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Abstract

As it becomes increasingly difficult to improve the performance of a micropro-

cessor by simply increasing its clock speed, chip makers are looking towards par-

allelism in the form of Chip Multiprocessors (CMPs) to increase performance.

Indeed, recent research at Intel suggests that chips with hundreds of cores are pos-

sible in the not-so-distant future [1]. As the number of cores grows, so does the

size of the cache systems required to allow them to operate efficiently. Caches

have grown to consume a significant percentage of the power utilized by a proces-

sor. In this research, we extend the concept of a location cache to support CMP

systems in combination with low-power L2 caches based upon the gated-ground

technique. The combination of these two techniques allows for reductions in both

dynamic and leakage power consumption. In this work we will present an analy-

sis of the power savings provided by utilizing location caches in a CMP system.

The performance of the cache system is evaluated by extending the capability of

CACTI and Simics using the SPLASH-2 and ALPBench benchmark suites. These

simulation results demonstrate that the utilization of location caches in CMP sys-

tems is capable of saving a significant amount of power over equivalent CMP

systems that lack location caches.
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Chapter 1

Introduction

In recent years microprocessor companies have had difficulty increasing the per-

formance of the CPUs by simply increasing their clock frequency. Research has

moved to parallelism in an effort to maintain performance increases [2]. It is now

increasingly common for multiple processing cores to be included on a single

silicon die, creating what is called a Chip Multiprocessor (CMP). These CMPs

typically contain multiple cores operating at the same clock frequency, and those

cores tend to share at least part of their cache system with the other processors

on the chip. An example die photograph of an Intel Xeon MP CMP is shown in

Figure 1.1. In this photograph it can be seen that this processor contains a pair

of processing cores, and includes a cache system consisting of private L1 and L2

caches in addition to a large L3 cache that is shared between the cores.

There are a number of issues relating to the design of cache systems in CMP

systems. One major problem is that of contention [4]. Since each processing core

is permitted to execute instructions independently of the others, situations arise
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Figure 1.1: Die photo of an Intel Xeon Chip Multiprocessor [3].

where multiple cores need to access a single cache line at the same time. The

effect of this issue can be greatly minimized by constructing the shared caches

such that they have multiple banks and dedicated read/write ports for each core,

though the occasional simultaneous accesses to the same bank must still force a

processor to back off and wait for another core’s access to complete.

Another issue in CMP cache design is that of coherency [5]. Data written

to a private cache cannot be accessed by other cores on the same chip. When

multiple caches have different data for the same memory address, they are said

to be incoherent. Protocols such as MESI [6] must be put in place to ensure

that such a condition cannot occur. While these protocols add overhead to cache

system, they are necessary to ensure that all of the cores in a CMP system have

access to the most recent data.

As cache systems have grown in size to satisfy the additional needs of these
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CMP systems, so does the amount of power they consume. Several techniques

are commonly used to reduce the amount of dynamic power used by a cache.

Subbanking partitions the cache into smaller subbanks, which saves power by

accessing only the subbank that actually contains the requested information [7, 8].

Techniques also exist to segment the bitline, discharging only the bitline segments

necessary to perform an access [7]. Another approach to power savings is utilizing

a phased cache, where the tag array is accessed prior to the data array, allowing

only the correct way in the data array to be accessed at the expense of increased

access time [9, 8, 10].

While the dynamic power used for read and write accesses still plays a large

part in overall power usage, leakage has grown to dominate the power consumed

by the cache system [11]. While continually reducing the process size increases

speed and reduces area, it also increases the sub-threshold leakage power con-

sumed by the chip. In addition, the increased power consumption may also lead

to thermal issues on the chip, and design must proceed carefully in order to elim-

inate potentially-damaging hot spots. Several different techniques have been pre-

sented to reduce sub-threshold leakage power. The concept of gated-V dd [12]

completely shuts off an unused cell’s connection to its power source. While this

reduces the amount of leakage power consumed, it has the side effect of losing

its state when driven into sleep mode. Drowsy caches were introduced in [13],

allowing a cell to enter a low leakage mode and also retain its data by reducing

the voltage across V dd. Finally, DRG-caches achieve very low subthreshold leak-

age in addition to data retention by exploiting the properties of transistor stacking

[14].
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In an attempt to save both dynamic and sub-threshold leakage power in the

face of shrinking process sizes, the concept of a location cache was introduced

[15]. A location cache is a small direct-mapped cache that stores information re-

lating an address to its location in the target cache. In a standard set-associative

cache such as an L2, a given address can be stored in any of a number of ways

equal to the cache’s associativity. The way number of the data’s location is then

passed to and stored in the location cache. During future accesses, if way infor-

mation for a given address is present in the location cache, the target (L2) cache

can be accessed as if it were direct-mapped. This capability can save dynamic

power upon cache reads and writes. More importantly, this behavior is capable of

being exploited when used in combination with gated-ground techniques to save

a significant amount of leakage power.

CACTI is capable of providing detailed power, timing, and area estimates for

a cache system [16, 17, 18, 19, 20]. Given a set of user-provided parameters,

CACTI searches for an optimal cache configuration. Power and timing analysis is

provided on a component-by-component basic, easily allowing the user to deter-

mine which portions of the cache may benefit most from a given optimization. In

addition, CACTI 5.0’s updated technology modeling no longer uses linear scal-

ing of its original 0.8 micron technology, allowing more accurate estimation of

dynamic and leakage power for the 65nm process used in this work [20].

Once statistics on power consumption were calculated, a way to simulate the

workloads was required. Virtutech’s Simics [21] provides an ideal environment

for cache development, and allows for booting a variety of operating systems, and

is consequently capable of executing a variety of benchmark suites. Unfortunately,
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Simics does not have any built-in capability for power estimation.

In this work we propose a method of extending the concept of a location cache

to support CMP systems. We utilize CACTI to provide both dynamic and leakage

power measurements for all the caches in this work. CACTI does not natively sup-

port location caches or caches utilizing low leakage techniques, so it was extended

to support these cache architectures. Simics is extended to provide the capability

for cycle-by-cycle power estimation for traditional caches, location caches, and

gated-ground caches. These extensions provide a framework for testing a variety

of cache systems by running benchmarks on actual operating systems. Models

of both the location caches and the gated-ground low leakage L2 caches are cre-

ated and simulated using CACTI and Simics. The power utilization of the cache

system is presented for a number of possible configurations using the SPLASH-2

and ALPBench multithreaded benchmark suites, and a discussion of the results is

provided.

The following Chapters of this thesis are arranged as follows:

Chapter 2 reviews background information for gated-ground cache design,

CACTI cache architectures, and the Simics system simulator.

Chapter 3 covers previous work involving location caches in single processor

systems, and how it was extended to work in CMP systems.

Chapter 4 discusses low leakage cache design, and how CACTI was utilized to

support gated-ground low leakage caches and location caches.

Chapter 5 presents our use of Simics to provide power estimation statistics for

our low leakage and location cache modules.
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Chapter 6 describes the experimental environment used in this work, and pro-

vides the power estimation results for two benchmark suites in a variety of

cache configurations.

Chapter 7 provides the conclusions of this thesis and discusses possible future

work.
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Chapter 2

Background

In this Chapter we will briefly discuss background information related to this

work. We will begin in Section 2.1 by discussing a low-power cache imple-

mentation called gated-ground. Section 2.2 presents Virtutech’s Simics, which

is used to implement our cache and location cache models. Finally, in Section 2.3

the CACTI cache simulator, used to measure power consumption of the various

caches in this work, is discussed.

2.1 Gated-ground Cache

One technique proposed to reduce the amount of subthreshold leakage energy

consumed by a cache system is the DRG-cache [14]. This technique involves

inserting a single NMOS sleep transistor in between the ground plane and the

SRAM cell, as shown in Figure 2.1. Such an implementation exploits the stack-

ing effect of chaining multiple NMOS transistors in series [22], and allows for a

significant reduction of leakage energy while in the sleep mode.
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Figure 2.1: A typical implementation of a DRG-cache [23].

Figure 2.2: Data retention capability of a DRG-cache SRAM cell [23].
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When altering the ground voltage it is important to consider the stability of

the SRAM cell, and its capability to retain a written value when the virtual ground

voltage is raised. Figure 2.2 presents a single SRAM cell from a DRG-cache.

In an example provided in [23] a logic 1 is written on line Q, and the voltage

at Q goes to the saturation voltage V g where V g is the voltage present at the

virtual ground in the SRAM cell’s sleep mode. V g is set small enough so that

transistor M4 remains on, which ensures that Q remains a logic 1 and transistor

M1 also remains on. With transistor M1 on, V g follows the voltage at Q, causing

transistor M3 to turn off because its V gs = 0.

While in active mode, the sleep transistor is turned on allowing direct access to

the ground plane. When the transistor is turned off, the SRAM cell is driven into

sleep mode, allowing the virtual ground shown in Figure 2.1 to float up slightly

in voltage to about 0.3V . The voltage present on the virtual ground while in the

sleeping mode is dependent on the size of the sleep transistor. The sleep transistor

can be controlled by the row decoder, which would allow the cells to be activated

and put into sleep mode automatically without any additional circuitry required.

Using such an implementation, a DRG-cache can achieve an energy savings of

nearly 50% in the 70nm and 100nm process sizes compared to a conventional

cache [14].

The DRG-cache is also being used in commercially-available devices. Intel

has begun using a gated-ground technique in its processors [3], and the Mas-

sachusetts Institute of Technology has even experimented with its use in FPGAs

[24]. The gated-ground technique’s real-world usage in Intel’s modern multi-core

chips made it a logical selection as the leakage reduction technique used in this
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work.

2.2 Virtutech Simics System Simulator

Virtutech’s Simics is a full system simulator capable of simulating an entire com-

puting system, including processors, caches and memories, graphics and network-

ing cards, hard disks, and many types of removable media [21]. This kind of

flexibility allows the simulation of many different hardware architectures and the

ability to boot a variety of different operating systems. Better yet, the ability to

boot these operating systems means that there are a variety of benchmarking suites

available to test system optimizations.

Simics provides a built-in cache system called g-cache that allows individual

cache modules to be attached to a processor. Using these cache modules it is pos-

sible to build up a model of the entire cache system, including simulating accesses

to main memory. This is particularly useful for cache-related works such as our

own, as it provides a working starting point for building up a cache architecture

that fully integrates with the simulator.

The g-cache implementation even provides support for a built-in coherency

protocol called MESI [25], which is used in a many of Intel’s microprocessors.

While this implementation of MESI is specifically intended for cache systems

utilizing write-through L1 caches and write-back L2 caches [26], it can be modi-

fied to work for other configurations. MESI, which stands for Modified Exclusive

Shared Invalid, provides a method for indicating the status of lines within the

cache. Limiting the number of states to four requires that only two bits be added

10



Core 0Core 1

L2 Cache

Main Memory Controller

L1_0 CacheL1_1 Cache Snooping
Caches

Figure 2.3: A simple cache system illustrating snooping and the MESI protocol.

to to each line in the cache, resulting in a relatively small storage overhead. Each

cache line is capable of being in any one of the four states, described as follows:

1. Modified - This is the only cache that contains this data entry, but it has

been modified and main memory is not up-to-date.

2. Exclusive - This is the only cache that contains this entry and main memory

is up-to-date.

3. Shared - Two or more caches are sharing a copy of this entry and it is

consistent with main memory.

4. Invalid - This line is invalid and cannot be used.

Caches are kept coherent by utilizing the concept of snooping. Snooping is
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a technique where a cache monitors the address lines of other caches, looking in

particular for accesses to addresses that it also contains. Assume a cache config-

uration like the one shown in Figure 2.3, where L1 0 and L1 1 are snooping on

each other. Core 0 initiates an access to a memory address that is not present in

either L1 0 or L1 1, and the result of this access is placed in the L1 0 cache and

the line in L1 0 is marked Exclusive. The L1 0 cache must now monitor the L1 1

cache for accesses to this address. If such a read access to this address occurs,

both lines will be marked Shared. This process of monitoring accesses to other

related caches is vital to the operation of the MESI protocol.

With the basics of snooping covered, let us now consider a more complex

example. Again, assume a cache of the configuration shown in Figure 2.3, and that

the L1 caches both contain a cached copy of the same address (marked Shared), as

in the previous example. Now, however, Core 1 initiates a write to to this address.

MESI initiates a Read for Ownership, which causes the copy in L1 0 to be marked

Invalid. Now writing to the cache may proceed as normal, with the state of the

line in L1 1 being marked Modified. While the address is still cached in both

L1 0 and L1 1, L1 0’s copy can no longer be used as it is now incoherent, and

will be overwritten at the next opportunity. When the cached copy stored in L1 1

is eventually written to L2, and subsequently main memory, the status of the line

in L1 1 will be returned to Exclusive.

12



Figure 2.4: The cache architecture utilized by CACTI [17].

2.3 CACTI Cache Simulator

CACTI is a tool that can be used to estimate the access time, power, and area of

cache systems [16, 17, 18, 19, 20]. CACTI utilizes an analytical model to deter-

mine the optimal configuration of a cache system given design parameters, at a

minimum, cache size, associativity, and block size. The configuration produced

by CACTI adheres to the architecture shown in Figure 2.4. While CACTI is ca-

pable of providing estimates of access time and area, we will concentrate on its

power estimation capabilities in this work.

CACTI breaks a cache down into two separate sets of SRAM cells, a data array

and a tag array. These two arrays are sized independently so that each may be fully

optimized [16]. Figure 2.5 shows how a cell array is partitioned in CACTI. Each

array can be assigned any number of banks, which is provided to CACTI as a

13



Figure 2.5: The CACTI cell array hierarchy [20].

Figure 2.6: An overview of a CACTI mat [20].
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Figure 2.7: An overview of a CACTI subarray [20].
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user-defined parameter. From there, CACTI determines the optimal arrangement

of the rest of the hierarchy. Each bank has a number of subbanks, each of which

occupies the entire width of the cache. This implies that subbanks are arranged

vertically within a bank, as can been seen in Figure 2.5. Each subbank contains a

number of horizontally-arranged mats, each of which occupies the entire height of

the subbank. Further, each mat contains four subarrays arranged in a 2x2 pattern

along with the pre-decoder and decoder logic that is shared among each subarray

as shown in Figure 2.6. The subarrays contain the actual SRAM cells and related

decoders, multiplexers, drivers, and sense amplifiers required to utilize them, as

illustrated in Figure 2.7.

The division of the cache system into subarrays is important, as it will be ex-

ploited in Chapter 4 to allow for power optimizations when paired with a location

cache. The optimal configuration of each bank can be fully described by the pa-

rameters Ndbl, Ndwl, and Nspd. Ndbl is the number of divisions in the bitlines,

which describes the number of subbanks present in the array. Ndwl is the number

of divisions of the wordlines, which stipulates the number of subarrays arranged

along the entire width of the array. Since each mat is two subarrays wide, the

number of mats along the width of the array can be described as Ndwl
2

. Nspd de-

fines the number of sets (where each set contains a number of ways equal to the

associativity of the cache) per cache line, where fractional numbers indicate that

a set is spread out across multiple cache lines.

For example, shown in Figure 2.8 are two different cache systems with Ndwl

= 8 and Ndbl = 4. In Figure 2.8(a) Nspd = 1, which indicates that an entire

set is accessible by using a single line of the cache. In Figure 2.8(b) we have
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1 Set

(a)

½ Set

½ Set

(b)

Figure 2.8: The effect of Nspd on the cache configuration.
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¼ Set

¼ Set

¼ Set

¼ Set

Figure 2.9: A CACTI cache configuration with Ndwl = 4, Ndbl = 8, and Nspd =
0.25.

Nspd = 0.5, which means that only half of a set is present on any given cache

line. Therefore, in order to access an entire set two lines of the cache are accessed,

which requires accessing a total of Ndwl
Nspd

different subarrays.

A second example, shown in Figure 2.9, shows a cache configuration where

Ndwl = 4, Ndbl = 8, and Nspd = 0.25. As we can see from this example, since

Nspd = 0.25 each cache line contains only 1
4

of a set, requiring total of Ndwl
Nspd

=

4
0.25

= 16 subarrays to access an entire set.
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Chapter 3

Location Cache Design

This Chapter discusses the principals and design of the location cache concept,

and the modifications made to allow it to support CMP environments. Section 3.1,

background information on the principals of location caches, is an excerpt from

Bin Qi’s thesis Performance Analysis of Location Cache for Low Power Cache

Systems [27].

3.1 Location Caches in Single Processor Systems

In order to reduce the miss rate of an L2 cache, normally the L2 cache is a large

set-associative cache with multiple ways. For instance, the L2 cache in the In-

tel Itanium 2 family is a 256KB, eight ways set-associative cache. Accessing a

set-associative cache wastes power because multiple data and tag ways are probed

simultaneously, but only one way carries the required data. To resolve this prob-

lem, a new cache architecture, called location cache, has been proposed in [15].

In this section, first the structure of a location cache is introduced, and then the
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Figure 3.1: Physically addressed location cache architecture.

working principle and timing analysis of the location cache are described.

3.1.1 Structure of Location Cache

The location cache shown in Figure 3.1 is a small direct-mapped cache, using

address affinity information to provide the accurate location information for L2

cache references [15]. The proposed location cache technique reduces the L2

cache power consumption, when compared with a conventional set-associative L2

cache. Depending on the L2 cache architecture described above, a location cache

can be physically addressed or virtually addressed. Fig. 3.1 illustrates the revised

L2 cache system architecture with a location cache, which is physically addressed.

In this physically addressed cache system, the location cache is physically ad-

dressed as well. It caches the access way location information of the L2 cache

(the way number in one set where a memory reference falls). This cache works in

parallel with the L1 cache. As a location cache tries to cache the L2 location in-
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formation, the block address (composed of the index address and the tag address)

of the location cache should be of the same length as that of the L2 cache. For

instance, in Intel Itanium 2 the physical address is 50 bits and the L2 cache block

size is 128 bytes (instead of 64 bytes of block size for L1), so the block address

of the location cache has 43 (50-7) bits. If the location cache has 512 entries (i.e.,

the index contains 9 bits), then each tag array entry will have 34 (43-9) bits.

The location cache can also be virtually addressed based on the architecture

shown in Fig. 3.2. The revised L2 cache system architecture with a location cache,

which is virtually addressed, is illustrated in Fig. 3.3. In this virtually addressed

cache system, the location cache is virtually addressed too. This cache works in

parallel with the TLB and the L1 cache. On an L1 cache miss, the physical address

(physical tag and index) translated by the TLB and the way information provided

by the location cache are both presented to the L2 cache. Since the location cache

tries to cache the location information of the entire block in the L2 cache, as in

the physically addressed location cache, the location cache should have the same
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block address as the L2 cache (instead of the L1 cache). For instance, in Intel

Itanium 2 the virtual address is 64 bits and the L2 cache block size is 128 bytes,

so the block address of the location cache will be 57 (64-7) bits. If the location

cache has 512 entries, then each tag array entry will have 48 (57-9) bits. When

compared with the physically addressed location cache, each entry of the tag array

in a virtually addressed location cache will have 14 (64-50) more bits.

The data array of a location cache is used to store the way location informa-

tion of the L2 cache. If the L2 cache has N ways, then the maximum number of

bits for storing this information will be N bits. As the way number is normally

a power of 2, we can also use binary encoding, which needs log2N bits to store

this information. We emphasize that the L2 cache is accessed based on physical

address, while the L1 and location caches can be accessed by either physical ad-

dress or virtual address depending on the implementation strategy. Further, there

is an unified location cache which stores the way information in L2 for data and

instructions.
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3.1.2 Working Principle of Location Cache

One interesting issue arises here: the locations for which references should be

cached? Obviously, the location cache should catch the references which turn out

to be L1 misses. The equation below defines the optimal (largest) coverage of the

location cache:

OptCoverage = L2Coverage − L1Coverage (3.1)

However, the actual coverage of a location cache might be smaller than the opti-

mal coverage, and will increase as the size of the location cache increases. But,

unfortunately, the access time, and the access power and leakage power of the lo-

cation cache will be increased too. This will be further explored in the following

sections.

The proposed cache system works in the following way. The location cache

is accessed in parallel with the L1 cache. If the L1 cache sees a hit, then the

result obtained from the location cache is discarded. If there is a miss in the L1

cache and a hit in the location cache, the L2 cache is accessed as a direct-mapped

cache. If both the L1 cache and the location cache see a miss, then the L2 cache

is accessed as a conventional set-associative cache. When there is a hit in the

location cache and a miss in the L1 cache, the access power of the L2 cache will

be greatly reduced. As opposed to the way-prediction methods [28, 29, 30], the

cached location is not a prediction. Even if there is a location cache miss, we do

not see any extra delay penalty as seen in way-prediction caches.

The content (i.e., the new way information) in the location cache is updated
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when both L1 miss and location miss occur. The flow diagram for the location

cache content update is shown in Fig. 3.4. When the location cache stores the

location information of the L2 cache, it uses the same block address as the L2

cache, instead of the L1 cache. Normally, the block size of the L2 cache is larger

than that of the L1 cache; for instance, in Intel Itanium 2, the L1 block size is 64

bytes while the L2 block size is 128 bytes. Due to this difference in L1 and L2

block sizes, the location cache can still catch many references which are L1 misses

but location cache hits. For example, in Intel Itanium 2 the physical address is 50

bits and the L2 (L1) cache block size is 128 (64) bytes as discussed above. Given

an address, the L1 (L2) cache will interpret the address as 38 (35) bits for tag, 6 (8)

bits for index, and 6 (7) bits for offset in the block by the L1 (L2) cache. Assume

one byte is to be accessed with the last seven bits of its address equal ”0111111”

in the binary form. Thus, the entire block (64 bits) containing this byte is accessed

from the L2 cache to the L1 cache. Also, the corresponding way location of this

access is stored into the location cache. In the next memory access, assume the

next byte is accessed by the CPU. The last seven bits of the address thus contains

”1000000” again in the binary form. For the L1 cache, the index has changed one

bit and an L1 cache miss might occur. However, for the location cache, the index

is not changed and the location cache hits the memory access successfully. Note

that the index field of the location cache is not changed for the new address, since

it has the same block address as the L2 cache.

Even when the L2 block size is the same as the L1 block size the location

cache still can hit many memory accesses with L1 miss. The reason comes from

the fact that the location cache entry number (e.g. 512) is generally allocated to be
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much larger than that of the L1 cache (e.g. 64) without exceeding the access time

of the L1 cache. This is because the location cache data array (which contains the

way information) and tag array are both smaller when compared with the L1 data

array (which contains data or instructions) and tag array. As a result, the location

cache still can catch many L1 misses due to its larger entry number, when the

block size in the L1 cache is the same as that in the L2 cache.

By the drowsy cache technique in [13], a cache array can be put into drowsy

mode when it is not accessed for a period of time. In drowsy mode, the leakage

power is significantly reduced when compared with normal mode. As the L1

cache hit rate is normally high, the L2 cache can also be put into drowsy mode

when it is idle for a period of time. In a simple L2 cache system, all ways of the

L2 cache are waken up, when there is an access to the L2 cache. With the way

information stored in the location cache, when there is a hit (miss) in the location

(L1) cache, only the hit way of the L2 cache is waken up, while other ways can still

be kept in drowsy state. So, in the location cache system, separate multiplexors

for selecting Vdd or Vdd low are used for each way, and they are controlled by the

location information provided by the location cache. The drowsy and wake-up

policy can be cache-line-based for data cache, and subbank- (e.g., way-) based for

instruction cache [13]. Since L2 cache is an unified cache, we use the subbank-

based drowsy and wake-up policy. That is, the entire way of the L2 cache is

waken up (drowsy) when the way is accessed (idle). The same idea for location

cache can be applied to other data-retention low-leakage cache designs such as

the gated-GND cache [14, 3].

The location cache is organized as a direct-mapped normal cache with a data
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array and a tag array. For the data array of the location cache, each entry has

log2N bits where N is the way number of the L2 cache. As the tag array of the

location cache has the same block address as the L2 cache, the entry width (W )

of its tag array can be calculated by the following equation:

W = T − log2B − log2E (3.2)

where we have the following notation:

T: the total access address bit width,

E: the entry number of the location cache,

B: the block size of the L2 cache in byte.

Normally the block size of an L2 cache is fixed, so each entry of the location

cache tag array will have fewer bits if more entries are used in the location cache.

For instance, in Intel Itanium 2 the physical address is 50 bits and the L2 cache

block size is 128 bytes. If the location cache has 256 entries, then each of its tag

array entry will have 35 (50-7-8) bits. However, if the location cache has 512

entries, then each of its tag array entry will have 34 (50-7-9) bits.

3.2 Location Caches in CMP Systems

Previous works utilizing location caches have been limited to single processor

systems. With multicore chips becoming increasingly prevalent, the concept of

a location cache needed to be adapted to these new types of systems. The fol-

lowing sections describe several approaches to creating location caches capable
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of functioning within CMP systems.

3.2.1 Shared Location Caches in CMP Systems

The most straightforward approach to adding a location cache to a CMP system in-

volves sharing. Multicore processors commonly share an L2 or L3 cache amongst

all of the cores. Similarly, it is possible to create a single location cache capable

of being accessed by each of the cores in the system if those cores share a cache

at some level. For example, if all four cores share a single L2 cache, these cores

can be served by a single location cache. If those four cores instead share a pair

of L2 caches, a shared location cache approach would in turn require the use of a

simplified MESI protocol along with a pair of location caches in order to remain

simplistic and avoid coherency problems.

In the case where the highest-level cache is L2, the location cache operates

on every access initiated by every processor core it serves. The source of the

access is completely disregarded, and only the transaction’s address is taken into

consideration. A cache system utilizing a cache configuration with four cores

sharing two location caches is shown in Figure 3.5.

Assume Core 0 initiates a memory access. Its L1 cache and shared location

cache LCache0 parse the tag and index information and check for matches. If the

L1 cache hits, the result of the location cache access is ignored and L1 returns the

requested data to the processor. If the L1 cache misses, the result of the location

cache access determines how to proceed. If the location cache also hits, the way

information stored in the location cache is used to access the L2 cache as if it

were direct-mapped. If the location cache hits, a hit in L2 is guaranteed. If the
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location cache misses, L2 is accessed in its normal set-associative manner and new

way information is provided to the location cache for future use. Note, however,

that a miss in the location cache would not necessarily indicate a miss in the L2

cache. Now assume Core 1 attempts to access the same memory address, and it

is not found in its L1 cache. The way information for this address was previously

stored in the location cache by Core 0, and can now be used to access L2 as a

direct-mapped cache.

Let us consider another example. Assume that the L1 caches of both Core 0

and Core 1 have cached the same line of data. Core 0 now performs a write to

this address, changing the data. At this point the MESI protocol triggers the L1 of

Core 1 to change the line’s state from Shared to Invalid , and the newly-updated

line in Core 0’s L1 will retain its Shared status. Note that the corresponding line

in the location cache does not need to be removed or modified, as it still points

to the correct location in L2. If Core 1 now tries to access this address again, it

will find that its own copy in L1 is marked Invalid . It can now used the shared

location cache, which still knows the location of the line in L2, to access L2 as if

it were a direct-mapped cache. In this case a location cache can be very useful for

programs that require multiple cores accessing and writing to the same memory

location.

Other than the simplicity of implementation, the other advantage to this con-

figuration is that it lacks any coherency issues. Since all of the memory trans-

actions sharing the same L2 cache pass through the same location cache, no ad-

ditional implementation changes are required to keep the location cache and its

target cache coherent. When a cache system utilizes a pair of L2 caches, as in the
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case mentioned above, as long as the L2 caches remain coherent with each other

the location caches wills also remain coherent. If the L2 coherency is handled by

the MESI protocol, no modifications to the location caches are required to allow

them to support such a configuration. That is, the location caches do not need to

be equipped with MESI protocol bits. The coherency issue is completely taken

care of by the MESI protocol implemented for the L1 caches.

While this setup is easy to implement, it does have drawbacks. An access

initiated by Core 0 is likely to overwrite way information in the location cache

that will be used again by Core 1 in the near future. In addition, with multiple

processors expecting complete access to the location cache, the location cache

will need a read and write port for every processor in the system. Simultaneous

accesses to the same line in the location cache will increase latenency, and reduce

the efficiency of the location cache itself. Resolving these issues will increase

both the complexity and power consumption of the location cache.

Another concern is that of replacement. Four cores running four different

programs could create a great degree of churn in the limited number of location

cache lines. The hit rate of the location cache would suffer as the unrelated access

from all of the cores are constantly replacing each other. While this behavior can

be relieved somewhat by increasing the size of the location cache, this unwanted

behavior will always exist to some degree.

3.2.2 Private Location Caches in CMP Systems

An L2 cache utilizing a private location cache for each processor is shown in

Figure 3.6. When used in a CMP system, the simplistic location cache design is
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prone to incoherency when multiple location caches assist a single target cache.

For example, if Core0 writes a value into its L2 cache, the way information is then

stored in Core0’s location cache (LCache0). Later, if Core1 writes a value into the

L2 cache it shares with Core0 and evicts this previous entry from L2, Core0’s

location cache now points to data that is no longer present. Due to this possibility

it was necessary to extend the concept of the location cache presented above for

CMP systems.

Previously we introduced the MESI protocol and how it was utilized in our

traditional cache system. We propose extending the Location Cache with a sim-

plified version of this protocol. This modification can be performed by adding

only a single additional bit to each line in the location cache. This bit will deter-

mine whether the location cache is in a Shared or Invalid state. A line in a location

cache is marked Invalid if the line it references is no longer present in the target

cache or if the line has not yet been written to. In all other cases, the line is marked

Shared. When a location cache lookup is performed, in order for a location cache

hit to occur the following two conditions must be satisfied:

1. The requested line must be present in the location cache

2. The requested line must be marked Shared

This alteration does not come without a cost. In order to perform this op-

eration, additional care needs to be taken when lines are evicted from the target

cache. When such an eviction occurs in the target cache, the tag and index portion

of this reference is passed to each of the connected location caches. The location

caches then check if they contain lines matching the newly-evicted entry. If the
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evicted transaction address is not present in the other location caches, no further

operation is performed. If the evicted transaction address is present in the other

location caches, the lines in the location caches are marked Invalid. This will

prevent future use of this line, which will be overwritten at the next opportunity.

The operation of the location caches here is a little different from that of the

shared case. When the way information is stored for a transaction initiated by

Core 0, for example, it is stored in Core 0’s private location cache. This location

cache, LCache0, cannot be read from or written to by Core 1. This alleviates the

problem where each core is constantly overwriting each other’s cache information,

and results in increased location cache hit rates. However, let us say Core 0 has

way information for a transaction stored in its private location cache. Now Core

1 performs an access that ultimately results in the line pointed to by Core 0’s

location cache being evicted from L2. Core 0’s location cache now points to an

address that no longer exists in L2. Here our coherency protocol would require

L2 to transmit the address of the evicted L2 line to each of its connected location

caches. If that address is present in any line in a location cache, it is marked

Invalid . This ensures our private location caches remain coherent.

Now assume the L1 caches of Core 0 and Core 1 contain the same line of

data, and their private location caches have stored the way information for the

line’s location in L2. Core 0 writes new data into the line, causing the status of

the line in Core 0’s L1 cache to move from Shared to Modified , and from Shared

to Invalid in Core 1’s L1 cache. However, since the line is not evicted from L2,

its way information remains the Shared designation in both Core 0’s and Core 1’s

location caches. If Core 1 tries to access the line again, it will find that it is marked
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Invalid in its L1 cache, and Shared in its location cache. Thus, it can access L2

using the known way information that remained in the location cache.

This extension is powerful in that it allows several location caches to be uti-

lized against a single target cache. Since only two states are added, Shared and

Invalid , only a single additional bit of storage for each line is required in a lo-

cation cache. Combined with the fact that location caches can be efficient with a

very small number of lines [15], very little overhead is created by using this mod-

ification. Similar to the case of shared location caches in CMP systems, if the L2

coherency in handled by the MESI protocol, no protocol bits are required in the

location caches for L2 data coherency. In summary, the protocol bit added in each

location cache line is used for L1 cache coherency; the MESI protocol bits used

for L2 will take care of any L2 data coherency issues automatically.
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Chapter 4

Low Leakage Cache Design and

Location Cache Support

The gated-ground technique was developed to reduce the amount of leakage power

consumed in large cache systems [14]. Currently, neither gated-ground caches nor

location caches are supported by the widely-used CACTI cache power estimation

tool. In this chapter we will discuss the utilization of location caches in combi-

nation with a gated-ground cache, as well as the modifications made to CACTI to

support such an architecture.

4.1 Support for Gated-Ground Caches

A great deal of leakage power is consumed by the cells in a cache as large as the

two 4MB L2 caches in the Intel Xeon E7320. In its default form, CACTI cal-

culates the leakage power in normal mode. Many modern processors utilize the
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gated-ground technique to reduce the leakage power consumed by these increas-

ingly large caches. The following sections document the changes made to allow

CACTI to compute power estimates for these types of caches.

4.1.1 Calculation of Leakage Power

CACTI was modified to allow the computation of gated-ground leakage by utiliz-

ing a new scaling factor, R normal to gated. Computation of this ratio between

normal mode leakage and gated-ground leakage was accomplished using HSpice.

A 65nm process was utilized to construct and measure the leakage through a

single cell operating in the normal mode. In addition, a row of 16 cells was

constructed to share a single gated-ground transistor sized at 300λ, , where λ

is 32.5nm for our 65nm process, and the leakage through one of these cells was

computed for comparison to the normal mode.

R normal to gated =
Gated leakage powerHSpice

Normal leakage powerHSpice

(4.1)

The ratio of the leakage between normal and gated-ground modes, shown in

Equation (4.1), was found to be 0.114227. Thus, a cache in gated-ground mode

consumes just 11% of the power consumed by the same cache in normal mode.

This value is multiplied by the leakage power obtained directly from CACTI to

arrive at an approximation of the leakage power consumed by the cache in gated-

ground mode. Note that the virtual ground voltage under this experimental set up

is 0.25V , while the normal power supply is 1.1V .
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(a) (b)

Figure 4.1: Relationship between Activation and Leakage energy.

4.1.2 Calculation of Activation Energy

In order to provide an accurate measure of the power used in a gated-ground cache,

it is necessary to compute the energy consumed when a cache line is activated.

CACTI provides no built-in capability for calculating the activation energy of a

gated-ground cache, so a modification had to be devised. In order to ensure that

the computed activation energy directly correlated with the rest of our results,

we could not simply use the measurement from HSpice. Instead, a method was

developed to directly relate the activation energy to a known value that CACTI

could already compute.

Activation energy is closely related to leakage energy. In Figure 4.1(a), the

leakage current through an SRAM cell in the gated-ground sleeping mode is

shown. Figure 4.1(b) shows the same cell as it is being activated. These two

figures illustrate that the leakage energy leakage energy and the activation energy

consumed by the cell during the wake-up phase are closely related. The activation
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energy is nothing more than an increased amount of leakage energy, and it is for

this reason that we have chosen to base our calculation of the activation energy on

a memory cell’s leakage energy.

R normal activation =
Ewake−up

Enormal leakage 0.3ns

(4.2)

As in the previous section, a single normal mode cell and a set of 16 cells

sharing a 300λ gated-ground transistor are examined using HSpice. The wake-up

time of the gated-ground array was determined to be approximately 0.3ns. Then

the amount of leakage energy that is consumed during this period was computed.

These values were used to compute a ratio between the leakage energy and the

activation energy during the wake-up period, as shown in Equation (4.2).

Activation energy = 2.828× Icell × V dd×Nbits per line (4.3)

The ratio between the activation energy and the normal mode leakage was

determined to be approximately 2.828. Using this value, we were able to modify

CACTI such that it could compute the activation energy of a line in the gated-

ground mode. This was accomplished by multiplying the normal mode leakage

calculation by our ratio, R normal activation, resulting in Equation (4.3). The

result of this equation is the activation energy of a single line of the cache that is

directly correlated to the rest of the CACTI power output.
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Figure 4.2: Default CACTI Cache Access Scheme.

4.2 Location Cache Support

CACTI provides no built-in support for location caches, so CACTI 5.0 was revised

to support such a model. The cache configuration generated by CACTI lends itself

well to the inclusion of a location cache. CACTI was modified to allow activation

of the cache on a subarray by subarray basis, allowing a greater degree of control

over the portions of the cache which will be activated.

CACTI places data in a given line by evenly dispersing the bits among an en-

tire rows of subarrays, as shown in Figure (4.2). The shaded portions of the sub-

arrays represent the cells that make up a single cache line access in an L2 cache,

for example. The H-Tree configuration of the cache allows signals to propagate

through all cells simultaneously, resulting in an architecture that is resistant to hot

spots. However, this configuration is not conducive to power savings when a loca-

tion cache is connected. Since the data is dispersed through the row of subarrays,

each subarray must be activated in all cases.

We propose a change that involves packing the entire cache line into a single

subarray, as shown in Figure (4.3). Here an access that used to require bits from
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Figure 4.3: Proposed CACTI Cache Access Scheme.

1 2 3 4

Figure 4.4: Mats Activated When Ndwl = 8.

six subarrays now involves data from only a single subarray. While such an im-

plementation in an L1 cache may lead to hot spots in certain areas of the chip, the

L2 is accessed with such relative infrequency that hot spots can safely be avoided.

In addition, when CACTI is not using bitline multiplexing, such a modification

will not increase chip area due to the fact that CACTI places a sense amplifier for

each bit line [20].

number mats horizontal direction =
Ndwl

2
(4.4)

This modification allows for significant power savings in the subarrays, as

well as minor savings in the predecoder blocks. In the CACTI code, many power
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calculations rely on the computation of the number of active mats. By default,

CACTI calculates the number of active mats as in Equation (4.4). If we assume a

cache with an Ndwl of 8, 4 mats will be activated, as shown in Figure 4.4.

Our modification involves altering this value, allowing us to activate mats or

subarrays individually. Ndwl, the number of divisions in the word line, also in-

dicates how many subarrays are configured across a row of the cache. Given that

a mat is two subarrays wide, we can determine that the number of mats present

along a row of the cache is calculated using Equation (4.4). CACTI assumes that

this entire row of mats must be activated during an access.

subarrays per set =
Ndwl

Nspd
(4.5)

mats per set =
Ndwl

4×Nspd
(4.6)

LC hit mats =
Ndwl

4×Nspd× Associativity
(4.7)

To allow for simple modification of the CACTI code, we have altered this

equation to account for the presence of a location cache. First, in order to allow for

a subarray activation scheme, and thus partial mat activation, the equation needs

to be capable of producing fractional results. There are four subarrays in a single

mat, so each subarray is represented in the following equations by increments of

0.25 mats. Second, the proper number of subarrays required for an access in the

case of a location cache hit needed to be determined. Recall that Nspd is the

number of sets present on a given line in the cache. Therefore, the number of
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Figure 4.5: Mats Activated When Ndwl = 8, Nspd = 0.5, and Associativity = 16.

subarrays required to store a single set of data is shown in Equation (4.5). Given

that there are four subarrays per mat, the number of mats required to store a single

set of data is shown in Equation (4.6).

For example, CACTI determined the optimal configuration of the 16-way set

associative 2MB L2 caches used in this work to be Ndwl = 8, Ndbl = 8, and

Nspd = 0.5 as shown in Figure 4.5. Applying this configuration to the default

CACTI calculation shown in Equation (4.4) results in 4 mats utilized during an

access. In Figure 4.5, since Nspd = 0.5, the entire set of cache data is distributed

into two rows of subarrays. According to Equation (4.5), the set of data is dis-

tributed into 16 subarrays ( 8
0.5

), which is 4 mats ( 8
4×0.5

) by Equation(4.6).
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1 2 3 4

Figure 4.6: Mats With Predecoders Activated When Ndwl = 8, Nspd = 0.5, and
Associativity = 16.

In the case of a location cache hit, only a single way from the set needs to

be accessed because the way number for this address in L2 was stored during a

prior transaction. Due to the packing structure described above, we can divide the

total number of subarrays used during a location cache miss by the associativity

of the cache to determine the number of subarrays required to access a single way

of data. Incorporating this into Equation (4.6) results in Equation (4.7), the new

equation utilized by CACTI to determine the number of subarrays to access upon

a location cache hit.

In the case of a location cache hit, Equation (4.7) results in a value of 0.25,

implying only a single subarray must be accessed (0.25 mats). The CACTI values

affected by this change are shown in Table (4.1). The bulk of the savings can be

attributed to the reduction of cells being accessed, which is included in the power

computation for the bitlines in CACTI.

predecoder LC hit mats =

⌈
Ndwl

4×Nspd× Associativity

⌉
(4.8)

There are, however, additional minor savings attributable to components of

the predecoder block. For the computation of the predecoder components shown
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Table 4.1: Cacti Power Variable Modifications

CACTI Power Variable number mats horizontal direction
replacement variable

Bitlines Bitline Mats
Bitline Precharge EQ Drivers Bitline Mats

Subarray Output Drivers Bitline Mats
Row Predecoder Block Drivers Predecoder Mats

Bit Mux Predecoder Block Drivers Predecoder Mats
Sense Amp Predecoder Block Drivers Predecoder Mats

Row Predecoder Blocks Predecoder Mats
Bit Mux Predecoder Blocks Predecoder Mats

Sense Amp Predecoder Blocks Predecoder Mats
Row Decoders Predecoder Mats

Bit Mux Decoders Predecoder Mats
Sense Amp Decoders Predecoder Mats

in Table (4.1), Equation (4.4) is replaced with Equation (4.8). This equation pro-

duces a whole number representing the number of mats whose predecoders must

be activated. Our previous example where LC hit mats was assigned a value

of 0.25 implies a predecoder LC hit mats value of 1, as shown in Figure (4.6).

This is due to the fact that each mat is equipped with a single predecoder. In order

for the address to be decoded and utilized properly, if any number of subarrays

within a given mat are accessed then that mat’s predecoder must be active.
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Chapter 5

Location Cache Power Simulation

In this Chapter we will discuss our use of the Simics system simulator to simulate

a location cache implementation for CMP machines. Section 5.1 discusses how

Simics was modified to support the simulation of location caches. Section 5.2 dis-

cusses the activation policy used throughout the work. In Section 5.3, the process

used to run benchmarks in Simics is presented. Finally, Section 5.4 details the

extensions made to the simulator to allow for cycle-by-cycle power estimation.

5.1 Simics Location Cache Implementation

The location cache implementation for Simics is based upon the g-cache module

provided by Virtutech [21]. G-cache is a fully-functional cache system implemen-

tation with detailed transaction and timing statistics. This implementation allows

a variety of caches to be designed and constructed in a modular fashion. The flexi-

bility afforded by this system was used to implement a location cache module that

could easily interface with the pre-existing g-cache code.
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L2 Cache

CPU

L1 Instruction Cache L1 Data Cache

Transaction SplitterTransaction Splitter

Instruction/Data Splitter

Transaction Staller

Figure 5.1: Configuration of a Simics Cache System [26].

As a system is simulated, each memory transaction initiated by the CPU is

passed along to the g-cache modules. The modules are then free to examine and

operate on the transaction, or pass it along to the next connected module. When

applied in the x86 architecture, several additional modules are required to get

correct operation out of the g-cache system. The connection of these modules

can be viewed in Figure 5.1. First, an Instruction/Data Splitter is required. This

module determines if a given transaction is operating on data or is part of an

instruction fetch, and routes the transaction to the proper cache. This will be

utilized in systems with a split L1I / L1D cache, such as the cache configuration

utilized by the Xeon E7320. The second additional module is called a Transaction

Splitter. The x86 architecture allows unaligned memory accesses that cross cache

line boundaries [25], so the Transaction Splitter separates one of these unaligned
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L2 Cache

CPU

L1 Instruction Cache L1 Data Cache

Location Cache

Transaction SplitterTransaction Splitter

Instruction/Data Splitter

Transaction Staller

Figure 5.2: Configuration of a Simics Cache System Including a Location Cache.

accesses into two separate aligned accesses. The last additional module is the

Transaction Staller. The g-cache system does not simulate main memory, so when

an access would be sent to memory it is instead passed to the Transaction Staller.

The purpose of this module is to simply simulate the latency of a memory access,

so that the timing of the simulation may be preserved.

In order to fully take advantage of the location cache, the g-cache modules

themselves were modified to utilize the location cache during operation. These

modifications are crucial to determine accurate timing and power usage of the

system when a location cache is connected. To accomplish this, a new location

cache module was added to the g-cache system. The new configuration show-

ing the connection of the location cache module to the cache system is shown in

Figure 5.2.
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Table 5.1: Additional Simics g-cache Attributes

Attribute Description
location caches Provides the link between a target cache

and its location cache(s)
enable gated Enables gated-ground cache operation

lines per subarray Maps Simics’ logical cache lines to match
the physical structure from CACTI

enable subarray activation Forces all lines in a subarray to be
activated upon its access

Due to the structure of Simics’ g-cache modules, it was necessary to alter

the operation of the location cache somewhat to obtain correct operations. In

hardware, the location cache operates in parallel with the L1 cache to provide L2

with location information. It is not possible to simulate this behavior from within

the g-cache code, so a workaround was developed such that the location cache is

accessed directly from the L2 module. This does, however, create an issue when

tracking power usage as only transactions that make it to the L2 cache module

would be accounted for. This issue and its resolution are discussed and addressed

in Section 5.4.2.

To accomplish the proposed location cache system using Simics, a set of new

attributes (included in the location cache module shown in Figure 5.2) were added

to the existing g-cache codebase. These additions are shown in Table 5.1. The

lines per subarray attribute, in particular, is essential in that it allows us to pro-

vide a link between the cache structure provided by CACTI. With the number

of lines present in each subarray, we can then activate lines on a subarray-by-

subarray basis, which is done using enable subarray activation. These two

attributes are required in order to properly estimate the power utilized in our
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subarray-based activation technique.

This setup allows the Simics location cache module to accurately portray the

hardware implementation of a location cache. Way information is stored within

the module and retrieved for use by the L2 cache during L2 cache access opera-

tions, in addition to providing accurate hit ratios and power statistics.

The modular design of the g-cache system makes it easy to simulate the system

with or without the location cache. The ability to switch back and forth rapidly

eases comparison of the two cases.

5.2 Drowsy Cache Activation Policy

Lines in the L2 cache are put into gated-ground mode according to the drowsy

cache policy set forth in [13]. To utilize this activation policy on our gated-ground

cache, a Sleep Controller module was created in Simics. This module gives Simics

the ability to simulate the process of putting lines to sleep and activating them.

At the start of a simulation run, the Sleep Controller puts the entire cache into

gated-ground mode so that it is consuming the least amount of leakage power

possible. When cache operations begin, the module activates a single counter to

keep track of the number of CPU cycles elapsed since the entire cache was last

driven into gated-ground mode. During L2 cache access operations, cache lines

are activated on a subarray basis, discussed in detail in Chapter 4. These lines

remain active until the next time the cache is globally driven into the gated-ground

mode.

A cache’s window size is the number of CPU cycles between these global
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sleep events. Once the Sleep Controller’s counter exceeds the window size, the

entire cache is returned to gate-ground mode as soon as the cache becomes idle

and the counter is reset. This is important as the cache must not be driven into

gated-ground in the middle of an access or the data written or read by the transac-

tion would be corrupted. An 8000 cycle window size was chosen according to the

optimum in-order execution window size determined in [11]. In addition, it has

been shown that this simple windowing sleep policy can be as effective as more

complicated policies in most cases [11].

5.3 Benchmarking

One of the most useful features offered by Simics is its ability to boot a standard

operating system, such as a full Linux distribution. The drawback is that this

ability complicates the process of gathering statistics on a given benchmark, as it

becomes necessary to be able to recognize the start and end of a benchmark from

the host machine.

Simics provides built-in utilities for gathering statistics on benchmarks, and

this work makes extensive use of Simics’ Magic Instructions. This feature in-

volves a special instruction that is added to the standard x86 instruction set in the

processor model used by Simics. The execution of this instruction, along with a

simple integer passed as a parameter via the CPU’s EAX register, allows a very

rudimentary way for the target machine to communicate directly with the host. In

this work we have used the simplistic method of calling this instruction with a pa-

rameter of 1 to indicate the beginning of a benchmark, and a 2 to indicate its end.
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Python scripts running on the host monitor the target machine for the execution

of one of these instructions. When encountered, the script differentiates between

the two parameters signaling the beginning and end of benchmark execution, and

handles the statistics gathering appropriately.

It is important to note that the benchmarks themselves did not need to be modi-

fied to include these extra instructions. Instead, two simple programs were created

that consisted of only a single Magic Instruction. One program sends the signal

to begin gathering statistics, the other to cease gathering statistics. These two pro-

grams are called in series with each benchmark by using a simple shell script on

the target machine. This allows us to properly gather statistics in a reliable and

repeatable fashion, without altering the benchmarks themselves in any way.

5.4 Power Estimation

One of the difficulties in utilizing Simics for this work was that Simics includes no

provisions for gathering statistics on power usage. Due to the complexity of our

modifications, it would be prohibitive or impossible to derive the proper power

equations by hand. Instead, an extension to Simics was created to provide support

for basic power statistics. The following sections discuss the creation and use of

this extension.

5.4.1 Cache Power Estimation

This Simics g-cache module was further modified to allow for the calculation of

dynamic read and write energies, as well as leakage power. The energy values
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Table 5.2: Simics g-cache Power Variables

Attribute Description Energy
Ebase leakage Base leakage energy of the entire cache 3.09113E-10 J

per CPU cycle when sleeping
Eactive leakage 1way Active mode leakage energy 3.52848E-14 J

per CPU cycle of 1 cache way
Esleeping leakage 1way Gated mode leakage energy 4.02246E-15 J

per CPU cycle of 1 cache way
Edynamic read allways Dynamic read access on location

cache miss (16 ways) 8.11317E-10 J
Edynamic write allways Dynamic write access on location

cache miss (16 ways) 7.8349E-10 J
Edynamic read 1way Dynamic read access on location cache hit 4.96287E-10 J
Edynamic write 1way Dynamic write access on location cache hit 6.46078E-10 J

Eactivation 1way Activation energy for 1 cache way 4.57472E-14 J

supported by this modification are shown in Table 5.2, which are provided by

CACTI, are shown with example values from the L2 cache with 64 byte lines used

in this work. From these values it is possible to build up a working estimation of

power consumption within Simics. All values are provided to Simics in Joules.

For those values which are usually represented in terms of Watts, such as leakage

power, conversion to Joules is performed by multiplying by the known CPU cycle

time prior to passing them to the Simics.

ELeakage1cycle
= Ebase leakage −Nactive ways × Esleeping leakage 1way

+Nactive ways × Eactive leakage 1way

(5.1)

Leakage power is computed on a cycle-by-cycle basis. Due to our modifica-

tions, Simics is aware of the number of active ways in each cache at all times.

The leakage power consumed during every cycle is then computed by Equation

(5.1). In addition, all dynamic energies are included in the power statistics. In
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the case of a location cache miss, or in the absence of a location cache, the dy-

namic values Edynamic read allways and Edynamic write allways are used for Edynamic.

When a transaction results in a hit in the location cache, Edynamic read 1way and

Edynamic write 1way are used. If a cache is implemented using the gated-ground

technology, activation energy is also accounted for through the utilization of

Eactivation 1way.

ETotal1cycle
= ELeakage1cycle

+ Edynamic+

Eactivation 1way ×Nways activated

(5.2)

By utilizing Equation (5.2) on a CPU cycle-by-cycle basis in each g-cache

module, it is possible for Simics to account for the total energy consumption of

the system while benchmarking. Note that Edynamic in Equation (5.2) can be one

of the four dynamic readwrite energy attributes shown in Table 5.2 depending on

whether the access is a read or write, and a location cache hit or miss. Similarly,

the value of Nactive ways and Nways activated also depend on whether the access

is a location cache hit or miss. Dynamic energy for a single access is computed

and added to the total energy during the cycle the access begins, regardless of how

many cycles the access will actually take to complete. Therefore, if a cache access

is not first initiated during this cycle, Edynamic and Nlines activated are set to zero

even though they may still be in progress. Nlines activated also varies depending on

the presence or absence of a location cache, and whether the transaction resulted

in a location cache hit or miss.

This scheme was chosen for its simplicity and ease of implementation, but

introduces a small amount of error upon ending the simulation. If the simulator
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Table 5.3: Simics Location Cache Power Variables

Attribute Description Energy
Eleakage Leakage energy per CPU cycle 3.85811E-13

Edynamic read Dynamic read access 1.23945E-12
Edynamic write Dynamic write access on location cache miss 1.55672E-12

is halted after an access has begun, but before it has completed, an amount of

error no greater than the larger of Edynamic write allways and Edynamic write 1way is

introduced into the system. Due to the small amount of energy consumed during

a single access, and given the sheer number of total accesses over the course of a

simulation, the error introduced is negligible.

5.4.2 Location Cache Power Estimation

Estimation of the power consumed by the location caches is performed similarly

to that for the g-cache modules themselves. Leakage energy is accumulated on

a CPU cycle-by-cycle basis. When dynamic accesses to the entire cache system

occur, both dynamic and leakage energies are included in the total energy utilized

by the cache. The energy values supported by this modification are shown in Ta-

ble 5.3, which are determined directly from CACTI and are shown with example

values from a location cache with 32 entries. The energy consumed during re-

quests for way information from the cache, which occurs for all accesses to L1,

are included as Edynamic read. The energy consumed during the replacement of

way information is included as Edynamic write.

ELost = NLost Accesses × Edynamic read (5.3)
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ELocation Cache = Edynamic + ELeakage1cycle
+ ELost (5.4)

Due to restrictions imposed by structure of the Simics g-cache modules, ac-

cesses to the location cache occur only upon accesses to L2. In order to make the

behavior of the simulator consistent with that of the hardware implementation, an

additional function was created to allow the location cache to keep track of all

memory accesses that never make it to L2. Cache access operations that result

in an L1 cache hit never require writing new way information into the location

cache, so these accesses therefore consist entirely of dynamic reads. These ac-

cesses, along with the leakage and dynamic energy used since the last L2 access,

are then added to the location cache’s accumulated energy usage, as shown in

Equation (5.4).

NLost Accesses is the number of L1 accesses that have occurred since the last L1

miss. Recall that the structure of the g-cache modules requires the location cache

to only operate on transactions that access L2, but the hardware implementation

operates on all L1 accesses. NLost Accesses provides a way to include the power

consumed by these accesses, allowing for more accurate calculation of the power

consumed by the location cache itself.
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Chapter 6

Experimental Results

6.1 Experimental Environment

In this Chapter, both the details of the simulation environment and system archi-

tecture are given, and then the results of our experiments are presented. Simulation

data such as location cache hit ratio and power savings rates are provided for both

shared and private location caches in a CMP processor like the ones currently in

use around the world.

6.1.1 System Architecture

The cache system utilized for this work is based on the architecture of the Intel

Xeon E7320 processor, shown in Figure (6.1). The processor utilizes a pair of

private split L1 instruction and data caches for each core, 64kB in size. The L1

caches are 2-way set associative with a line size of 64 bytes, for a total of 512

lines per cache. Each pair of processors share a 2MB L2 cache. Each L2 is 16-

57



Core 0Core 1

Core 2Core 3

L2 Cache

L2 Cache

Main Memory Controller

L1 Cache L1 Cache

L1 CacheL1 Cache

Figure 6.1: Intel Xeon E7320 Cache Configuration.
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way set associative with a line size of 64 bytes, for a total of 32,768 lines per

cache utilizing the gated-ground technique. The L2 cache’s activation policy uses

an 8000 cycle window size.

This quad-core processor is essentially equivalent to having a pair of dual-core

processors on the same chip. This configuration was chosen to illustrate not only

that a location cache architecture is capable of saving power for the currently-

popular dual- and quad-core architectures, but that it can also scale as the number

of cores placed on a chip inevitably increases.

6.1.2 Simulators

When evaluating the power usage of the cache system, and the location caches

themselves, a modified version of CACTI 5.0 was used to evaluate the power

consumption of the L1, L2, and location caches. The modifications performed

to allow CACTI to more accurately model the behavior of the L2 caches in our

architecture were discussed previously in Chapter 4.

The power estimation results provided by CACTI were then integrated into

Simics, using the modification discussed in Chapter 5. This integration allowed

Simics the ability to provide for cycle-by-cycle power estimation of our cache

architecture. Simics’ ability to boot a full operating system provided flexibility

in the selection of benchmarks, ultimately allowing us to choose any benchmarks

capable of being compiled under the Red Hat Linux 7.3 operating system.
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6.1.3 Benchmarks

While the use of Simics for benchmarking allows for the selection of a vast array

of single-threaded benchmarks, suitable multi-threaded benchmarks are some-

what scarce. For our research we will be using two multi-threaded benchmark

suites, SPLASH-2 and ALPBench.

The Stanford Parallel Applications for Shared Memory (SPLASH) were up-

dated in 1995 to include additional benchmarks for use in the evaluation of mul-

tiprocessor systems. SPLASH-2 [31] was designed to be portable among many

platforms, and allowed for using macros to create different multithreading rou-

tines for different operating environments. To compile SPLASH-2 in our Red Hat

Linux 7.3 operating environment, we utilized macros created by Bastiaan Stougie

[32]. Unfortunately, there were issues compiling and running the Cholesky bench-

mark on our platform, so it has been excluded from this work. The SPLASH-2

benchmarks utilized in this work, along with a brief description of their purpose,

is provided in Table 6.1.

The SPLASH-2 benchmarks were used, despite their age, for a number of rea-

sons. First and foremost is to reduce simulation time. While the entire SPLASH-2

benchmark suite would have executed natively on the hardware modeled in this

work in an estimated 7.8 seconds, simulation time using a 2.4GHz dual-core AMD

Athlon exceeded 28 hours. To test all 32 configurations required a significant

amount of processing time, even for these simple benchmarks. Second, this suite

is still regularly used as a benchmark in recent works despite its age, is readily

available, and supported compilation for our target operating system.

To temper the use of the older SPLASH-2 suite, we have also chosen a more
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Table 6.1: The SPLASH-2 benchmark applications

barnes 3-dimension Particle interaction simulator
fft Fast Fourier Transform kernel

fmm 2-dimension Particle interaction simulator
lu continuous Matrix factorization using a 2-dimensional array

lu noncontinuous Matrix factorization using contiguous
blocks of memory

ocean continuous Simulates large-scale ocean movements
using 2-dimensional arrays

ocean noncontinuous Simulates large-scale ocean movements
using 3-dimensional arrays

radiosity Computes the equilibrium distribution of
light in a scene

radix Radix sort kernel
raytrace 3-dimensional rendering using ray tracing
volrend 3-dimensional volume rendering using ray casting

water n-squared Calculates forces acting on a water molecule
water spatial Calculates forces on a water molecule with

a more efficient algorithm
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Table 6.2: The ALPBench benchmark applications

face rec Facial recognition
MPEG MPEG-2 Encoding and decoding
Sphinx Speech recognition

Tachyon 3-dimensional ray tracer

Table 6.3: SPLASH-2 Cache System Parameters

Location Cache With, Without 2
Location Cache Entries 16, 32, 64, 128 4
Location Cache Type Private, Shared 2

L2 Line Size 64 bytes, 128 bytes 2
L2 Latenency 18 cycles, 10 cycles 2

modern suite to run on a few of the more promising configurations. ALPBench

is a suite for multithreaded multimedia applications developed by the Univer-

sity of Illinois at Urbana-Champaign and the Intel Corporation in 2005 [33]. Its

benchmarking programs include MPEG-2 encoding/decoding, facial recognition,

speech recognition, and raytracing, as shown in Table 6.2. These are all common

uses of modern CMP systems, so this suite is ideal for our purposes. Unfortu-

nately, the 183 hour simulation time on the previously-mentioned machine limited

our use of this suite to only a few configurations.

6.2 Experimental Results

The SPLASH-2 benchmarking suite was run using the 64 (2 × 4 × 2 × 2 × 2)

configurations described briefly in Table 6.3. ALPBench was run in the four

(2 × 1 × 1 × 2 × 1) configurations created by fixing the Location Cache Type

to Private and the number of Location Cache Entries to 128, as shown in Table
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Table 6.4: ALPBench Cache System Parameters

Location Cache With, Without 2
Location Cache Entries 128 1
Location Cache Type Private 1

L2 Line Size 64 bytes, 128 bytes 2
L2 Latenency 18 cycles 1

6.4. The results of these runs are described in the sections below. In the follow-

ing discussions we assume that the L2 access latenency is 18 CPU cycles and the

L2 sleep window size is 8000 cycles. However, before the end of this section we

also investigate the relationship between power savings rates (by adding a location

cache) and the L2 access latenency.

6.2.1 Location Cache Efficiency

Lcachetotal misses = Lcache0misses + Lcache1misses+

Lcache2misses + Lcache3misses

(6.1)

Lcachetotal transactions = Lcache0transactions + Lcache1transactions+

Lcache2transactions + Lcache3transactions

(6.2)

Hit Rate = 1− Lcachetotal misses

Lcachetotal transactions

(6.3)

Figures 6.2 and 6.3 show the hit rates of the location caches for all possible

numbers of location cache entries for the SPLASH-2 and ALPBench benchmarks,

respectively. The L2 line size was fixed at 64 bytes, and the private location

cache configuration was utilized. For Figure 6.3, the number of location cache
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Figure 6.2: Overall hit rate of the connected location caches for SPLASH-2.
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Figure 6.4: Percentage of time L2 spends in gated mode with and without a
location cache.

entries is fixed at 128. The location cache hit ratio for our configuration was

calculated using Equation (6.3). The location cache hit rates varied depending

upon the number of location cache entries, where generally a higher number of

entries resulted in a better hit rate. These figures indicate that the location caches

are capable of operating efficiently in a CMP environment. In fact, 11 of the 17

benchmarks achieve location cache hit rates of over 95%.

Percentage Sleeping = 1−

NL2 ways∑
i=1

Tgated (i)

NL2 ways × Tsimulation

(6.4)

These excellent hit rates translate directly to keeping the L2 cache in the gated-
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ground mode for greater periods of time, as shown in Figure 6.4 that utilizes the

same configuration as that of Figure 6.2. The percentage of time the L2 caches

are in the gated-ground state is calculated according to Equation (6.4), where all

times are given in CPU cycles. Here Tgated (i) represents the amount of time in

CPU cycles a given way in the L2 cache spent in gated mode over the course

of the benchmark. NL2 ways is the total number of ways in the L2 cache, and

Tsimulation is the total simulation time of the benchmark in CPU cycles. When a

location cache is not present or misses, the L2 must be accessed set-associatively,

and thus requires waking all related lines from gated-ground mode. In the case of

a location cache hit, fewer lines need to be activated, allowing a greater portion of

the L2 cache to remain in the more efficient gated-ground mode. This advantage

is clearly seen in Figure 6.4, where many of the benchmarks spend significantly

more time in the gated-ground state. As we will see in the following section, this

behavior translates directly to power savings.

6.2.2 Power Savings

When calculating the power savings realized by adding a location cache to an ex-

isting cache configuration, it is important to include the additional power utilized

by the location caches themselves in the overall power statistics. Due to the small

number of entries and small line size, even the frequent accesses to the location

cache result in them consuming less than 0.5% of the total power consumed by

the cache system. This is significant, as if even the worst case occurrs and a loca-

tion cache is able to provide no power savings whatsoever, the additional power

wasted through the use of the location cache is minimal. Therefore to achieve the
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Figure 6.5: Percentage of dynamic and leakage energy saved by adding a
location cache.

most accurate results the following statistics include not only power consumed by

the L2 caches, but also the location caches and L1 caches. However, we empha-

size that the power saving comes from L2 caches whose accesses are aided by the

proposed location cache architecture.

Take the Radiosity benchmark from SPLASH-2, for example, with a cache

configuration consisting of private location caches with 128 entries each, and an

L2 line size of 64 bytes. In this case the L2 caches consume approximately 2.09W ,

which is 67.6% of the total power consumed by the cache system. The L1 caches

consume about 0.99W and the four location caches combined used about 0.01W ,

which contribute 32.0% and 0.4% of the total power consumption of the cache

system, respectively.
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Pno lcache = PL1 caches + PL2 caches no lcache (6.5)

Pwith lcache = PL1 caches + Plocation caches + PL2 caches with lcache (6.6)

Power Savings Rate =
Pno lcache

Pwith lcache

(6.7)

While the location caches are capable of saving both dynamic and leakage

power of L2, it was found that the majority of the power saved by introducing a

location cache into a cache system was leakage power of L2. Equation (6.5) rep-

resents the total power consumed by a cache system without any location caches

connected. Equation (6.6) represents the total power used by a second config-

uration created by adding location caches to the cache system used in Equation

(6.5). The Power Savings Rate, or the percentage of power saved by adding loca-

tion caches to any given configuration, can therefore be calculated using Equation

(6.7).

Using an L2 line size of 64 bytes, and private location caches featuring 128

entries each, Figure 6.5 shows that, as a percentage, moving to a private location

cache system saves more leakage power than dynamic power. The power sav-

ings rates are calculated by comparing the power reduction caused by adding the

private location caches to the system. This is a particularly interesting finding,

as the amount of chip area dedicated to the cache system is increasing rapidly,

along with the leakage power attributable to this increase. Any structure that can
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Figure 6.6: Power savings rate for 64 byte lines and 18 cycle L2 latenency using
a shared location cache.

significantly reduce leakage power could become valuable for producing future

low-power microprocessors.

In Figure 6.6 we can see that the addition of even a shared location cache

can save between 2.5% and 40% of the overall power usage, depending on the

benchmark and number of location cache entries. Moving to a private location

cache system, as shown in Figure 6.7, increases the maximum savings to 42.5%

with significantly improved average case performance. It is apparent that even

with a very small number of entries, the location cache is able to save a significant

amount of power through a variety of benchmarks. It is interesting to find that

some of the benchmarks, such as lu-cont, are sensitive to the number of location
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Figure 6.7: Power savings rate for 64 byte lines and 18 cycle L2 latenency using
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Figure 6.8: Power savings rate for 128 byte lines and 18 cycle L2 latenency.

cache entries, while benchmarks like ocean-cont are not sensitive at all.

Moving from a 64 byte to 128 byte L2 line size decreases the power savings re-

alized by adding a location cache, as can be seen in Figure 6.8. Simply increasing

the L2 line size from 64 bytes to 128 bytes drastically reduced the overall power

consumption of the cache system. This reduction results in a more efficient cache

configuration, leaving less room for the location cache to save additional power.

Despite these findings, the location cache is still quite effective in the cases where

a 128 byte L2 line size is chosen. This is illustrated in Figures 6.9 (SPLASH-2)

and 6.10 (ALPBench), which show the amount of power saved by using a private

location cache with both 64 byte and 128 byte L2 lines. While the overall savings
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Figure 6.9: Comparison of power savings by location cache using a 64 byte vs.
128 byte L2 line size for SPLASH-2.

73



20%

25%

30%

35%

40%

45%

Sa
vi
ng

s 
Ra

te

0%

5%

10%

15%

20%

MPEG2 Face_Rec Sphinx Tachyon

Po
w
er
 S

ALPBench Benchmark

64 Byte Lines 128 Byte Lines

Figure 6.10: Comparison of power savings by location cache of using a 64 byte
vs. 128 byte L2 line size for ALPBench.

provided by adding a location cache to the L2 with 64 byte line size was greater,

savings were still provided when the L2 was moved to 128 byte lines.

To better illustrate this point, we have plotted the use of both of these tech-

niques in Figure 6.11. The baseline of Figure 6.11 represents a cache with 64

bytes in each L2 line and a 18 cycle L2 latenency. The following three configura-

tions are plotted against the baseline:

1. The baseline with the addition of 128 entry private location caches

2. The baseline, modified to support a 128 byte L2 line size

3. The baseline, modified to support a 128 byte L2 line size along with the

addition of private location caches with 128 entries

While each optimization performs well on their own, when combined they
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yield an average savings of about 35% over all benchmarks with a maximum sav-

ings of over 50%. This shows that, when paired with an increased L2 line size,

private location caches can be a powerful tool in decreasing the power consump-

tion of the increasingly large cache systems of modern processors.

The concept of a shared location cache is promising because it is easy to im-

plement, and provides some energy savings over a cache configuration that lacks

a location cache. While the power savings rates for shared and private location

caches were previously discussed separately in Figures 6.6 and 6.7, respectively,

we will compare them in greater detail here. Unfortunately these benchmarks

showed that the configuration with shared location caches exhibited a significant

amount of replacement happening as the multiple cores fought over the small
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Figure 6.13: Comparison of power savings of using a 10 cycle and 18 cycle L2
latenency.

number of available location cache lines. Dedicating a location cache to each pro-

cessing core fared better, as shown in Figure 6.12. Here the shared location caches

were provided 64 lines each and the private location caches 32 lines each. This

was done to keep the total number of location cache lines in each configuration

constant at 128 total lines. About half of the benchmarks proved very sensitive to

being assigned a private location cache, and two performed slightly better using

shared location caches. This solidifies our position that in a CMP system each

core must have its own location cache in order to operate at peak efficiency.

One major concern about the location cache design involved the latenency of

the target cache. If the sleep window size remained constant, it was thought that a

significant decrease in the target cache’s latenency could negate any power savings
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Figure 6.14: The effect of the ratio between gated and normal leakage on power
savings.

provided by the location cache. This was found not to be the case, as is shown in

Figure 6.13. The figure shows that while altering the latenency of the target cache

does have some effect on the performance of the connected location caches, this

effect is minimal for even large fluctuations in latenency. This behavior will allow

a cache designer some flexibility, and proves a location cache can be a beneficial

addition even when paired with a fast target cache.

Another concern was that the value of R normal to gated would have a sig-

nificant impact on the power savings provided by the location caches. As dis-

cussed previously in Section 4.1.1, we calculated the value ofR normal to gated

to be about 0.114. While this falls in line with previous calculations at other

institutions [34], further testing was performed by varying R normal to gated
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values between our calculated 0.114 and 0.5 to determine its effect on power sav-

ings. The results of this experiment are presented in Figure 6.14. The value of

R normal to gated does have a significant, although linear, effect on the power

savings provided by the location cache. While this was expected, we also found

that even whenR normal to gated was set to 0.5 that the location cache was still

able to save some amount of power in all benchmarks.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this research we have analyzed the power savings realized by utilizing location

caches in CMP systems. The working principal of the location cache system is

reviewed, and extensions to this principal are proposed to allow location caches to

support CMP systems. CACTI 5.0 is modified to grant it support of gated-ground

caches, and is then used to provide detailed power consumption estimates for all

of the caches in this work. Simics is extended to support cycle-by-cycle power

estimation using the power consumption statistics gathered from CACTI. Simics

is then used to simulate the SPLASH-2 and ALPBench benchmark suites over

a variety of cache configurations. Our goal is to explore the the power savings

provided by the location cache over a variety of cache configurations.

We found that the amount of power saved by adding a location cache varies

quite significantly depending upon the setup of the tested parameters. The tested
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location caches were able to save power over all tested configurations and bench-

marks, though they were far more effective at reducing the amount of leakage

power than dynamic power. The number of entries in the location cache displayed

a surprisingly small effect on the cache’s overall power savings, with only about

six of the benchmarks showing sensitivity to this parameter. On the other hand,

assigning private location caches was a far more effective use of resources. Our

simulations show that adding private location caches to the cache system can save

between 2% and 43%, depending on the benchmark, of the power utilized by an

equivalent cache system without location caches. In addition, the power savings

did not appear to be dependant on the latenency of the L2 caches, which indicates

that the location caches could be effective in systems with high-speed L2 caches.

While the location caches themselves provided less power savings when moving

to an 128 byte L2 line size, this combination of techniques provided the most sig-

nificant power reduction: as much as a 50% savings in some of the benchmarks.

This shows that location caches can be a valuable tool for reducing leakage power

consumed by a cache system.

7.2 Future Work

Looking towards possible future work, we suggest the following:

1. A significant portion of the power consumed in the large L2 caches simu-

lated in this work was contributed by the interconnects. Currently, a cache

system containing location caches offers no interconnect power benefit over

a system lacking location caches. To further reduce power consumption
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the development of a location cache model that supports Network on Chip

(NoC) can be explored. Combining location caches with NoCs may provide

additional power savings through interconnect power reductions.

2. Operating systems typically treat a CMP as if it were simply a collection

of completely unrelated processing cores. Recent work in [35] provides

background on making the OS aware of the structure of the CMP cache

system, which may provide additional power savings using more effective

access techniques. It would be advantageous to learn the effect of these

OS techniques on the power savings provide by location caches in CMP

systems.

3. This work was limited to simulation based upon the cache configuration

of the Xeon E7320. While this provides a look at the performance of lo-

cation caches in a modern processor, it would be helpful to evaluate their

performance over a more diverse set of cache configurations. Such research

may identify further optimizations that may be made to the location cache

principal. In addition, viewing location cache performance over a variety of

cache window sizes may help determine how sensitive location caches are

to the low leakage policy used.

4. Finally, recent research suggests that CMPs utilizing 80 or more cores are

already on the horizon [1]. While a private location cache scheme has

proven itself effective over four cores, it is unlikely that such a configu-

ration will scale to CMPs with so many processor cores. A new location

cache model, or extension of the current model, will need to be developed
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in order to efficiently serve CMPs with dozens of cores.
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