
1048 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 6, JUNE 2011

Design Optimizations for Tiled Partially
Reconfigurable Systems

Markus Koester, Wayne Luk, Fellow, IEEE, Jens Hagemeyer, Mario Porrmann, Member, IEEE, and
Ulrich Rückert, Member, IEEE

Abstract—In partially reconfigurable architectures, system
components can be dynamically loaded and unloaded allowing
resources to be shared over time. Dynamic system components
are represented by partial reconfiguration (PR) modules. In com-
parison to a static system, the design of a partially reconfigurable
system requires additional design steps, such as partitioning the
device resources into static and dynamic regions. We present the
concept of tiled PR regions, which enables a flexible online-place-
ment of PR modules. Dynamic reconfiguration requires a suitable
communication infrastructure to interconnect the static and
dynamic system components. We present an embedded communi-
cation macro, a communication infrastructure that interconnects
PR modules in a tiled PR region. Efficient online-placement of PR
modules depends not only on the placement algorithm, but also
on design-time aspects such as the chosen synthesis regions of the
PR modules. We propose a design method for selecting suitable
synthesis regions for the PR modules aiming to optimize their
placement at run-time.

Index Terms—Communication macro, design automation,
field-programmable gate arrays (FPGAs), overlap graph, recon-
figurable architectures.

I. INTRODUCTION

T HE reconfigurability of field-programmable gate arrays
(FPGAs) is a promising approach to enhance the flexi-

bility of a given architecture resulting in adaptable and cus-
tomizable hardware systems. The partial reconfigurability of
the FPGA enables part of the device to be changed or adapted
without reconfiguring the whole chip. Thus, the system compo-
nent, which requires being reconfigured, can be replaced by a
new one, while the remaining components continue to operate
without interruption.

A reconfigurable system typically comprises an area for
static system components (base region) and one or more
partially reconfigurable regions (PR regions) for dynamic system

Manuscript received June 18, 2009; revised September 15, 2009 and February
26, 2010. First published April 05, 2010; current version published May 25,
2011. This work was supported by the German Research Council (DFG) and
the U.K. Engineering and Physical Sciences Research Council (EPSRC).

M. Koester and W. Luk are with the Department of Computing, Imperial
College London, London SW7 2AZ, U.K. (e-mail: mkoester@doc.ic.ac.uk;
wl@doc.ic.ac.uk).

J. Hagemeyer and M. Porrmann are with the System and Circuit Technology,
University of Paderborn, 33102 Paderborn, Germany (e-mail: jenze@hni.uni-
paderborn.de; porrmann@hni.uni-paderborn.de).

U. Rückert is with Cognitronics and Sensor Systems, Bielefeld University,
33615 Bielefeld, Germany (e-mail: rueckert@techfak.uni-bielefeld.de).

Digital Object Identifier 10.1109/TVLSI.2010.2044902

components. The dynamic system components are represented
by partial reconfiguration modules (PR modules). The placement
of a PR module is done by configuring a predefined area in a
PR region of the FPGA with the corresponding configuration
data. A PR module must be able to communicate to the rest
of the system from any of its feasible positions. In order to
avoid restricting the number of feasible positions of the PR
modules, it isnecessarytodesignahomogeneouscommunication
infrastructure, which does not introduce any further degree
of heterogeneity. The amount of additional resources, which
are required to achieve the required homogeneity, should be
low to provide a large number of free resources within the
PR region.

Most realizations of dynamically reconfigurable systems use
simple approaches that are based on fixed module slots. The
placement flexibility of these implementations is different from
the flexibility assumed and analyzed in the theoretical research
work. In this paper we try to help close this gap by showing how
today’s heterogeneous FPGAs can be used for dynamic recon-
figuration with free module placement, varying module sizes,
and multiple instances of modules.

An important aspect in the design of a partially reconfig-
urable system is the implementation of the communication in-
frastructure. In [1], a tool flow for generating suitable homoge-
neous communication infrastructures is introduced, which sup-
ports Xilinx Virtex-II FPGAs in a one-dimensional partially re-
configurable system. In this paper, we present refinements of
this concept with the following focus.

• The communication infrastructure introduced in [1] is en-
hanced to support 2-D partial reconfiguration. The pre-
sented embedded communication macro is optimized for
Virtex-4, Virtex-5 and Virtex-6 FPGAs.

• The embedded communication macro is evaluated and
compared to alternative communication macros.

The proposed communication infrastructure enables the
placement of PR modules in a tiled partially reconfigurable
system and avoids restricting the number of feasible positions
of the PR modules. As suggested in [2], the placeability of a PR
module can be further enhanced at design-time by optimizing
the area the PR module is initially synthesized for. This area
is referred to as synthesis region. In this paper we take up the
idea of improving the placeability and extend it to cover the
following aspects.

• A method to derive the set of minimal synthesis regions is
introduced.

• The concept of subregions is analyzed and compared to
single-module PR regions and tiled PR regions.

1063-8210/$26.00 © 2010 IEEE

KOESTER et al.: DESIGN OPTIMIZATIONS FOR TILED PARTIALLY RECONFIGURABLE SYSTEMS 1049

• The design-time optimization presented in [2] uses exhaus-
tive search and is therefore only suitable for small problem
sizes. For a larger set of PR modules, a heuristic approach
is presented, which is based on a genetic algorithm.

The rest of this paper is organized as follows. In Section II
related work to the topic of partial reconfiguration is summa-
rized. Section III gives an overview of tiled partially reconfig-
urable systems. The concept of subregions for tiled PR regions
is introduced. Section IV classifies suitable communication in-
frastructures for PR regions and describes the concept of homo-
geneous communication macros. The resource requirements of
the communication infrastructures are compared for a tiled PR
region implementation in Xilinx Virtex FPGAs. Section V intro-
duces the overlap graph as a novel methodology to quantify the
placeability of the PR modules. A design method is described,
which selects suitable synthesis regions for PR modules aiming
to optimize their placement at run-time. The design method is
demonstrated for a tiled PR region using the homogeneous com-
munication macro. Section VI concludes this paper.

II. RELATED WORK

One of the first system approaches for partially reconfigurable
FPGAs is the swappable logic unit (SLU) presented by Brebner
[3]. An SLU is a square-shaped fixed sized partially reconfig-
urable region with standard interfaces at each side. It is designed
for the Xilinx XC6200 FPGA, which has a homogeneous array
of logic resources. The placement of a PR module is done by
allocating it to any available SLU. Modules can only be inter-
connected by placing them next to each other. In [4] and [5] a
module-based design flow for partial reconfiguration is intro-
duced, which is supported by the current Xilinx design tools.
The design flow enables partial reconfiguration at the granu-
larity of a PR region. A PR module always occupies a whole PR
region—even if not all of the resources of the region are used.
Every PR module uses a predefined set of routing resources to
interconnect with the system outside the PR region. In [5] these
routing resources are referred to as bus macros.

Since the upper bound of dynamic system components that
can operate in parallel is equal to the number of PR regions, this
type of PR region can be classified as a single-module PR region.
The main drawbacks of this approach are as follows. The size of
a PR module is limited by the size of the PR region. In systems
with multiple PR regions this restriction can have a huge impact
on the maximum size of a PR module. Apart from the size limit,
small PR modules occupy the resources of the whole PR region
causing low resource utilization. A solution to this problem is to
combine multiple small modules to a larger one. However, such
an approach requires additional memory for the configuration
data for all combinations of these modules. Furthermore, the
combined modules share the communication interface of the PR
region. Consequently, the bandwidth of each individual module
is limited, especially if several of these modules communicate
with the rest of the system at the same time.

To overcome this drawback, a PR region can be designed
to support a flexible placement of multiple modules within the
region. In such a scenario placement algorithms are required,
which aim at maximizing the resource utilization by minimizing
the degree of fragmentation of the free resources inside the PR
region. If the scheduling information and the execution times of

the PR modules are known at design-time, the placement can be
computed using offline methods such as those by Fekete [6] and
Danne [7].

If the scheduling of the PR modules cannot be computed at
design-time, the placement of a module must be performed at
run-time. In this paper, we target applications that require on-
line placement of PR modules. In this case, dynamic reconfig-
uration is triggered by external events such as changes in the
environment or changes in the objectives of the application.
Typical application scenarios can be found in the areas of soft-
ware-defined radio (SDR) [8], signal and image processing [9],
or adaptive control systems [10]. Bazarghan et al. [11] describe
the problem of placing a PR module as an online bin-packing
problem. Steiger et al. [12] discuss the problem of online place-
ment and scheduling of hard real-time tasks for partially recon-
figurable devices. Handa et al. [13] introduce a placement algo-
rithm aiming at reducing the degree of fragmentation. In [14]
a placement approach is introduced that considers the routing
costs to existing instances of PR modules. Lu et al. [15] intro-
duce an algorithm for PR module placement, which preparti-
tions the area of the PR region into blocks of different sizes.
After the placement of a PR module the blocks are split and
merged to maintain contiguous free resources.

The above methods assume a homogeneous PR region and
neglect the fact that FPGAs are heterogeneous architectures.
The heterogeneity of the resources significantly limits the place-
ment of the PR modules within the PR region. A suitable place-
ment algorithm to handle the heterogeneity is introduced in [16].

When placing a PR module at a desired position, the com-
munication infrastructure requires to be designed to allow inter-
connection of the PR module with the rest of the system. This
can be realized by adapting the existing communication infra-
structure using online routing. JRoute [17] and ADB [18] are
tools that support online routing for Xilinx Virtex FPGAs. Both
operate directly on the configuration data using the JBits API
[19]. Raaijmakers and Wong [20] introduce a similar concept,
which enables online routing to disconnect and connect arbi-
trarily shaped PR modules. The modification of the configura-
tion data is done by the Xilinx design tools. In [21] and [22]
online routing concepts are proposed, which are based on prede-
fined routing primitives for horizontal and vertical routing. On-
line routing is performed by interconnecting these primitives.

While online routing solves the interconnection problem
for partially reconfigurable regions, it requires a processing
unit which performs the online routing on every placement
or removal of a PR module. With an increasing number of
PR modules the total reconfiguration time increases as well.
Apart from the reconfiguration process of the PR module, an
additional reconfiguration process is needed for the dynamic
routing channels. After a PR module is removed the previously
utilized routing channels should be released as well, which
requires a further reconfiguration process. Thus, online routing
introduces a larger overhead with respect to reconfiguration
time and additional resources.

In this paper, we focus on a different approach based on
communication macros. These macros implement static routing
channels passing through the partially reconfigurable region.
Dynamically configured PR modules can connect to these
routing channels via predefined connection points to establish

1050 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 6, JUNE 2011

Fig. 1. Example of a partitioning scheme using a PR region with reconfigurable
tiles.

the communication to the rest of the system. In [8], Sedcole
et al. demonstrate the concept of static routing channels in PR
regions. In [5] bus macros, which support reserving a static
link between the static part of the system and a PR region,
are described. In [1] embedded communication macros are
introduced. These allow advanced communication infrastruc-
tures, such as buses or networks to be built. All the previously
described methods have been designed for Xilinx Virtex-II
FPGAs, which only allow a 1-D partially reconfigurability. In
this paper, we focus on communication schemes, which are
suited to 2-D partial reconfigurability as supported by Xilinx
Virtex-4 up to Virtex-6 FPGAs.

III. TILED PARTIALLY RECONFIGURABLE SYSTEMS

In a tiled partially reconfigurable system as described in [1]
the partially reconfigurable region is subdivided into recon-
figurable tiles. Tiled partitioning allows for the placement of
multiple PR modules with various sizes in a PR region. A re-
configurable tile can be considered as an atomic unit of partial
reconfiguration. A PR region may contain several different
types of tiles offering different amounts of available resources.
The tile sizes may vary according to the different resource
types within each tile. In this context we define as
the resource availability of the reconfigurable tile at position

in the PR region. The resource availability is
an -tuple, where is the number of different resource types.
For instance,
describes the resource availability for tiles of FPGAs with
Slices, BlockRAMs, and DSPs. The tiles of the same type are
built identically using the same number and arrangement of
resources. All static components of the system are located in
the so called base region. The communication between the PR
modules and the static system components is realized by so
called communication macros. Fig. 1 shows an example with a
base region and a PR region, which is partitioned into an area
of 4 4 reconfigurable tiles. The PR region in the example
is heterogeneous, since two different types of tiles are used.
At run-time an instance of a PR module is mapped to one or
several contiguously aligned tiles. This is done by partially re-
configuring the selected tiles using the equivalent configuration
data (partial bitstream) of the PR module. Systems using tiled
PR regions can be designed to be open or closed, such that PR
modules can be added or removed from the set of PR modules.

If is the set of all PR modules in the system, then all place-
ment options of a PR module can be described by the

Fig. 2. Example of a set of PR modules and their feasible positions.

Fig. 3. Synthesis region of PR module � and the corresponding feasible
positions.

set of feasible positions .
Without loss of generality, denotes the po-
sition of the tile at the lower left corner of the PR module with
respect to the lower left corner of the PR region. A PR module
can take up any size from a single tile to all tiles of the PR re-
gion. Fig. 2 shows the PR region of Fig. 1 and an example of
a set of PR modules with the corresponding feasible positions.
The values in each tile indicate the type of tile.

The synthesis of a PR module for a tiled PR region dif-
fers from the one for single-module PR regions. Firstly, the
PR region is partitioned into reconfigurable tiles. Then the
embedded communication macro is placed to interconnect
the tiles. The PR module of the dynamic system component
is synthesized within a predefined synthesis region using the
preplaced embedded communication macro. The number of
available resources within the synthesis region must be large
enough to satisfy the resource requirements of the dynamic
system component. Finally, the partial configuration data of
the PR module is generated, which only targets the tiles of the
chosen synthesis region. By manipulating the configuration
data as described in [23] and [24], a PR module can be placed
at any position with the same arrangement as the types of tiles
from which it is built. Therefore, the location and size of the
synthesis region defines the set of feasible positions of the PR
module as indicated in Fig. 3.

In any reconfigurable system, the number and the size of the
concurrently executable PR modules is restricted by the number
of available resources of the reconfigurable unit. In this context
we introduce the term allocation width, which can be described
as follows. A PR system has an allocation width of , if for
any possible configuration of instances of PR mod-
ules, it is still possible to place one instance of any PR module.

KOESTER et al.: DESIGN OPTIMIZATIONS FOR TILED PARTIALLY RECONFIGURABLE SYSTEMS 1051

In a tiled PR region a fixed allocation width cannot be guaran-
teed in any case, since the placement is subject to the current
configuration of PR modules and the degree of fragmentation.
However, an application can require a reconfigurable unit with
a certain allocation width, since the execution of essential dy-
namic system components should not be delayed or rejected.

In this case, the synthesis regions and the corresponding fea-
sible positions need to be selected to obtain the required allo-
cation width. In the context of tiled PR regions, the PR region
can be partitioned into disjoint subregions. A subregion is an
area within a tiled PR region that typically is composed of a few
tiles. It offers enough resources to allow the placement of an in-
stance of any PR module. Within the subregion modules can be
placed according to their feasible positions. Compared to an un-
constrained tiled PR region, the tiles occupied by an instance of
any PR module must be located completely within a subregion.
This ensures that at any time as many PR modules can be exe-
cuted in parallel as given by the number of disjoint subregions.
As a consequence the number of subregions corresponds to the
allocation width.

Tiled subregions and single-module PR regions both provide
a fixed allocation width. The advantage of subregions over
single-module PR regions is that small modules do not waste
the resources of a whole PR region, but only occupy the re-
quired number of tiles leaving the remaining tiles within the
subregion for the placement of additional PR modules. In the
context of subregions, the allocation width only describes a
lower bound on the number of PR modules that can be executed
in parallel.

IV. COMMUNICATION INFRASTRUCTURE

Partially reconfigurable systems require a communication in-
frastructure to interconnect the static and the dynamic system
components. In general, a communication infrastructure com-
prises unidirectional and bidirectional signals. With respect to
tiled PR regions, unidirectional signals can be driven by either
a static component in the base region or by a PR module in
the PR region. Bidirectional signals can be driven by multiple
drivers, i.e., any static or dynamic system component. Further-
more, a communication infrastructure comprises shared signals
and dedicated signals. Shared signals are multipoint connec-
tions, e.g., in a bus-based communication infrastructure they are
typically used to transmit data and address information, while
control and arbitration often require dedicated signals. In the
context of partially reconfigurable systems the shared and ded-
icated signals from the base region to the PR modules are real-
ized by static communication channels. These channels are im-
plemented by predefined logic cells and corresponding routing
resources.

An approach for establishing the communication between
modules and the base region by means of bus macros is in-
troduced in [4], [5]. The bus macro reserves a fixed set of
connection points that are used for passing signals between
a PR module and the base region. Within each module the
connection points are located at the same relative position as
shown in Fig. 4. Although the term suggests a bus macro to
be a macro for implementing bus structures, it is typically
not used for this purpose. Rather, this type of connection is
commonly used in single-module PR regions to implement a

Fig. 4. Example of a link macro implementation for single-module PR regions.

communication link between a PR module and the base region.
We refer to this type of connection as a link macro.

A. Communication Infrastructures Using Modified Link
Macros

Extensions to link macros are necessary for a more advanced
partitioning of the reconfigurable area, e.g., for tiles that cannot
have a direct connection to the base region because all adjacent
resources are occupied by other tiles.

Link macros for single-module PR regions can be adapted to
realize link macros between tiles (LMBT). In this communica-
tion infrastructure, link macros are used to interconnect neigh-
boring tiles. The main advantage of this approach is its sim-
plicity. It can be easily realized for 1-D as well as for 2-D ar-
rangements of tiles, as shown in Fig. 5(a). However, this simple
approach has various disadvantages. Link macros are only used
to establish the connection from one tile to another. Therefore,
the bandwidth suffers from a potentially large number of hops
across a sequence of tiles. Moreover, the connection of the link
macros within a tile, which forms the actual communication
infrastructure, must be realized inside the PR modules. This
means that the actual routing is module-dependent and will be
interrupted and changed during the reconfiguration process of a
tile. For the same reason, the implementation of the communi-
cation for one tile depends on the communication infrastructure
of the surrounding tiles. Each new module placement will re-
quire changes to all other modules that are involved in its com-
munication causing additional reconfiguration overhead. These
problems are somewhat related to online-routing approaches.

A simple approach to circumvent the restrictions of the ap-
proach described above is to ensure that each tile can be directly
connected to the base region. To achieve this, link macros with
communication channels can be used. An example of this con-
cept is illustrated in Fig. 5(b) for a 2-D partitioning of the PR
region. The communication channels are part of the base re-
gion, and the link macros are placed between this region and
the partially reconfigurable region. The partitioning illustrated
in Fig. 5(b) shows that the PR region is now split into multiple
PR region segments since the area of the communication chan-
nels can only be used for communication and static logic. Since
the PR region segments are separated by the communication
channel, the maximum size of a PR module is limited to the
size of a segment.

Wormhole routing [25] is a method to realize a communi-
cation infrastructure that circumvents the limitations of the
approaches described above. Here, communication macros

1052 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 6, JUNE 2011

Fig. 5. Example of communication infrastructure using modified link macros. (a) Link macros between tiles (LMBT); (b) link macros in combination with com-
munication channels; (c) wormhole routing.

Fig. 6. Example of communication infrastructure using embedded macros.

are used that span over one or more complete tiles, if the
destination tile is not adjacent to the base region. These adapted
link macros are referred to as wormhole macros or wormhole
routing [25]. When the reconfigurable area comprises a large
number of tiles, this approach consumes a considerable amount
of routing resources, as can be seen in Fig. 5(c). Therefore the
routing resources that are available for PR modules linearly de-
crease from right to left. Since only point-to-point connections
between a tile and the base region are used, every tile requires
an exclusive set of communication lines.

B. Embedded Macros

The term embedded macro describes a method of using a
communication infrastructure, which is embedded into the tile
itself. The embedded macro is not a point-to-point connection.
Instead of using multiple instances of simple link macros, one
monolithic macro is used as shown in Fig. 6. The macro con-
nects all tiles and the base region in a homogeneous manner.
It combines the advantages of the three link macro variants de-
scribed above, without sharing their drawbacks.

Fig. 7 shows the realization of a 1-bit bidirectional multipoint
connection in the embedded macro. The multipoint connection
is realized by horizontally interconnected AND gates. Each tile
has a connection point for input data and for output data

. The enable signal is used to grant access to the mul-
tipoint connection. Since every PR module uses the same re-
sources for the embedded macro, the macro is not modified at
the run-time reconfiguration of a PR module. This ensures that
the communication is not interrupted during the reconfiguration
process. The macro is fully embedded in the tiles, such that there
is no need for additional routing channels outside the tiles.

Fig. 7. 1-Bit bidirectional multipoint connection in the embedded macro.

Fig. 8. Xilinx Virtex-4 implementation of a bidirectional multipoint connection
in the embedded macro.

The implementation of the embedded macro can be opti-
mized according to the given resources of the target device.
Fig. 8 shows an implementation of the multipoint connection,
which is optimized for the slice architecture of Xilinx Virtex-4
FPGAs. The implementation efficiently utilizes the resources
of a Virtex-4 slice and requires only three lookup table (LUTs)
and three registers. Additionally, the input can be used
to individually enable or disable the data input/output (I/O).
The data input signal is divided into and to
allow for a unidirectional and bidirectional communication.

Besides the Virtex-4 FPGA, we have optimized the embedded
macro for Virtex-5 and Virtex-6 FPGA families. Table I shows
a summary of the resource requirements for the optimized im-
plementations. All connections to and from the communication
infrastructure are registered, thus enabling high communica-
tion speeds. Furthermore, the registered implementation avoids
problems in the PR flow related to asynchronous paths between
modules and base region. The resource requirements cannot be
directly compared between the different FPGA families since
the routing and slice architecture are different in all device fam-
ilies, as indicated in the row “Resources per Slice” in Table I.

Table I shows five different types of signals, which usually
occur in a communication infrastructure. Bidirectional shared

KOESTER et al.: DESIGN OPTIMIZATIONS FOR TILED PARTIALLY RECONFIGURABLE SYSTEMS 1053

TABLE I
RESOURCES PER TILE FOR GENERIC COMMUNICATION STRUCTURES ON DIFFERENT FPGA-ARCHITECTURES. ALL SIGNALS ARE REGISTERED.

� DENOTES THE TOTAL NUMBER OF COMMUNICATION TILES IN THE EFFECTIVE COMMUNICATION STRUCTURE.
THE TERM slices REFERS TO THE SIZE OF A SLICE IN THE SPECIFIC ARCHITECTURE

signals with common enable use a single enable signal. An ex-
ample for these type of signals are the data lines of a bus-based
communication infrastructure. Typically, many of these signals
are used together for the same bus (e.g., 32 or 64 signals). Bidi-
rectional shared signals with individual enable can be used to
implement non-dedicated control signals, such as R/W signals.
Unidirectional shared signals are driven by one component, e.g.,
by the base region or by a certain tile within the PR region. They
can be used, e.g., for address signals in a single master system.

In addition to shared signals, a communication infrastructure
typically uses dedicated signals, enabling access to individual
modules. Dedicated signals are necessary for control and arbi-
tration. A straightforward implementation of dedicated point-to-
point connections causes an inhomogeneity of the PR region. An
inhomogeneous communication infrastructure can significantly
reduce the number of feasible positions of the PR modules. In
order to maintain the homogeneity of the communication in-
frastructures, the implementation of dedicated signals requires
special design concepts introduced in [1] and [27].

Fig. 9 shows the realization of dedicated signals in the em-
bedded macro. All dedicated signals utilize the same routing
channels, such that the homogeneity of the macro is preserved.
The separation of the signals is achieved by bit masking. Each
tile has its unique address stored in dedicated address regis-
ters. The states of these registers must be preserved during run-
time reconfiguration. Table I shows the corresponding resource
requirements for binary-encoded dedicated signals as well as
one-hot encoded dedicated signals. Fig. 10 shows the imple-
mentation of binary-encoded dedicated signals optimized for
a Xilinx Virtex-4 FPGA. This implementation can be realized
with three Virtex-4 slices using the fast dedicated carry chains
of the CLB. This allows us to obtain a realization with a short
delay even for large number of tiles. The address registers are
initialized during the reconfiguration process by using the mech-
anisms described in [1].

C. Comparison

This section presents a comparison of the previously de-
scribed embedded communication macro and the alternative
communication macros for partially reconfigurable systems.

Fig. 9. Implementation of dedicated signals in the embedded macro. (a) Bi-
nary-encoded receive signal; (b) one-hot-encoded send signal.

Fig. 10. Xilinx Virtex-4 implementation of dedicated signals in the embedded
macro.

Since the implementation of the link macros with communi-
cation channels [see Fig. 5(b)] is located in the static region,
we concentrate on the approaches, which implement the
routing within the PR region, such as the LMBT approach
[see Fig. 5(a)], the wormhole routing approach [see Fig. 5(c)]
and the embedded macro [see Fig. 6]. Table II shows the
resource requirements of a single-master implementation of an
embedded macro. For dedicated signals, a maximum length of
eight consecutive tiles (effective length) is assumed.

In a link macro or embedded macro implementation registers
can be inserted into each tile to reduce communication delay
and subsequently improve the clock frequency. However, using
a pipelined communication may require additional adaptations
of the protocol since the number of clock cycles for the com-
munication depends on the distance of the communicating tiles.
In the embedded macro we decided to add registers to all inputs
and outputs of the bus subscriber as shown in Fig. 7. This guar-
antees a high clock rate with a pipelined structure and a fixed

1054 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 6, JUNE 2011

TABLE II
RESOURCE REQUIREMENTS FOR A SINGLE-MASTER

EMBEDDED COMMUNICATION MACRO

TABLE III
COMPARISON OF RESOURCE REQUIREMENTS FOR THE SINGLE-MASTER

IMPLEMENTATION WITH � CONSECUTIVE TILES, REALIZED

USING DIFFERENT MACRO APPROACHES

latency of two clock cycles. To prevent a bandwidth reduction
caused by the bus latency, the generic bus architecture supports
fast back-to-back transactions as well as separate address- and
data-acknowledges. Thus, in most cases it is possible to transfer
one data word per clock cycle, which results in a near to optimal
transfer rate.

Table III compares the resource requirements of the
single-master implementation with the resource requirements
of a comparable wormhole routing and link macro implemen-
tation on a Virtex-4 FPGA. The link macro implementation
is realized by macros between tiles as shown in Fig. 5(a). All
link-macro-based tiles require 94 slices for the communication,
except the rightmost tiles, which only need 47 slices. For a
communication infrastructure between the base region and 3
tiles (effective length) the embedded macro requires
200 slices, while the link macro approach and the wormhole
routing approach require 282 slices. Even for a low number
of consecutive tiles the embedded macro needs less resources
than the other implementations. While embedded macro prim-
itives can implement different types of signals and topologies,
link-macro-primitives suffer from the fact that they only allow
unidirectional point-to-point connections. As a consequence,
two unidirectional signals (link macro primitives) are necessary
to implement one bidirectional signal. In the wormhole routing
approach the number of communication resources within each
tile is lower than that in the embedded macro implementation.
In contrast to the embedded macro implementation, the number
of resources in the base region scales linearly with the number
of tiles, such that in total the wormhole routing requires as
many slices as the link macro implementation.

TABLE IV
FEATURE COMPARISON OF DIFFERENT COMMUNICATION MACRO APPROACHES

Table IV shows a feature comparison of the different com-
munication macro approaches. As discussed earlier, the em-
bedded macro supports the implementation of shared signals.
Using LMBT, the problem of realizing shared signals is shifted
from the macro to the module implementation. Shared signals
can only be realized if the module supports forwarding of input
and output signals to its neighboring modules. The wormhole
routing macro only allows for direct point-to-point connection
from a tile to the base region, such that a shared signal cannot
be implemented directly. Dedicated signals can be implemented
by embedded macros and wormhole macros. Since LMBT does
not allow a point-to-point connection from any tile to the base
region, they cannot be used for dedicated signals. When config-
uring a PR module in a PR region with LMBT, the communi-
cation is interrupted for the time of the configuration process.
Since the routing channels of the embedded macro and of the
wormhole macro are fixed, the communication is not interrupted
during a reconfiguration process.

In general the delay of all presented communication ap-
proaches increases with the number of consecutive tiles.
Among the presented approaches, the wormhole macro allows
the fastest clock frequency because the base region and the
specific tile are connected directly using fast routing resources.
However, the dedicated routing resources from the base region
to each tile will cause an excessive consumption of routing
resources, and a large resource requirement in the base region
(cf. Table III). The link macro between tiles approach requires
less routing resources than the wormhole macro approach,
while the overall slice requirement is comparable. Furthermore,
this macro does not require the enormous amount of slices
in the base region, as the wormhole routing did. The clock
frequency of the link macro between tiles approach will be
much slower than the wormhole approach, since most of the
communication infrastructure is realized in the module. Thus,
the bandwidth suffers from short hops across the sequence
of tiles. In contrast to the LMBT approach, the embedded
macro supports optimized homogeneous routing within each
tile. Thus, the maximum delay is smaller than in a comparable
LMBT approach, where the routing depends on the module
implementation.

With respect to the placeability of PR modules, it is important
to avoid introducing additional heterogeneity in the PR region,
since this would further restrict the number of feasible positions
of a PR module. Therefore, the communication infrastructure
should be as homogeneous as possible. Wormhole routing is het-
erogeneous, since various routing channels are used to intercon-
nect the tiles with the base region. The embedded macro and the

KOESTER et al.: DESIGN OPTIMIZATIONS FOR TILED PARTIALLY RECONFIGURABLE SYSTEMS 1055

LMBT approaches are homogeneous, such that the number of
feasible positions for the corresponding PR modules is greater
than that for wormhole routing.

The placeability of the PR modules can be further improved if
various synthesis options are considered, which define the fea-
sible positions of the PR modules. In the following section, we
describe an optimization method to improve the placeability of
the PR modules.

V. DESIGN-TIME OPTIMIZATION OF PR MODULES

With respect to run-time placement, the PR modules vary ac-
cording to their resource requirements, their shape, and their
feasible positions. Each feasible position of a PR module can
have a different degree of overlap with the feasible positions
of the other PR modules in the system. The degree of overlap
has an impact on the placeability of the PR module. Those fea-
sible positions that overlap with many other feasible positions
are likely to be blocked by a previously placed instance of an-
other PR module. Thus a reasonable online placement policy
is to always select the free position with the least degree of
overlap as discussed in [16]. Besides maintaining a large number
of free positions at run-time, it is also possible to optimize the
placeability of PR modules at design-time. This is done by min-
imizing the degree of overlap of the feasible positions of the
given PR modules. At design-time the set of feasible positions
of a PR module is defined by the shape and position of the syn-
thesis region. The optimization of the placeability is done by
selecting the synthesis regions of the PR modules that allow the
best possible placement at run-time.

A. Placeability of PR Modules

In order to optimize the placeability of the PR modules a
metric is required, which quantifies the degree of overlap of the
feasible positions. The overlap graph is an undi-
rected graph that enables visualizing these resource dependen-
cies. It shows which of the feasible positions of the PR modules
overlap with each other. The graph can be used with arbitrarily
shaped PR modules. For simplicity we will focus on rectangular
PR modules in the following. A vertex rep-
resents a feasible position of the PR module

. The set of all vertices is defined as

(1)

Hence, the number of vertices is the same as the sum of feasible
positions of all PR modules. For a vertex

and a vertex an edge is
created, if and the area of PR module at position

overlaps with the area of PR module at position
. Fig. 11 shows the overlap graph for the PR modules of

the example in Fig. 2. The overlap graph can be further adapted
to take into account the temporal relations between PR modules
if they are known at design-time. In this case the edges between
PR modules, which are never used at the same time, can be
removed.

With the overlap graph we can evaluate the degree of overlap
for each feasible position of the PR modules. For this purpose
we introduce the position weight. Using the overlap graph the

Fig. 11. Example of an overlap graph.

Fig. 12. Probability and the position weights. (a) Probability weights � ���;
(b) position weights � ���.

computation of the position weights is done in two steps. First,
the probability weights

(2)

are computed for each vertex , where
denotes the probability of an allocation of the

PR module . The probability weight indicates the
probability of a feasible position to be chosen, if all tiles
in the PR region are available and a random placement
is applied. Fig. 12(a) shows the corresponding probability
weights for the PR modules shown in Fig. 2 with a fixed

. With 3 PR modules, the allocation prob-
ability is and PR module
has 2 feasible positions, such that the probability weight for its
feasible positions is .

Second, the position weight of a feasible position is
computed by summing the probability weights of the adjacent
vertices. The set of adjacent vertices is defined as

(3)

and the resulting position weight is calculated by

(4)

The position weights for the PR modules of Fig. 2 are shown in
Fig. 12(b). The position weights reflect the degree of overlap.
For example, the placement of an instance of at position (1,
4) only blocks the position (3, 3) of , while the placement of
an instance of at position (1, 1) blocks the positions (1, 1)
of and (3, 1) of . Therefore, the position weight 5/18 of
position (1, 4) of is lower than the one from position (1, 1).

1056 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 6, JUNE 2011

Apart from the design-time aspects the position weight can
also be used for the placement of PR modules at run-time. The
placement is done by selecting the available position with the
least position weight. This ensures maintaining a large number
of available positions for future placements.

A metric to evaluate the degree of overlap of all feasible po-
sitions is to generate a weighted sum of the position weights of
all feasible positions. As the probability weight reflects
the probability of a feasible position to be selected when ran-
domly placing a module, the overlap weight of all PR modules
is defined as follows:

(5)

The weighted mean of the position weights is divided by the
total number of feasible positions to balance the degree of
overlap and the number of feasible positions. The synthesis re-
gions of the given PR modules can be selected in such a way as
to minimize . A small indicates that the over-
laps of feasible positions of the PR modules are small. Mini-
mizing the overlap weight aims at maximizing the number of
available positions after placement of a PR module at run-time.
Thus the overlap weight is a metric for the placeability of all PR
modules.

B. Optimization of the Overlap Weight

A dynamic system component can be represented by dif-
ferent PR module variants. Each PR module variant has a dif-
ferent shape or location of the synthesis region resulting in a dif-
ferent set of feasible positions. But with the increasing number
of PR module variants the amount of memory for storing the
corresponding configuration data increases as well. Therefore,
it is necessary to limit the number of PR module variants or
even consider only one PR module for each dynamic system
component. For simplicity reasons we assume that each dy-
namic system component is represented by one PR module in
the following.

By using the overlap graph it is possible to optimize the fea-
sible positions of these PR modules at design-time aiming to
improve the placeability at run-time. The optimized design flow
is shown in Fig. 13 and involves the following steps:

1) synthesis regions of at least one PR module variant for each
dynamic system component are selected;

2) resulting PR modules and their feasible positions are
computed;

3) overlap graph is generated based on the feasible positions
of all PR modules;

4) overlap weight is derived based on the overlap graph.
If a PR module of a new dynamic system component requires
to be added to an existing system, the degree of overlap with
the existing PR modules can be minimized by selecting the
synthesis region whose feasible positions cause the minimum
overlap weight.

The design space of a PR module is defined by its set
of possible synthesis regions. In the following we describe
an algorithm to determine all synthesis regions for a rect-
angular PR module. Let us assume that for a synthesis
region the dimensions in number of
tiles are and the position within the PR region is

. is the set of dynamic system components of the
target application. To generate a PR module for a dynamic
system component , a synthesis region needs to be
defined offering enough resources to satisfy the resource

Fig. 13. Design steps from the selection of the synthesis region to the compu-
tation of the overlap weight considering only one PR module for each dynamic
system component.

requirement . If
denotes the

resource availability of the tile at position , then the
resource constraint for generating a PR module at the synthesis
region is

(6)

A synthesis region is minimal if it cannot be reduced in any di-
mension without violating the resource constraint. The set of all
minimal synthesis regions for a dynamic system com-
ponent can be derived by Algorithm 1.

Alg. 1: Method to derive the set of minimal synthesis regions
for dynamic system component .

Inputs: Dynamic system component , resource requirement
, Minimum width , minimum height .

maximum width , maximum height , size
of PR region , resource availability .

Output: Set of minimal synthesis regions for
dynamic system component .

(1)
(2)
(3)
(4) while and
(5) for
(6)
(7)
(8) while
(9)

(10)
(11) end while
(12) if
(13)
(14)
(15) end if
(16) end for
(17)
(18) end while

KOESTER et al.: DESIGN OPTIMIZATIONS FOR TILED PARTIALLY RECONFIGURABLE SYSTEMS 1057

At the beginning the width of the synthesis region is ini-
tialized with a predefined maximum width value . By
default this should be the width of the PR region in terms of
number of tiles . To avoid very large and very small aspect
ratios of the synthesis region, which would affect the perfor-
mance of the resulting PR module, the value can be reduced.
The height of the synthesis region is initialized with a prede-
fined minimum value . By default this should be 1, but
it can also be increased to avoid large aspect ratios. The max-
imum height and the minimum width

can be specified, respectively. In every it-
eration of the loop in line (4), the height is increased by 1
and the width is adjusted according to the selected position
and the resource requirements of the system component. The
loop in line (5) iterates the vertical position and the loop in
line (8) iterates the horizontal position . The set con-
tains all found synthesis region candidates. Based on the candi-
dates , the position , and the size the func-
tion performs the
following steps.

1) If the synthesis region does not satisfy (6),
then does not change the candidates and the
width .

2) If the synthesis region satisfies (6) and
does not, then is a new

candidate. If there is no other previously found candidate
with the same size, which causes an identical set of fea-
sible positions, then is added to the set of
candidates . The width is not changed.

3) If the synthesis region satisfies (6), then
the previously found synthesis region candidates in
are not minimal and can be discarded. The width is
reduced until does not satisfy (6). The
candidates are set to .

For each dynamic system component the set of min-
imal synthesis regions is computed. If only one PR
module is generated for each system component, then the search
space for all combinations of PR module variants is

If , then the objective of the design-time op-
timization is to find the combination of synthesis regions

, which results in an overlap graph that has the
smallest overlap weight.

If a small number of PR modules (e.g.,) is required
to be added to the system, the set of PR modules with a min-
imum overlap weight can be determined by exhaustive search.
To deal with a large number of new dynamic system compo-
nents heuristic approaches are required, since the search space
needs to cover all combinations of PR module variants.

Genetic algorithms are known to be a suitable approach for
solving complex combinatorial optimization problems [28]. To
deal with a large number of dynamic system components, we
have implemented a genetic algorithm with the following spec-
ifications. The chromosome representation of an individual is
done by a vector of synthesis regions , where

. The fitness function is the inverse of the resulting
overlap weight. Recombination is performed by selecting two
parent individuals and swapping the genes (synthesis regions)
up to a randomly selected crossover point. The selection of the

Fig. 14. Overview of the system implementation.

parent individuals is done by roulette wheel selection, i.e., the
probability of the individual of being selected depends on its
fitness value. The mutation of an individual is achieved by ran-
domly changing a gene.

In the following section, we demonstrate the impact of the
design optimization for an example application.

C. Example Implementation

For evaluating the design-time optimization, we consider an
application in the context of embedded systems with a general
purpose processor connected to a PR region. Partial reconfigura-
tion is used to dynamically load IP cores, to allow hardware ac-
celeration and improve system performance. An overview of the
system implementation is shown in Fig. 14. The static system
components are interconnected using a Processor Local Bus
(PLB). The multiport memory controller allows for fast memory
access to externally connected DDR2-SDRAM. The reconfigu-
ration is controlled by the Virtex Configuration Manager (VCM)
[26], which enables partial reconfiguration at a maximum speed
of the ICAP interface (100 MHz, 32-bit). A Linux-based oper-
ating system is used, which supports run-time management of
PR modules [29]. The communication infrastructure, which in-
terconnects the PR region and the static system components, is
based on the embedded communication macro as described in
Section IV-B. The embedded macro preserves the homogeneity
of the tiled PR region and ensures a large number of feasible
positions for the PR modules.

In order to implement a tiled PR region using Xilinx Virtex-4
FPGAs, a suitable region has to be selected. In the Virtex-4 ar-
chitecture a column of a clock region, which is referred to as a
frame, is the smallest partially reconfigurable unit. Hence, the
area of a PR region should be multiples of a frame, and the
smallest possible height for a reconfigurable tile is the height of
a frame. In the example implementation we vertically divide the
FPGA, such that the resources located left of the center column
are dedicated to static system components (base region), and the
resources located right of the center column are considered for
the tiled PR region. Fig. 15 shows an example of the partitioning
for a Virtex-4 FX100 FPGA.

We consider three different partitionings for the tiled PR re-
gion with an area of (1 10), (2 10), and (3 10) tiles.
The tile sizes are chosen with respect to the ratio between the
resources needed for the communication infrastructure and the
resources available for the partially reconfigurable logic. Inside

1058 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 6, JUNE 2011

Fig. 15. Partitioning of the Xilinx Virtex-4 FX100 FPGA using (2� 10) tiles.

a tile, the number of resources for interconnecting the tiles and
the base region does not depend on the tile size but on the speci-
fication of the communication infrastructure. To maintain a cer-
tain degree of available resources for partially reconfigurable
logic within each tile, the tile size should not be too small. The
number of resources of the different tiles are shown in Table V.
In this example the interconnection of the tiles is realized by a
single-master embedded communication macro, which supports
a shared bus for 32-bit data width, and 14-bit address width.
The bus structure features 16-bit dedicated control signals with
2-bit dedicated signals, which are implemented by using the
techniques described in [1]. The chosen communication infra-
structure requires 56 slices per tile. As shown in Table V, the
percentage of slices used for communication increases with re-
ducing tile size. For each partitioning we have measured the
register to register delay from the base region to the rightmost
tile by using the timing analyzer tool of the Xilinx design tools.
Based on the delay the peak bandwidth for a 32-bit communi-
cation is shown in Table V. With an increasing number of tiles
the critical path of the embedded macro increases as well, such
that the resulting peak bandwidth decreases.

Since the various resource types (Slices, BRAMs, DSPs) of
Virtex-4 FPGAs are arranged in columns, the reconfigurable
fabric can be considered as homogeneous in the vertical direc-
tion. This homogeneity can be used to define subregions based
on the following procedure. Starting from the bottom tile row of
the PR region, the area of the subregion is gradually expanded
until it contains enough available resources so that each single
PR module can be placed. The process repeats with the next
subregion, which is located on top of the preceding subregion,
until the top row of the tiles in the PR region is reached. The

TABLE V
SPECIFICATION OF THE TILES FOR THE DIFFERENT PR REGIONS

TABLE VI
EXAMPLE SET OF DYNAMIC SYSTEM COMPONENTS

test system comprises the embedded PowerPC of the Virtex-4
FX100 FPGA and the dynamic system components listed in
Table VI. The components are considered to be hardware ac-
celerators, which are dynamically loaded to enhance the func-
tionality of the PowerPC.

Until now commonly accepted benchmarks for comparing
dynamically reconfigurable systems have not been established.
In order to test the placement, we have generated different
random load and unload sequences for the
selected dynamic system components. For the benchmark
the value of reflects the number of instances of PR modules
that are executed in parallel. Each benchmark removes the
earliest placed instance of PR module and places a new ran-
domly chosen PR module. Compared to a random removal of
placed instances, this policy maintains comparability between
the simulated benchmarks. Each test sequence contains 10 000
placement requests. The placement is done by selecting the
free feasible position with the least position weight . A
placement violation is the situation when the application is
requesting the placement of a PR module, but in the current
configuration there are not enough free contiguous resources
available to place an instance of the requested PR module.
We consider two approaches to handle placement violations.
The first approach is a reject policy, where the unsuccessful
placement request is rejected and not repeated in the future.
This covers real-time systems, which do not allow delaying
placements. The second approach is a queuing policy that
queues unsuccessful placement requests and performs the
placement as soon as enough resources become available.

In the following example we only select the FPU components
and generate one PR module for each component using the PR
regions (1 10), (2 10), and (3 10) without subregions. For

KOESTER et al.: DESIGN OPTIMIZATIONS FOR TILED PARTIALLY RECONFIGURABLE SYSTEMS 1059

Fig. 16. Example simulation using the FPU components and the PR region partitionings (1 � 10), (2 � 10), and (3 � 10). (a) Average available positions [%];
(b) placement violations [%]; (c) average placement requests in queue.

each PR region we generate two sets of PR modules. One set
contains the PR modules with feasible positions optimized with
respect to a minimal overlap weight (min.). The set is de-
rived by computing the overlap weight for every possible com-
bination of synthesis regions for the PR modules and selecting
the combination with the least overlap weight. The second set
of PR modules contains the ones optimized with respect to the
maximum number of feasible positions (max.).

A metric to determine the placement quality is to consider
the percentage of available positions, which is determined by

, where
is the set of available feasible positions for PR module .
Fig. 16(a) shows the average percentage of available positions
of the PR modules for each benchmark. A larger number of
available positions indicates a lower degree of fragmentation
and a better placeability of additional instances of PR modules.
As the number of concurrently placed instances of PR modules
increases, the number of available positions decreases. When
comparing the different sets of PR modules, we find that the
overlap weight optimized PR modules using the (2 10)
PR region offer the most available positions, followed by the
overlap weight optimized PR modules using the (3 10)
PR region. The average number of available positions of the
overlap weight optimized PR modules is up to 6.4 times larger
(benchmark) than one from the PR modules optimized with
respect to the maximum number of feasible positions.

Fig. 16(b) shows the placement violations considering the re-
ject policy. The benchmark did not cause any placement vi-
olations and is therefore not shown. In , , and the per-
centage of placement violations of the set of overlap weight op-
timized PR modules is significantly lower than the percentage of
placement violations of the other sets of PR modules. A lower
number of placement violations suggests a large degree of re-
source utilization of the PR region. By using the overlap weight
optimized PR modules the placement violations can be reduced
by up to 60.6% (benchmark). For the chosen FPU compo-
nents, the (2 10) PR region has the best run-time behavior,
although the (3 10) PR region offers a larger degree of place-
ment options. For a queuing policy the results are equivalent, as
shown in Fig. 16(c). It shows the average number of placement
requests in the queue.

When only the CORDIC components are used, the set of
overlap weight optimized PR modules is identical to the set of

TABLE VII
PERCENTAGE OF PLACEMENT VIOLATIONS USING ALL COMPONENTS

PR modules optimized for the maximum number of feasible po-
sitions. This is due to the fact that all tiles offer the same amount
of slices, and the CORDIC components use slices only. So the
overlap weight optimization only has an impact on placement if
the tiles have a different resource availability and the dynamic
system components use different types of resources, like in the
case of the FPU components.

Table VII shows the percentage of placement violations using
all dynamic system components and a reject policy. It focuses
on the impact of using subregions in the PR region. In the sim-
ulation the subregions span the whole width of the PR region.
The subregions for the tiled PR regions (2 10) must have a
size of at least (2 3). A height of 3 is necessary since the
component FPU universal requires 3 of the left tiles. By using
subregions an allocation width of can be achieved,
while the tiled PR regions (2 10) and (3 10) without sub-
regions cause placement violations in the benchmark .

The previously shown results are based on the assumption
that each dynamic system component has only one PR module
variant. In the following we focus on the impact of using dif-
ferent PR module variants for each dynamic system component.
Due to the homogeneity in vertical direction, the tiled PR region
(2 10) allows a PR module to be made of either left tiles only,
or right tiles only, or both type of tiles. Therefore, a dynamic
system component can have at the most PR module vari-
ants. The optimization of the overlap weight is done by the ge-
netic algorithm as specified in Section V-B with a population
size of 200 individuals. The best solution after 50 generations is
used to generate the PR modules. The set of overlap weight op-
timized PR modules is generated by selecting the PR module
variants with the best for each dynamic system compo-
nent. In the case of the PR modules optimized for the maximum

1060 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 6, JUNE 2011

Fig. 17. Percentage of placement violations using all components and different
numbers of PR module variants for (2 � 10) tiles.

number of feasible positions, for each dynamic system compo-
nent the PR module variants with the largest number of fea-
sible positions are added to the set of PR modules. Fig. 17 shows
the placement violations for the tiled PR region (2 10).

The simulations with one PR module for each dynamic
system component show that the overlap weight optimized PR
modules cause fewer placement violations than the PR modules
optimized for the maximum number of feasible positions.
In the simulations with three PR module variants, the set of
overlap weight optimized PR modules is the same as the set of
PR modules with the maximum number of feasible positions.
The placement violations are reduced by up to 55.4% for the
benchmark . With an increasing number of PR module
variants, the number of placement violations decreases, but the
memory for storing the equivalent configuration data increases
as well. Therefore, the overlap weight optimization is partic-
ularly useful for embedded systems with a limited amount of
configuration data memory that allow storing only one or two
PR module variants per dynamic system component.

VI. CONCLUSION

In this paper, we discuss concepts to implement the on-chip
communication infrastructure for interconnecting partial recon-
figuration modules. Currently, Xilinx bus macros are the only
semi-automated approach for generating communication links
between two adjacent single-module PR regions. For tiled PR
regions, which offer a higher flexibility in placing a PR module,
these communication links are not suitable. In heterogeneous
FPGA architectures, it is important to design a homogeneous
communication infrastructure to avoid further restricting the
placement of PR modules by introducing an additional degree
of heterogeneity. The utilized communication resources in each
tile should be the same, such that PR modules can connect at
a predefined connection point without causing any glitches or
interrupting ongoing communication. The presented embedded
communication macro fulfills these requirements and can
easily be adapted to any partially reconfigurable architecture. In
comparison with link macros or wormhole routing approaches,
the embedded communication macro has the best resource
utilization.

In tiled PR regions, the placement quality of PR modules
depends not only on the placement algorithm, but also on de-

sign-time aspects such as the chosen synthesis regions of the PR
modules and their corresponding feasible positions. In this paper
we propose a design method for selecting a synthesis region for
a PR module aiming to optimize placement at run-time. The key
idea is to compute a position weight for each feasible position
of every PR module and to generate an overlap weight, which
quantifies the degree of position overlaps. The overlap graph
is a data structure for deriving the position weights. As shown
by experiments, the overlap optimization can significantly im-
prove the placement of PR modules. In addition to overlap op-
timization, the paper introduces the concept of subregions in a
tiled PR region. A tiled PR region with subregions and mul-
tiple single-module PR regions share the property of supporting
a fixed allocation width, which is necessary for applications that
are not able to handle placement violations. In a single-module
PR region approach the packing of several small modules into
a combined PR module requires sharing the communication in-
terface. Additionally, the synthesis of different PR modules for
the various combinations is required. These drawbacks are over-
come in the tiled subregion approach. The use of subregions al-
lows placing additional PR modules if a reasonable amount of
free contiguous resources is available within the subregion.

Although the presented design concepts are demonstrated for
Xilinx Virtex FPGAs, they can be applied to any partially re-
configurable device. Future work includes refining the design
method to support automated search for the number and the
sizes of the tiles, and extending our approach to cover a wide
range of applications.

REFERENCES

[1] J. Hagemeyer, B. Kettelhoit, M. Koester, and M. Porrmann, “Design
of homogeneous communication infrastructures for partially reconfig-
urable FPGAs,” in Proc. Int. Conf. Eng. Reconfigurable Syst. Algo-
rithms (ERSA), 2007, pp. 238–247.

[2] M. Koester, W. Luk, J. Hagemeyer, and M. Porrmann, “Design opti-
mizations to improve placeability of partial reconfiguration modules,”
in Proc. Int. Conf. Des., Autom. Test Eur. (DATE), 2009, pp. 976–981.

[3] G. Brebner, “The swappable logic unit: A paradigm for virtual hard-
ware,” in Proc. 5th IEEE Symp. FPGA-Based Custom Comput. Mach.
(FCCM), Washington, DC, 1997, pp. 77–86.

[4] Xilinx Inc., San Jose, CA, “Two flows for partial re-configuration:
Module based or small bit manipulations,” Appl. Notes 290, 2002.

[5] P. Lysaght, B. Blodget, J. Mason, B. Bridgford, and J. Young, “En-
hanced architectures, design methodologies and CAD tools for dy-
namic reconfiguration of XILINX FPGAs,” in Proc. 16th Int. Conf.
Field Program. Logic Appl., 2006, pp. 12–17.

[6] S. Fekete, E. Köhler, and J. Teich, “Optimal FPGA module placement
with temporal precedence constraints,” in Proc. Conf. Des., Autom. Test
Eur., Piscataway, NJ, 2001, pp. 658–667.

[7] K. Danne and S. Stühmeier, “Off-line placement of tasks onto recon-
figurable hardware considering geometrical task variants,” in Proc. Int.
Embed. Syst. Symp. (IESS), 2005, pp. 15–17.

[8] P. Sedcole, B. Blodget, J. Anderson, P. Lysaght, and T. Becker, “Mod-
ular partial reconfiguration in Virtex FPGAs,” in Proc. 15th Int. Conf.
Field Program. Logic Appl. (FPL), 2005, pp. 211–216.

[9] P. Manet, D. Maufroid, L. Tosi, G. Gailliard, O. Mulertt, M. Di Ciano,
J.-D. Legat, D. Aulagnier, C. Gamrat, R. Liberati, V. La Barba, P. Cu-
velier, B. Rousseau, and P. Gelineau, “An evaluation of dynamic partial
reconfiguration for signal and image processing in professional elec-
tronics applications,” EURASIP J. Embed. Syst., vol. 2008, pp. 1–11,
2008.

[10] S. Toscher, T. Reinemann, and R. Kasper, “An adaptive FPGA-based
mechatronic control system supporting partial reconfiguration of con-
troller functionalities,” in Proc. NASA/ESA Conf. Adapt. Hardw. Syst.,
2006, pp. 225–228.

[11] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template place-
ment for reconfigurable computing systems,” IEEE Des. Test Comput.,
vol. 17, no. 1, pp. 68–83, Jan. 2000.

KOESTER et al.: DESIGN OPTIMIZATIONS FOR TILED PARTIALLY RECONFIGURABLE SYSTEMS 1061

[12] C. Steiger, H. Walder, and M. Platzner, “Operating systems for recon-
figurable embedded platforms: Online scheduling of real-time tasks,”
IEEE Trans. Computers, vol. 53, no. 11, pp. 1393–1407, Nov. 2004.

[13] M. Handa and R. Vemuri, “Area fragmentation in reconfigurable op-
erating systems,” in Proc. Int. Conf. Eng. Reconfigurable Syst. Algo-
rithms, 2004, pp. 77–83.

[14] A. Ahmadinia, C. Bobda, M. Bednara, and J. Teich, “A new approach
for on-line placement on reconfigurable devices,” in Proc. 18th Int. Par-
allel Distrib. Process. Symp. (IPDPS), 2004, pp. 134–140.

[15] Y. Lu, T. Marconi, G. N. Gaydadjiev, K. Bertels, and R. J. Meeuws,
“A self-adaptive on-line task placement algorithm for partially recon-
figurable systems,” in Proc. 22nd Ann. Int. Parallel Distrib. Process.
Symp. (IPDPS)—RAW, 2008, pp. 1–8.

[16] M. Koester, H. Kalte, and M. Porrmann, “Task placement for hetero-
geneous reconfigurable architectures,” in Proc. IEEE Conf. Field-Pro-
gram. Technol. (FPT), 2005, pp. 43–50.

[17] E. Keller, “Jroute: A run-time routing API for FPGA hardware,” in
Proc. 15th Int. Parallel Distrib. Process. Symp. (IPDPS)—Workshops
Parallel Distrib. Process., 2000, pp. 874–881.

[18] N. Steiner and P. Athanas, “An alternate wire database for Xilinx
FPGAs,” in Proc. 12th Ann. IEEE Symp. Field-Program. Custom
Comput. Mach., 2004, pp. 336–337.

[19] S. A. Guccione and D. Levi, “XBI: A java-based interface to FPGA
hardware,” in Proc. SPIE Conf. Configur. Comput.: Technol. Appl.,
1998, vol. 3526, pp. 97–102.

[20] S. Raaijmakers and S. Wong, “Run-time partial reconfiguration for re-
moval, placement and routing on the Virtex-II-Pro,” in Proc. Int. Conf.
Field Program. Logic Appl., K. Bertels, W. A. Najjar, A. J. van Gen-
deren, and S. Vassiliadis, Eds., 2007, pp. 679–683.

[21] M. Huebner, C. Schuck, and J. Becker, “Elementary block based 2-di-
mensional dynamic and partial reconfiguration for virtex-II FPGAs,”
presented at the 20th Int. Parallel Distrib. Process. Symp. (IPDPS),
Rhodes Island, Greece, 2006.

[22] P. Athanas, J. Bowen, T. Dunham, C. Patterson, J. Rice, M. Shelburne,
and J. Suris, “Wires on demand: Run-time communication synthesis
for reconfigurable computing,” in Proc. Int. Conf. Field Program. Logic
Appl., 2008, pp. 513–516.

[23] H. Kalte and M. Porrmann, “REPLICA2Pro: Task relocation by bit-
stream manipulation in Virtex-II/Pro FPGAs,” in Proc. ACM Int. Conf.
Comput. Frontiers, 2006, pp. 403–412.

[24] T. Becker, W. Luk, and P. Cheung, “Enhancing relocatability of partial
bitstreams for run-time reconfiguration,” in Proc. IEEE Symp. Field-
Program. Custom Comput. Mach. (FCCM), 2007, pp. 35–44.

[25] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins,
“Interconnection networks enable fine-grain dynamic multi-tasking on
FPGAs,” in Proc. 12th Int. Conf. Field-Program. Logic Appl. (FPL),
2002, pp. 795–805.

[26] J. Hagemeyer, B. Kettelhoit, M. Koester, and M. Porrmann, “A design
methhodology for communication infrastructures on partially recon-
figurable FPGAs,” in Proc. 17th Int. Conf. Field Program. Logic Appl.
(FPL), 2007, pp. 331–338.

[27] J. Hagemeyer, B. Kettelhoit, and M. Porrmann, “Dedicated module ac-
cess in dynamically reconfigurable systems,” presented at the 20th Int.
Parallel Distrib. Process. Symp. (IPDPS), Rhodes Island, Greece, 2006.

[28] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, Jan. 1989.

[29] M. D. Santambrogio, V. Rana, and D. Sciuto, “Operating system sup-
port for online partial dynamic reconfiguration management,” in Proc.
Int. Conf. Field Program. Logic Appl., 2008, pp. 455–458.

Markus Koester received the Ph.D. degree from the University of Paderborn,
Paderborn, Germany, in 2007, for his work on resource management for partially
reconfigurable architectures.

In October 2007, he received a Post-Doctoral scholarship from the German
Research Council (DFG) and continued his research on partial reconfiguration in
the "Custom Computing" Research Group, Imperial College London, London,
U.K. His works were focused on design optimizations for FPGA-based recon-
figurable systems. In April 2009, he returned to the University of Paderborn
and started to work as a Research Assistant with the "System and Circuit Tech-
nology" Group. He is currently conducting research in the area of reconfigurable
computing in embedded systems.

Wayne Luk (F’09) received the M.A., M.Sc., and D.Phil. degrees in engineering
and computing science from the University of Oxford, Oxford, U.K.

He is a Professor of computer engineering with the Department of Com-
puting, Imperial College London, London, U.K., and was a Visiting Professor
with Stanford University, Stanford, CA, and with Queen’s University Belfast,
Belfast, U.K. His research interests include theory and practice of customizing
hardware and software for specific application domains, such as multimedia, fi-
nancial modelling, and medical computing. Much of his current work involves
high-level compilation techniques and tools for high-performance computers
and embedded systems, particularly those containing accelerators such as field-
programmable gate arrays and graphics processing units.

Jens Hagemeyer studied electrical engineering combined with computer
science at the University of Paderborn, Paderborn, Germany. He received
the diploma degree from the University of Paderborn, in 2006, where he is
currently pursuing the Ph.D. degree in the area of FPGA-centric research
topics, especially run-time reconfiguration of single-FPGA and multi-FPGA
systems.

He is working with the Research Group "System and Circuit Technology",
University of Paderborn, as a Research Assistant. He has designed several
components for the RAPTOR rapid prototyping system, using state of the art
HDI-PCB technology. Since 2004, he is active in the area of FPGA research.

Mario Porrmann (M’08) received the Diploma degree in electrical engineering
from the University of Dortmund, Dortmund, Germany, and the Dr.-Ing. de-
gree from the University of Paderborn, Paderborrn, Germany, in 1994 and 2001,
respectively.

From 2001 to 2009, he was an Assistant Professor (Akademischer Oberrat)
in the Research Group System and Circuit Technology, Heinz Nixdorf Institute,
University of Paderborn. Currently, he is an Acting Professor of the System and
Circuit Technology Group. His research is focused on the development and anal-
ysis of on-chip multiprocessor systems, dynamically reconfigurable microelec-
tronic systems, and resource-efficient architectures for network components.

Ulrich Rückert (M’90) received the Diploma degree in computer science and
the Dr.-Ing. degree in electrical engineering from the University of Dortmund,
Dortmund, Germany, in 1984 and 1989, respectively.

From 1985 to 1992, he worked on microelectronic implementation of neural
networks at the Faculty of Electrical Engineering, University of Dortmund.
From 1993 to 1994, he was a Professor with the Technical University of
Hamburg-Harburg, Germany, heading a research group on Microelectronics.
In 1995, he joined the Heinz Nixdorf Institute, University of Paderborn, Pader-
born, Germany. As a Full Professor, he held the chair in System and Circuit
Technology. In 2001, he was appointed Adjunct Professor with the Department
of Information Technology, Queensland University of Technology, Brisbane,
Australia. Since 2009, he has been a Professor with Bielefeld University,
Bielefeld, Germany. His research group Cognitronics and Sensor Systems is
a member of the Cognitive Interaction Technology Cluster of Excellence. His
main research interests are bio-inspired architectures for nanotechnologies and
cognitive robotics.

