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Abstract—While random linear network coding is a powerful
tool for disseminating information in communication networks,
it is highly susceptible to errors caused by various sources. Due
to error propagation, errors greatly deteriorate the throughput
of network coding and seriously undermine both reliability and
security of data. Hence error control for network coding is vital.
Recently, constant-dimension codes (CDCs), especially Kötter–
Kschischang (KK) codes, have been proposed for error control in
random linear network coding. KK codes can also be constructed
from Gabidulin codes, an important class of rank metric codes.
Rank metric decoders have been recently proposed for both
Gabidulin and KK codes, but they have high computational
complexities. Furthermore, it is not clear whether such decoders
are feasible and suitable for hardware implementations. Inthis
paper, we reduce the complexities of rank metric decoders and
propose novel decoder architectures for both codes. The synthesis
results of our decoder architectures for Gabidulin and KK codes
with limited error-correcting capabilities over small fiel ds show
that our architectures not only are affordable, but also achieve
high throughput.

Index Terms—Constant-dimension codes (CDCs), Decoding, Er-
ror correction coding, Gabidulin codes, Galois fields, Integrated
circuits, K ötter–Kschischang codes, Network coding, Rank metric
codes, Subspace codes.

I. I NTRODUCTION

Network coding [1] is a promising candidate for a new
unifying design paradigm for communication networks, due
to its advantages in throughput and robustness to network
failures. Hence, network coding is already used or considered
in gossip-based data dissemination, 802.11 wireless ad hocnet-
working, peer-to-peer networks, and mobile ad hoc networks
(MANETs).

Random linear network coding (RLNC) [2] is arguably the
most important class of network coding. RLNC treats all pack-
ets as vectors over some finite field and forms an outgoing
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packet by linearly combining incoming packets using random
coefficients. Due to its random linear operations, RLNC not
only achieves network capacity in a distributed manner, but
also provides robustness to changing network conditions. Un-
fortunately, it is highly susceptible to errors caused by various
reasons, such as noise, malicious or malfunctioning nodes,
or insufficient min-cut [3]. Since linearly combining pack-
ets results in error propagation, errors greatly deteriorate the
throughput of network coding and seriously undermine both
reliability and security of data. Thus, error control for random
linear network coding is critical.

Error control schemes proposed for RLNC assume two types
of transmission models. The schemes of the first type (see, for
example, [4]) depend on and take advantage of the underlying
network topology or the particular linear network coding oper-
ations performed at various network nodes. The schemes of the
second type [3], [5] assume that the transmitter and receiver
have no knowledge of such channel transfer characteristics.
The two transmission models are referred to as coherent and
noncoherent network coding, respectively.

It has been recently shown [3] that an error control code for
noncoherent network coding, called a subspace code, is a set
of subspaces(of a vector space), and information is encoded
in the choice of a subspace as a codeword; a set of packets
that generate the chosen subspace is then transmitted [3]. A
subspace code is called aconstant-dimension code (CDC) if its
subspaces are of thesame dimension. CDCs are of particular
interest since they lead to simplified network protocols dueto
the fixed dimension. A class of asymptotically optimal CDCs
have been proposed in [3], and they are referred to as the KK
codes. A decoding algorithm based on interpolation for bivari-
ate linearized polynomials is also proposed in [3] for the KK
codes. It was shown that KK codes correspond tolifting [5]
of Gabidulin codes [6], [7], a class of optimal rank metric
codes. Gabidulin codes are also called maximum rank distance
(MRD) codes, since they achieve the Singleton bound in the
rank metric [6], as Reed–Solomon (RS) codes achieve the
Singleton bound of Hamming distance. Due to the connection
between Gabidulin and KK codes, the decoding of KK codes
can be viewed as generalized decoding of Gabidulin codes,
which involvesdeviations as well as errors and erasures [5].
Gabidulin codes are significant in themselves: For coherent
network coding, the error correction capability of error control
schemes is succinctly described by therank metric [8]; thus
error control codes for coherent network coding are essentially
rank metric codes.

The benefits of network coding above come at the price of
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additional operations needed at the source nodes for encoding,
at the intermediate nodes for linear combining, and at the
destination node(s) for decoding. In practice, the decoding
complexities at destination nodes are much greater than the
encoding and combining complexities. The decoding complex-
ities of RLNC are particularly high when large underlying
fields are assumed and when additional mechanisms such as
error control are accounted for. Clearly, the decoding com-
plexities of RLNC are critical to both software and hardware
implementations. Furthermore, area/power overheads of their
VLSI implementations are important factors in system design.
Unfortunately, prior research efforts have mostly focusedon
theoretical aspects of network coding, and complexity reduc-
tion and efficient VLSI implementation of network coding
decoders have not been sufficiently investigated so far. For
example, although the decoding complexities of Gabidulin and
KK codes were analyzed in [9], [10] and [3], [5], respectively,
they do not reflect the impact of the size of the underlying
finite fields. To ensure high probability of success for RLNC,
a field of size28 or 216 is desired [11]. However, these large
field sizes will increase decoding complexities and hence com-
plicate hardware implementations. Finally, to the best of our
knowledge, hardware architectures for these decoders havenot
been investigated in the open literature.

In this paper, we fill this significant gap by investigating
complexity reduction and efficient hardware implementation
for decoders in RLNC with error control. This effort is signifi-
cant to the evaluation and design of network coding for several
reasons. First, our results evaluate the complexities of decoders
for RLNC as well as the area, power, and throughput of their
hardware implementations, thereby helping to determine the
feasibility and suitability of network coding for various ap-
plications. Second, our research results provide instrumental
guidelines to the design of network coding from the perspec-
tive of complexity as well as hardware implementation. Third,
our research results lead to efficient decoders and hence reduce
the area and power overheads of network coding.

In this paper, we focus on the generalized Gabidulin decod-
ing algorithm [5] for the KK codes and the decoding algorithm
in [12] for Gabidulin codes for two reasons. First, compared
with the decoding algorithm in [3], the generalized Gabidulin
decoding [5] has a smaller complexity, especially for high-
rate KK codes [5]. Second, components in the errors-only
Gabidulin decoding algorithm in [12] can be easily adapted in
the generalized Gabidulin decoding of KK codes. Thus, among
the decoding algorithms for Gabidulin codes, we focus on the
decoding algorithm in [12].

Although we focus on RLNCwith error control in this
paper, our results can be easily applied to RLNCwithout
error control. For RLNC without error control, the decoding
complexity is primarily due to inverting of the global coding
matrix via Gauss-Jordan elimination, which is also considered
in this paper.

Our main contributions include several algorithmic reformu-
lations that reduce the computational complexities of decoders
for both Gabidulin and KK codes. Our complexity-saving al-
gorithmic reformulations are:

• We first adopt normal basis representations for all finite

field elements, and then significantly reduce the complex-
ity of bit-parallel normal basis multipliers by using our
common subexpression elimination (CSE) algorithm [13];

• The decoding algorithms of both Gabidulin and KK codes
involve solving key equations. We adapt the inversion-
less Berlekamp–Massey algorithm (BMA) in [14], [15]
to solving key equations for rank metric codes. Our in-
versionless BMA leads to reduced complexities as well
as efficient architectures;

• The decoding algorithm of KK codes requires that the
input be arranged in a row reduced echelon (RRE) form
[16]. We define a more generalized form calledn-RRE
form, and show that it is sufficient if the input is in the
n-RRE form. This change not only reduces the complex-
ity of reformulating the input, but also enables parallel
processing of decoding KK codes based on Cartesian
products.

Another main contribution of this paper is efficient decoder
architectures for both Gabidulin and KK codes. Aiming to
reduce the area and to improve the regularity of our decoder
architectures, we have also reformulated other steps in the
decoding algorithm. To evaluate the performance of our de-
coder architectures for Gabidulin and KK codes, we implement
our decoder architecture for two rate-1/2 Gabidulin codes and
their corresponding KK codes. Our KK decoders can be used
in network coding with various packet lengths by Cartesian
product [5]. The synthesis results of our decoders show that
our decoder architectures for Gabidulin and KK codes over
small fields with limited error-correcting capabilities not only
are affordable, but also achieve high throughput. Our decoder
architectures and implementation results are novel to the best
of our knowledge.

The decoders considered in this work are bounded distance
decoders, and their decoding capability is characterized in [5,
Theorem 11]. The thrust of our work is to reduce complexities
and to devise efficient architectures for such decoders, while
maintaining their decoder capability. To this end, our reformu-
lations of the decoding algorithms do not affect the decoding
capability of the bounded distance decoders of Gabidulin and
KK codes. The error performance of the bounded distance de-
coders has been investigated in our previous works [17]–[19].
Hence, despite its significance, a detailed error performance
analysis is out of the scope of this paper, and we do not include
it due to limited space.

The rest of the paper is organized as follows. After briefly re-
viewing the background in Section II, we present our complexity-
saving algorithmic reformulations and efficient decoder archi-
tectures in Sections III and IV, respectively. In Section V,
the proposed architectures are implemented in Verilog and
synthesized for area/performance evaluation. The conclusion
is given in Section VI.

II. PRELIMINARIES

A. Notation

Let q denote a power of prime andFqm denote a finite
field of orderqm. We useFn×m

q to denote the set of alln×m
matrices overFq and useIn to denote ann×n identity matrix.
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For a setU ⊆ {0, 1, . . . , n− 1}, Uc denotes the complement
subset{0, 1, . . . , n−1}\U andIU denotes the columns ofIn
in U . In this paper, all vectors and matrices are in bold face.

The rank weight of a vector overFqm is defined as themax-
imal number of its coordinates that are linearly independent
over the base fieldFq. Rank metric between two vectors over
Fqm is the rank weight of their difference [20]. For a column
vectorX ∈ F

n
qm , we can expand each of its component into

a row vector over the base fieldFq. Such a row expansion
leads to ann ×m matrix overFq. In this paper, we slightly
abuse the notation so thatX can represent a vector inFn

qm

or a matrix inFn×m
q , although the meaning is usually clear

given the context.
Given a matrixX, its row space, rank, and reduced row ech-

elon (RRE) form are denoted by〈X〉, rankX, andRRE(X),
respectively. For a subspace〈X〉, its dimension is denoted
by dim〈X〉 and rankX = dim〈X〉. The rank distance of
two vectorsX and Y in F

n
qm is defined asdR(X,Y ) ,

rank(X −Y ). The subspace distance [3] of their row spaces
〈X〉, 〈Y 〉 is defined asdS(〈X〉, 〈Y 〉) , dim〈X〉+dim〈Y 〉−
2 dim(〈X〉 ∩ 〈Y 〉).

A linearized polynomial [21], [22] (or q-polynomial) over
Fqm is a polynomial of the formf(x) =

∑p
i=0 fix

qi , where
fi ∈ Fqm . For a linearized polynomialf(x), its q-degree is
defined to be the greatest value ofi for which fi is non-zero.
For convenience, let[i] denoteqi. The symbolic product of
two linearized polynomialsa(x) andb(x), denoted by⊗ (that
is, a(x) ⊗ b(x) = a(b(x))), is also a linearized polynomial.
The q-reverse of a linearized polynomialf(x) =

∑p
i=0 fix

[i]

is given by the polynomial̄f(x) =
∑p

i=0 f̄ix
[i], where f̄i =

f
[i−p]
p−i for i = 0, 1, . . . , p and p is the q-degree off(x). For

a setα of field elements, we useminpoly(α) to denote its
minimal linearized polynomial, which is the monic linearized
polynomial of least degree such that all the elements ofα are
its roots.

B. Gabidulin Codes and Their Decoding

A Gabidulin code [6] is a linear(n, k) code overFqm ,
whose parity-check matrix has a form as

H =













h
[0]
0 h

[0]
1 · · · h

[0]
n−1

h
[1]
0 h

[1]
1 · · · h

[1]
n−1

...
...

. . .
...

h
[n−k−1]
0 h

[n−k−1]
1 · · · h

[n−k−1]
n−1













(1)

whereh0, h1, . . . , hn−1 ∈ Fqm are linearly independent over
Fq. Let h denote(h0, h1, . . . , hn−1)

T . SinceFqm is an m-
dimensional vector space overFq, it is necessary thatn ≤ m.
The minimum rank distance of a Gabidulin code isd = n −
k + 1, and hence Gabidulin codes are MRD codes.

The decoding process of Gabidulin codes includes five ma-
jor steps: syndrome computation, key equation solver, find-
ing the root space, finding the error locators by Gabidulin’s
algorithm [6], and finding error locations. The data flow of
Gabidulin decoding is shown in Figure 1.

Key equation solvers based on a modified Berlekamp–Massey
algorithm (BMA) [12] or a modified Welch–Berlekamp algo-

Received Syndromes BMA

Corrected Error Gabidulin’s Roots

r S σ(x)

EX

Fig. 1. Data flow of Gabidulin decoding

rithm (WBA) [23] have been proposed. In this paper, we focus
on the modified BMA due to its low complexity.

As in RS decoding, we can compute syndromes for Gabidu-
lin codes asS = (S0, S1, . . . , Sd−2) , Hr for any received
vectorr. Then the syndrome polynomialS(x) =

∑d−2
j=0 Sjx

[j]

can be used to solve the key equation [12]

σ(x) ⊗ S(x) ≡ ω(x) mod x[d−1] (2)

for the error span polynomialσ(x), using the BMA. Up to
t = ⌊(d− 1)/2⌋ error valuesEj ’s can be obtained by finding
a basisE0, E1, . . . for the root space ofσ(x) using the meth-
ods in [24], [25]. Then we can find the error locatorsXj ’s
corresponding toEj ’s by solving a system of equations

Sl =
τ−1
∑

j=0

X
[l]
j Ej , l = 0, 1, . . . , d− 2 (3)

where τ is the number of errors. Gabidulin’s algorithm [6]
in Algorithm 1 can be used to solve (3). Finally, the error
locationsLj ’s are obtained fromXj ’s by solving

Xj =

n−1
∑

i=0

Lj,khi, j = 0, 1, . . . , τ − 1. (4)

Algorithm 1 (Gabidulin’s Algorithm [6]).
Input : S0, S1, . . . , Sd−2 andE0, E1, . . . , Eτ−1

Output : X0, X1, . . . , Xτ−1

1.1 Computeτ × τ matricesA andQ as

Ai,j =











Ej i = 0

0, i 6= 0, j < i

Ai−1,j −Ai−1,i−1(
Ai−1,j

Ai−1,i−1
)[−1] i 6= 0, j ≥ i

Qi,j =

{

Sj i = 0

Qi−1,j −Ai−1,i−1(
Qi−1,j+1

Ai−1,i−1
)[−1] otherwise.

1.2 ComputeXi’s recursively asXτ−1 = Qτ−1,0/Aτ−1,τ−1

andXi = (Qi,0 −
∑τ−1

j=i+1 Ai,jXj)/Ai,i, for i = τ −
2, τ − 3, . . . , 0.

In total, the decoding complexity of Gabidulin codes is
roughlyO(n2(1−R)) operations overFqm [9], whereR is the
code rate, orO(dm3) operations overFq [10]. Note that all
polynomials involved in the decoding process are linearized
polynomials.

Gabidulin codes are often viewed as the counterpart in rank
metric codes of the well-known RS codes. As shown in Table I,
an analogy between RS and Gabidulin codes can be estab-
lished in many aspects. Such an analogy helps us understand
the decoding of Gabidulin codes, and in some cases allows
us to adapt innovations proposed for RS codes to Gabidulin
codes.



4

TABLE I
ANALOGY BETWEEN REED–SOLOMON AND GABIDULIN CODES

Reed–Solomon Gabidulin
Metric Hamming Rank
Ring of Polynomials Linearized Polynomials
Degree i [i] = qi

Key Operation Polynomial Multiplication Symbolic Product

Generation Matrix [gij] [g
[i]
j ]

Parity Check Matrix [hi
j ] [h

[i]
j
]

Key Equation Solver BMA Modified BMA
Error Locations Roots Root Space Basis

Error Value Solver Forney’s Formula Gabidulin’s Algorithm

C. KK Codes and Their Decoding

By the lifting operation [5], KK codes can be constructed
from Gabidulin codes. Lifting can also be seen as a gener-
alization of the standard approach to random linear network
coding [2], which transmits matrices in the formX = [I | x],
whereX ∈ F

n×M
q , x ∈ F

n×m
q , andm = M − n.

In practice, the packet length could be very long. To accom-
modate long packets based on the KK codes, very largem and
n are needed, which results in prohibitively high complexity
due to the huge field size ofFqm . A low-complexity approach
in [5] suggested that instead of using a single long Gabidulin
code, a Cartesian product of many short Gabidulin codes with
the same distance can be used to construct constant-dimension
codes for long packets via the lifting operation.

Let the received matrix beY = [Â | y], whereÂ ∈ F
N×n
q

and y ∈ F
N×m
q . Note that we always assume the received

matrix is full-rank [5]. The row and column rank deficiencies
of Â areδ = N−rank Â andµ = n−rank Â, respectively. In
the decoding algorithm of [5], the matrixY is first turned into
an RRE form, and then the RRE form ofY is expanded into
Ȳ =

[

IUc 0

0 Iδ

]

RRE(Y ) =
[

In+L̂I
T
U

r

0 Ê

]

, whereUc denotes
the column positions of leading entries in the firstn rows of
RRE(Y ). The tuple(r, L̂, Ê) is called areduction of Y [5].
It was proved [5] thatdS(〈X〉, 〈Y 〉) = 2 rank

[

L̂ r−x

0 Ê

]

−µ−δ,

whereµ = n−rank L̂ andδ = N−rank L̂. Now the decoding
problem to minimize the subspace distance becomes a problem
to minimize the rank distance.

For a KK codeC, the generalized rank decoding [5] finds
an error wordê = argmin

e∈r−C rank
[

L̂ e

0 Ê

]

. The error word
ê is expanded as a summation of products of column and row
vectors [5] such that̂e =

∑τ−1
j=0 LjEj . Each termLjEj is

called either anerasure, if Lj is known, or adeviation, if Ej

is known, or anerror, if neitherLj nor Ej is known. In this
general decoding problem,L hasµ columns fromL̂ andE has
δ rows fromÊ. Given a Gabidulin code of minimum distance
d, the corresponding KK code is able to correctǫ errors,µ
erasures, andδ deviations as long as if2ǫ+ µ+ δ < d.

Algorithm 2 was proposed [5] for generalized decoding of
the KK codes, and its data flow is shown in Figure 2. It
requiresO(dm) operations inFqm [5].

Algorithm 2 (General Rank Decoding [5]).
Input : received tuple(r, L̂, Ê)
Output : error wordê

2.1 ComputeS = Hr, X̂ = L̂Th, λU (x) = minpoly(X̂),
σD(x) = minpoly(Ê), andSDU (x) = σD(x)⊗S(x)⊗

ζU (x), whereζU (x) is theq-reverse ofλU (x).
2.2 Compute the error span polynomial:

a) Use the modified BMA [12] to solve the key equa-
tion σF (x) ⊗ SDU (x) ≡ ω(x) mod x[d−1] such
that degω(x) < [τ ] whereτ = ǫ+ µ+ δ.

b) ComputeSFD(x) = σF (x)⊗ σD(x) ⊗ S(x).
c) Use Gabidulin’s algorithm [6] to findβ that solves

SFD,l =
∑µ−1

j=0 X
[l]
j βj , l = d − 2, d − 3, . . . , d −

1− µ.
d) ComputeσU (x) = minpoly(β) followed byσ(x) =

σU (x) ⊗ σF (x) ⊗ σD(x).

2.3 Find a basisE for the root space ofσ(x).
2.4 Find the error locations:

a) SolveSl =
∑τ−1

j=0 X
[l]
j Ej , l = 0, 1, . . . , d−2 using

Gabidulin’s algorithm [6] to find the error locators
X0, X1, . . . , Xτ−1 ∈ Fqm .

b) Compute the error locationsLj ’s by solving (4).
c) Compute the error word̂e =

∑τ
j=1 LjEj , where

eachEj is the row expansion ofEj .

III. C OMPUTATIONAL COMPLEXITY REDUCTION

In general, RLNC is carried out overFq, whereq is any
prime power. That is, packets are treated as vectors overFq.
Since our investigation of computational complexities is for
both software and hardware implementations of RLNC, where
data are stored and transmitted in bits, we focus on RLNC over
characteristic-2 fields in our work, i.e.,q is a power of two.
In some cases, we further assumeq = 2, as it leads to further
complexity reductions.

A. Finite Field Representation

Finite field elements can be represented by vectors using
different types of bases: polynomial basis, normal basis, and
dual basis [26]. In rank metric decoders, most polynomials
involved are linearized polynomials, and hence their evalu-
ations and symbolic products require computing their[i]th
powers. Suppose a field element is represented by a vector
overFp with respect to a normal basis, computing[i]th powers
(i is a positive or negative integer) of the element is simply
cyclic shifts of the corresponding vector byi positions, which
significantly reduces computational complexities. For example,
the computational complexity of Algorithm 1 is primarily due
to the following updates in Step 1.1:

Ai,j = Ai−1,j − (
Ai−1,j

Ai−1,i−1
)[−1]Ai−1,i−1

Qi,j = Qi−1,j − (
Qi−1,j+1

Ai−1,i−1
)[−1]Ai−1,i−1

(5)

which require divisions and computing[−1]th powers. With
normal basis representation,[−1]th powers are obtained by a
single cyclic shift. Whenq = 2, they can be computed in
an inversionless formAi,j = Ai−1,j −

(

Ai−1,jAi−1,i−1

)[−1]
,

Qi,j = Qi−1,j −
(

Qi−1,j+1Ai−1,i−1

)[−1]
, which also avoids

finite field divisions or inversions. Thus using normal basis
representation also reduces the complexity of Gabidulin’sal-
gorithm.
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Fig. 2. Data flow of KK decoding

In addition to lower complexities of finite field arithmetic
operations, normal basis representation leads to reduced com-
plexities in the decoding of Gabidulin and KK codes for sev-
eral reasons. First, it was shown that using normal basis can
facilitate the computation of symbolic product [9]. Second,
it was also suggested [9] that solving (4) can be trivial us-
ing normal basis. If(h0, h1, . . . , hm−1) is a normal basis,
the matrixh, whose rows are vector representations ofhi’s
with respect to the basishi’s, becomes an identity matrix
with additional all-zero columns. Hence solving (4) requires
no computation. These two complexity reductions were also
observed in [10]. Third, if a normal basis ofF2m is used as
hi’s andn = m, the parity check matrixH in (1) becomes a
cyclic matrix. Thus syndrome computation becomes part of a
cyclic convolution of(h0, h1, . . . , hm−1) andr, for which fast
algorithms are available (see, for example, [27]). Using fast
cyclic convolution algorithms are favorable whenm is large.

B. Normal Basis Arithmetic Operations

We also propose finite field arithmetic operations with re-
duced complexities, when normal basis representation is used.
When represented by vectors, the addition and subtraction of
two elements are simply component-wise addition, which is
straightforward to implement. For characteristic-2 fields F2m ,
inverses can be obtained efficiently by a sequence of squaring
and multiplying, sinceβ−1 = β2m−2 = β2β4 . . . β2m−1

for
β ∈ F2m [26]. Since the[i]-th powers require no computation,
the complexity of inversion in turn depends on that of multi-
plication. Division can be implemented by a concatenation of
inversion and multiplication:α/β = α · β−1, and hence the
complexity of division also depends on that of multiplication
in the end.

There are serial and parallel architectures for normal basis
finite field multipliers. To achieve high throughput in our de-
coder, we consider only parallel architectures. Most normal
basis multipliers are based on the Massey–Omura (MO) ar-
chitecture [26], [28]. The complexity of a serial MO normal
basis multiplier overF2m , CN , is defined as the number of
termsaibj in computing a bit of the productc = ab, where
a =

∑m−1
i=0 aihi ∈ F2m and b =

∑m−1
j=0 bjhj ∈ F2m and

(h0, h1, . . . , hm−1) is a normal basis. It has been shown [29]
that a parallel MO multiplier overF2m needsm2 AND gates
and at mostm(CN +m− 2)/2 XOR gates. For instance, for
the fieldsF28 andF216 , theirCN ’s are minimized to 21 and 85,
respectively [26]. Using a common subexpression elimination
algorithm [13], we significantly reduce the number of XOR
gates while maintaining the same critical path delays (CPDs)

of one AND plus five XOR gates and one AND plus seven
XOR gates as direct implementations, respectively. Our results
are compared to those in [26], [29] in Table II, where we also
provide the prime polynomialP (x) for each field.

TABLE II
COMPLEXITIES OF BIT-PARALLEL NORMAL BASIS MULTIPLIERS OVER

FINITE FIELDS (FOR THESE TWO FIELDS, ALL THREE IMPLEMENTATIONS

HAVE THE SAME CPD.)

P (x)
AND

XOR
direct [26] [29] Ours

F2m - m2 m(CN − 1) m(CN +m − 2)/2 -
F28 (

∑8
i=0 x

i)− x6
− x4

− x2 64 160 108 88
F216 (

∑16
i=0 x

i)− x14
− x9

− x6
− x4 256 1344 792 491

The reduced gate count for normal basis multiplication is
particularly important for hardware implementations of RLNC.
This improvement is transparent to the complexity of decoders,
in terms of finite field operations. When decoders for RLNC
are realized in hardware, the reduced gate count for normal
basis multiplication will be reflected in reduced area and power
consumption.

C. Inversionless BMA

The modified BMA for rank metric codes [12] is similar to
the BMA for RS codes except that polynomial multiplications
are replaced by symbolic products. The modified BMA [12]
requires finite field divisions, which are more complex than
other arithmetic operations. Following the idea of inversion-
less RS decoder [14], we propose an inversionless variant in
Algorithm 3.

Algorithm 3. iBMA
Input : SyndromesS
Output : Λ(x)

3.1 Initialize: Λ(0)(x) = B(0)(x) = x[0], Γ(0) = 1, and
L = 0.

3.2 Forr = 0, 1, . . . , 2t− 1,

a) Compute the discrepancy∆r =
∑L

j=0 Λ
(r)
j S

[j]
r−j.

b) If ∆r = 0, then go to (e).
c) Modify the connection polynomial:Λ(r+1)(x) =

(Γ(r))[1]Λ(r)(x)−∆rx
[1] ⊗B(r)(x).

d) If 2L > r, go to (e). Otherwise,L = r + 1 − L,
Γ(r+1) = ∆r, andB(r)(x) = Λ(r)(x). Go to (a).

e) SetΓ(r+1) = (Γ(r))[1] and B(r+1)(x) = x[1] ⊗
B(r)(x).

3.3 SetΛ(x) = Λ(2t)(x).

Using a similar approach as in [14], we prove that the
output Λ(x) of Algorithm 3 is the same asσ(x) produced
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by the modified BMA, except it is scaled by a constantC =
∏t−1

i=0(Γ
(2i))[1]. However, this scaling is inconsequential since

the two polynomials have the same root space.
Using normal basis, the modified BMA in [12] requires at

most⌊(d−2)/2⌋ inversions,(d−1)(d−2) multiplications, and
(d−1)(d−2) additions overFqm [9]. Our inversionless version,
Algorithm 3, requires at most(3/2)d(d − 1) multiplications
and(d−1)(d−2) additions. Since a normal basis inversion is
obtained bym−1 normal basis multiplications, the complexity
of normal basis inversion is roughlym − 1 times that of
normal basis multiplication. Hence, Algorithm 3 reduces the
complexity considerably. Algorithm 3 is also more suitablefor
hardware implementation, as shown in Section IV.

D. Finding the Root Space

Instead of findingroots of polynomials in RS decoding,
we need to find theroot spaces of linearized polynomials
in rank metric decoding. Hence the Chien search [30] in RS
decoding will have a high complexity for two reasons. First,
it requires polynomial evaluations over the whole field, whose
complexity is very high; Second, it cannot find a set of linearly
independent roots.

A probabilistic algorithm to find the root space was pro-
posed in [25]. For Gabidulin codes, it can be further simplified
as suggested in [9]. But hardware implementations of prob-
abilistic algorithms require random number generators. Fur-
thermore, the algorithm in [25] requires symbolic long divi-
sion, which is also not suitable for hardware implementations.
According to [5], the average complexity of the probabilistic
algorithm in [25] isO(dm) operations overFqm , while that of
Berlekamp’s deterministic method [24] isO(dm) operations
in Fqm plusO(m3) operations inFq. Since their complexity
difference is small, we focus on the deterministic method,
which is much easier to implement.

Suppose we need to find the root space of a linearized poly-
nomialr(x), Berlekamp’s deterministic method first evaluates
the polynomialr(x) on a basis of the field(α0, α1, . . . , αm−1)
such thatvi = r(αi), i = 0, 1, . . . ,m−1. Then it expandsvi’s
in the base field as columns of anm×m matrix V and finds
linearly independent rootsz such thatV z = 0. Using the
representation based on(α0, α1, . . . , αm−1), the rootsz are
also the roots of the given polynomial. Findingz is to obtain
the linear dependent combinations of the columns ofV , which
can be done by Gaussian elimination.

E. n-RRE Form

Given a received subspace spanned by a set of received pack-
ets, the input of Algorithm 2 is a three-tuple, called a reduction
of the received space represented by its generator matrixY ;
the three-tuple is obtained based onY when it is in its RRE
form [5]. Thus, before the decoding starts, preprocessing is
performed on the received packets so as to obtain the RRE
form of Y . We show thatY needs to satisfy only a relaxed
constraint, which does not affect the decoding outcome, while
leading to two advantages. First, the relaxed constraint results
in reduced complexities in the preprocessing step. Second and

more importantly, the relaxed constraint enables parallelpro-
cessing of decoding KK codes based on Cartesian products.

We first define ann-RRE form for received matrices. Given
a matrixY = [Â | y], whereÂ ∈ F

N×n
q andy ∈ F

N×m
q , the

matrix Y is in its n-RRE form as long aŝA (its leftmostn
columns) is in its RRE form. Compared with the RRE form,
the n-RRE form is more relaxed as it puts no constraints on
the right part. We note that ann-RRE form of a matrix is not
unique.

We first show that the relaxed constraint does not affect the
decoding. Similar to [31, Proposition 7], we first show that a
reduction based onn-RRE form of Y always exists. Given
Y = [Â | y] andRRE(Â) = RÂ, whereR represents the
reducing row operations, the productȲ ′ = RY = [B′ | Z ′] is
in its n-RRE form. We note thatB′ ∈ F

N×n
q andZ ∈ F

N×m
q ,

where the column and row rank deficiency ofB′ are given by
µ′ = n − rankB′ and δ′ = N − rankB′, respectively. We
have the following result about the reduction based onȲ ′.

Lemma 1. Let Ȳ ′ andµ′ andδ′ be defined as above. There
exists a tuple(r′, L̂′, Ê′) ∈ F

n×m
q × F

n×µ′

q × F
δ′×m
q and a

setU ′ satisfying|U ′| = µ′, IT
U ′r′ = 0, IT

U ′L̂′ = −Iµ′×µ′ , and

rank Ê′ = δ′ so that
〈

[

In+L̂
′
I
T
U′ r

′

0 Ê
′

]

〉

= 〈Ȳ ′〉 = 〈Y 〉.

See Appendix A for the proof of Lemma 1. Lemma 1 shows
that we can find an alternative reduction based onn-RRE form
of Y , instead of an RRE form ofY . The key of our alternative
reduction ofY is that the reduction is mostly determined
by the first n columns ofRRE(Y ). Also, this alternative
reduction does not come as a surprise. As shown in [31, Propo-
sition 8], row operations on̂E can produce alternative reduc-
tions. Next, we show that decoding based on our alternative
reduction is the same as in [31]. Similar to [31, Theorem 9],
we have the following results.

Lemma 2. Let (r′, L̂′, Ê′) be a reduction ofY determined by
its n-RRE form, we havedS(〈X〉, 〈Y 〉) = 2 rank

[

L̂
′
r
′
−x

0 Ê
′

]

−

µ′ − δ′.

See Appendix B for the proof. Lemma 2 shows that the sub-
space decoding problem is equivalent to the generalized Gabi-
dulin decoding problem with the alternative reduction(r′, L̂′, Ê′),
which is obtained from ann-RRE form ofY .

Our alternative reduction leads to two advantages. First,
it results in reduced complexity in preprocessing. Given a
matrix Y , the preprocessing needed to transformY into its
n-RRE form is only part of the preprocessing to transformY
into its RRE form. We can show that the maximal number
of arithmetic operations in the former preprocessing is given
by (N − 1)

∑rank Â−1
i=0 (n + m − i), whereas that of the lat-

ter preprocessing is(N − 1)
∑rank(Y )−1

i=0 (n +m − i). Since
rankY ≥ rank Â, the relaxed constraint leads to a lower
complexity, and the reduction depends onrankY andrank Â.

Second, the reduction forn-RRE forms is completely deter-
mined by then leftmost columns ofY instead of the whole
matrix, which greatly simplifies hardware implementations. This
advantage is particularly important for the decoding of constant-
dimension codes that are lifted from Cartesian products of
Gabidulin codes. Since the row operations to obtain ann-RRE
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form depend onÂ only, decoding[Â | y0 | y1 | · · · | yl−1]
can be divided into parallel and smaller decoding problems
whose inputs are[Â | y0], [Â | y1], . . . , [Â | yl−1]. Thus,
for these constant-dimension codes, we can decode in a serial
manner with only one small decoder, or in a partly parallel
fashion with more decoders, or even in a fully parallel fashion.
This flexibility allows tradeoffs between cost/area/powerand
throughput. Furthermore, since the erasuresL̂ are determined
by Â and are the same for all[A | yi], the computation ofX̂
andλU (x) in Algorithm 2 can be shared among these parallel
decoding problems, thereby reducing overall complexity.

F. Finding Minimal Linearized Polynomials

Minimal linearized polynomials can be computed by solving
systems of linear equations. Given rootsβ0, β1, . . . , βp−1, the
minimal linearized polynomialx[p] +

∑p−1
i=0 aix

[i] satisfies












β
[0]
0 β

[1]
0 · · · β

[p−1]
0

β
[0]
1 β

[1]
1 · · · β

[p−1]
1

...
...

. . .
...

β
[0]
p−1 β

[1]
p−1 · · · β

[p−1]
p−1























a0
a1
...

ap−1











=













β
[p]
0

β
[p]
1
...

β
[p]
p−1













. (6)

Thus it can be solved by Gaussian elimination over the exten-
sion fieldFqm . Gabidulin’s algorithm is not applicable because
the rows of the matrix are not the powers of the same element.

The complexity to solve (6) is very high. Instead, we refor-
mulate the method from [21, Chap. 1, Theorem 7]. The main
idea of [21, Chap. 1, Theorem 7] is to recursively construct
the minimal linearized polynomial using symbolic products
instead of polynomial multiplications in polynomial interpola-
tion. Given linearly independent rootsw0, w1, . . . , wp−1, we
can construct a series of linearized polynomials as:F (0)(x) =
x[0] andF (i+1)(x) = (x[1]− (F (i)(wi))

q−1x[0])⊗F (i)(x) for
i = 0, 1, · · · , p− 1.

Although the recursive method in [21, Chap. 1, Theorem 7]
is for p-polynomials, we can adapt it to linearized polynomials
readily. A serious drawback of [21, Chap. 1, Theorem 7]
is that the evaluation ofF (i)(wi) has a rapidly increasing
complexity when the degree ofF (i)(x) gets higher. To elimi-
nate this drawback, we reformulate the algorithm so that the
evaluationF (i)(wi) is done in a recursive way. Our reformu-
lated algorithm is based on the fact thatFi(wi+1) = (x[1] −
(Fi−1(wi))

q−1x[0]) ⊗ Fi−1(wi+1). RepresentingF (i)(wj) as
γ
(i)
j , we obtain Algorithm 4.

Algorithm 4 (Minimal Linearized Polynomials).
Input : Rootsw0, w1, . . . , wp−1

Output : The minimal linearized polynomialF (p)(x)

4.1 Setγ(0)
j = wj , for j = 0, 1, . . . , p − 1 andF (0)(x) =

x[0].
4.2 Fori = 0, 1, . . . , p− 1,

a) If γ
(i)
i = 0, F (i+1)(x) = F (i)(x) and γ

(i+1)
j =

γ
(i)
j for j = i + 1, i + 2, . . . , p − 1; Otherwise,

F (i+1)(x) = (F (i)(x))[1] − (γ
(i)
i )q−1F (i)(x) and

γ
(i+1)
j = (γ

(i)
j )[1]− (γ

(i)
i )q−1γ

(i)
j for j = i+1, i+

2, . . . , p− 1.

Since powers ofq require only cyclic shifting, the opera-
tions in Algorithm 4 are simple. Also, Algorithm 4 does not
require the roots to be linearly independent. In Algorithm 4,
F (i)(wj) = 0 for j = 0, 1, . . . , i − 1 andγ

(i+1)
i = F (i)(wi).

If w0, w1, . . . , wj are linearly dependent,γ(j)
j = 0 and hence

wj is ignored. So Algorithm 4 integrates detection of linearly
dependency at no extra computational cost.

Essentially, Algorithm 4 breaks down evaluations of high
q-degree polynomials into evaluations of polynomials withq-
degree of one. It gets rid of complex operations while main-
taining thesame total complexity of the algorithm.

IV. A RCHITECTUREDESIGN

Aiming to reduce the storage requirement and total area as
well as to improve the regularity of our decoder architectures,
we further reformulate the steps in the decoding algorithmsof
both Gabidulin and KK codes. Again, we assume the decoder
architectures are suitable for RLNC overFq, where q is a
power of two.

A. High-Speed BMA Architecture

To increase the throughput, regular BMA architectures with
shorter CPD are necessary. Following the approaches in [15],
we develop two architectures based on Algorithm 3, which are
analogous to theriBM andRiBM algorithms in [15].

In Algorithm 3, the critical path is in step 3.2(a). Note
that ∆r is the rth coefficient of the discrepancy polynomial
∆(r)(x) = Λ(r)(x) ⊗ S(x). By usingΘ(r)(x) = B(r)(x) ⊗
S(x), ∆(r+1)(x) can be computed as

∆(r+1)(x) = Λ(r+1)(x)⊗ S(x)

=
[

(Γ(r))[1]Λ(r)(x) −∆rx
[1] ⊗B(r)(x)

]

⊗ S(x)

= (Γ(r))[1]∆(r)(x) −∆rx
[1] ⊗Θ(r)(x) (7)

which has the same structure as step 3.2(c). Hence this re-
formulation is more conducive to a regular implementation.
Given the similarities between step 3.2(a) and (7),Λ(x) and
∆(x) can be combined together into one polynomial∆̃(x).
Similarly, B(x) and Θ(x) can be combined into one poly-
nomial Θ̃(x). These changes are incorporated in our RiBMA
algorithm, shown in Algorithm 5.

Algorithm 5. RiBMA
Input : SyndromesS
Output : Λ(x)

5.1 Initialize:∆̃(0)(x) = Θ̃(0)(x) =
∑2t−1

i=0 Six
[i], Γ(0) = 1,

∆̃
(0)
3t = Θ̃

(0)
3t = 1, andb = 0.

5.2 Forr = 0, 1, . . . , 2t− 1,
a) Modify the combined polynomial:̃∆(r+1)(x) =

Γ(r)∆̃(r)(x) − ∆̃
(r)
0 Θ̃(r)(x);

b) Setb = b + 1;
c) If ∆̃(r)

0 6= 0 andb > 0, setb = −b, Γ(r+1) = ∆̃
(r)
0 ,

and Θ̃(r)(x) = ∆̃(r)(x);
d) Set ∆̃(r+1)(x) =

∑3t−1
i=0 ∆̃

(r+1)
i+1 x[i], Θ̃(r)(x) =

∑3t−1
i=0 Θ̃

(r)
i+1x

[i];
e) SetΓ(r+1) = (Γ(r))[1] and Θ̃(r+1)(x) = x[1] ⊗

Θ̃(r)(x).
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5.3 SetΛ(x) =
∑t

i=0 ∆̃
(2t)
i+t x

[i].

Following Algorithm 5, we propose a systolic RiBMA ar-
chitecture shown in Fig. 3, which consists of3t+ 1 identical
processing elements (BEs), whose circuitry is shown in Fig. 4.
The central control unitBCtrl, the rightmost cell in Fig. 3,
updatesb, generates the global control signalsct(r) andΓ(r),
and passes along the coefficientΛ

(r)
0 . The control signalct(r)

is set to 1 only if∆̃(r)
0 6= 0 and k > 0. In each processing

element, there are two critical paths, both of which consistof
one multiplier and one adder overF2m .

BE0 · · · BEt · · · BE2t · · · BE3t BCtrl

Λ0 Λt

0

0

Fig. 3. The RiBMA architecture

D + ×

×

∆̃
(r)
i+1

Γ(r) Γ(r)

1 0

xq

D

Θ̃
(r)
i Θ̃

(r)
i+1

ct(r) ct(r)

∆̃
(r)
0 ∆̃

(r)
0

∆̃
(r)
i

∆̃
(r)
i

Fig. 4. The processing elementBEi (xq is a cyclic shift, and requires no
hardware but wiring)

B. Generalized BMA

The key equation of KK decoding is essentially the same as
(2), butω(x) hasq-degree less thanτ instead of⌊(d− 1)/2⌋.
Actually, in KK decoding, we do not know the exact value of
τ before solving the key equation. All we need is to determine
the maximum number of correctable errorst′ givenµ erasures
andδ deviations, which is given byt′ = ⌊(d− 1− µ− δ)/2⌋.
Hence we adapt our BMA in Section III-C to KK decoding, as
in Algorithm 6. To apply Algorithm 6 to Gabidulin decoding,
we can simply useθ = µ+ δ = 0.

Algorithm 6 (Generalized RiBMA).
Input : S andθ
Output : Λ(x)

6.1 Initialize as follows:t′ = ⌊(d − 1 − θ)/2⌋, ∆̃(0)(x) =

Θ̃(0)(x) =
∑θ+2t′−1

i=θ Six
[i], ∆̃

(0)
2t′+t = Θ̃

(0)
2t′+t = 1,

Γ(0) = 1, andb = 0.
6.2 Forr = 0, 1, . . . , 2t′ − 1,

a) Modify the combined polynomial:̃∆(r+1)(x) =

Γ(r)∆̃(r)(x)− ∆̃
(r)
0 Θ̃(r)(x);

b) Setb = b+ 1;

c) If ∆̃(r)
0 6= 0 andb > 0, setb = −b, Γ(r+1) = ∆̃

(r)
0 ,

and Θ̃(r)(x) = ∆̃(r)(x);
d) Set∆̃(r+1)(x) =

∑2t′+t−1
i=0 ∆̃

(r+1)
i+1 x[i], Θ̃(r)(x) =

∑2t′+t−1
i=0 Θ̃

(r)
i+1x

[i];
e) SetΓ(r+1) = (Γ(r))[1] and Θ̃(r+1)(x) = x[1] ⊗

Θ̃(r)(x).

6.3 SetΛ(x) =
∑t′

i=0 ∆̃
(2t′)
i+t x[i].

Compared with Algorithm 5, we replacet by t′. The vari-
able t′ makes it difficult to design regular architectures. By
carefully initializing ∆̃(0)(x) andΘ̃(0)(x), we ensure that the
desired outputΛ(x) is always at a fixed position of̃∆(2t′)(x),
regardless ofµ + δ. Hence, the only irregular part is the
initialization. The initialization of Algorithm 6 can be done by
shifting in at mostθ cycles. Hence the RiBMA architecture in
Fig. 3 can be adapted to the KK decoder and keep the same
worse-case latency of2t cycles.

C. Gaussian Elimination

We need Gaussian elimination to obtainn-RRE forms as
well as to find root spaces. Furthermore, Gabidulin’s algo-
rithm in Algorithm 1 is essentially a smart way of Gaussian
elimination, which takes advantage of the properties of the
matrix. The reduction (to obtainn-RRE forms) and finding
the root space are Gaussian eliminations on matrices overFq,
while Gabidulin’s algorithm operates on matrices overFqm . In
this section, we focus on Gaussian eliminations overFq and
Gabidulin’s algorithm will be discussed in Section IV-D.

For high-throughput implementations, we adapt the pivoting
architecture in [32], which was developed for non-singular
matrices overF2. It always keeps the pivot element on the
top-left location of the matrix, by cyclically shifting therows
and columns. Our Gaussian elimination algorithm, shown in
Algorithm 7, has three key differences from the pivoting ar-
chitecture in [32]. First, Algorithm 7 is applicable to matrices
over any field. Second and more importantly, Algorithm 7 can
be used for singular matrices. This feature is necessary since
singular matrices occur in the reduction for the RRE form and
finding the root space. Third, Algorithm 7 is also flexible about
matrix sizes, which are determined by the variable numbers
of errors, erasures, and deviations.

Algorithm 7 (Gaussian Elimination for Root Space).
Input : M ∈ F

m×m
q , whose rows are evaluations ofσ(x)

over the normal basis, andB = Im
Output : Linearly independent roots ofσ(x)

7.1 Seti = 0.
7.2 Forj = 0, 1, . . . ,m− 1

a) l = 1
b) While M0,0 = 0 and l < m− i

l = l + 1, shiftup(M , i), andshiftup(B, i).
c) If M0,0 is not zero,eliminate(M), reduce(B,M),

and i = i+ 1; Otherwise,shiftleft(M).
7.3 The firstm − i rows of M are all zeros and the first

m− i rows ofB are roots.

The eliminate and shiftup operations are quite similar to
those in [32, Algorithm 2]. Ineliminate(M), for 0 ≤ j < m,
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Mi,j = M0,0Mi+1,(j+1) mod m − Mi+1,0M0,(j+1) mod m for
0 ≤ i < m − 1, andMm−1,j = M0,(j+1) mod m. Note that a
cyclic row shift and a cyclic column shift are already embed-
ded in theeliminate operation. In theshiftup(M , ρ) opera-
tion, the first row is moved to the(m−1−ρ)th row while the
second to the(m−1−ρ)th rows are moved up. That is, for0 ≤
j < m, Mi,j = M0,j if i = m−1−ρ, andMi,j = Mi+1,j for
0 ≤ i ≤ m− 2− ρ. The operationreduce(B,M) essentially
mimics all row operations ineliminate without the column
shift: for 0 ≤ j < m, Bi,j = M0,0Bi+1,j − Mi+1,0B0,j for
0 ≤ i < m−1, andBm−1,j = B0,j . In theshiftleft operation,
all columns are cyclicly shifted to the left. In other words,for
all 0 ≤ i < m and 0 ≤ j < m, Mi,j = Mi,(j+1) mod m. By
adding ashiftleft operation, Algorithm 7 handles both singular
and non-singular matrices while [32, Algorithm 2] works for
non-singular matrices only. SinceB is always full rank, the
roots obtained are guaranteed to be linearly independent.

We can get the root space using Algorithm 7, and we can
also use it in KK decoding to reduce the received vector to
ann-RRE form. However, Algorithm 7 only produceŝE′. We
extend it to Algorithm 8 below so as to obtain̂L′ simultane-
ously.

Algorithm 8 (Gaussian Elimination forn-RRE Forms).
Input : N × n matrix Â andN ×m matrix y

Output : L̂′, Ê′, r′, andµ′

8.1 Seti = 0, U ′ and L̂ as empty.
8.2 For each columnj = 0, 1, . . . , n− 1

a) l = 1
b) While Â0,0 = 0 and l < n− i

l = l+1, shiftup(Â, i), shiftup(y, i), shiftup(L̂′, i).
c) If Â0,0 is not zero,eliminate(Â), reduce(y, Â),

shiftup(L̂′, 0), i = i+ 1.
d) Otherwise,shiftleft(Â), append the first column

of Â to L̂′, set the top-right element of̂L′ to one,
and addj to U ′.

8.3 Setµ′ = n− i. The deviationsÊ′ are given by the first
µ′ rows ofy.

8.4 For each columnj ∈ U ′, shiftup(L̂′, j) andshiftup(y, j).
8.5 The received vectorr′ is given byy.

In Algorithm 8, we incorporate the extraction ofL̂′, Ê′, and
r′ into Gaussian elimination. Our architecture has the same
worst-case latency as Algorithm 7 and requires no extra cycles
to extractL̂ out of then-RRE form. Hence the throughput also
remains the same.

Algorithm 7 is implemented by the regular architecture shown
in Fig. 5, which is a two-dimensional array ofm×2m process-
ing elements (GE’s); The leftmostm columns of processing
elements correspond toM , and the rightmostm columnsB.
Algorithm 8 can be implemented with the same architecture
with N×(n+m) GE’s; The leftmostn columns of processing
elements correspond tôA, and the rightmostm columnsy.
The elements for̂L′ are omitted in the figure. The circuitry
of the processing elementGE is shown in Fig. 6. The control
signal cti for row i chooses from five inputs based on the
operation: keeping the value,shiftleft, eliminate (or reduce),
and shiftup (using the first row or the next row).

D
+

×

×

M
U

X

Mi+1,j

Mi,j+1

cticti

Mi,j

M ′
i+1,j+1

Mi,jM ′
i,j

Mi,0

M0,0

Mi,0

M0,0

M0,j

M0,j

1 0

Fig. 6. The processing elementGEi, j

D. Gabidulin’s Algorithm

In Algorithm 1, the matrix is first reduced to a triangular
form. It takes advantage of the property of the matrix so that
it requires no division in the first stage. In the first stage, we
need to perform elimination on only one row. We use a similar
pivoting scheme like Algorithm 7. When a row is reduced to
have only one non-zero element, a division is used to obtain
one coefficient ofX. Then it performs a backward elimination
after getting each coefficient. Hence we introduce a backward
pivoting scheme, where the pivot element is always at the
bottom-right corner.

In Algorithm 1, there are twoτ × τ matrices overFqm ,
A andQ. In step 1.2, it requires onlyQi,0’s to compute the
coefficients. To computeQi,0 in (5), it requires onlyQi−1,0

andQi−1,1. And for Qi,j in (5), it requires onlyQi−1,j and
Qi−1,j+1. Recursively, only thoseQi,j ’s wherei+ j < τ are
necessary. Actually, given anyi, entriesQi,0, Qi+1,0, . . . , Qτ−1,0

can be computed with the entriesQi−1,0, Qi−1,1, . . . , Qi−1,τ−i.
With Q0,0, Q1,0, . . . , Qi−2,0, we need to store onlyτ values to
keep track ofQ. Hence we reduce the storage ofQ from τ×τ
m-bit registers down toτ . We cannot reduce the storage ofA

to τ(τ +1)/2 because we have to use the pivoting scheme for
short critical paths.

ACtrl AE0,0 · · · AE0,τ−1 QE0 QCtrl

AE1,0 · · · AE1,τ−1 QE1

...
...

...
...

AEτ−1,0 · · · AEτ−1,τ−1 QEτ−1

x

q−1

q

x−1

× X0,X1, . . . , Xτ−1

· · ·· · ·

0
0

0

Fig. 7. Our architecture of Gabidulin’s algorithm

In our decoder, Algorithm 1 is implemented by the regular
architecture shown in Fig. 7, which includes a triangular array
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GCtrl GE0,0 GE0,1 · · · GE0,m−1 GE0,m GE0,m+1 · · · GE0,2m−1

. . . GE1,0 GE1,1 · · · GE1,m−1 GE1,m GE1,m+1 · · · GE1,2m−1

...
...

...
...

...
...

...
...

...

GEm−1,0 GEm−1,1 · · · GEm−1,m−1 GEm−1,m GEm−1,m+1 · · · GEm−1,2m−1

Fig. 5. Regular architecture for Gaussian elimination

x

1
q

× +

D

Ai−1,j

A
(q−1)/q
i−1,i−1 A

(q−1)/q
i−1,i−1

Ai,j

A′

i−1,j−1

A′

i,j

ctaui ctaui

ctali ctali

Ai+1,j+1

Ai,j

0

1

01

Fig. 8. The processing elementAEi,j

× x

1
q

+
D

× +

qi

q′i

q′i+1

qi+1

A
(q−1)/q
i−1,i−1

Ai,j
ctqi

Xj

Xj

1

0

2

qi

Fig. 9. The processing elementQEi

of τ × τ AE’s and a one-dimensional array ofτ QE’s. The
circuitry of the processing elementAEi,j andQEi is shown
in Fig. 8 and 9. The upper MUX inAE controls the output
sending upward along the diagonal. Its control signalctaui is
1 for the second row and 0 for other rows since we updateA

one row in a cycle and we keep the pivot on the upper left
corner in Step 1.1. The control of the lower MUX inAE is
0 for working on Step 1.1, and 1 for working on Step 1.2.
Similarly the control of the MUX inQE is 0 for working on
Step 1.1, and 1 for working on Step 1.2. But in Step 1.1, only
part of QE’s need update and others should maintain their
values and their control signalsctqi’s are set to 2. Initially,

A0,i = Ei andqi = Si for i = 0, 1, . . . , τ − 1. Step 1.1 needs
τ substeps. In the firstτ−1 substeps,ctali+1 = 0, ctau1 = 1,
ctq0 = ctq1 = · · · = ctqi = 2, andctqi+1 = ctqi+2 = · · · =
ctqτ−1 = 0 for substepi. In the last substep,ctau1 = 0 and
all ctqi’s are set to 2. This substep is to put the updatedA

into the original position. In Step 1.2, the pivot is in the right
lower corner, where we computeXi’s. Step 1.2 also needs
τ substeps, in which allctali’s and ctqi’s are set to 1. First
Xτ−1 is computed byA−1

τ−1,τ−1qτ − 1 whereqτ−1 = Qτ−1,0.
Note that the inversion may needm− 2 clock cycles. In each
substep, the matrixA is moving down the diagonal so theAi,i

to be inverted is always at the bottom right corner. At the same
time, theqi’s are also moving down. Basically, in substepp,
the architecture updatesqi’s to Qi−p,0 −

∑τ−1
j=τ−1−p Ai,jXj

for i > p by doing one backward elimination at each substep.

E. Low Complexity Linearized Interpolation

It would seem that three registers are needed to storeF (i)(x),
wj ’s, and γ

(i)
j ’s, respectively, in Algorithm 4. However, we

can implement Algorithm 4 with a single register of sizep+
1. First, we note thatwj ’s are used to initializeγ(0)

j ’s, and

only γ
(i)
j ’s are used in the updates. Second, after thei-th

iteration of step 4.2, theq-degree ofF (i+1)(x) is no more
than i + 1 and we need onlyγ(i+1)

i+1 , γ
(i+1)
i+2 , . . . , γ

(i+1)
p−1 there-

after. Thus, we can store the coefficients ofF (i+1)(x) and
γ
(i+1)
i+1 , γ

(i+1)
i+2 , . . . , γ

(i+1)
p−1 in a register of sizep+ 1. We refer

to this register asη and index it0, 1, · · · , p from left to right.
Note thatγ(i+1)

i+1 , γ
(i+1)
i+2 , . . . , γ

(i+1)
p−1 are stored at the lower end

of the η register, and the coefficients ofF (i+1)(x) are stored
at the higher end of the register. At each iteration, the content
of the η register is shifted to the left by one position, so that
γ
(i)
i is always stored atη0.

Algorithm 9 (Reformulated Algorithm for Minimal Linearized
Polynomials).

Input : Rootsw0, w1, . . . , wp−1

Output : The minimal linearized polynomialF (x)
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9.1 Initialization: η(0)j = wj for j = 0, 1, . . . , p − 1, and

η
(0)
p = 1.

9.2 Fori = 0, 1, . . . , p− 1,

a) If η(i)0 6= 0,

i) For j = 0, 1, . . . , p−1−i, η(i+1)
j = (η

(i)
j+1)

[1]−

(η
(i)
0 )q−1η

(i)
j+1;

ii) For j = p−i, p−i+1, . . . , p, η(i+1)
j = (η

(i)
j )[1]−

(η
(i)
0 )q−1η

(i)
j+1;

b) Otherwise, forj = 0, 1, . . . , p, η(i+1)
j = η

(i)
j+1.

9.3 F (x) =
∑p

i=0 η
(p)
i x[i].

We note that the updates involveη(i)p+1, which is always
set to zero (see Fig. 10). When an inputwi is not linearly
independent withw0, w1, . . . , wi−1, η

(i)
0 = 0. In this case,

the algorithm simply ignores the input, and theηi registers
are shifted to the left by one position. Hence, whether or
not the inputsw0, w1, . . . , wp−1 are linearly independent, the
minimal linearized polynomial for the inputs will be available
after p iterations. This flexibility is important for our decoder
architecture, since the number of linearly independent inputs
varies.

Algorithm 9 is implemented by the systolic architecture
shown in Fig. 10, which consists ofp + 1 processing ele-
ments (ME’s). The circuitry of the processing elementMEj

is shown in Fig. 11. Thecr signal is 1 only whenγ0 6= 0.
The ctj signal for each cell is 1 only ifj < p − i. Ba-
sically, ctj controls whether the update is forF (i+1)(x) or
γ
(i+1)
i+1 , γ

(i+1)
i+2 , . . . , γ

(i+1)
p−1 as in Algorithm 4.

ME0 · · · MEp MCtrl

0

0

F0 Fp

Fig. 10. Architecture of linearized polynomial interpolation

D + × xq−1

xq xq

& D

ηj+1

ctjctj+1

η0η0

ηj
crcr

ηj

0

1

1 0

0

1

Fig. 11. The processing elementMEj (xq is a cyclic shift, and requires no
hardware but wiring). For simplicity, we have omitted the superscripts ofηj

F. Decoding Failure

A complete decoder declares decoding failure when no valid
codeword is found within the decoding radius of the received
word. To the best of our knowledge, decoding failures of
Gabidulin and KK codes were not discussed in previous works.

Similar to RS decoding algorithms, a rank decoder can return
decoding failure when the roots of the error span polynomial
λ(x) are not unique. That is, the root space ofλ(x) has a
dimension smaller than theq-degree ofλ(x). Note that this
applies to both Gabidulin and KK decoders. For KK decoders,
another condition of decoding failure is when the total number
of erasures and deviations exceeds the decoding boundd− 1.

G. Latency and Throughput

We analyze the worst-case decoding latencies of our decoder
architectures, in terms of clock cycles, in Table III.

TABLE III
WORST-CASE DECODING LATENCY(IN TERMS OF CLOCK CYCLES).

GAUSSIAN ELIMINATION OVER Fqm (ROOT SPACE INGABIDULIN AND KK
DECODERS) HAS THE LONGEST CRITICAL PATH OF ONE MULTIPLIER, ONE

ADDER, ONE TWO-INPUT MUX, AND ONE FIVE-INPUT MUX.

Gabidulin KK
n-RRE - n(2N − n+ 1)/2

SyndromeS n n
λU (x) - 2t
σD(x) - 2t
SDU (x) - 2(d − 1)

BMA 2t 2t
SFD(x) - d− 1

β - (m+ 2)(d − 1)
σU (x) - 2t
σ(x) - d− 1

root space basisE m(m + 1)/2 m(m + 1)/2
error locatorL 2t+mt (m+ 2)(d − 1)
error worde t 2t

As in [32], the latency of Gaussian elimination for then-
RRE form is at mostn(2N − n+ 1)/2 cycles. Similarly, the
latency of finding the root space is at mostm(m+ 1)/2.

For Gabidulin’s algorithm, it needs one cycle per row for for-
ward elimination and the same for backward elimination. For
each coefficient, it takesm cycles to perform a division. Hence
it needs at most2(d− 1)+m(d− 1) and2(d− 1)+m(d− 1)
for β andL respectively. The latencies of finding the minimal
linearized polynomials are determined by the number of regis-
ters, which is2t to accommodateλD(x), σD(x), andσU (x),
whose degrees areµ, δ, andµ, respectively. The2t syndromes
can be computed by2t sets of multiply-and-accumulators inn
cycles. Note that the computations ofS(x), λU (x), andσD(x)
can be done concurrently. The latency of RiBMA is2t for 2t
iterations. The latency of a symbolic producta(x) ⊗ b(x) is
determined by theq-degree ofa(x). When computingSDU (x),
we are concerned about only the terms ofq-degree less than
d− 1 because only those are meaningful for the key equation.
For computingSFD(x), the result ofσD(x)⊗S(x) in SDU (x)
can be reused, so it needs only one symbolic product. In total,
assumingn = m, the decoding latencies of our Gabidulin and
KK decoders aren(n+3)/2+(n+5)t andn(N+2)+4(n+5)t
cycles, respectively.

One assumption in our analysis is that the unit that computes
xq−1 in Figs. 9 and 11 is implemented with pure combinational
logic, which leads to a long CPD for largeq’s. To achieve
a short CPD for largeq’s, it is necessary to pipeline the
unit that computesxq−1. There are two ways to pipeline it:
xq−1 = x · x2 · · ·xq/2 that requireslog2 q− 1 multiplications,
or xq−1 = xq/x that requiresm multiplications for division.
To maintain a short CPD,xq−1 needs to be implemented
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sequentially with one clock cycle for each multiplication.Let
cqm = min{log2 q−1,m} and it requires at most2(cqm+2)t
clock cycles for getting minimal linearized polynomialsλU (x),
σD(x), andσU (x). Similarly, it requires at mostcqm(d − 1)
more cycles to perform forward elimination in Gabidulin’s
algorithm for the error locator, and the latency of this step
will be (m+ cqm + 2)(d− 1) cycles.

In our architectures, we use a block-level pipeline scheme
for high throughput. Data transfers between modules are buffered
into multiple stages so the throughput is determined by only
the longest latency of a single module. For brevity, we present
only the data flow of our pipelined Gabidulin decoder in Fig. 12.
The data in different pipeline stages are for different decoding
sessions. Hence these five units can work on five different
sessions currently for higher throughput. If some block fin-
ishes before others, it cannot start another session until all
are finished. So the throughput of our block-level pipeline
decoders is determined by the block with the longest latency.
For Gabidulin decoders, the block of finding root space is the
bottleneck that requiresm(m+1)/2 cycles, the longest latency
in the worst case scenario. For KK decoders, the bottleneck is
the RRE block, which requiresn(2N − n+ 1)/2 cycles.

rs rσ

Sσ

Received Syndromes BMA

Corrected Error Gabidulin’s Roots

EX

SE

rX rE

r S

σ(x)

EX

Fig. 12. Data flow of our pipelined Gabidulin decoder

V. I MPLEMENTATION RESULTS AND DISCUSSIONS

To evaluate the performance of our decoder architectures,
we implement our architectures for Gabidulin and KK codes
for RLNC over F2. Note that although the random linear
combinations are carried out overF2, decoding of Gabidulin
and KK codes are performed over extension fields ofF2.

Due to the hardware limitations caused by the architecture
in Fig. 5, We need to restrictN . Note that we assume the
input matrix is full rank as [5]. WhenN ≥ n+d, the number
of deviationsδ = N − n is at leastd and it is uncorrectable.
Hence in our implementation of KK decoders, we assumeN
is less thann+ d.

A. Implementation Results

We implement our decoder architecture in Verilog for an
(8, 4) Gabidulin code overF28 and a(16, 8) one overF216 ,
which can correct errors of rank up to two and four, respec-
tively. We also implement our decoder architecture for their
corresponding KK codes, which can correctǫ errors,µ era-
sures, andδ deviations as long as2ǫ+ µ+ δ is no more than

five or nine, respectively. Our designs are synthesized using
Cadence RTL Compiler 9.1 and FreePDK 45nm standard cell
library [33]. The synthesis results are given in Table IV. In
these tables, the total area includes both cell area and esti-
mated net area, the gate counts are in equivalent numbers
of 2-input NAND gates, and the total power includes both
leakage and estimated dynamic power. All estimations are
made by the synthesis tool. The throughput is computed as
(n×m×R)/(LatencyBottleneck× CPD).

To provide a reference for comparison, the gate count of our
(8, 4) KK decoder is only 62% to that of the(255, 239) RS de-
coder over the same fieldF28 in [34], which is 115,500. So for
Gabidulin and KK codes over small fields, which have limited
error-correcting capabilities, their hardware implementations
are feasible. The area and power of decoder architectures in
Table IV appear affordable except for applications with very
stringent area and power requirements.

TABLE IV
SYNTHESIS RESULTS OF DECODERS FORGABIDULIN AND KK CODES

Finite fields F28 F216

Codes Gab. KK Gab. KK
(n, k) or (n,m) (8, 4) (4, 4) (16, 8) (8, 8)

Gates 18465 71134 116413 421477

Area (mm2)
Cell 0.035 0.133 0.219 0.791
Net 0.053 0.202 0.320 1.163

Total 0.088 0.335 0.539 1.954
CPD (ns) 2.309 2.199 3.490 3.617

Estimated Leakage 0.281 1.084 1.690 6.216

Power (mW)
Dynamic 14.205 54.106 97.905 313.065

Total 14.486 55.190 99.595 319.281
Latency (cycles) 70 216 236 752

Bottleneck (cycles) 36 68 136 264
Throughput (Mbit/s) 385 214 270 134

B. Implementation Results of Long Codes

Although the area and power shown in Table IV are af-
fordable and high throughputs are achieved, the Gabidulin
and KK codes used have very limited block lengths8 and
16. For practical network applications, the packet size may
be large [11]. One approach to increase the block length of
a constant-dimension code is to lift a Cartesian product of
Gabidulin codes [5]. We also consider the hardware implemen-
tations for this case. We assume a packet size of 512 bytes,
and use a KK code that is based on Cartesian product of 511
length-8 Gabidulin codes. As observed in Section III-E, the
n-RRE form allows us to either decode this long KK code in
a serial, partly parallel, or fully parallel fashion. For example,
more decoder modules can be used to decode in parallel for
higher throughput. We list the gate counts and throughput of
the serial and factor-7 parallel schemes based on the(8, 4) KK
decoder and those of the serial and factor-5 parallel schemes
based on the(16, 8) KK decoder in Table V.

In Table V, we simply use multiple KK decoders for paral-
lel implementations. Parallel KK decoders actually share the
sameÂ, L̂, X̂, and λU (x). Hence, some hardware can be
also shared, such as the left part of Gaussian elimination for
reduction in Fig. 6 and the interpolation block forλU (x). With
the same latency, these hardware savings are roughly 7% of
one single KK decoder.
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TABLE V
PERFORMANCE OFKK DECODERS FOR512-BYTE PACKETS

(n,m) (4, 4) (8, 8)
Decoder Serial 7-Parallel Serial 5-Parallel

Gates 71134 497938 421477 2107385
Area (mm2) 0.335 2.345 1.954 9.770

CPD (ns) 2.199 3.617
Est. Power (mW) 55.190 386.330 319.281 1596.405
Latency (cycles) 34896 5112 67808 13952

Throughput (Mbit/s) 214 1498 134 670

C. Discussions

Our implementation results above show that the hardware
implementations of RLNC over small fields and with limited
error control are quite feasible, unless there are very stringent
area and power requirements. However, small field sizes imply
limited block length and limited error control. As shown above,
the block length of a constant-dimension code can be increased
by lifting a Cartesian product of Gabidulin codes. While this
easily provides arbitrarily long block length, it does not ad-
dress the limited error control associated with small field sizes.
For example, a Cartesian product of(8, 4) Gabidulin codes has
the same error correction capability as the(8, 4) KK decoder,
and their corresponding constant-dimension codes also have
the same error correction capability. If we want to increase
the error correction capabilities of both Gabidulin and KK
codes, longer codes are needed and in turn larger fields are
required. A larger field size implies a higher complexity for
finite field arithmetic, and longer codes with greater error
correction capability also lead to higher complexity. It remains
to be seen whether the decoder architectures continue to be
affordable for longer codes over larger fields, and this willbe
the subject of our future work.

VI. CONCLUSION

This paper presents novel hardware architectures for Ga-
bidulin and KK decoders. Our work not only reduces the
computational complexity for the decoder but also devises
regular architectures suitable for hardware implementations.
Synthesis results using a standard cell library confirm thatour
designs achieve high speed and high throughput.
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APPENDIX A
PROOF OFLEMMA 1

Proof: This follows the proof of [31, Proposition 7] closely.
Let the RRE and ann-RRE forms ofY be RRE(Y ) =
[

W r̃

0 Ê

]

and Ȳ ′ =
[

W ′
r̃
′

0 Ê
′

]

. Since the RRE form ofÂ is
unique,W = W ′. Thus,µ = µ′ and δ = δ′. In the proof of
[31, Proposition 7],U is chosen based onW . Thus, we choose
U = U ′. SinceL̂ is uniquely determined byW and L̂′ is by
W ′, we also havêL = L̂′. Finally, choosingr′ = IU ′c r̃′, the
rest follows the same steps as in the proof of [31, Proposi-
tion 7].

APPENDIX B
PROOF OFLEMMA 2

Proof: This follows a similar approach as in [5, Appendix
C]. We have

rank

[

X

Y

]

= rank





I x

I + L̂′IT
U ′ r′

0 Ê′





= rank





L̂′IT
U ′ r′ − x

IT
U ′c(I + L̂′IT

U ′) IT
U ′cr′

0 Ê′



 (8)

= rank

[

L̂′IT
U ′ r′ − x

0 Ê′

]

+ rank
[

IT
U ′c IT

U ′cx
]

(9)

= rank

[

L̂′ r′ − x

0 Ê′

]

+ n− µ′

where (8) follows fromIT
U ′ [I+L̂′IT

U ′ | r] = 0 and (9) follows
from IT

U ′IU ′c = 0. SincerankX+rankY = 2n−µ′+δ′, the
subspace distance is given bydS(〈X〉, 〈Y 〉) = 2 rank

[

X

Y

]

−

rankX − rankY = 2 rank
[

L̂
′
r
′
−x

0 Ê
′

]

− µ′ − δ′.
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