs).

VII. VALIDATION OF SYNTHESIZABLE PRODUCER-CONSUMER
SYSTEM WITH PICOBLAZE

The FIFO link architecture presented in Section V uses a be-
havioral model to calculate the frequencies of various VFIs.
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Fig. 12. DVFS architecture with PicoBlaze processors.

Such a model-based approach, though useful in analyzing the
performance and power consumption of system, does not con-
sider all the issues related to synthesis of real hardware. In this
section, we present an extension of previously discussed archi-
tecture and address the issues related to implementation of a
hardware-based dynamic voltage-frequency scaling system.

A. System Architecture

Fig. 12 shows the modified version of the dynamic frequency
scaling (DFS) architecture shown in Fig. 5. As can be seen in
Fig. 12, we use the PicoBlaze processor [18] to implement the
producer and consumer blocks. The PicoBlaze processor is an
8-bit processor based on RISC architecture. It is a very small
processor with 10-bit address and is optimized for FPGA de-
vices. Due to the simple nature of the PicoBlaze processor, the
hardware to support DVFS can be easily built around it. Such
small hardware requirements make it suitable for small systems,
where a simple DVFS scheme is sufficient. The PicoBlaze pro-
cessor is also used in the Clock Control Logic block to allow
for flexibility in implementing a DVFS algorithm. This architec-
ture is designed taking into consideration the resources available
on Xilinx FPGA devices. Most of the FPGA devices in Xilinx
Virtex family have digital locked loops (DLLs) which can be
used to divide a source clock by fractional, fixed and predeter-
mined factor. Several such DLLs and integer dividers can pro-
duce a range of frequencies for operation of various VFIs. In
our design, we use three DLLs to generate four unfriendly! fre-
quencies from a single source clock clk_src. These four frequen-
cies are then passed through a chain of integer dividers (divi-
sion factor of two) to produce 22 frequencies in the clock con-
trol logic block. A five bit configuration value (to represent 22
frequencies) is used to select one of these frequencies by clock
control logic state machine.

IThese frequencies are not an integer multiple of each other.
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Fig. 13. Block diagram of clock control logic block.

The PicoBlaze processors A and B monitor their respective
status registers before they access the mixed-clock FIFO. If the
FIFO is full, PicoBlaze A updates its status register by setting
the stall bit high and waits for an empty slot in the FIFO. As soon
as there is an empty slot available, the stall bit in the status reg-
ister is cleared. A similar operation occurs in case of PicoBlaze
B with regards to empty signal. The stall information in these
status registers is used by Clock Control Logic blocks for cal-
culating the new frequency.

B. Clock Control Logic Block

In Section V-C, we discussed the overall functionality of
clock control logic block from a behavioral perspective. In
this section, we discuss the architecture of this block while
addressing the issues related to its implementation in hardware.
The clock control logic block is responsible for collecting
statistics about the stall information, storing the stall history,
predicting the new frequency, and finally, changing the fre-
quency of the associated VFI to the new frequency. As can be
seen in Fig. 13, a PicoBlaze processor is used to implement
a DFS? algorithm. Interface registers are used by PicoBlaze
DFS to communicate with the other modules. Stall information
from both the stall monitors is used to make predictions about
the new frequency. The decrease stall monitor module collects
statistics about the stall signal asserted by PicoBlaze processor
in the same VFI as the clock control logic block. For example,
stall_A is used by the decrease stall monitor of Clock Control
A to gather stall information (see Fig. 12). Similarly, the in-
crease stall monitor is used to collect statistics about the stall
signal asserted by PicoBlaze processor in the VFI across the
mixed-clock FIFO. In Fig. 12, stall_B is connected to increase
stall monitor . The clock divider network block contains a chain

2Since the hardware is implemented in Verilog, voltage scaling has not been
taken into account. Hence, DFS and not DVFS.
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Fig. 14. Frequency matrix.

of integer dividers. It uses input from interface registers to set
the current frequency of the associated VFI.

Based on the information from the stall monitors, the DFS al-
gorithm (implemented on PicoBlaze DFS) predicts the ratio be-
tween the new frequency and the current frequency. This ratio
is used to search the new frequency from the set of available
frequencies in the design. The list of all the available frequen-
cies, along with the ratio between any two frequency values, is
stored in a ROM in the form of frequency matrix. The format
of the frequency matrix is shown in Fig. 14. The ratios between
the frequencies are scaled by a factor of 1024 to enable ease
of search when the sampling interval T, 1. (see Fig. 5) is
1024. However, this factor can be chosen based on the number
of available frequencies and preciseness of values required for
a given application workload. A higher number of bits to repre-
sent these ratios would result in more accurate prediction of the
new frequency when the requested ratio is close to the stored
value. In Fig. 14, the top row represents the current frequency
values, while the left-most column represents the new frequency
values. Based on the direction of change (increase or decrease
of frequency) desired, the appropriate section of the column
(partitioned by value of 1024) associated with the current fre-
quency is searched. If a frequency decrease is desired, the new
frequency corresponding to the lowest value in the current fre-
quency column, but higher than the requested value is selected.
In this case, the search is limited to lower part of a column. For
example, if the current frequency is 50 MHz and the requested
value is 500, frequency value of 25 MHz is returned as it cor-
responds to a value of 512 in the 50 MHz column, which is
lowest possible value that is higher than 500. Similar operation
occurs for frequency decrease, but the search is limited to upper
half of the current frequency column. The new frequency value
returned by frequency search block is used by PicoBlaze DFS
to set the new frequency value through the interface registers .
The DVFS algorithm that we implemented using PicoBlaze pro-
cessor takes about 250-300 instructions.

C. Experimental Results

To demonstrate the change in frequency and the behavior of
stall signals before and after the frequency change, we consid-
ered a simple system composed of one producer and one con-
sumer, similar to the one in Fig. 12. We created a test scenario,
in which the time interval between two consecutive write oper-
ations by the producer is less than the time interval between two

stalLa |0
stal b |0
Sto

NTRTTARTRL RN TRNTRVRR RNV (1 /11 UL LU LU
TUVFTVRLALRALANTRYVFRVRLLAARARVYTNVYTNRLL ALY TY AR ANTERNRRALAR TR AARAANTRNR LAY

Fig. 15. Stall behavior and frequency change waveforms.

consecutive read operations by the consumer. Fig. 15 shows rel-
evant signals, stall_a, stall_b, clk_a, and clk_b. This results in
the FIFO being operated near full condition, and hence resulting
in signal stall_a being asserted as shown in Fig. 15. To reduce
the amount of stall in the producer, the DFS algorithm changes
the frequency of the producer to a lower value. The change in
frequency of clock clk_a is also shown in Fig. 15. After the fre-
quency change, the amount of stall in the producer is reduced
(to zero in this case).

VIII. MICROBLAZE-BASED SYSTEM VALIDATION USING
FPGA PLATFORM

Even though the PicoBlaze processor provides the flexibility
to change the DFS algorithm and FIFO access patterns of
producers and consumers, the 8-bit data width and the number
of instructions possible using 10-bit address limit the range
of applications that can be implemented in such a system.
Most modern applications use 32-bit data width with several
megabytes of program memory. To enable exploration of these
applications, we designed an architecture where each of the Pi-
coBlaze processor is replaced by a MicroBlaze processor. Each
of the MicroBlaze processor in such a system operates on an
independent clock frequency. Xilinx Embedded Development
Kit (EDK) [19] greatly simplifies the design of such systems
with graphical interface that eliminates the need to write ex-
tensive code in a hardware description language. Virtex-II Pro
FPGA device on Xilinx University Program board is used to
implement and test all of our designs.

A. Fast Simplex Link Bus

Since all the MicroBlaze processors can potentially operate
on different clock frequencies, a mechanism to enable asyn-
chronous communication between these processors is neces-
sary. For this purpose, we use Fast Simplex Link bus [20] as a
communication medium between any two MicroBlaze proces-
sors. This “bus” consists of a mixed-clock FIFO with write and
read operations occurring at different clock frequencies. The
MicroBlaze processor has built-in logic to interface with this
type of FIFO. Fig. 16 shows the signals associated with a Fast
Simplex Link bus. The signals related to write operations are
called master signals, while those associated with read opera-
tions are called slave signals.

B. Frequency Generation

Since all the MicroBlaze processors can potentially run on
different clock frequencies, each processor requires an indepen-
dent clock source capable of generating frequencies in a suffi-
ciently large range of frequency values. Digital Clock Manager
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Fig. 16. Fast simplex link bus.

(DCM) in Virtex devices is very well suited for such a purpose.
Each of the eight DCMs in Virtex-II Pro device is capable of
generating 13 frequencies from a clock source of 100 MHz.
The various frequency values (in megahertz) that can be gener-
ated by a DCM are as follows: 100, 66.66, 50, 33.33, 28.57, 25,
22.22, 20, 18.18, 16.66, 15.38, 14.28, 13.33. These frequency
values provide sufficient flexibility to experiment with work-
load behaviors of several applications. The major drawback of
a DCM is that the generated frequency can only be statically
assigned during design process and does not allow to dynam-
ically change a frequency depending on application workload.
However, as discussed in Section VII, a network of DCMs and
clock dividers can be created to enable online configuration of
frequency values. Our MicroBlaze-based design does not build
such a network, even though it exists in PicoBlaze-based design
(see Section VII).

C. System Architecture

The MicroBlaze processor uses an open peripheral bus (OBP)
to connect to various peripheral devices. One such peripheral
device, Universal Asynchronous Receiver Transmitter (UART),
can be used by MicroBlaze processor to communicate run-time
information to user. It also helps in system debugging by en-
abling printing of statements on a terminal running on a com-
puter. We take advantage of this feature while designing our
system. Fig. 17 shows the system architecture based on MicroB-
laze processor. It consists of a main processor that is used to reg-
ulate the data flow in the system. An application is represented
by a task graph consisting of various tasks, each of which runs
on an independent processor. The main processor generates data
tokens and sends them to the source (e.g., M1) of the task graph.
The data tokens travel through the task graph and reach the sink
(e.g., M3). The main processor collects these data tokens and
measures the performance of the system which can be repre-
sented by latency and throughput. The latency in the system is
obtained by measuring the time required by a data token to tra-
verse the task graph and reach back to main processor. On the
other hand, throughput is measured by sending several data to-
kens into the task graph within a very short interval and then
measuring the time interval between arrival of any two data to-
kens. The measured values of latency and throughput are re-
ported to the user by the main processor through UART in-
terface. The Fast Simplex Link bus allows for transfer of data
as well as control information. The control flags in the link
(FSL_M_Control and FSL_S_Control in Fig. 16) help to iden-
tify the control information. This can be used to send the stall

Task graph

Main
Processor

1l

UART

56kbps

Fig. 17. System architecture using MicroBlaze processors.

numbers to different processors as well as to the peripheral de-
vices.

D. Experimental Results

To test our proposed architecture and to demonstrate the use-
fulness of our method, we used JPEG, MPEG-2 Encoder and
Software Defined Radio as test applications. The task graph rep-
resentation of these applications was implemented using a Mi-
croBlaze processor for each task. In our experiments, software
models based on the number of clock cycles required for execu-
tion of each task in the task graph of these applications is used.
For JPEG application, the cycle count is based on IBM Pow-
erPC 405 GP, while the cycle counts for MPEG-2 and software
defined radio are same as in Section VI. The latency for each of
these applications was calculated as an arithmetic mean of la-
tencies for 20 data tokens. Similarly, throughput was calculated
as an arithmetic mean of the time intervals between the arrival
of any two consecutive data tokens for 20 data tokens sent by
the main processor. A point to be noted here is that throughput
is represented as the time interval between two consecutive data
tokens, and not as a rate. Our experiments consisted of the fol-
lowing two parts.

e In the first part, all MicroBlaze processors, except the
main processor, run at the maximum frequency possible
(i.e., 66 MHz) when their respective DCMs are configured
in divider mode. The main processor, however, runs at
a frequency of 100 MHz. The higher frequency of the
main processor is required for good accuracy of latency
and throughput measurements. In this configuration of
the system, latency and throughput of the application
are measured. From the information about the number
of clock cycles required by each task, we calculate the
optimum frequency for each MicroBlaze processor using
the principles explained in Section IV. Based on the list
of the available frequencies, these frequency values are
rounded up to nearest available frequency values.

* In the second part of the experiment, we change the clock
frequencies as per the calculated values and rerun the ap-
plication. The latency and throughput values are measured
again and compared with the initial values. The latency
values are expected to increase, but the throughput values
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r-filter TABLE IV
%‘ \K THROUGHPUT AND LATENCY MEASUREMENTS FOR MPEG-2 ENCODER
Task No. of Cycles | Ini. Freq. | Ideal Freq. | Final Freq.
i ‘H_’ ChL 4‘ |" I ‘||" cipeg ‘||” Sk ste 3188 66.66 057 1333
me 101282 66.66 18.24 20
b-filter pred 16722 66.66 3.01 13.33
det 370060 66.66 66.66 66.66
i idct 351259 66.66 63.27 66.66
Main vlc 43222 66.66 7.78 13.33
Processor sink 3188 66.66 0.57 13.33
iL Latency 807220 1456837
Throughput 945327 945327
UART
TABLE V
Fig. 18. Implementation of JPEG application. THROUGHPUT AND LATENCY MEASUREMENTS FOR SOFTWARE-DEFINED RADIO
Task No. of Cycles | Ini. Freq. | Ideal Freq. | Final Freq.
sIC 32736 66.66 32.22 33.33
CYCLES/PACKET Foggg;EVIARE DEFINED RADIO Ipf 67494 66.66 66.66 66.66
demod 33086 66.66 32.67 3333
LPF | Demod | Equalizer(10) | Sink q 46319 66.66 45.74 30
Latency 259023 391564
Throughput 86778 86778
TABLE II
CYCLES/MACROBLOCK FOR MPEG-2 ENCODER
NE Pred DCT vic T DOer TSk 10, respectively. Ta.lbl.es IV and V shoyv the results for these
101282 | 16722 | 370060 | 43222 | 351259 | 3188 two benchmarks. Similar to JPEG application, the decrease in
frequency of various processors executing certain tasks does
TABLE III not affect the throughput of the application. A decrease in
THROUGHPUT AND LATENCY MEASUREMENTS FOR JPEG APPLICATION frequency of these processors implies a potential decrease in
Task No. of Cycles | Tni. Freq. | Tdeal Freq. | Final Freq, Fhe .Vol.tage of the assoc%ated VFIs, both of Wth.h can result
stc 2600 66.66 0.04 13.33 in significant power savings. The final frequencies for Soft-
r-filter 399000 66.66 6.24 13.33 ware-Defined Radio and MPEG-2 Encoder benchmarks match
gilter 399000 66.66 6.24 13.33 the frequencies obtained from the behavioral model explained
b-filter 399000 66.66 6.24 13.33 . q p
iq 425600 66.66 6.66 1333 in Section V.
cjpeg 4256000 66.66 66.66 66.66
sink 2600 66.66 0.04 1333 IX. CONCLUSION
Latency 6537905 10801520
Throughput 5472000 5472000 In this paper, we proposed a hardware-based architecture that

are expected to remain unchanged. The time required by an
addition operation and a conditional branch executed on a
MicroBlaze processor running at a frequency of 100 MHz
is used as the unit of measurement in our experiments.
From E3S benchmarks [17], we observe that a JPEG applica-
tion can be divided into seven tasks, namely src, r-filter, g-filter,
b-filter, iq (inverse quantization), cjpeg (jpeg compression), and
sink. The task graph representation of JPEG, implemented as
a part of our proposed architecture, is shown in Fig. 18. After
running this application on the MicroBlaze platform, we mea-
sured latency and throughput values. Table III shows the initial
frequency of operation, ideal frequency based on our algorithm
and the final frequency for each task. Since task cjpeg requires
maximum number of clock cycles, it limits the throughput of
the system. Therefore, the frequency of processor running task
cjpeg remains unchanged at highest possible value. We can see
from the results that, even though the latency of the system in-
creases as a result of decreasing the frequencies, the throughput
of the system remains unchanged.
Similar experiments were carried out for software-defined
radio and MPEG-2 Encoder benchmarks. The task graph rep-
resentations of these two applications are shown in Figs. 8 and

can be used as a basic building block to build VFI systems and
support DVFS schemes. The logic to predict the optimal fre-
quency of operation is also presented. A method to propagate
the throughput constraint through the entire system is also dis-
cussed. To enable design of a real DVFS system, we addressed
some of the issues related to synthesis and clock control using
PicoBlaze-based architecture. Our MicroBlaze-based design for
FPGA platform further demonstrates the feasibility of imple-
menting real applications using VFI-based DVFS schemes.
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