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Abstract—Real-time object detection is becoming necessary for 

a wide number of applications related to computer vision and 

image processing, security, bioinformatics, and several other 

areas. Existing software implementations of object detection 

algorithms are constrained in small-sized images and rely on 

favorable conditions in the image frame to achieve real-time 

detection frame rates. Efforts to design hardware architectures 

have yielded encouraging results, yet are mostly directed towards 

a single application, targeting specific operating environments. 

Consequently, there is a need for hardware architectures capable 

of detecting several objects in large image frames, and which can 

be used under several object detection scenarios. In this work, we 

present a generic, flexible parallel architecture, which is suitable 

for all ranges of object detection applications and image sizes. 

The architecture implements the AdaBoost-based detection 

algorithm, which is considered one of the most efficient object 

detection algorithms. Through both FPGA emulation and large-

scale implementation, and RTL synthesis and simulation, we 

illustrate that the architecture can detect objects in large images 

(up to 1024x768 pixels) with frame rates that can vary between 

64-139 fps for various applications and input image frame sizes. 

 
Index Terms—Object Detection, Systolic Arrays, Very Large 

Scale Integration. 

 

I. INTRODUCTION 

BJECT detection in video and images is an important 

operation in several embedded applications, such as 

computer vision and image processing applications, 

bioinformatics, security, and artificial intelligence. Object 

detection involves the extraction of information from an image 

(or a sequence of) frames, processing of the information, and 

determining whether the information contains a particular 

object and its exact location in the image. This process is 

computationally intensive, and several attempts have been 

made to design hardware-based object detection algorithms, 

especially in the context of embedded and real time systems 

[1]-[5], [8]-[12], [16], [18]-[24], and [28]-[29]. This is 

particularly emphasized in safety-critical applications such as 

search-and-rescue operations, biomedical applications (such as 

laparoscopic surgeries), surveillance of critical infrastructure 

and several other applications. The majority of the proposed  

works target FPGA implementations; additionally, they are 

either application-specific or operate on images of relatively 

small sizes in order to achieve real-time response [8], [16]-

[17]. As such, a generic, real-time object detection hardware 

 
 

architecture, independent of image sizes and types of objects, 

can potentially benefit several applications, and most 

importantly, provide the foundations for further post-detection 

applications such as object recognition.   

There are several algorithms used to perform detection, 

each of which has its own advantages and disadvantages. This 

paper presents a generic architecture based on the object 

detection framework presented by Viola and Jones [6] where 

they utilize the AdaBoost learning algorithm introduced by 

Freund and Schapire [7], [13]. The proposed architecture 

extends our preliminary work proposed initially in [8]. In this 

work, we extend the implementation of the AdaBoost 

detection framework by several algorithm-driven design 

optimizations, focus on the general object detection problem, 

and address the image size limitations. We also expand our 

evaluation strategy to include both an FPGA implementation 

for the purposes of validation of our architecture, as well as an 

ASIC implementation, for which we evaluate based on three 

different object detection case studies.  

The architecture proposed in this work is based on a 

massively parallel systolic computation of the classification 

engine using a systolic array implementation which yields 

extremely high detection frames per second (fps). The 

architecture is designed in such a way as to boost parallel 

computation of the classifiers used in the algorithm, and 

parallelize integral image computation, reducing the frequency 

of off-chip memory access. To make the architecture scalable 

in terms of image sizes, we utilize an image pyramid 

generation module in conjunction with the systolic array. As 

the array elements are modular and simple, and 

communication is regular and predetermined, the architecture 

is highly scalable and can operate on high frequency. The 

designer can select all the appropriate design parameters with 

the targeted operating environment in mind, without affecting 

the real-time constraints. The designer can also choose the 

operating frequency (with power constraints in mind), the 

array size (with area constraints in mind), and image size (with 

targeted application specifications in mind). The architecture 

is flexible as well in terms of input image size; the maximum 

input image size depends on the silicon budget available, 

however smaller images may easily be processed by the 

system as the input image size can be loaded as a parameter. 

Moreover, the architecture can support different training sets 

and different training set formats.  

The architecture is evaluated by verifying its operation on a 

Xilinx Virtex II Pro FPGA, and by synthesizing and 
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implementing the architecture using Synopsys Design 

Compiler and a commercial CMOS 65nm cell library. The rest 

of this paper is organized as follows. First, a detailed 

description of the algorithm is given in section II, where the 

hardware implementation requirements are outlined. Section II 

also gives a review of related work. Section III presents the 

proposed architecture, and section IV presents the systolic 

computation overview, explaining dataflow and computational 

semantics. Section V presents the evaluation framework along 

with the results for both the FPGA implementation and the 

ASIC synthesis. Section VI concludes this paper, giving future 

directives. 

 

II. BACKGROUND AND RELATED WORK 

A. The AdaBoost Algorithm and Hardware Implementation 

Requirements. 

The method of utilizing AdaBoost as part of a learning 

algorithm for robust real-time object detection was first 

introduced by Viola and Jones [6], in order to select a number 

of visual features for producing efficient and accurate 

classifiers. AdaBoost utilizes a small number of weak-

classifiers, which are then used to construct cascades of strong 

classifiers. The combination of the strong classifiers in a 

cascade results in high accuracy rates and computational 

efficiency. 

The most popular weak classifiers used with AdaBoost are 

the Haar-like features; fixed-size images which contain a 

small number of black and white rectangles. These features act 

as filters that can detect the presence or absence of certain 

visual characteristics in an image. The computation of a Haar-

like feature involves calculating the sum of the pixel values in 

the white rectangles of the feature minus the sum of pixel 

values in the black rectangles, by convolution with the input 

image.  The original algorithm [6] used features starting at 

24x24 pixels, however, the feature size can vary with the 

application. The number of rectangles for each feature varies 

also depending on the object of interest. Rectangles and 

features, along with the feature operation are shown in Fig. 1. 

The strong classifiers constructed by AdaBoost are setup in 

a cascade and each strong classifier is a stage in the detection 

process. Each stage consists of a group of Haar-like features 

selected by AdaBoost during training. The outcome of each 

Haar-like feature in a stage is computed and accumulated. 

When all the features in a stage are computed, a stage 

threshold value (to) is used to determine if the sample is a 

successful candidate to move on to the next stage or not. This 

technique accelerates the process of rejecting an image region 

that does not contain objects of interest, so that computation 

time will focus only on successful candidates. 

When a cascade of stages of features is computed, the 

outcome for the search window for which the cascade is 

evaluated is known. However, objects in the image frame 

which are larger than the search window and the feature, do 

not get detected. This is usually solved by downscaling the 

original image frame, subsequently reducing the object size, 

and making it detectable. However, Viola and Jones suggest 

enlarging the feature instead; this way, image data that could 

potentially be lost by downscaling remains, and the features 

that are simply black and white rectangles, scale linearly 

without loss of data. Consequently, at the end of each cascade 

computation, the process is repeated for a larger feature size, 

until the size of the feature reaches the size of the largest 

possible object (in terms of pixels) in the input image frame. 

The amount of scaling also impacts the detection frame rate 

significantly, which further stresses the need for rapid feature 

computation.  

To speed up the feature computation, Viola and Jones 

propose an alternative input image representation, called the 

integral image. The integral image is simply a transformation 

of the original input image, to an image where each pixel 

location holds the sum of all the pixels to the left and above of 

that location [6]. The advantage of using the integral image is 

the ability to compute the sum of a rectangle in a rapid 

manner. As shown in Fig. 1 (rectangle computation), the 

computation for rectangle D is simply two additions and two 

subtractions of the four corner points of the rectangle when 

using the integral image rather than the original image. Hence, 

regardless of the feature or search window size, only four 

values per rectangle are necessary to compute the value of 

each feature. Additionally, the location of the rectangles 

within each feature is predetermined from the training set, 

hence to evaluate each rectangle we need the offset dx and dy 

values from the starting coordinate of each feature (see Fig. 1, 

center-bottom). The offset coordinates are part of the training 

set, where each feature is associated with a list of the feature’s 

rectangles and the four pairs of (dx,dy) offsets necessary. This 

holds true during feature upscaling as well, as since the 

rectangle coordinates are fixed, dx and dy are also scaled 

linearly with the scale factor. For example, if a feature scales 

from 24x24 to 30x30, (i.e. a scale factor of 1.25) a rectangle 

that in the initial feature would be located at starting 

coordinate (dx = 4, dy = 8) would be mapped to (dx = 5, 

dy=10), with dx and dy multiplied by the scale factor (rounded 

to the nearest integer). 

One important disadvantage of the integral image 

computation however lies in the implementation of the 

addition and storage required for computing and storing the 

integral image values. As the size of the input image grows, 

the adder and storage grow proportionally as well. Recall that 

an integral image pixel located at (x, y) holds the sums of all 

pixels above y and to the left of x (Fig. 1). As the range of x 

and y grows, the amount of pixels summed for computing the 

value of integral image pixel (x, y) grows exponentially (x*y); 

hence, the adder precision and memory requirements change 

as well. This can be addressed by applying the algorithm over 

smaller regions of the input image rather than the entire image. 

All the above computations are essential for the 

classification process required by the detection algorithm. 

There are also some additional computations necessary to deal 

with the varying characteristics in which the object of interest 

may appear, due to the lighting and environmental variations.  

The AdaBoost framework uses a lighting correction technique 

to compensate for these variations. This technique requires the 

computation of the squared integral image for each input 

image (each image location holds the sum of the squared pixel 

values). This is necessary to compute the variance (VAR) and 

the standard deviation (σ) of the image, to compensate for the 
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Fig. 1.  Basic Concepts used in the AdaBoost object detection framework 

 
Fig. 2.  Outline of the AdaBoost-based classification procedure 

 
Fig. 3.  Stage Evaluation outline 

 

 

 
lighting variations, as shown in (1). The standard deviation is 

multiplied with the original feature threshold (t0) given in the 

training set, to obtain the compensated threshold (t) which 

dynamically takes care of any lighting variations encountered 

during the detection stage, and improves the overall accuracy 

of the algorithm. It is needed to be done only once for every 

search window however; all subsequent features evaluated 

over that search window can use the computed standard 

deviation value as shown in (1).  
Given that the search window size is known, we avoid the 

costly division operation using the reciprocal of the area as a 

constant, and multiply it. The sum of the pixels is then 

squared, and subtracted from the computed value of the 

squared integral image, to give us the variance. To compute 

the standard deviation, we need the square root of the 

variance. The square root however is a tedious operation when 

it comes to hardware, so a better solution could be explored. 

To compute the compensated threshold we need the product of 

the original threshold and the standard deviation (σi), as shown 

in the first line of (2). We therefore square both sides of the 

equation, multiplying the variance with the squared value of 

the original threshold (can be pre-computed during training 

and stored in the training set), to yield the squared value of the 

compensated threshold. Thus, the square root operation 

becomes a multiplication instead. 

𝑉𝐴𝑅 =  ∑ [
∑ 𝑋𝑖

# 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
𝑖=0

𝐴𝑅𝐸𝐴
]

2

 
# 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
𝑖=0 𝑎𝑛𝑑 𝜎 = √𝑉𝐴𝑅            (1) 

𝑡 = 𝑡𝜎 ∗ 𝜎𝑖   ⇒  𝑡2 = (𝑡0)2 ∗ 𝑉𝐴𝑅           (2) 

 The sum of all weighted feature rectangles is used to 

determine the feature sum; if this sum exceeds the 

compensated threshold then it is set to a predetermined value 

obtained from the training set. Otherwise it is set to another 

predetermined value, also obtained from the training set. All 

feature sums are also accumulated to compute the stage sum. 

At the end of each stage, the stage sum is compared to a 

predetermined stage threshold. If it is larger, the search 

window is a successful candidate region to contain the object 

of interest; otherwise, it is discarded, and omitted from the rest 

of the computation. When all search windows finish, features 

are scaled by a predetermined factor, to detect objects larger 

than the original feature size. The computation is repeated 

again, using new training values set for the larger scale, until 

all objects of all sizes are detected in the image frame. The 

algorithm computation outline and the stage evaluation outline 

are shown in Fig. 2 and Fig. 3 respectively.  

To map this algorithm in hardware, we need to determine an 

efficient access to the values of the integral image used to 

compute the rectangle outcomes. Given that the bulk of the 

computation focuses on computing each feature, and given 

that the computation is identical, the challenge shifts to 

finding an efficient way to access the values of the integral 

image in parallel, and be able to employ the inherent 

parallelism of computing these rectangles over the entire 

image. Thus, storing the integral and integral squared images 

into single memory blocks essentially limits the number of 

rectangle coordinates accessed in parallel and creates 

contention. Similarly, replicating the memory blocks to 

increase parallelism results in high memory requirements, and 

if the memory is off-chip, in an increased latency [15]. Thus, 

we present an architecture that provides parallel access to the 

integral image values, and provides parallel data movement to 

result in rapid computation of rectangles across the entire 

image frame. Next, we discuss related work and alternative 

implementations. 

B. Related Work 

The majority of object detection hardware implementations 

deal with specific applications, and are designed aiming 

performance towards the specific host environment. Some 

early work targets neural network implementations, such as 

[14], [16], [17], and the AdaBoost algorithm has only recently 

gained attention as a promising alternative. The AdaBoost-

based visual object detection framework is suitable for a wide 

range of computer vision applications and has been used in 

various tasks involving detection. The majority of these 

implementations however, have been done using software; 
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hardware implementations have been limited to the application 

of face detection [3], [8-12], [28] and [29] and have mostly 

targeted FPGAs. The majority of the proposed hardware 

implementations follows some basic principles that were 

originally introduced in our preliminary implementation in [8], 

and suggests the computation of the integral image as well as 

the access of its values to be implemented as a systolic array 

rather than using a central (or even, distributed) memory.  

Recent work by M. Hiromoto et al [9] proposed a hybrid 

model consisting of parallel and sequential modules. The 

parallel modules are assigned to the early stages of the 

algorithm which are frequently used whereas the latter stages 

are mapped onto sequential modules as they are rarely 

executed. However, the separation of the parallel and 

sequential stages needs to be reevaluated every time there is a 

change in the training data. [10] uses a cell array architecture 

for the main classification modules. The integral image is 

generated for each sub-window, and is then used for 

classification through a cell array. Additionally the input 

image is scaled down instead of the Haar-like features scaling 

up. A simpler version of the algorithm was implemented in 

[11] where only 3 stages of classification are used, with an 

input image size of a 120x120 image. The integral image is 

computed for each sub window that is generated, rather than 

the whole image. Furthermore, an image pyramid generation 

unit is used to produce downscaled versions of the input 

image. In the work presented by Y. Shi et al [12] some 

optimization methods are suggested to speed up the detection 

procedure when considering systolic AdaBoost 

implementations. The proposed work introduces two pipelines 

in the integral image array to increase the detection process; a 

vertical pipeline that computes the integral image and a 

horizontal pipeline that can compute a rectangle feature in one 

cycle. The implementation in [28] employs very similar 

architecture to the ones presented in [9] and [10] but with a 

massively reduced number of training features and thus 

manages to process more than 100 fps, illustrating that 

training set optimizations are also a factor that can be 

potentially explored. However, no information is given on the 

method used to reduce the training set. 

A specialized recognition processor was presented in [29] 

that introduces three techniques related to the handling of 

Haar-like features. A cache is used to hold recently referenced 

training data; a feature coordinator decoder is used for faster 

access, and a Haar-feature value extractor is used to improve 

throughput. More recently, a SystemC implementation was 

presented in [24], where initial simulations showed an 

achieved frame rate of 42fps, under a modified architecture 

and reduced training set. The contributions of the work in [24] 

also detail opportunities for system-level optimization, using 

modern design tools such as SystemC. 

Table I presents a summary of existing implementations, 

and gives a brief comparison in terms of the training sets used 

(features and stages), image and search window size, scaling 

techniques and the impact on the number of resulting search 

windows. Table I also provides a brief comparison in terms of 

the methodology employed in computing the integral image 

and the rectangle sums.  

To the best of our knowledge, this work is the first that 

considers a full-custom generic AdaBoost hardware 

implementation. We tackle all issues such as input image size, 

object types and number of objects of interest present in the 

input image, but most importantly, we allow the architecture 

to remain generic to process different training sets and feature 

sizes, making the architecture suitable for all types of 

AdaBoost-based object detection. 

 

III. PROPOSED ARCHITECTURE 

There are five major issues in designing the proposed 

architecture: image scaling, integral image computation, 

feature computation, stage computation and identification of 

regions that contain the objects of interest. Each part is 

considered based on its contribution towards the performance 

and accuracy, as well as computational resources required. 

 The architecture consists of 2 major blocks; an image 

TABLE I 

RELATED WORK ALGORITHM AND METHOD COMPARISONS 

 Hiromoto [9]a Cho [10] Wei [11] Shi [12] Lai [28] 
Presented Work - 

FPGA 

# Features 2,913 [18] 2,135 225 2,913 [18] 52 2,913 [18] 

# Stages 25 [18] 22 3 25 [18] 1 25 [18] 

Image Size 640x480 320x240, 640x480 120x120 176x144 640x480 320x240 

Feature Size 24x24 20x20 24x24 24x24 20x20 24x24 

Scaling 

Method 
Image Downscaling Image Downscaling 

Image 

Downscaling 
Not provided Image Downscaling 

Image Downscaling/ 

Feature Upscaling 

Downscale 

Factor(s) 
1.2 1.2 1.25 Not provided 1.25 1.25, 0.75, 0.5 

# of 

Downscaled 

Images 

18 
14 (320x240), 

18 (640 x 480) 
4 Not provided ~15 

3 downscaled images, 5 

upscaled features. 

II  

Computation 

Per window, using line 

buffers to calculate and 

store the II values 

Per window, 

by an array of line 

buffers and block RAMs 

Sequential 

computation per 

window 

Per Window, using a 

24x24 Cell Array  

Computed for every 

window by a 21x21 

Register Array 

For the whole 80x60 

window while values 

are shifted in the array 

Rectangle & 

Feature 

Computation 

II values are loaded 

from a register array, 

processed in parallel 

for the first 10 stages 

and sequentially for 

the rest. 

Accumulates the II 

values from the array 

and evaluates the feature 

Evaluated using 

MAC units 

The II values are loaded 

from the array and used to 

compute the rectangle and 

feature sums 

II values are loaded 

from the array and are 

weighted and summed 

to evaluate a rectangle 

CCUs and EUs 

evaluate rectangles and 

features during the 

systolic flow of II 

values in the array 

aUses a sequential and parallel processing execution model. Split point for the two stages is at stage 10, II = Integral Image 
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Fig. 4.  System architecture block diagram. 

 

Fig. 5.  Image Pyramid Generation Unit Architecture 

 
pyramid generation (IPG) unit [14]-[17] and a systolic array. 

The IPG receives the input video frame and generates image 

regions that the systolic array processes. The systolic array 

evaluates the candidate regions that potentially contain objects 

of interest. We use a hybrid scaling mechanism that utilizes 

traditional input image downscaling, as well as the original 

feature upscaling scheme that Viola and Jones proposed. . This 

feature upscaling continues to iterate, in order to detect objects 

in the search window larger than the feature size. Iterations 

continue until the feature size equals the size of the smaller 

dimension of the search window size (typical features are 

square, whereas search window sizes can be rectangular). For 

example, if we consider a starting feature size of 24x24, and a 

search window size of 80x60, features will be scaled up until 

the feature size will be 60x60. In this way, we reduce the 

image size where features are being evaluated, reducing the 

overall cost and amount of computation, and still allow the 

system to process large input images.  

The IPG unit processes the input image frame and generates 

the search window. In the context of this work, the search 

window is defined as the image region examined for the 

targeted object(s) of interest. Each search window is then 

processed in parallel, feature by feature and stage by stage 

through the systolic array. The array is responsible for 

computing the integral image, computing the rectangles for 

each feature, and evaluating both the features and the stage 

sumsIf an object of interest is detected within that search 

window, the array outputs the coordinates of the region 

containing the object, taking into consideration the scale of the 

feature that the object was found at. When the array completes 

the examination of a search window, a new search window is 

fed into the array from the IPG unit, until the entire image is 

searched. The original image is also downscaled through the 

IPG unit, producing more search windows for each 

downscaled version of the original image, until the 

downscaled image equals the search window size. This creates 

a hybrid architecture that evaluates features over a number of 

image scales, and a number of feature sizes over a single 

search window. A brief description of each of the units is 

given next, while a block diagram of the system architecture is 

shown in Fig. 4. 

A. Image Pyramid Generation 

 The IPG unit receives the input video frame and generates 

the search windows to be processed by the systolic array. The 

unit receives pixels row-wise, and generates mxn search 

windows, which are then buffered and fed row-wise in parallel 

in the systolic array. The size of the generated search windows 

is determined by the size of the systolic array. The IPG and the 

systolic array operate in a pipelined fashion, where the systolic 

computation happens as soon as a single search window is 

generated. However, the IPG continues to generate search 

window pixel data while the systolic array is computing, 

preparing the next search window(s) that will be used. 

Typically (depending on the systolic array size and 

subsequently search window size), the IPG can generate a 

second search window before the first one is computed by the 

array, therefore one search window buffer is sufficient.  

The IPG unit also downscales the original image, ensuring 

that objects bigger than the search window size are 

downscaled, and eventually can fit into a search window as 

well. In this way, the search window can be made as large as 

the silicon budget allows the systolic array to be. Moreover, 

data loss due to downscaling is limited, as the image will not 

be scaled down after it reaches a certain size.    

The IPG unit consists of three stages; the input stage, where 

pixels are received from the frame memory, the partitioning 

stage where incoming pixels are partitioned into the search 

window buffer, and the scaling stage. The first stage is 

customized to satisfy the input conditions (i.e. number of 

pixels per cycle, etc.). The second stage is a finite state 

machine that is responsible for generating the address of the 

pixel values that are to be received in the next I/O operation 

and directs incoming pixels in their corresponding search 

window buffer location. Lastly, the scaling stage simply 

computes the coordinates (and subsequently memory address) 

of the downscaled image for each incoming pixel, generating 

the address where each pixel is to be stored. It must be noted 

that depending on the choice of the downscaling algorithm 

used, some pixels will be mapped to the same location. In the 

proposed IPG, the algorithm used is a simple multiplication, 

and the pixel that was lastly computed to be stored in the 

generated location, overwrote any previously written pixels. 

Additionally, the downscaled image (depending on the 

generated size and thus its memory requirements) can be 

stored either on-chip or on external memory, and retrieved at a 

later stage during the computation in similar fashion as the 

original image is received. This procedure was chosen to 

enable flexible scaling of downsized images, allowing the 

designer to select the scale and the number of produced 

downsized images. The IPG unit is shown in Fig. 5. The 

output search windows are fed pixel by pixel, row-wise, in the 

systolic array. 

B. Systolic Array 

The systolic array performs the bulk of the computation; it 

computes the integral image, collects and computes the 

rectangle points, computes and evaluates the feature and stage 

sums, and determines whether a region passes a stage so that it 
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can be considered for further search. The array also maintains 

the location of detected objects. The array consists of two 

types of processing elements (PEs); the collection and 

computation units (CCUs), and the evaluation units (EUs). 

The EUs are placed as the leftmost PEs in each row in the 

array; the CCUs make up the rest of the array. Each EU 

communicates via a direct link to its neighboring CCUs, and a 

toroidal link to the far right CCUs, as shown in Fig. 6. The 

array also contains distributed control units (CUs), small 

FSMs that direct the overall operation by global control 

signals. The distributed control units also maintain the 

temporal consistency of the entire operation, acting as 

coordinators throughout the entire computation. Given the 

modular operation of the array, and the identical operation of 

each of the CCUs and EUs respectively, the control units 

maintain that communication is uniform across the array and 

towards the necessary direction, and that all units are 

synchronized, either doing data transfer, or computation. 

Distributed multiple CUs can be used, in order to reduce the 

size of the control region for each CU, since the control 

signals delivered to the PEs are identical. The array units can 

communicate with each of its neighbors via bidirectional data 

links.  

 

 
Fig. 6.  Systolic Array System Architecture 

 

The chosen array size depends largely on the application 

requirements in terms of frame rate and budget, and the 

training set and feature sizes used in the detection algorithm. 

The minimum size has to match the original size of the 

features, whereas the maximum size of the array can be 

determined based on the silicon budget available. The 

dimensions of the array can be made to match the proportions 

of the input image frame. The implementation presented in 

this paper uses an image ratio of 4:3, but the ratio can be 

adjusted to match input frame format. 

The systolic array operates by firstly computing the integral 

image for the incoming frame. Next, it computes the 

rectangles for each feature in parallel for the entire search 

window. Stage evaluation is also done in parallel for all 

locations in the search window, and after the outcome of each 

stage is known, the array proceeds by evaluating the next stage 

and its features in parallel over the entire search window. The 

candidate regions that fail each stage are marked and do not 

participate in the computation, in an attempt to eliminate 

unnecessary power consumption. Every CCU can act as the 

top-left-most corner for each feature, and is responsible for 

collecting the integral image values belonging to the 

rectangles for that particular feature. Each CCU holds the 

integral and integral squared image values, partial sums from 

rectangle and feature computations, and the variance for the 

search window that they represent as the top-left-most corner. 

Each CCU consists of minimal hardware to propagate data in 

all directions in the array, and is able to perform additions and 

subtractions, enabling the computation of the integral and 

integral squared image in a systolic manner. The rectangle 

sum can also be computed within the CCUs. The EUs are 

equipped with multiplexing hardware and contain a multiplier 

for stage evaluation purposes (to compute the weighted sum of 

each rectangle in each feature and the feature sum). Fig. 6 

shows a part of the systolic array with the three units 

composing the array. A brief description of the hardware 

architecture for each array unit is given next. The architecture 

of each array unit is shown in Fig. 7. 

 
Fig. 7.(a) Collection and Computation Unit Architecture. (b) Evaluation Unit 

Architecture. 

 

1) Collection and Computation Unit (CCU) 

Each CCU represents the starting upper left corner of a 

search window in the image, and holds the necessary data for 

that window (such as image variance, whether or not the 

window has so far passed the classification process, etc.). The 

CCUs are responsible for data movement throughout the 

system, collecting and accumulating integral image data for 

rectangle computation. Each unit is composed of an 

adder/subtractor, a local bus controller and a register file that 

holds the data necessary for the computation. The register file 

provides data storage for the integral image value, the squared 

integral image value, the collected rectangle sums (supports up 

to four rectangles per feature), the accumulated stage sum, the 

standard deviation of the image for the search window 

represented by that particular CCU, and temporary registers 

used to store data during data movement. Furthermore, the 

CCU holds a flag bit (FB) which is reset only when the search 

window represented by the CCU does not contain the object of 

interest. The bit is set at the beginning of every computation 

and is reset by the EUs at the end of a stage computation if the 

search window represented by that CCU does not pass a stage. 

To maintain temporal consistency, the bit is moved with the 

accumulated stage sum. A detailed block diagram of the CCU 

is shown in Fig. 7(a). The CCU’s critical path lies in the 

adder; depending on the required bit-width of the adder, 

various optimizations can be made to improve the speed of the 

CCUs. 

Each CCU performs a set of predetermined actions. These 

are shifts to all four directions, addition and accumulation of 

incoming pixel values and squared pixel values, addition and 
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accumulation of incoming rectangle points, and being idle. 

Each action is determined by the CUs, which send a global op-

code of 4 bits to all CCUs, so that all CCUs can synchronize 

on the appropriate action. 

One particular design parameter that the algorithm dictates 

lies on whether all CCUs should act as collection points for 

each feature. If we evaluate each feature over every possible 

location of the search window, then each CCU has to act as a 

collection and computation point. This is not always necessary 

however; it depends on the type and size of objects of interest. 

For example, a large object does not need a pixel-by-pixel 

exhaustive search; a search offset of five pixels will probably 

be sufficient. This is of course something that requires 

experimentation and an appropriate training set. Typical object 

detection algorithms follow a small pixel offset [6], [17], [25], 

and [26], shifting each search window in an image by a few 

pixels (depending on the object size). Suggested values are 

around five pixels or more [6], [8], and [14] for this offset. 

The modularity of the systolic array allows the designer to 

take advantage of this offset, by designing CCUs that are 

capable of collecting and computing rectangle information, 

and CCUs that do not. Additionally, CCUs located at the 

bottom and left parts of the array are not required to act as 

upper left collection points, since the feature computation will 

have reached the end of the search window. Therefore, we can 

design a set of CCUs without the adder/subtractor, and 

without the control logic necessary to perform collection and 

computation. These CCUs simply act as memory elements, 

and can be placed in locations in the array where the CCUs are 

not required to collect rectangle data. 

An additional design optimization lies in the design of the 

adder inside each CCU and the registers holding the integral 

image and integral squared image values. As the location of 

each pixel in the integral image, relative to the integral 

image’s origin increases, the value of the integral image (and 

the integral square image) increases in terms of required adder 

precision and in terms of storage requirements. This is 

illustrated in Fig. 8(a). For example, if we are dealing with a 

320x240 grayscale image (8-bits per pixel, maximum intensity 

of 255), the maximum value that needs to be stored at the 

bottom-right corner (location 320,240) of the integral image, 

is 320x240x255 (in the unlikely event that all pixels have 

intensity value of 255). This requires 25 bits. Since we also 

need the integral squared image, the bitwidth requirements 

increase to 33 bits for the adder. However, at location (20, 40), 

the maximum value that will be stored is 20x40x255, which 

requires only 18 bits for the integral image, and 26 bits for the 

adder, to compute the integral squared image. Fig. 8(b) shows 

the bit-width requirements of the adder, in a sample 320x240 

image, to indicate a relative hardware demands as the location 

in the array changes. 

Consequently, we can design parameterized CCUs, with 

variable adder bit-widths and variable-sized registers, which 

can be appropriately placed depending on the distance of each 

CCU relative to the origin of the array. This can be done either 

by one-by-one CCU case, or by designing different groups of 

CCUs with different bitwidths that can cover regions in the 

array, allowing some CCUs to have redundant bits. We 

followed this approach, as it is less time consuming; 

moreover, an extra bit or two in each CCU adder, does not add 

much in the hardware overheads. Alternatively, this can be 

done by limiting the search window size; this helps keeping 

the overall number of pixels required for both integral and 

integral square image summations small, resulting in relatively 

small bit-widths. 

 
Fig. 8.  (a) As we move away from the origin coordinates of the integral 
image, the demands of the required bit-width for the storage of the rectangle 

sum increase. Position (X1, Y1) requires fewer bits than position (X2, Y2) 

because position (X1, Y1) holds the sum of less integral image points. The 

required bit width for coordinates (Xi, Yi) is log2((#𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 − 1) ×

𝑋𝑖  × 𝑌𝑖).  (b) Illustration of how the requirements for the adder and register 

bitwidth changes according to their location (row and column) in the array for 

a 320x240 array.  The label on the right denotes the bitwidth requirements per 
array region.  

 

2) Evaluation Unit (EU) 

The EUs are located to the left of the array, at the beginning 

of each row, and act as input terminals to the array. The EUs 

are first used during the input of the search window into the 

array to compute the integral squared image values, by 

squaring each incoming pixel value to be used towards the 

squared integral image computation. During the computation, 

the EUs receive data from their neighboring CCUs (and 

through systolic manner, eventually from all CCUs in the 

corresponding row of each EU), starting from the rectangle 

values, the variance of the image and lastly the accumulated 

stage sum. The rectangle sums are multiplied with the 

rectangle weights read from the training set stored in off-chip 

memory. The variance is multiplied with the squared feature 

threshold, to determine the compensated threshold, which in 

turn is used to determine the feature sum to be added to the 

accumulated stage sum. If the computed feature is the last 

feature of a stage, the accumulated stage sum is compared to 

the stage threshold and the flag bit is reset if the stage 

computation discards the search window. Else, both the 

accumulated stage sum and flag bit are shifted out using a 

toroidal link into the far right CCU. The EU starts the 

computation when signaled from the CUs; when the 

computation ends, the EU signals to the CUs to proceed with 

the next feature. The CU in the meantime stalls shifting in the 

CCU values during an EU computation, waiting on the EU to 

complete. When a stage is evaluated, the EU sends a signal to 

the CUs, so that they can coordinate all CCUs in starting the 

next stage of features.  
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Fig. 9.  Illustration of the Integral Image Computation and Data Movement 

Each of the EUs interfaces to the external memory that 

holds the training data necessary for the feature computation, 

and reads the training data in a FIFO manner. Given that 

features are evaluated one at a time, the latency to retrieve the 

feature values does not affect the overall latency, as this can 

happen while the CCUs evaluate the feature’s rectangles. This 

also enables storing of the training data (offsets) for all feature 

sizes, thus removing the need to scale the rectangle offsets (dx, 

dy) dynamically when the computation shifts to larger feature 

sizes. It must be noted however, that feature scaling can be 

done on-chip as well, where each (dx, dy) offset can be scaled 

according to the preset feature scale factor. Upon computation 

of each feature, the next feature rectangle off-sets are read 

from the training memory and propagated along with the 

resulting feature sum, using the torroidal link, back to the 

CCUs. Consequently, when a feature is evaluated with the 

rightmost CCUs receiving the last outcome of each 

computation, the entire array already holds the required off-

sets for all rectangles associated with the next feature.  

The EU block diagram is shown in Fig. 7(b). The EU 

multiplier has the longest critical path in the array, and various 

optimizations can be done to improve the frequency of the 

unit, such as using pipelined or wave pipelined multipliers. 

 

IV. SYSTOLIC COMPUTATION OVERVIEW 

The operation essentially is partitioned into the following 

stages: configuration, computation of integral and integral 

squared images, computation of image variance, computation 

of rectangles per feature, feature computation, stage evaluation 

and image evaluation. The computation is repeated for all 

upscaled features over a single search window, and for all 

search windows generated by the IPG. When the image has 

been searched at all search window sizes, the system is ready 

for the next image frame. 

In each case, all units collaborate to perform the 

computation. Incoming pixels, stream in the array in parallel 

along all rows of the array, and are shifted in row-wise every 

cycle. The integral image and integral squared image are 

computed first. The computation consists of horizontal and 

vertical shifts and additions. Incoming pixels are shifted inside 

the array on each row. Depending on the current pixel column, 

each of the computation units performs one of three 

operations; it either adds the incoming pixel value into the 

stored sum, or propagates the incoming value to the next-in-

row processing element while, either shifting and adding in 

the vertical dimension (downwards) the accumulated sum or 

simply doing nothing in the vertical dimension. The 

computation is illustrated in Fig. 9. To compute the squared 

integral image, the same procedure is followed. The incoming 

pixel passes through the multiplier in the EU, which computes 

the square of the pixel value, and then that value alternates 

with the original pixel value as inputs to the array. As such, 

the integral and squared integral image are computed in 

alternate cycles with the entire computation taking 2 * [(m + 

(m-1) + (n-1)] cycles, for an input image of n rows by m 

columns. 

The rectangle computation takes place next. For each 

rectangle in a feature, each corner point is shifted towards the 

CCU acting as collection point. The points move one at a time, 

but in parallel for all rectangles in the array. At each collection 

point, the point is either added or subtracted to the 

accumulated rectangle sum, with the final rectangle value 

computed when all points of each rectangle arrive at the 

collection point. As such, each point requires dx+dy cycles to 

reach the collection point, where dx and dy are the offset 

coordinates of the point with respect to the upper left corner of 

the search window. When all rectangle sums for a single 

feature have been collected in the CCU that represents the 

starting corner for each feature, they are then shifted leftwards, 

towards the EUs, one sum at a time per EU. From left to right, 

eventually all sums arrive in each EU, where the rectangle 

weights are multiplied with the incoming sums, in order to 

evaluate the feature. It must be noted that each CCU contains 

the rectangle sums, the accumulated feature sum from the 

previous feature computation and the variance. Hence each 

CCU takes n+2 cycles to shift the data to its neighboring 

CCU, where n equals the number of rectangle sums per 

feature. When each rectangle sum enters the EU, it is 

multiplied with the respective rectangle weight given by the 

training set, and accumulated together to compute the feature 

sum. The compensated threshold is then computed using the 

original threshold and the variance as described earlier. The 

feature sum is then squared using the multiplier, and compared 

to the compensated threshold to set the feature result. The 

partial stage sum is accumulated with the feature result and 

shifted with the flag bit in a toroidal fashion to the CCU on the 

far right of the grid, to continue the computation. Eventually, 

when all feature results are computed, they are stored back 

into the CCUs in the grid and the computation resumes with 

the next feature. The computation is illustrated in Fig. 10. 

At the end of a stage, the computed stage sum is compared 

against the stage threshold obtained from the training set. 

Depending on the outcome of the comparison, the location of 

the CCU is flagged as an object of interest candidate and 

continues further evaluation, or is discarded by resetting the 

flag bit that is shifted with the stage sum. When a location 

which does not contain an object of interest arrives for 

computation at the EUs, the EU does not compute the feature 

sum, rather remains idle, and simply propagates the data to the 
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Fig. 10.  Systolic Array Computation Flow 

far right CCU to resume computation. The CCUs that do not 

act as collection/computation points, (only hold integral image 

info as mentioned earlier) simply propagate their values in 

order to maintain temporal consistency. 

When all stages complete for a certain feature scale inside 

the search window, the flagged locations correspond to the 

ones that contain the object of interest. If the feature computed 

is the last one, the computation ends. Each location that 

contains an object of interest is shifted to the right and outside 

of the array, for the host application to proceed. 

This parallel approach yields several advantages. First, it 

does not require the training set data to be stored on-chip, as it 

only computes one feature at a time. Instead, it operates on the 

image data in parallel. Second, the systolic implementation 

returns predictable and fast operation, in the context of high 

frequency. Third, computations that are expensive in terms of 

delay and hardware overhead such as multiplication are 

isolated and computed together in parallel during each 

evaluation step, thus amortizing their delay towards the whole 

operation. Fourth, in contrast to the software implementation 

of the AdaBoost algorithm, the detection rate remains constant 

regardless of the number of objects of interest that exist in a 

single frame, whether they are detected positively or 

negatively (i.e. false positives). The software implementation 

suffers when the amount of object increases, as the algorithm 

will have to follow the entire classifier cascade multiple times. 

In contrast, the proposed architecture searches and performs 

the cascade only once for the entire image, rather than for each 

object, as done in software. Lastly, when used in conjunction 

with an IPG process, it can be scaled to the application’s 

requirements and available budget, as the array size can vary 

from being equal to the size of the training feature to as much 

as the budget and performance requirements allow and 

demand. 

 

V. EVALUATION AND RESULTS 

To evaluate the proposed architecture, we followed two 

major steps. First, we designed and verified the architecture 

using FPGA emulation. Second, we performed a full 

functional simulation using an ASIC implementation over a 

commercial CMOS library, with three different object 

detection applications used as benchmarks. Both systems were 

designed with emphasis on the corresponding hardware 

constraints, and evaluation was performed taking into 

consideration several design constraints and limitations. Prior 

to detailing the simulation details, we first discuss the concept 

of performance under an object detection system, and list the 

factors, which explicitly impact the performance of the 

system. 

A. Performance metrics, limitations and constraints 

There are two important performance metrics in object 

detection, the detection frame rate which defines the ability of 

the system to process a number of input image frames per 

second (fps), and the detection accuracy, which defines the 

effectiveness of the system in detecting the object(s) of 

interest. For real-time video processing, the system needs to 

detect at least 30fps (NTSC). However, if other image 

processing and recognition algorithms have to co-exist with 

detection, the system needs to be much faster, which is 

typically the case. Moreover, the system’s accuracy largely 

depends on the training, and partially on the way that the 

training set is represented when implemented in hardware. In 

designing our architecture, we took into consideration several 

performance metrics, limitations and constraints, which are 

outlined in this section. 

Firstly, the training set size, particularly the number of 

features and stages in the training set, largely impacts the 

performance. As each feature is processed in parallel, the 

algorithm depends on the total number of features and stages 

to return a positive result. Training set optimization can 
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improve the performance by maintaining a high accuracy in 

the detection while reducing the number of features. This was 

done in [28]; however, no detailed discussions were given 

related to the accuracy of the detector, especially the false 

positives. In our implementation the architecture is developed 

independent of the training set size, taking advantage of 

potential emerging research that reduces training set data. 

The second factor impacting the performance, which in our 

case affects the performance heavily, is the size of the search 

window and the size of the array. As features are enlarged and 

computation is repeated to detect bigger objects, the number 

of enlargements necessary is defined by the search window 

size (i.e. until the size of the enlarged feature meets the search 

window size). Consequently, a large search window size will 

result in computation over several feature sizes. This increases 

the amount of computations and limits the performance. A 

small search window on the other hand limits the amount of 

feature enlargements and results in a larger number of search 

windows generated for each input image frame. However, the 

number of generated search windows increases exponentially 

as the input image frame size increases, and potentially results 

in loss of data due to several downscaling iterations. We 

consider this scenario in our approach, thus we combine the 

IPG and the systolic array to provide flexibility in selecting an 

appropriate search window size as the application demands, 

depending on the performance and cost requirements. The 

nature of the application, such as the amount of training data 

required, the feature size, the size of the object(s) of interest, 

input image size and number of objects concurrently 

appearing on the input image are all factors that play a role in 

determining a good ratio of the IPG to the search window size 

(and subsequently the systolic array size). A system-level 

optimization framework can potentially be used to determine 

these sizes for various applications, and is left as future work. 

The third factor that impacts the performance is the input 

image frame size. Obviously a large frame results in more data 

to be explored and a larger number of search windows, but it 

also impacts the size of objects relative to the input image 

frame. Large-sized objects typically result in wasted 

computations when using small-sized features, whereas small 

objects result in wasted computations when using large-sized 

features. This is even worst when two or more objects of 

interest appear in different sizes; the largest the variance in the 

sizes of the objects, the larger the number of feature and stage 

computations overall. The proposed architecture is ideal for 

large image sizes, as the high degree of parallelism can 

process large images in parallel, resulting in satisfactory frame 

rates. We used three image sizes in our simulations, and 

noticed a relatively small decline in the frame rate when going 

from a small to a much larger image frame size. 

The fourth factor relates to the object of interest itself, and 

the targeted video application. In particular, the amount and 

size of objects of interest contained in a single frame plays a 

dominant role in the overall performance, especially in 

sequential software implementations. The big advantage of the 

AdaBoost algorithm, which results in large detection frame 

rates, lies in the ability of the algorithm to reject several search 

windows which do not pass certain thresholds during an early 

stage in the computation. However, if the amount of objects of 

interest in an image frame is relatively large, the algorithm 

slows down significantly, as it will have to go through the full 

computation several times. Our architecture however, is 

independent of the number of objects; as the entire search 

window is explored in parallel, the time required to search for 

a single object, is the same time as the time required to search 

for all objects in the search window. Furthermore, when two 

or more objects of interest of different sizes are present in the 

source image, detection will occur at different feature scales. 

A worst case scenario would be at for least one object of 

interest inside the search window, in every scale where a 

feature is evaluated. In reality however, this is a highly 

improbable scenario; a large object will usually cover smaller 

objects in an image. Furthermore, there are cases where 

objects of interest are not present in an image frame; the 

search windows will likely fail somewhere through the first 

few stages for all search windows at all feature sizes, thus 

enabling a new image frame to be processed. In such cases, 

the frame rate obviously increases. Additionally, changes 

within a video signal (i.e. new objects of interest entering the 

image frame or other objects leaving) typically happen within 

a few frames apart. Hence, consecutive frames are usually 

similar to each other. This of course implies that a lower frame 

rate than the video frame rate could be sufficient; however, in 

the likely scenario that object detection is part of a chain of 

operations that have to meet real time video processing, the 

detector still has to operate as fast as possible. Consequently, 

to conclusively evaluate any architecture, one has to choose a 

sequence of test frames containing a number of objects, of 

different sizes, taking these observations into consideration. 

The last factor obviously lies on the hardware itself, most 

notably the operating frequency. In designing our architecture, 

we took aim in using a regular, modular approach, with small 

critical paths. The CCU contains minimal hardware, with a 

fast carry-look-ahead adder. The EUs, which take more cycles, 

TABLE II 

RELATED WORK IMPLEMENTATION ON FPGAS RESULTS COMPARISON 

 Hiromoto [9] Cho [10]a Wei [11] Shi [12] b Lai [28] c Presented Work  

FPGA XC5VLX330-2 XC5VLX110 XC2V2000 Not Applicable XC2VP30 XC2VP30 

Frames per Second 30 26 (320 x 240)a 15 102 143(126 Hz) c 64 

Area 

(Used/Total) 

Slice LUTs 63,443/207,360 66,851/69,120 13,853/21,504 Not Applicable 20,901/27,392 25,818/27,392 

Slice Registers 55,515/207,360 21,902/69120 4,573/21,504 Not Applicable 7,782/27,392 23,744/27,392 

Multipliers Not Provided Not Provided 28/56 Not Applicable Not Provided 68/136 

Memory (Block RAMs) Not Provided 41/128 56/56 Not Applicable 44/136 24/136 

Clock Frequency (MHz) 160.9 Not Provided 91 200 126 100 

Face Detection Accuracy Not Provided Not Provided 85% non-faces, 50% faces Not Provided 86% on faces 93% (overall) 
aUsing three classification modules, bImplementation of a cycle accurate simulator, cUsing only 52 features and 1 stage 
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TABLE III 

SYNTHESIS RESULTS FOR THE VIRTEX II PRO FPGA IMPLEMENTATION 
FPGA 

Resources 

Slices 

(13696) 

Flip Flops 

(27392) 

LUTs 

(27392) 

BlockRAM 

(312.5kB) 

Multipliers 

(136) 

IPG 
2,248 

(16%) 

2,101 

(8%) 

2,445 

(9%) 

52.8kB 

(17%) 

8 

(5%) 

Array 

(80x60) 

10918 

(80%) 

20185 

(74%) 

22706 

(83%) 

0 

(0%) 

60 

(44%) 

System 
13455 

(98%) 

23744 

(87%) 

25118 

(92%) 

52.8kB 

(17%) 

68 

(50%) 

 
TABLE IV 

DETECTION APPLICATIONS TRAINING DATA 

Detection 

Application 

Object 

Per 

Frame 

Feature 

Size 

(pixels) 

# of 

Rectangles 

per feature 

# of 

Stages 

Total # 

of 

Features 

Detection 

Accuracy  

Face  1-7  24x24 2 to 4 25 2913 93% 

Road Sign  1-2  12x12 2 to 3 12 414 83% 

Vehicle 2-10  24x36 2 to 4 20 1715 78% 

 

and burden potential delays in memory accesses and 

multiplications, only operate during certain time intervals (i.e. 

during each feature and stage evaluation and I/O operation), 

allowing the bulk of the computation (i.e. rectangle collection 

and summation) to the much faster CCUs.  

B. FPGA Implementation and Emulation 

As proof of concept, we designed an experimental version 

of the proposed architecture targeting the Xilinx XUP Virtex 

II Pro platform [27]. The FPGA evaluation targets a face 

detection application, using the training set and parameters 

given with the Open Computer Vision (CV) library [18]. The 

CV library provides a state-of-the-art software implementation 

of the AdaBoost detector, utilizing a very accurate pool of 

features. The training set uses a starting feature size of 24x24 

pixels, and scales each feature by a factor of 1.25 (taking the 

ceiling of the result), resulting in 5 scaled feature sizes (24x24, 

30x30, 38x38, 48x48 and 60x60). Each feature has between 2 

to 4 rectangles. The training set consists of 2,913 features in 

25 stages. The number of features per stage range from 9 to 

211, and the total number of rectangles is 6,383.  

The training set is organized on a feature by feature basis. 

Each feature data includes the feature sequence number; the 

number of rectangles in the feature; the dx and dy offset values 

for each rectangle in the feature; the weight associated with 

each rectangle; and the squared threshold value for each 

feature. Additionally the stage data includes a certain 

threshold per stage. To represent the training set, we use 8 bits 

per rectangle weight, for each threshold value and for each 

predetermined feature sum, using signed fixed point numbers 

of 2 integer bits and 5 decimal bits. The dynamic range 

supported is +/- 3.96875, close to the required accuracy for 

the OpenCV training set. The external memory that holds the 

training set, holds also the upscaled feature data, that is 

rectangle offsets and weights. We use 6 bits to store each 

rectangle offset, as the largest feature size we utilize is 60x60 

(to fit the 80x60 array). Each rectangle needs to store up to 4 

dx and dy values. The training set was stored in the off-chip 

(on-board) memory, as features and stage data are used only 

once every array collection and computation. As already 

mentioned, we store the upscaled feature data in off-chip 

memory as well, as when features are enlarged, new rectangle 

offsets are used. This however is of minor importance, as the 

offsets can simply be scaled on-chip, dynamically, since the 

feature training set is loaded feature by feature. For simplicity 

purposes, we stored the rectangle offsets for all feature sizes in 

off-chip memory, as part of the training set. 

In designing the CCUs, we need to provide storage for the 

case where all pixels will have an intensity value of 255, an 

unlikely scenario, but necessary for correct operation. Thus, 

the maximum integer value that can be stored in an integral 

image is 255x80x60 and the maximum integer value that can 

be stored in an integral squared image is (255)2x80x60. This 

requires 21 bits and 29 bits respectively. Knowing these 

requirements, we designed the architecture using 80x60 

CCTUs, 60 MEUs and 4 CUs. Each CCU connects to its 

neighbors through an 8 bit bus, which however can increase to 

a larger size if necessary for bandwidth purposes. The 

platform contains external memory (DRAM), which was used 

to store input image frames and the training set. We used 

landscape grayscale images of size 320x240 pixels, and an 

array size of 80x60 cells (60 rows by 80 columns), the largest 

size that could fit on the targeted FPGA, maintaining the 4:3 

ratio of the initial image frame). The IPG receives 8 pixels per 

clock cycle (the DRAM I/O bandwidth), and generates 80x60 

sized search windows, at a pixel offset of five pixels (i.e. 

every search window starts five pixels after the previous). The 

IPG also downscales the image by scale factors of 0.75 and 

0.5, creating three downscaled images of sizes 240x180, 

160x120 and 80x60. The generated downscaled images are 

stored on the FPGA Block RAM. The number of downscaled 

images is parametrizable; the scale factor is simply stored in a 

register, and scaling is done by matrix multiplication. The IPG 

uses two 80x60 frame buffers, generating search windows in 

lockstep fashion (i.e. it generates the first, and then proceeds 

to generate the second while the systolic array processes the 

first one, with both the IPG and the array alternating between 

each buffer). FPGA synthesis and utilization results are shown 

in Table III. The system, which system operates at 100MHz, 

was verified and evaluated using the application of face 

detection, through a sample of 300 test images which 

contained several faces of different sizes, obtained through the 

World Wide Web, and sized and formatted to the design 

requirements. The test images were stored in a Compact Flash 

card during the system initialization stage, and then loaded on 

the DRAM prior to running the detection framework. The 

frames were input to the detector, which processed them. A 

custom VGA controller was then designed and used in order 

to output the result of the detector to a VGA monitor, for 

visual verification, along with markings on where the 

candidate faces were detected. A diagram of the FPGA 

prototype and a photo of the experimental system are shown in 

Fig. 11. The system was designed to operate in two modes, 

verification where image frames were displayed one at a time 

(for verification and debugging), and runtime, processing all 

input images continuously, for measuring the detection frame 

rate, using a stop-watch timer. As said earlier, the frame rate 

depends on several factors, some of which are independent of 

the architecture. The system processed all 300 test images in 
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4.68 seconds, an estimated rate of 64 frames per second, 

which for the type and frequency of the FPGA is relatively 

high, especially when compared to existing implementations 

(almost twice as fast).  Additionally, the FPGA 

implementation achieved 96% accuracy detecting the faces on 

the images when compared to the corresponding Open CV 

software implementation, running on the same test images. 

This discrepancy can be justified to the fact that the Open CV 

implementation only scales the features up (no image 

downscaling) which does not result in data loss. Additionally, 

some training data was not able to be represented within the 

dynamic range employed by the hardware design. Table II 

presents a comparison table between existing FPGA 

implementations along with their characteristics, and the 

proposed architecture implemented on FPGA, for the 

application of face detection. As seen in the table, the 

proposed architecture is significantly faster and more accurate 

than most implementations. The implementation in [12] was 

based on pure cycle-accurate simulation rather than 

implementation, and the clock frequency is twice as the one 

used in our implementation (which was limited by the 

capabilities of our FPGA board).The work in [28] yields a 

reported 143 fps, but uses a much smaller training set (two 

orders of magnitude smaller than the one in OpenCV) in order 

to achieve such a high frame rate. Furthermore, the reported 

accuracy focuses on a very specific data set, and no detailed 

discussion is provided on the rate of false positives. We did 

not optimize the training set, as it extends beyond the scope of 

this work. 

C. ASIC Implementation and Evaluation 

In addition to the FPGA emulation, we also designed a 

larger system (that could not fit on large existing FPGAs), 

targeting an ASIC implementation. The objective of the ASIC 

implementation was to obtain experimental insights on the 

scalability and feasibility of the proposed architecture, towards 

large scale integration. We evaluated the ASIC 

implementation using three object detection applications; face 

detection, road sign detection [5], and vehicle detection [1], 

[2]. We focus only on the rear of the vehicle as the point of 

detection. The training set used in the face detection 

application was the same one used in our FPGA prototype. For 

the other two applications, we used Open CV and Matlab to 

construct a training set for each case, using sample images 

obtained from the World Wide Web. Our objective was not to 

construct an accurate training set per se, rather than a realistic 

one to be used as an experimental set. The training sets were 

constructed using road sign and vehicle images, and training 

set details for each application (including the face detection) 

are given in Table IV. We targeted input images of four sizes 

(1024x768, 800x600, 640x480 and 320x240), again obtained 

through the World Wide Web, containing several faces, road 

signs and vehicles, depending on the targeted application. We 

then proceeded to design and implement an architecture which 

could receive as input at least a 1024x768 grayscale image, 

and process it as fast as possible, using the training sets 

mentioned. It must be noted that each application differs from 

each other in the context of their training sets (and feature 

sizes); the underlying hardware architecture is the same for all 

the targeted applications, as well as input image sizes and 

formats. 

The experimental platform was designed using search 

windows of size 320x240 pixels. Consequently, the size of the 

array was set to be the same, consisting of 320x240 CCUs and 

240 EUs. The IPG was designed with two search window 

buffers, producing search windows in similar fashion to the 

FPGA implementation. The original input image size was 

scaled down using a scale factor of 0.75, and the features were 

scaled up using a scale factor of 1.33. The training set, 

downscaled images from the IPG and input image frames were 

modeled as external memory; everything else was considered 

on-chip. Additionally, all parameters outlined in the FPGA 

implementation were modified to reflect the new search 

window size (such as storage considerations for the integral 

and integral squared images, data bus between CCUs and EUs, 

etc.).  

The system was synthesized with using Synopsys Design 

Compiler targeting a commercial TSMC 65nm CMOS library, 

in order to obtain relevant metrics such as area, operating 

frequency and power consumption. We used the default 

library values, and Synopsys’ synthesis primitives (focused on 

area optimization over performance), as well as components 

from Synopsys Designware IP library. Pre-layout results 

indicated that the critical path in the system was identified in 

the EU multiplier (a 64-bit multiplier). We used an 8-stage 

multiplier from Designware IP library in our design to target 

high frequency. It must be noted that the synthesized design 

does not consider the IPG memory modules; we used the 

CACTI toolset [30] to obtain the potential operating frequency 

for the two IPG memory modules, estimated at 800 MHz. As 

such, we set the targeted frequency of the entire system to 

800MHz. The post-synthesis, pre-layout results also indicate 

an area estimation of roughly 88 million transistors.  

Preliminary results also were collected for some indicative 

power consumption merits using 1V power supply voltage and 

50% probability of switching activity on all lines. Prior to 

reporting the obtained power consumption results however, 

we must state that the overall power consumption depends on 

several factors not related only to the architecture. The power 

consumption depends on the input image size and 

subsequently the number of downscaled images produced, the 

number of search windows, the number of features in the 

training set and the number of necessary computations. The 

latter is determined by the number of objects of interest found 

in the input frame. Obviously the chosen operating frequency 

and power supply of the system are important as well. 

Consequently, power comparison with architectures found in 

literature is not suitable without the use of the same input data 

sets and input image sizes. Hence, instead of reporting only 

the total power consumption for one frame, we also analyze 

how this power is consumed throughout the computation. 
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Fig. 11.  Experimental Platform – Block Diagram (left) and photo of the 

experimental platform, using the Virtex II Pro FPGA (right). 

 
Fig. 12.  Output image frames with the detection frames placed on the 

detected objects of interest. 

 
TABLE V 

ASIC IMPLEMENTATION – SIMULATION RESULTS 
Application 

/Accuracy 
Input Image Size 

Time to process 10 frames 

(seconds) 

Projected 

Frame Rate  

Face 

Detection 

95- 96 % 

1024x768 0.109  ~91 

800x600 0.098  ~102 

640x480 0.084  ~118 

320x240 0.075  ~133 

Road Sign  

Detection 

92- 97 % 

1024x768 0.099  ~101 

800x600 0.093  ~107 

640x480 0.083  ~120 

320x240 0.072  ~139 

Vehicle  

Detection 

91- 96 % 

1024x768 0.128  ~78 

800x600 0.116  ~86 

640x480 0.108  ~93 

320x240 0.098  ~102 

 

TABLE VI 

RELATED WORK IMPLEMENTATION ON ASICS RESULTS COMPARISON 

 Presented Work Hanai [29] 

Technology TSMC 65nm CMOS 90 nm CMOS 

FPS (320x240) ~133 8 

Area (# of transistors) 88 million 2.1 million 

Power (mW) 2.45 per 320x240 frame 0.47/fps – 3.72 total 

Clock Frequency 800 MHz 54 Mhz 

Accuracy 95% 81% 

 

To compute and evaluate a 24x24 feature (rectangle 

collection and computation, propagation to the EUs, 

computation and evaluation in the EUs, and propagation of the 

feature sum back to the array), the system consumes 0.06mW. 

The IPG unit also consumes ~0.014mW to downscale a 

320x240 image to a 240x180 image and 0.0023 mW to 

produce one 80x60 search window. Overall, to compute a 

single 320x240 frame with one object of interest (human 

face), the unit consumes ~2.45mW of power. We did not 

consider any power optimization mechanisms other than not 

computing features when a region was marked as a non-

candidate, and overall, our focus was not on optimizing the 

architecture for power savings. Power optimizations are left as 

future work. 

Using text files that contained the input image files and 

training set data, we next proceeded to run functional RTL 

simulation of the system using Modelsim. We run a set of 10 

test images per image size per application (i.e. 40 test images 

per each application), and obtained the total number of cycles 

required to process each test case. The resulting frames were 

stored as text files, and reconstructed to images using Matlab, 

so that we could visually verify the results. Using the obtained 

clock frequency from the synthesis results, we then estimated 

the detection frame rate (as well as the detection accuracy 

when compared to the corresponding software 

implementation). Table V summarizes the results for each 

application, under the four input image frame sizes, and Fig. 

12 shows some resulting frames from the simulation. 

Table VI presents a summary of the synthesis results, and a 

brief comparison with the special-purpose vision processor 

presented in [29]. When comparing equal sized input images, 

the frame rate achieved by the proposed architecture is 

significantly larger. The associated power consumption and 

hardware overhead costs cannot be compared, however, the 

overall simulation results indicate that the proposed 

architecture can be scaled to significant sizes, and potentially 

be used in high-performance applications with large input 

image sizes, or can be designed to consume minimal energy 

and hardware overheads for small-scale embedded systems. 

D. Discussion 

Both the FPGA prototype as well as the large scale ASIC 

implementation have shown great potential for applications 

with real-time performance requirements, such as real time 

object detection in vehicular embedded and applications 

involving multiple camera streams. The system is particularly 

useful in monitoring populated areas such as airports and 

transportation terminals, where it can process frames from 

alternate video streams, regardless of the amount and size of 

objects found in the input image frames. The scalability of the 

system and its independence from the training set also provide 

flexibility to the designer, allowing the designer to determine 

the most efficient size of the system directly from the 

application requirements. By merging the IPG with the feature 

upscaling originally used, the system achieves a fully 

parametrizable performance-to-cost ratio; if the silicon budget 

allows it, an increase in the array size will boost the 

performance (by increasing the degree of parallelism). On the 

other hand, a smaller array, while slower, costs less and can 

still satisfy certain performance requirements. 

There are some useful conclusions extracted from our 

simulations with respect to the algorithm. The FPGA 

implementation shows that the architecture can scale well in 

smaller, less demanding environments, while maintaining 

reasonable frame rates. The ASIC implementation on the other 

hard illustrates the full-throttle operation of the detector, and 

its suitability for multiple video streams and detection of 

objects that could appear in different numbers and sizes within 

an input image frame. Obviously, depending on the budget 



 14 

and application constraints, the designer can select the type of 

implementation that satisfies the operating conditions and 

application specifications. 

 

VI. CONCLUSION 

Object detection is an important step in multiple 

applications related to computer vision and image processing, 

and real-time detection is critical in several domains. In this 

paper, we presented a flexible, parallel architecture for 

implementation of the AdaBoost object detection algorithm. 

The architecture combines an image pyramid generation 

process, along with highly parallel systolic computation, to 

offer a flexible design that is suitable for several types of 

applications and budgets. The paper presented two 

experimental platforms of the architecture, a low-end FPGA 

implementation and a high-end ASIC implementation, both of 

which achieved significantly high detection frame rates and 

accuracy, comparable to their budget, illustrating the 

flexibility and potential of the architecture. 

We anticipate that further optimizations in terms of power 

consumption will significantly improve the architecture, 

leaving this as immediate future work. We also plan on 

exploring system-level optimization algorithms, of 

determining a systolic array size that best satisfies the 

performance/cost requirements. Additionally, we plan to 

include an embedded processor so that the architecture can 

potentially support on-line training, making it capable for 

dynamic, autonomous environments and situations. 

Furthermore, we hope that this architecture will lead to 

improvements in existing training sets, taking into 

consideration hardware constraints when training a detector. 

We also hope that this architecture will be combined with 

other on-chip implementations of related applications to form 

a complete high-performance embedded computer vision and 

image processing hardware platform. 
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