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Abstract—While random linear network coding is a powerful
tool for disseminating information in communication networks,
it is highly susceptible to errors caused by various sourceDue
to error propagation, errors greatly deteriorate the throughput
of network coding and seriously undermine both reliability and
security of data. Hence error control for network coding is \ital.
Recently, constant-dimension codes (CDCs), especiallyoier—
Kschischang (KK) codes, have been proposed for error contian
random linear network coding. KK codes can also be construad
from Gabidulin codes, an important class of rank metric codes.
Rank metric decoders have been recently proposed for bot
Gabidulin and KK codes, but they have high computational
complexities. Furthermore, it is not clear whether such deoders
are feasible and suitable for hardware implementations. Inthis
paper, we reduce the complexities of rank metric decoders ah
propose novel decoder architectures for both codes. The sthresis
results of our decoder architectures for Gabidulin and KK codes
with limited error-correcting capabilities over small fields show
that our architectures not only are affordable, but also acheve
high throughput.

packet by linearly combining incoming packets using random
coefficients. Due to its random linear operations, RLNC not
only achieves network capacity in a distributed manner, but
also provides robustness to changing network conditioms. U
fortunately, it is highly susceptible to errors caused briows
reasons, such as noise, malicious or malfunctioning nodes,
or insufficient min-cut [3]. Since linearly combining pack-
ets results in error propagation, errors greatly detetéotiae

i throughput of network coding and seriously undermine both

reliability and security of data. Thus, error control fondam
linear network coding is critical.

Error control schemes proposed for RLNC assume two types
of transmission models. The schemes of the first type (see, fo
example, [4]) depend on and take advantage of the underlying
network topology or the particular linear network codingeop
ations performed at various network nodes. The schemegof th
second type [3], [5] assume that the transmitter and receive

Index Terms—Constant-dimension codes (CDCs), Decoding, Er-have no knowledge of such channel transfer characteristics

ror correction coding, Gabidulin codes, Galois fields, Intgrated

The two transmission models are referred to as coherent and

circuits, K 6tter-Kschischang codes, Network coding, Rank metric noncoherent network coding, respectively.

codes, Subspace codes.

I. INTRODUCTION

It has been recently shown [3] that an error control code for
noncoherent network coding, called a subspace code, is a set
of subspaceqof a vector space), and information is encoded

Network coding [1] is a promising candidate for a news the choice of a subspace as a codeword; a set of packets
unifying design paradigm for communication networks, dugat generate the chosen subspace is then transmitted [3]. A
to its advantages in throughput and robustness to netwagkhspace code is callectanstant-dimension code (CDC) if its
failures. Hence, network coding is already used or coneiﬂjersubspaces are of tleame dimension CDCs are of particular
in gossip-based data dissemination, 802.11 wireless adétoc jnterest since they lead to simplified network protocols tiue
working, peer-to-peer networks, and mobile ad hoc networlfe fixed dimension. A class of asymptotically optimal CDCs

(MANETS).

have been proposed in [3], and they are referred to as the KK

Random linear network coding (RLNC) [2] is arguably th@odes. A decoding algorithm based on interpolation for fiiva
most important class of network coding. RLNC treats all packte |inearized polynomials is also proposed in [3] for the KK
ets as vectors over some finite field and forms an outgoiggdes. It was shown that KK codes correspondifting [5]

This work was supported in part by Thales Communications, Bnsummer
extension grant from Air Force Research Lab, and NSF undamtggCCS-
0925890. The material in this paper was presented in parhatlEEE
Workshop on Signal Processing Systems, Tampere, Finladmbér 2009.

Ning Chen was with the Department of Electrical and Compagi-
neering, Lehigh University, Bethlehem, PA 18015 USA. Nowifevith the
Enterprise Storage Division, PMC-Sierra Inc., AllentoviA# 18104 USA (e-
mail: ning_chen@pmc-sierra.com).

Zhiyuan Yan is with the Department of Electrical and Compiagineer-
ing, Lehigh University, Bethlehem, PA 18015 USA (e-mailn@lehigh.edu).

Maximilien Gadouleau was with the Department of Electriadl Computer
Engineering, Lehigh University, Bethlehem, PA 18015 USAwhhe is with
the Department of Computer Science, Queen Mary, Univeddityondon, E1
4ANS UK (e-mail: mgadouleau@eecs.qmul.ac.uk).

Ying Wang is with Qualcomm Flarion Technologies, BridgesvalNJ 08807
USA (e-mail: aywangll@gmail.com).

Bruce W. Suter is with Air Force Research Laboratory, RomewNork
13441 USA (e-mail: bruce.suter@rl.af.mil).

of Gabidulin codes [6], [7], a class of optimal rank metric
codes. Gabidulin codes are also called maximum rank distanc
(MRD) codes, since they achieve the Singleton bound in the
rank metric [6], as Reed—-Solomon (RS) codes achieve the
Singleton bound of Hamming distance. Due to the connection
between Gabidulin and KK codes, the decoding of KK codes
can be viewed as generalized decoding of Gabidulin codes,
which involvesdeviations as well as errors and erasures [5].
Gabidulin codes are significant in themselves: For coherent
network coding, the error correction capability of errontol
schemes is succinctly described by ttamk metric [8]; thus
error control codes for coherent network coding are essgnti
rank metric codes.

The benefits of network coding above come at the price of



additional operations needed at the source nodes for emgodi  field elements, and then significantly reduce the complex-
at the intermediate nodes for linear combining, and at the ity of bit-parallel normal basis multipliers by using our
destination node(s) for decoding. In practice, the deapdin  common subexpression elimination (CSE) algorithm [13];
complexities at destination nodes are much greater than the The decoding algorithms of both Gabidulin and KK codes
encoding and combining complexities. The decoding complex involve solving key equations. We adapt the inversion-
ities of RLNC are particularly high when large underlying less Berlekamp—Massey algorithm (BMA) in [14], [15]
fields are assumed and when additional mechanisms such as to solving key equations for rank metric codes. Our in-
error control are accounted for. Clearly, the decoding com- versionless BMA leads to reduced complexities as well
plexities of RLNC are critical to both software and hardware as efficient architectures;

implementations. Furthermore, area/power overheadseif th « The decoding algorithm of KK codes requires that the
VLSI implementations are important factors in system desig input be arranged in a row reduced echelon (RRE) form
Unfortunately, prior research efforts have mostly focused [16]. We define a more generalized form calleeRRE
theoretical aspects of network coding, and complexity cedu  form, and show that it is sufficient if the input is in the
tion and efficient VLS| implementation of network coding n-RRE form. This change not only reduces the complex-
decoders have not been sufficiently investigated so far. For ity of reformulating the input, but also enables parallel
example, although the decoding complexities of Gabidulith a processing of decoding KK codes based on Cartesian
KK codes were analyzed in [9], [10] and [3], [5], respectel products.

they do not reflect the impact of the size of the underlying Another main contribution of this paper is efficient decoder
finite fields. To ensure high probability of success for RLNGychitectures for both Gabidulin and KK codes. Aiming to
a field of size2® or 2'° is desired [11]. However, these larggeduce the area and to improve the regularity of our decoder
field sizes will increase decoding complexities and henee-cogrchitectures, we have also reformulated other steps in the
plicate hardware implementations. Finally, to the best wf odecoding algorithm. To evaluate the performance of our de-
knowledge, hardware architectures for these decodersrttvecoder architectures for Gabidulin and KK codes, we implemen
been investigated in the open literature. our decoder architecture for two ratg2 Gabidulin codes and

In this paper, we fill this significant gap by investigatingheir corresponding KK codes. Our KK decoders can be used
complexity reduction and efficient hardware implementatign network coding with various packet lengths by Cartesian
for decoders in RLNC with error control. This effort is sifjni product [5]. The synthesis results of our decoders show that
cant to the evaluation and design of network coding for s#vegyr decoder architectures for Gabidulin and KK codes over
reasons. First, our results evaluate the complexitiesodders  small fields with limited error-correcting capabilitiestranly
for RLNC as well as the area, power, and throughput of theife affordable, but also achieve high throughput. Our decod
hardware implementations, thereby helping to determiee thrchitectures and implementation results are novel to &s¢ b
feasibility and suitability of network coding for varioupa of our knowledge.
plications. Second, our research results provide instniahe  The decoders considered in this work are bounded distance
guidelines to the design of network coding from the perspegscoders, and their decoding capability is characteriad8,i
tive of complexity as well as hardware implementation. @hirTheorem 11]. The thrust of our work is to reduce complexities
our research results lead to efficient decoders and hensegedhng to devise efficient architectures for such decoderdewnhi
the area and power overheads of network coding. maintaining their decoder capability. To this end, our refo-

In this paper, we focus on the generalized Gabidulin decqgkions of the decoding algorithms do not affect the decgdin
ing algorithm [5] for the KK codes and the decoding algorithrapanility of the bounded distance decoders of Gabidulih an
in [12] for Gabidulin codes for two reasons. First, comparegdk codes. The error performance of the bounded distance de-
with the decoding algorithm in [3], the generalized Gabilul cogers has been investigated in our previous works [17]-[19
decoding [5] has a smaller complexity, especially for highience, despite its significance, a detailed error perfooman
rate KK codes [5]. Second, components in the errors-ondyalysis is out of the scope of this paper, and we do not irclud
Gabidulin decoding algorithm in [12] can be easily adapted j; gue to limited space.
the generalized Gabidulin decoding of KK codes. Thus, amongrhe rest of the paper is organized as follows. After briefly re
the decoding algorithms for Gabidulin codes, we focus on tk}?ewing the background in Section Il, we present our comipex
decoding algorithm in [12]. _ ~ saving algorithmic reformulations and efficient decod@har

Although we focus on RLNGwith error control in this tectyres in Sections IIl and IV, respectively. In Section V,
paper, our results can be easily applied to RLM@hout he proposed architectures are implemented in Verilog and

error control. For RLNC without error control, the decodingynthesized for area/performance evaluation. The coiocius
complexity is primarily due to inverting of the global codin is given in Section VI.

matrix via Gauss-Jordan elimination, which is also congde
in this paper.

Our main contributions include several algorithmic refarm .
lations that reduce the computational complexities of dece A Notation
for both Gabidulin and KK codes. Our complexity-saving al- Let ¢ denote a power of prime anfl,~ denote a finite
gorithmic reformulations are: field of orderg™. We useF;*™ to denote the set of all xm

» We first adopt normal basis representations for all finitatrices oveff, and usel,, to denote am x n identity matrix.

Il. PRELIMINARIES



For a set/ C {0,1,...,n — 1}, U° denotes the complement vl s @ a(x)

subset{0,1,...,n—1}\U andI;; denotes the columns df, ‘
. . . . | !
in U. In this paper, all vectors and matrices are in bold face. Corrected (Bror) X (Gabidulin's) 2 (Roots)
The rank weight of a vector ovét,~ is defined as thenax- - ‘
imal number of its coordinates that are linearly independent
over the base fiel#,. Rank metric between two vectors ovef'9- 1-
Fym is the rank Welght of their difference [20]. For a column
vector X € Fy.., we can expand each of its component int
a row vector over the base fielfl,. Such a row expansion
leads to anw x m matrix overF,. In this paper, we slightly
abuse the notation so tha&¥ can represent a vector i
or a matrix in[F;*™, although the meaning is usually clear
given the context
Given a matrixX, its row space, rank, and reduced row ec
elon (RRE) form are denoted By ), rank X, andRRE(X), o(z) ® S(z) = w(z) mod 41 )

respectively. For a subspade&), its dimension is denotedf h | it . he BMA. U
by dim(X) andrank X = dim(X). The rank d|stance of for the error span polynomi (), using the p to

two vectorsX andY in F7,. is defined asdp(X,Y) £ tz L(d —1)/2] errfor v;tluesE S can 2; obtained t;]y f|nd|ﬂg
rank(X —Y). The subspace distance [3] of their row spaceb asisko, By, . .. for the root space oé(z) using the meth-

(X),(Y) is defined agls((X), (Y)) 2 dim(X)+dim(Y)— ods in [24], [25]. Then we can find the error locatotsg’s
2dir;1(<X> N (Y)) ’ corresponding td¥;’s by solving a system of equations

Data flow of Gabidulin decoding

Bthm (WBA) [23] have been proposed. In this paper, we focus
on the modified BMA due to its low complexity.

As in RS decoding, we can compute syndromes for Gabidu-
lin codes asS = (Sy, 51, ...,S4_2) = Hr for any received
Aectorr. Then the syndrome polynomiél(z) = Zj;é S;al]
can be used to solve the key equation [12]

A linearized polynomial [21], [22] (or g-polynomial) over
F,~ is a polynomial of the formf(z) = -7, fiz?, where ZX i, 1=0,1,...,d—2 )
fi € Fym. For a linearized polynomiaf(z), its ¢-degree is
defined to be the greatest valueidfor which f; is non-zero. \here 7 is the number of errors. Gabidulin’s algorithm [6]
For convenience, lefi] denoteq’. The symbolic product of jn Algorithm 1 can be used to solve (3). Finally, the error

two linearized polynomials(z) andb(x), denoted by (that |ocationsL,’s are obtained fromX’s by solving
is, a(x) ® b(z) = a(b(x))), is also a linearized polynomial.

n—1
The g-reverse of a linearized polynomiglz) = > 7, fiall o . _
is g|ven by the polynomiaf(z) = S0, fixll Wherefl = X5 = ZOL-”’“h“ J=01.7=1 )

fplip for i = 0,1,...,p andp is the ¢g-degree off(z). For
a seta of field elements, we useinpoly(c) to denote its
minimal linearized polynomial, which is the monic linearized
polynomial of least degree such that all the elements afre

Algorithm 1 (Gabidulin’s Algorithm [6])
|npUt: So, Sl, ceey Sq_o andEo, El, ey E. 4
Output: Xo, X4, ..., X1

its roots. 1.1 Computer x 7 matricesA and Q@ as
E; 1=0
B. Gabidulin Codes and Their Decoding Aij =10, 1#£0,5 <1
A Gabidulin code [6] is a lineafn,k) code overF ., Ay —Ai_l,i_l(ﬁ)[‘” i#£0,j>4
whose parity-check matrix has a form as S ’ i—0
.. = J B
hg)] h[lo] s hg?il QL'J {Qi—l,j — Ai—l,i—l (M)[il] otherwise.
Bl Bl B ' o
H = ! ”_*1 (1) 1.2 ComputeX;’s recursively as\;_1 =Qr—10/Ar—1,7—1
: : . : and X; = (Qio — >j= HIA,]X)/A”, fori=r71—
h%ﬂ*’ﬂ*” h[lnfkflt hﬁf_’f’” 2,7—3,...,0.
wherehg, hi,...,hn—1 € Fpm are linearly independent over In total, the decoding complexity of Gabidulin codes is

F,. Let h denote(hg,h1,...,hy—1)". SinceF = is anm- roughlyO(n?(1— R)) operations oveF,~ [9], whereR is the
dimensional vector space ovEy, it is necessary that < m. code rate, 0olO(dm?) operations oveif, [10]. Note that all
The minimum rank distance of a Gabidulin codedis= n — polynomials involved in the decoding process are linedrize
k+ 1, and hence Gabidulin codes are MRD codes. polynomials.

The decoding process of Gabidulin codes includes five ma-Gabidulin codes are often viewed as the counterpart in rank
jor steps: syndrome computation, key equation solver, findetric codes of the well-known RS codes. As shown in Table |,
ing the root space, finding the error locators by Gabidulinan analogy between RS and Gabidulin codes can be estab-
algorithm [6], and finding error locations. The data flow ofished in many aspects. Such an analogy helps us understand
Gabidulin decoding is shown in Figure 1. the decoding of Gabidulin codes, and in some cases allows

Key equation solvers based on a modified Berlekamp—Masgeyo adapt innovations proposed for RS codes to Gabidulin
algorithm (BMA) [12] or a modified Welch—Berlekamp algo€odes.



TABLE |

ANALOGY BETWEEN REED—SOLOMON AND GABIDULIN CODES Cu(w), where(y () is thGQ'reverse_ ofAy ().
2.2 Compute the error span polynomial:
Reed-Solomon Gabidulin .
Nietric Hamming Rank a) Use the modified BMA [12] to solve the key equa-
Ring of Polynomials Linearized Polynomials tion op(z) ® Spy(x) = w(x) mod z[4=1 such
Degree 3 {[=q -
Key Operation Polynomial Multiplication Symbolic Product that degw(:v) < [T] wherer etp+t 0.
Generation Matrix [g}] [gg.l]] b) CompUte_SF[_) (x) = UF_‘ (1') ®op (w) ® S(:v)
Parity Check Matrix ] 7] c) Use Gabldujl_nls a[ll?orlthm [6] to fingB that solves
Key Equation Solver BMA Modified BMA Srp; = Z;:O Xj Bi,l=d—-2,d-3,...,d—
Error Locations Roots Root Space Basis 1— U
Error Value Solver Forney’s Formula Gabidulin’s Algorithm )

d) Computery () = minpoly(3) followed byo(z) =
ou(z) @ op(x) @ op(x).

C. KK Codes and Their Decoding 2.3 Find a basi& for the root space of(x).

By the lifting operation [5], KK codes can be constructedz'4 Find the error locations:

from Gabidulin codes. Lifting can also be seen as a gener- @) SolveS; = Z;:SX[Z]EM =0,1,...,d=2 using
alization of the standard approach to random linear network Gabidulin's algorithm [6] to find the error locators
coding [2], which transmits matrices in the forX = [I | x|, X0, X1y Xro1 € Fgm , _
where X ¢ F(r;xl\l, x € F*™ andm = M — n. b) Compute the error Iocat|oiEj sT by solving (4).

In practice, the packet length could be very long. To accom- ~ €) Compute the error woré = 5 %, L; E;, where
modate long packets based on the KK codes, very largad eachE; is the row expansion of;.
n are needed, which results in prohibitively high complexity
due to the huge field size &f,~. A low-complexity approach [1l. COMPUTATIONAL COMPLEXITY REDUCTION

in [5] suggested that instead of using a single long Gabiduli |n general, RLNC is carried out ovéf,, whereq is any
COde, a Cartesian prOdUCt of many short Gabidulin codes Wﬁhme power. That iS, packets are treated as vectors ]Ey_er
the same distance can be used to construct constant-domensjince our investigation of computational complexities ds f
codes for long packets via the lifting operation. both software and hardware implementations of RLNC, where
Let the received matrix b& = [A | y], whereA € F)”*"  gata are stored and transmitted in bits, we focus on RLNC over
andy € FY*™. Note that we always assume the receivegharacteristic fields in our work, i.e.,g is a power of two.

ma{riX is full-rank [5] The row and COlUmAn rank deﬁCienCie$n some cases, we further assume 2, as it leads to further
of A are§ = N—rank A andu = n—rank A, respectively. In complexity reductions.

the decoding algorithm of [5], the matr¥ is first turned into
an RRE form, and then the RRE form %f is expanded into A ,
_ ' = A. Finite Field Representation
Y = [y L]RRE(Y) = [In*LIg " |, where/¢ denotes nite field Iep b db _
the column positions of leading entries in the firstows of d_f'f:'n'tet tle € efn:aents .canl N re_prlesen_te Y velzcgors_dusmg
RRE(Y). The tuple(r, L, E) is called areduction of Y [5]. G/Merént types of bases: polynomial basis, normal basis, a
o irax dual basis [26]. In rank metric decoders, most polynomials

It was proved [5] thatls ((X), (Y)) = 2rank[ L "= ] —pu—0, A : .

- . 0o E _" involved are linearized polynomials, and hence their evalu
wherey = n—rank L ands = N —rank L. Now the decoding ations and symbolic products require computing thejih
problem to minimize the subspace distance becomesaprobmersl Suppose a field element is represented by a vector

to minimize the rank distance. ) ) _overlF, with respect to a normal basis, computiiigh powers
For a KK codeC, the generalized rank decoding [5] findg; is a positive or negative integer) of the element is simply

an error wordé = arg min,c,._c rank[ ' £ ]. The error word cyclic shifts of the corresponding vector byositions, which

é is expanded as a summation of products of column and rQiynificantly reduces computational complexities. Fomapte,

T—1 H
vectors [5] such thag = 3/, L;E;. Each termL; E; iS  he computational complexity of Algorithm 1 is primarily elu
called either arerasure, if L; is known, or adeviation, if E; {5 the following updates in Step 1.1:

is known, or arerror, if neither L; nor E; is known. In this 4
i—1j

general decoAding problen, hasy, columns fromL andE has Aij=Ai 1 —( )[fl]AFLF1

6 rows from E. Given a Gabidulin code of minimum distance Aic1,i1 (5)
d, the corresponding KK code is able to correcerrors, i OQii= Qi1 — (Qifl,jJrl)[fl]A‘_l -
erasures, and deviations as long as #e + i+ 6 < d. R P R

Algorithm 2 was proposed [5] for generalized decoding Qfich require divisions and computirg-1]th powers. With
the KK codes, and its data flow is shown in Figure 2. lf4rma) pasis representatiop; 1]th powers are obtained by a
requiresO(dm) operations infym [S]. single cyclic shift. Wheng = 2, they can be computed in

Algorithm 2 (General Rank Decoding [5]) an inversionless formd; ; = A;_1 ; — (Ai,lyin,lyi,l)[fl],
Input: received tuplgr, L, F) Qij = Qi1 — (Qi,17j+1Ai,17i,1)[71], which also avoids
Output: error wordé finite field divisions or inversions. Thus using normal basis

2.1 ComputeS = Hr, X = L"h, \y(z) = minpoly(X), representation also reduces the complexity of Gabidukii's

op(z) = minpoly(F), andSpy (z) = op(z) ® S(x)®  gorithm.
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Fig. 2. Data flow of KK decoding

In addition to lower complexities of finite field arithmeticof one AND plus five XOR gates and one AND plus seven
operations, normal basis representation leads to redumed cXOR gates as direct implementations, respectively. Owlies
plexities in the decoding of Gabidulin and KK codes for seare compared to those in [26], [29] in Table II, where we also
eral reasons. First, it was shown that using normal basis gamovide the prime polynomiaP(z) for each field.
facilitate the computation of symbolic product [9]. Second

it was also suggested [9] that solving (4) can be trivial us- TABLE I

. h . . COMPLEXITIES OF BIT-PARALLEL NORMAL BASIS MULTIPLIERS OVER

ing normal basis. If(ho, h1,...,hy,—1) iS @ Nnormal basis, gnite FIELDS (FOR THESE TWO FIELDS ALL THREE IMPLEMENTATIONS

the matrixh, whose rows are vector representationshgé HAVE THE SAME CPD.)

with respect to the basig;’s, becomes an identity matrix “oR

with additional all-zero columns. Hence solving (4) regsir P(a) AND [ qirect T26] 9] ours
. . . Fom - m2 m(Cny —1) | m(Cn +m —2)/2 -

no computation. These two complexity reductions were algor DT o 160 08 7

observed in [10]. Third, if a normal basis &%~ is used as [Fue [ ZZpe) —o-a" -0 2T ] 256 [ 1344 792 491

h;’s andn = m, the parity check matrid in (1) becomes a . S
cyclic matrix. Thus syndrome computation becomes part of a1 he reduced gate count for normal basis multiplication is
cyclic convolution of(ho, 1, . . . , hm—1) andr, for which fast Particularly important for hardware implementations ofNRL.
algorithms are available (see, for example, [27]). Using fal NiS improvementis transparent to the complexity of decade

cyclic convolution algorithms are favorable whenis large. in terms of finite field operations. When decoders for RLNC
are realized in hardware, the reduced gate count for normal

basis multiplication will be reflected in reduced area anagro
B. Normal Basis Arithmetic Operations consumption.

We also propose finite field arithmetic operations with re-
duced complexities, when normal basis representationed.usC. Inversionless BMA

When represented by vectors, the addition and subtracion 01he modified BMA for rank metric codes [12] is similar to

two elements are simply component-wise addition, which j§¢ g\ for RS codes except that polynomial multiplications
;tralghtforward to |mplemenp _For characteriti¢ields Fom, are replaced by symbolic products. The modified BMA [12]
inverses can be obtalneidl effwegtl;; by ajef“e”‘;?nf’f S@arlquires finite field divisions, which are more complex than
and multiplying, sinces™" = 8 =pp...8 for  other arithmetic operations. Following the idea of invensi

0 € Fym [26]. Since thefi]-th powers require no computationjess RS decoder [14], we propose an inversionless variant in
the complexity of inversion in turn depends on that of mu“bllgorithm 3

plication. Division can be implemented by a concatenatibn o
inversion and multiplicationa/3 = o - 5=, and hence the Algorithm 3. i BVA
complexity of division also depends on that of multiplicati ~ Input: SyndromesS
in the end. Output: A(z)
There are serial and parallel architectures for normalsbasi3.1 Initialize: A (z) = B©(z) = zl% 17©® = 1, and
finite field multipliers. To achieve high throughput in our-de L=0.

coder, we consider only parallel architectures. Most nérma3.2 Forr =0,1,...,2t —1,
basis multipliers are based on the Massey—Omura (MO) ar-  a) Compute the discrepangy, = 5~ A gl

. . . r Jj=0"" ~r—j
chitecture [26], [28]. The complexity of a serial MO normal b) If A, =0, then go to (e).
basis multiplier overfym, Cy, is defined as the number of c) Modify the connection polynomiald"+1) (z) =
termsa;b; in computing a bit of the produet = ab, where CHMIAM) (2) — Azl @ B ().

m—1 m—1 .

a =3, ah; € Fom andb = >757,"bjh; € Fam and d) If 2L > r, go to (e). Otherwisel = r +1 — L,
(ho, h1,...,hm—1) is @ normal basis. It has been shown [29] rr+) = A,, and B (z) = A" (z). Go to (a).
that a parallel MO multiplier oveF,~» needsm? AND gates e) Setr(+1) — () and BO+D(z) = z[U @
and at mostn(Cx + m — 2)/2 XOR gates. For instance, for B (x).

the fieldsFos andFy:s, their Cx’s are minimized to 21 and 85, 3 3 SetA(z) = A ().

respectively [26]. Using a common subexpression elimamati

algorithm [13], we significantly reduce the number of XOR Using a similar approach as in [14], we prove that the
gates while maintaining the same critical path delays (GPDmutput A(z) of Algorithm 3 is the same as(z) produced



by the modified BMA, except it is scaled by a constéht="more importantly, the relaxed constraint enables parplie}
Hf;é (T, However, this scaling is inconsequential sinceessing of decoding KK codes based on Cartesian products.
the two polynomials have the same root space. We first define am-RRE form for received matrices. Given
Using normal basis, the modified BMA in [12] requires aa matrixY = [A | y], whereA ¢ Ff]\’x” andy € ]Févxm, the
most | (d—2)/2] inversions(d—1)(d—2) multiplications, and matrix Y is in its n-RRE form as long asA (its leftmostn
(d—1)(d—2) additions oveif,~ [9]. Our inversionless version,columns) is in its RRE form. Compared with the RRE form,
Algorithm 3, requires at most3/2)d(d — 1) multiplications the n-RRE form is more relaxed as it puts no constraints on
and(d—1)(d—2) additions. Since a normal basis inversion ighe right part. We note that anRRE form of a matrix is not
obtained bym—1 normal basis multiplications, the complexityunique.
of normal basis inversion is roughly: — 1 times that of  We first show that the relaxed constraint does not affect the
normal basis multiplication. Hence, Algorithm 3 reduces thdecoding. Similar to [31, Proposition 7], we first show that a
complexity considerably. Algorithm 3 is also more suitallle reduction based on-RRE form of Y always exists. Given
hardware implementation, as shown in Section IV. Y = [A | y] andRRE(A) = RA, where R represents the
reducing row operations, the prodd¢t = RY = [B’ | Z']is
. in its n-RRE form. We note thaB’ € FY*" andZ € FV>*™,
D. Finding the Root Space where the column and row rank defic?encny are gi\fen by
Instead of findingroots of polynomials in RS decoding, ,/ = n — rank B’ andé’ = N — rank B’, respectively. We
we need to find theroot spaces of linearized polynomials have the following result about the reduction basedYon
in rank metric decoding. Hence the Chien search [30] in RS —, , , ,
decoding will have a high complexity for two reasons. Firslt,emma 1. LetY” andy” andd’ be defined as above. There

H 3 7 nxm nx ' & xm
it requires polynomial evaluations over the whole field, &0 eX'Stf a tuple(r”, 1;’/’ E/)/ Efqlx X F%Xft/ x Fy ™ and a
complexity is very high; Second, it cannot find a set of ligarSett’ satisfying|d'| = 1, Ly’ =0, Iy L' = —I,sx,, and
independent roots. rank B’ = ¢’ so that< [I"Hg T ; ]> =(Y") =(Y).
A probabilistic algorithm to find the root space was pro- .
posed in [25]. For Gabidulin codes, it can be further simguifi See Apper_1d|x A for the p_roof of Le_’“ma 1. Lemma 1 shows
. : : that we can find an alternative reduction basedéRRE form
as suggested in [9]. But hardware implementations of proR-

e . : of Y, instead of an RRE form d¥ . The key of our alternative
abilistic algorithms require random number generators- Fu

: . . . . reduction ofY is that the reduction is mostly determined
thermore, the algorithm in [25] requires symbolic long div . . .
. S : . . by the firstn columns of RRE(Y'). Also, this alternative

sion, which is also not suitable for hardware implementetio

According to [5], the average complexity of the probabhitist rgduction does not comeas a surprise. As shown if‘ [31, Propo-
algorithm in [25] isO(dm) operations oveF,.., while that of sition 8], row operations oy can produce alternative reduc-

Berlekamp’s deterministic method [24] &(dm) operations tions. _Nex_t, we show that_decodmg b_ased on our alternative
: 3 : : . : .- reduction is the same as in [31]. Similar to [31, Theorem 9],
in Fym plus O(m?®) operations inF,. Since their complexity :
. . o e have the following results.
difference is small, we focus on the deterministic metho\é(,
which is much easier to implement. Lemma 2. Let (r', L', E') be a reduction ot determined by
Suppose we need to find the root space of a linearized patg--RRE form, we havels((X), (Y)) = 2rank[L/ rﬂ—/w} —
nomial (), Berlekamp’s deterministic method first evaluateg’ — §’. o F
the polynomial-(x) on a basis of the fieldug, a1, ..., am—1)
such that; = r(«a;),i =0,1,...,m—1. Then it expands;’s
in the base field as columns of amx m matrix V' and finds
linearly independent roots such thatVz = 0. Using the
representation based dng, a1, ..., an—1), the rootsz are
also the roots of the given polynomial. Findiggis to obtain
the linear dependent combinations of the column¥® ofvhich
can be done by Gaussian elimination.

See Appendix B for the proof. Lemma 2 shows that the sub-
space decoding problem is equivalent to the generalized Gab
dulin decoding problem with the alternative reductief L', E),
which is obtained from am-RRE form of Y.

Our alternative reduction leads to two advantages. First,
it results in reduced complexity in preprocessing. Given a
matrix Y, the preprocessing needed to transfdrminto its
n-RRE form is only part of the preprocessing to transfdm
into its RRE form. We can show that the maximal number

E. n-RRE Form of arithmetic operations in the former preprocessing iegiv
rank A—1

Given a received subspace spanned by a set of received pR¥kN — 1) > 2,2~ " (n +m — i), whereas that of the lat-
ets, the input of Algorithm 2 is a three-tuple, called a rettuc ter preprocessing i$N — 1) Zf.i%k(Y)*l(n +m — 7). Since
of the received space represented by its generator m¥tyix rank Y > rank A, the relaxed constraint leads to a lower
the three-tuple is obtained based ¥nwhen it is in its RRE complexity, and the reduction dependsrank Y andrank A.
form [5]. Thus, before the decoding starts, preprocessing i Second, the reduction fer-RRE forms is completely deter-
performed on the received packets so as to obtain the RRihed by then leftmost columns ofY” instead of the whole
form of Y. We show thafY” needs to satisfy only a relaxedmatrix, which greatly simplifies hardware implementatiofisis
constraint, which does not affect the decoding outcomelewhadvantage is particularly important for the decoding ofstant-
leading to two advantages. First, the relaxed constramtlt® dimension codes that are lifted from Cartesian products of

in reduced complexities in the preprocessing step. Secodd &abidulin codes. Since the row operations to obtain-dRE



form depend onA only, decoding[A | yo | 1 | -+ | yi_1] Since powers of; require only cyclic shifting, the opera-
can be divided into parallel and smaller decoding problentisns in Algorithm 4 are simple. Also, Algorithm 4 does not

whose inputs aréA | yol,[A | y1],...,[A | yi_1]. Thus, require the roots to be linearly independent. In Algorithm 4
for these constant-dimension codes, we can decode in & sefif)(w;) = 0 for j = 0,1,...,i — 1 and %_(z+1) = FO(w,).
manner with only one small decoder, or in a partly parallef . w,, ... ,w; are linearly dependewj(.j) =0 and hence

fashion with more decoders, or even in a fully parallel fashi «;; is ignored. So Algorithm 4 integrates detection of linearly
This flexibility allows tradeoffs between cost/area/powed dependency at no extra computational cost.

throughput. Furthermore, since the erasuteare determined  Essentially, Algorithm 4 breaks down evaluations of high
by A and are the same for glA | y;], the computation oX'  4-degree polynomials into evaluations of polynomials wjth
and\y (z) in Algorithm 2 can be shared among these parallgegree of one. It gets rid of complex operations while main-
decoding problems, thereby reducing overall complexity.  taining thesame total complexity of the algorithm.

F. Finding Minimal Linearized Polynomials IV.  ARCHITECTUREDESIGN

Minimal linearized polynomials can be computed by solving AiMing to reduce the storage requirement and total area as
systems of linear equations. Given rogts 8, 1, the well as to improve the regularity of our decoder architeesur
. seeos Bp—1, . . .
minimal linearized polynomiak® - S~ ¢. 211 satisfies W€ further reformulate the steps in .the decoding algoritbims
poly > ico @i both Gabidulin and KK codes. Again, we assume the decoder

| I Lr] architectures are suitable for RLNC ovBy, whereq is a
5;0] Bgl] . ﬁ£p,1] ay £p] power of two.
: . =/ .| ©

: : : A. High-Speed BMA Architecture
Bty Bty - gt L] g | | i
p P 2 P To increase the throughput, regular BMA architectures with
Thus it can be solved by Gaussian elimination over the ext@horter CPD are necessary. Following the approaches in [15]
sion fieldF . Gabidulin’s algorithm is not applicable becauswe develop two architectures based on Algorithm 3, which are
the rows of the matrix are not the powers of the same elemeitalogous to theiBM and RiBM algorithms in [15].

The complexity to solve (6) is very high. Instead, we refor- In Algorithm 3, the critical path is in step 3.2(a). Note
mulate the method from [21, Chap. 1, Theorem 7]. The maifat A, is the rth coefficient of the discrepancy polynomial
idea of [21, Chap. 1, Theorem 7] is to recursively construét™ (z) = A" (z) ® S(x). By using®)(z) = B")(z) ®
the minimal linearized polynomial using symbolic product§(z), A"V (z) can be computed as
instead of polynomial multiplications in polynomial ingera- A(TH)(:C) _ A(r+1)(I) ® S(z)

tion. Given linearly independent rootsy, wy, ..., wp—1, We i, . i,
can construct a series of linearized polynomialsi&s? (z) = = [(F( NHA (@) — Aa © B )(5‘)} ® S(z)
2% and FOHD (2) = (2! — (FO (w;))a 12 @ FO) (z) for - (I‘(T))U]A(T)(x) - Az @ e (x) 7

1=0,1,---,p—1. . .
Although the recursive method in [21, Chap. 1, Theorem hich h‘?‘s the same structu_re as step 3'2((:.)' Hence th'.s re-
rmulation is more conducive to a regular implementation.

is for p-polynomials, we can adapt it to linearized polynomials. o
readily. A serious drawback of [21, Chap. 1, Theorem &lven the similarities between step 3.2(a) and (¥j) and
is that the evaluation of"(Y)(w;) has a rapidly increasing ..\’ . ;

complexity when the degree @ () (z) gets higher. To elimi- Similarly, B(z) and 6(z) can be combined into one poly-

nate this drawback, we reformulate the algorithm so that th mial ©(x). These changes are incorporated in our RIBMA

evaluationF') (w;) is done in a recursive way. Our reformu190rithm, shown in Algorithm 5.

lated algorithm is based on the fact that(w; 1) = (z[' — Algorithm 5. Ri BVA
(Fi—1(w;)) 'zl @ Fi_;(wiy1). Representing?”(w;) as  Input: SyndromesS

(z) can be combined together into one polynomigz).

7\, we obtain Algorithm 4. Output: A(z)
Algorithm 4 (Minimal Linearized Polynomials) 5.1 [n(i(t)i)alizgiém) (2) = 0O (z) = 327" Sulil, TO) = 1,
Input: Rootswy, w1, . .., wp—1 As =03’ =1, andb = 0.
Output: The minimal linearized polynomia ) (x) 5.2 Forr=0,1,...,2t — 1, i
4.1 Sety\") = w;, for j = 0,1,....p— 1 and FO) (z) = a) Modify the combined polynomialA("+Y(z) =
210, rMAM(z) — A6 (2);
42 Fori=0,1,....p—1, bg |Sfe£b<r>:i+1; " b DD _ AO)
If v = 0, FGtD(z) = FO d~UHD = c o 7 0andb>0,seth=—b " = Ay,
a) (;y _0 ' (f?) () afj v and O (z) = A0 (z);
v for j =1 +. 1, + 2,...,p —1; cherW|se, d) SetA(T“)(:c) _ Z?:)l Aﬂl)xm- (:)(”(:z:) _
F*D(z) = (FO (@) — (1)1~ FO(x) and 59 O, all
T = (I = ()t for =i 10+ S0 (e and §¢+1 :
Y oF Vi Y J ) e) Set'(r+1) — (I‘(T))[] and O+ )(:C) — o ®

2,...,p— 1. 0 (x).



5.3 SetA(z) = Yot_y APl c) If Al” #0andb >0, seth = —b, T+ = A",
: . o and©")(z) = A ();

I_:ollowmg AIgor_|thm_ 5, we propose a systolic RIBMA ar- d) SetAr+D)(z) = Z?i’a—t—l A(ﬁl)xm’ 60 (z) —
chitecture shown in Fig. 3, which consists 3if+ 1 identical ¢ !
processing element8Es), whose circuitry is shown in Fig. 4. i=0 ~
The central control uniBCtrl, the rightmost cell in Fig. 3, e) Setl+ = (1)l and ©C+D(z) = 2l @
updatesh, generates the global control signat§”) andT'("), 0 (x).

and passes along the coefficiexf’. The control signatt(” 6.3 SetA(z) = S Al
is set to 1 only ifAy” # 0-andk > 0. In each processing  compared with Algorithm 5, we repladeby ¢'. The vari-
element, there are two critical paths, both of which consist 5,16 4/ makes it difficult to design regular architectures. By

one multiplier and one adder ovEg. carefully initializing A(*) (z) and®(®)(z), we ensure that the
desired output\(z) is always at a fixed position ak?*) (z),

gt/-ﬁ-t—l ég:)yr[z] :

regardless ofu + 0. Hence, the only irregular part is the
Ao Ay YRT . CURT . .
A R L - J initialization. The initialization of Algorithm 6 can be de by
BE, [ T BE, [— - T BEy - | BEx | BOW shifting in at mos® cycles. Hence the RiBMA architecture in
— — — =0 Fig. 3 can be adapted to the KK decoder and keep the same

worse-case latency @t cycles.

C. Gaussian Elimination
We need Gaussian elimination to obtailRRE forms as

Ag” well as to find root spaces. Furthermore, Gabidulin’s algo-
rithm in Algorithm 1 is essentially a smart way of Gaussian
AE” < D () A§1>1 elimination, which takes advantage of the properties of the
) ™ matrix. The reduction (to obtain-RRE forms) and finding
o the root space are Gaussian eliminations on matriceslgyer
ct™ ﬁg 11 ct(™ while Gabidulin’s algorithm operates on matrices ofg.. In
< (r - this section, we focus on Gaussian eliminations digrand
A(() : B & Aé) Gabidulin’s algorithm will be discussed in Section Ié/e-D.
I:l?] For high-throughput implementations, we adapt the pigptin
éi” (:)51)1 architecture in [32], which was developed for non-singular

matrices overF,. It always keeps the pivot element on the
top-left location of the matrix, by cyclically shifting thews
and columns. Our Gaussian elimination algorithm, shown in
Algorithm 7, has three key differences from the pivoting ar-
chitecture in [32]. First, Algorithm 7 is applicable to mags
over any field. Second and more importantly, Algorithm 7 can
B. Generalized BMA be used for singular matrices. This feature is necessacg sin
The key equation of KK decoding is essentially the same aigg_ular matrices occur ir! the redu_ction fpr the RRE form and
(2), butw(z) hasg-degree less than instead of| (d — 1)/2]. finding the root space. Third, Algorithm 7 is also flexible abo
Actually, in KK decoding, we do not know the exact value ofatrix sizes, which are determined by the variable numbers
 before solving the key equation. All we need is to determirff errors, erasures, and deviations.
the maximum number of correctable errorgiven . erasures algorithm 7 (Gaussian Elimination for Root Space)

andg deviations, which is given by = |(d —1—u—0)/2].  Input: M e F7*™, whose rows are evaluations ofx)
Hence we adapt our BMA in Section 11I-C to KK decoding, as over the normal basis, anB = I,,,

in Algorithm 6. To apply Algorithm 6 to Gabidulin decoding, Qutput: Linearly independent roots of(x)
we can simply usé = u+ 6 = 0.

Fig. 4. The processing elemeBE; (x? is a cyclic shift, and requires no
hardware but wiring)

7.1 Seti =0.
Algorithm 6 (Generalized RIBMA) 7.2 Forj=0,1,....m—1
Input: S andd a)l=1
Output: A(x) b) While Moo =0andl <m —1
6.1 Initialize as follows#’ = |[(d — 1 — 6)/2], AO) (z) = [ =1+ 1, shiftup(M, ), andshiftup(B, ).
00 (z) = Z(?j?t'*l Sizlil, AD . — 9O c) If My, is not zerogliminate(M ), reduce(B, M),
O -1 andb =0 2t 2t andi = i + 1; Otherwise shiftleft(M).
6.2 Forr—0.1,... .2t —1, 7.3 The firstm — i rows of M are all zeros and the first

a) Modify the combined polynomialA("+1) (z) = m — i rows of B are roots.

TMAM (z) — AP (a); The eliminate and shiftup operations are quite similar to
b) Setb=b+1; those in [32, Algorithm 2]. Ireliminate(M), for 0 < j < m,



M;; = MooM;i1,j+1) mod m — Mit1,0Mo,(j+1) moa m fOr M, Mo ; M;

0<i<m-—1,andM;_1; = My (j11) mod m- NOt€ that a o L
cyclic row shift and a cyclic column shift are already embed- 70,0 | M ‘ 0,0
ded in theeliminate operation. In theshiftup(M, p) opera- Mio =41 o\ @; M;,o
tion, the first row is moved to thén — 1 — p)th row while the é} ‘ —

second to thém—1—p)th rows are moved up. That s, for< M, D5 — M,
j <m, Mi,j = MO.,j if i = m—l—p, andMiyj = Mi+1,j for ’ % S L 7

0 <i<m —2— p. The operationeduce(B, M) essentially ct; ct;
mimics all row operations ireliminate without the column My Ml
shift: for 0 < j<m, Bi,j = ]\/[070.Bi+17j — J\/[H-LOBO,J' for Mo ; ’

0 <i<m—1,andB,,_1; = By ;. In theshiftleft operation,

all columns are cyclicly shifted to the left. In other wordis;,  Fig. 6. The processing elemefitE; ;

all0<i<mand0 < j<m, Mij = M;t1) modm- BY

adding ashiftleft operation, Algorithm 7 handles both singular N _

and non-singular matrices while [32, Algorithm 2] works foP- Gabidulin’s Algorithm

non-singular matrices only. SindB is always full rank, the  In Algorithm 1, the matrix is first reduced to a triangular

roots obtained are guaranteed to be linearly independent. form. It takes advantage of the property of the matrix so that
We can get the root space using Algorithm 7, and we cénrequires no division in the first stage. In the first stage, w

also use it in KK decoding to reduce the received vector fieed to perform elimination on only one row. We use a similar

ann-RRE form. However, Algorithm 7 only producds’. We pivoting scheme like Algorithm 7. When a row is reduced to

extend it to Algorithm 8 below so as to obtalif simultane- have only one non-zero element, a division is used to obtain
ously. one coefficient ofX. Then it performs a backward elimination

after getting each coefficient. Hence we introduce a baadkwar
pivoting scheme, where the pivot element is always at the
bottom-right corner.

Algorithm 8 (Gaussian Elimination forn-RRE Forms)
Input: N x n matrix A and N x m matrix y

Output: L', E', v/, and 1/ In Algorithm 1, there are twar x 7 matrices overf m,
8.1 Seti =0, U’ and L as empty. A and Q. In step 1.2, it requires onlg), ¢'s to compute the
8.2 For each columpi=0,1,...,n—1 coefficients. To comput€); o in (5), it requires onlyQ;_1 o

a)l=1 andQ;_1,1. And for Q; ; in (5), it requires onlyQ;_, ; and

b) While A =0 andl < n —i Qi—1+1- Recursively, only thos€); ;'s wherei + j < 7 are
I = I+1, shiftup(A, i), shiftup(y, 1), shiftup(L/, 7). Necessary. Actually,_ given am‘y_entries@l-_ro, Qit1,00---,Qr—1,0

c) If Ag is not zero,eliminate(A), reduce(y, A), Can be computed with the entri€s 1,0, Qi—1,1, -, Qi—1,7—-
shiftup(£/,0), i =i + 1. With Qo.,0,Q1,0, - - -, Qi—2,0, We need to store only values to

d) Otherwise,shiftleft(A), append the first column keep trac.k ofQ. Hence we reduce the storage@ffrom = x
of A to I/, set the top-right element dt’ to one, m-bit registers down te. We cannot reduce the storage Af

and addj to /", to 7(7 4+ 1)/2 because we have to use the pivoting scheme for

8.3 Sety = n —i. The deviationsE’ are given by the first short critical paths.

1 rows of y. A
8.4 For each colump € U/, shiftup(L’, ) andshiftup(y, 7). o A S e I od o o
8.5 The received vectar’ is given byy. ' S e

Nl

- — AE1r-1 —9

In Algorithm 8, we incorporate the extraction &f, E’, and
r’ into Gaussian elimination. Our architecture has the same
worst-case latency as Algorithm 7 and requires no extraesycl
to extractL, out of then-RRE form. Hence the throughput also
remains the same.

Algorithm 7 is implemented by the regular architecture show
in Fig. 5, which is a two-dimensional array of x 2m process- \
ing elements GE's); The leftmostm columns of processing B o ] W oae
elements correspond &7, and the rightmostn columnsB. N —
Algorithm 8 can be implemented with the same architecture
with N x (n+m) GE’s; The leftmost: columns of processing
elements correspond td, and the rightmostn columnsy.
The elements fod.’ are omitted in the figure. The circuitry
of the processing elemeftE is shown in Fig. 6. The control Fig. 7. our architecture of Gabidulin's algorithm
signal ct; for row ¢ chooses from five inputs based on the
operation: keeping the valughiftleft, eliminate (or reduce), In our decoder, Algorithm 1 is implemented by the regular
andshiftup (using the first row or the next row). architecture shown in Fig. 7, which includes a triangulaaar

I,Ll AE10

11
g

—|

'/Ul/l
|

Xo, X1, Xro1
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Fig. 5. Regular architecture for Gaussian elimination

Al

0]

Ai1
A/

i—1,j—1

) [ ctau;
A(‘I—l)/‘l

i—1,i—1

ctau; |

A(v(l—l)/ll

i—1,0—1

A

ij

ctal; N ctal;
\AHLJ‘H

Az‘,j

Fig. 8. The processing elemeatE; ;

!
J 9 941

A(Q*])/q o

i—1,4—1

ctq;

Xj

i+l ¢ G

Fig. 9. The processing eleme@E;

of 7 x 7 AE’s and a one-dimensional array of QE's. The
circuitry of the processing elemeiE; ; and QE; is shown
in Fig. 8 and 9. The upper MUX ilAE controls the output
sending upward along the diagonal. Its control signaty; is

L — — L — —
GCtrl GEoo = GEoni  k— -+« GEom—1 |  GEom g GEom+1 f d CGEo2m—1 k
-t 1 — — 1 H-1 H— —n
I 7 I T 0 T
T T T
> F— — — i — —
— — 1 i — —
GEj,0 k— GEj 1 k— -« GEjm—_1 d GEi, K GE1,m+1 4 A GEi2m-1 K
H 1 — — 1 H-1 H— —n
> l i l T l T +— +— +—
| [ |1 l L] l
4 - — — i — —
— — 1 i — —
GEm-1,0 ¢ GEm-1,1 k— - «GEm—-1,m-1 GEm—1,m GEpm—1,m+1 GEp—1,2m—1

Ao, = E; andg; = S; fori =0,1,...,7—1. Step 1.1 needs
7 substeps. In the first— 1 substepsgtal;y; = 0, ctau; = 1,
ctqg = ctqy = --- = ctq; = 2, andctq;; = ctq; o = -+ =
ctq,_; = 0 for substepi. In the last substepitau; = 0 and

all ctq,’s are set to 2. This substep is to put the updated
into the original position. In Step 1.2, the pivot is in thghti
lower corner, where we comput®,;’s. Step 1.2 also needs
7 substeps, in which alttal,’s andctq;’s are set to 1. First
X-_1 is computed byA”!, g, — 1 whereg,_; = Q1.
Note that the inversion may need — 2 clock cycles. In each
substep, the matrid is moving down the diagonal so thé ;

to be inverted is always at the bottom right corner. At theesam
time, theg;’s are also moving down. Basically, in substep
the architecture updateg’s to Q;—po — Z;Tlflfp Ai i X

for i > p by doing one backward elimination at each substep.

E. Low Complexity Linearized Interpolation

It would seem that three registers are needed to $6réz),
w;'s, and 'yj(i)’s, respectively, in Algorithm 4. However, we
can implement Algorithm 4 with a single register of size-
1. First, we note thatv;'s are used to initializey§0)’s, and

only 73@’5 are used in the updates. Second, after &k

iteration of step 4.2, thg-degree of (1) () is no more
thani + 1 and we need only %", A{5D . 40D there-
after. Thus, we can store the coefficients 6+ (z) and

D A0 4 in a register of sizey + 1. We refer

to this register ag and index it0, 1, - - - , p from left to right.

Note thaty, 1", 7", ..., 7{"}" are stored at the lower end

i1 ‘
of the ) register, and the coefficients &f(“+1)(z) are stored

1 for the second row and O for other rows since we updhte at the higher end of the register. At each iteration, the exnt

one row in a cycle and we keep the pivot on the upper ledf the  register is shifted to the left by one position, so that
corner in Step 1.1. The control of the lower MUX hE is () i aiways stored afo.

0 for working on Step 1.1, and 1 for working on Step 1.2. ) o . .
Similarly the control of the MUX inQE is O for working on Algorithm 9 (Reformulated Algorithm for Minimal Linearized
Step 1.1, and 1 for working on Step 1.2. But in Step 1.1, onfyelynomials)

part of QE's need update and others should maintain their InPut: Rootswg, w1, ..

values and their control signatsq;’s are set to 2. Initially,

-, Wp—1
Output: The minimal linearized polynomiat'(x)
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9.1 Initialization:nj(.o) = w; for j = 0,1,...,p — 1, and Similar to RS decoding algorithms, a rank decoder can return

77;()0) -1, decoding failure when the roots of the error span polynomial
9.2 Fori=0,1,...,p—1, A(x) are not unique. That is, the root space Xifr) has a

dimension smaller than thedegree ofA(z). Note that this

If 8" £ 0, . an
a) Ifmg” 70 applies to both Gabidulin and KK decoders. For KK decoders,

i) Forj =0,1,....p—1—i, ”J('iH) = (’7]('21)[1] — another condition of decoding failure is when the total nemb
(n((f))qfln.gﬂl; of erasures and deviations exceeds the decoding béuntl.
iy Forj=p—i,p—i+l,...,p, 77§i+1) = (77§i))[1]—
(néi))qfl 773(2 i G. Latency and Throughput
b) Otherwise, forj = 0,1, ....p, ”.§i+1) _ n.§i+)1. We analyze the worst-case decoding latencies of our decoder

b )0 architectures, in terms of clock cycles, in Table Ill.

9.3 F(z) =30 "2l
‘ TABLE Il

We note that the updates invo|vé:) which is a|WayS WORSTCASE DECODING LATENCY(IN TERMS OF CLOCK CYCLES.

1

Set 0 zero (see Fig. 10). When an npu is not linearly CAUSSNELMINATIONOVER (00T space IGAoLLINAND KK
independent withwg, w1, ..., w;_1, 77(()1) = 0. In this case, ADDER, ONE TWO-INPUT MUX, AND ONE FIVE-INPUT MUX.
the algorithm simply ignores the input, and the registers -
are shifted to the left by one position. Hence, whether or —RRE s
not the inputswg, w1, ..., wp—1 are linearly independent, the SyndromeS n n
minimal linearized polynomial for the inputs will be avdila 2;8 - §§
after p iterations. This flexibility is important for our decoder Sg’ﬁ,’,&”) ~ 2(d2; )
architecture, since the number of linearly independentitisip Srp(@) - =1
varies. B - (n+2)(d—1)

Algorithm 9 is implemented by the systolic architecture ”;J(SS) . d2—t1
shown in Fig. 10, which consists gf + 1 processing ele- foot space basiés mgt”:ri)f (T’ZZT&;)_/%
ments ME’'s). The circuitry of the processing elemestE; error worde ? 2%

is shown in Fig. 11. Ther signal is 1 only whery, # 0.
The ct; signal for each cell is 1 only ifi < p —i. Ba- As in [32], the latency of Gaussian elimination for the
sically, ct; controls whether the update is fd#("*)(z) or RRE form is at most(2N —n + 1)/2 cycles. Similarly, the
%_(fgl),%_(gl), o ﬁfjfll) as in Algorithm 4. latency of finding the root space is at mastm + 1)/2.
For Gabidulin’s algorithm, it needs one cycle per row forfor
ward elimination and the same for backward elimination. For
L?ﬂ Er each coefficient, it takes cycles to perform a division. Hence
\E, ] ME, : e it needs at mosI(d.— 1)+m(d—1) a}nd2(d.— 1.) +m(d—_ 1.)
— -y for 8 and L respectively. The latencies of finding the minimal
linearized polynomials are determined by the number ofsregi
Fig. 10. Architecture of linearized polynomial interpotet ters, which is2¢ to accommodatep(z), op(z), andoy (z),
whose degrees afg J, andy, respectively. Th&t syndromes
can be computed b3t sets of multiply-and-accumulatorsin
cycles. Note that the computations$fz), A\ (z), andop (z)
T can be done concurrently. The latency of RiBMA2isfor 2¢
0 <D @ 2 @ o iterations. The latency of a symbolic produgir) ® b(z) is
determined by the-degree ofi(z). When computing py (),
ctir | cts we are concerned about only the termsgedegree less than
a ] b2 ! d — 1 because only those are meaningful for the key equation.

% 1 : ‘;]EH For computingSrp (), the result obrp ()@ S(z) in Spy ()

@&f/\? % can be reused, so it needs only one symbolic product. In total
assuming: = m, the decoding latencies of our Gabidulin and
KK decoders are:(n+3)/2+(n+5)t andn(N +2)+4(n+5)t
cycles, respectively.

One assumption in our analysis is that the unit that computes
2271 in Figs. 9 and 11 is implemented with pure combinational
_ ) logic, which leads to a long CPD for larggs. To achieve
F. Decoding Failure a short CPD for large's, it is necessary to pipeline the

A complete decoder declares decoding failure when no valiait that computes:?—t. There are two ways to pipeline it:
codeword is found within the decoding radius of the received ' = z - 22 - .- 29/2 that requiredog, ¢ — 1 multiplications,
word. To the best of our knowledge, decoding failures afr 9~ = x9/2 that requiresn multiplications for division.
Gabidulin and KK codes were not discussed in previous worRe. maintain a short CPDz¢~! needs to be implemented

.

j

Fig. 11. The processing elemeME; (z9 is a cyclic shift, and requires no
hardware but wiring). For simplicity, we have omitted thepetscripts ofy;
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sequentially with one clock cycle for each multiplicatidret five or nine, respectively. Our designs are synthesizedgusin
cqm = min{log, ¢—1, m} and it requires at most(c,,, +2)t Cadence RTL Compiler 9.1 and FreePDKudib standard cell
clock cycles for getting minimal linearized polynomialg(x), library [33]. The synthesis results are given in Table IV. In
op(z), andoy (x). Similarly, it requires at most,,,(d — 1) these tables, the total area includes both cell area and esti
more cycles to perform forward elimination in Gabidulin’snated net area, the gate counts are in equivalent numbers
algorithm for the error locator, and the latency of this stepf 2-input NAND gates, and the total power includes both
will be (m + cgm +2)(d — 1) cycles. leakage and estimated dynamic power. All estimations are
In our architectures, we use a block-level pipeline schemeade by the synthesis tool. The throughput is computed as
for high throughput. Data transfers between modules afetad(n x m x R)/(Latencyyyeneck X CPD).
into multiple stages so the throughput is determined by onlyTo provide a reference for comparison, the gate count of our
the longest latency of a single module. For brevity, we presd8, 4) KK decoder is only 62% to that of th@55, 239) RS de-
only the data flow of our pipelined Gabidulin decoder in Fig. lcoder over the same fielfl,s in [34], which is 115,500. So for
The data in different pipeline stages are for different difwg Gabidulin and KK codes over small fields, which have limited
sessions. Hence these five units can work on five differesror-correcting capabilities, their hardware implenagions
sessions currently for higher throughput. If some block fiare feasible. The area and power of decoder architectures in
ishes before others, it cannot start another session uhtil Eable IV appear affordable except for applications withyver
are finished. So the throughput of our block-level pipelingiringent area and power requirements.
decoders is determined by the block with the longest latency TABLE IV
For Gabidulin decoders, the block of finding root space is theésynrhesis RESULTS OF DECODERS FOBABIDULIN AND KK CODES
bottleneck that requires(m+1)/2 cycles, the longest latency

in the worst case scenario. For KK decoders, the bottlerseck | F'”gedf'e'ds - Fas - = Faie -
. . oaes an. an.
the RRE block, which requires(2N — n + 1)/2 cycles. ) of (no7) GV VI B 6T R 3
Gates 18465 | 71134 | 116413 | 421477
2 ) Cell 0.035 | 0.133 | 0.219 | 0.791
Area (mm?2) Net 0.053 | 0.202 | 0.320 | 1.163
c Total | 0.088 | 0.335 | 0539 | 1.954
‘ o(a) CPD (s) 2.309 | 2.199 | 3.490 | 3.617
Received| + (Syndromes) o (Bwn) Estimated |_Leakage | 0281 | 1084 | 1690 | 6216
s - \ Pomor (uyyy | Dynamic | 14.205 | 54.106 | 97.905 | 313.065
Corrected (Error) (Gabidulin's )+ (Roots) Total | 14.486 | 55.190 | 99.505 | 319.281
— ‘ Catency (cycles) 70 216 | 236 752
[Ex] Bottleneck (cycles) 36 68 136 264
5 Throughput Mbit/s) 385 214 270 134
rx e

B. Implementation Results of Long Codes

Fig. 12. Data flow of our pipelined Gabidulin decoder Although the area and power shown in Table IV are af-
fordable and high throughputs are achieved, the Gabidulin
and KK codes used have very limited block lengthand

V. IMPLEMENTATION RESULTS AND DISCUSSIONS 16. For practical network applications, the packet size may

To evaluate the performance of our decoder architectur@g, large [11]. One approach to increase the block length of
we implement our architectures for Gabidulin and KK coded constant-dimension code is to lift a Cartesian product of
for RLNC over F,. Note that although the random lineaGabidulin codes [5]. We also consider the hardware implemen
combinations are carried out ovBs, decoding of Gabidulin tations for this case. We assume a packet size of 512 bytes,
and KK codes are performed over extension field& af and use a KK code that is based on Cartesian product of 511

Due to the hardware limitations caused by the architectdfgth-8 Gabidulin codes. As observed in Section IlI-E, the
in Fig. 5, We need to restricN. Note that we assume then-RRE form allows us to either decode this long KK code in

input matrix is full rank as [5]. WhedV > n +d, the number & serial, partly parallel, or fully parallel fashion. Foraemple,
of deviationss = N — n is at leastd and it is uncorrectable. more decoder modules can be used to decode in parallel for

Hence in our implementation of KK decoders, we assuvne higher throughput. We list the gate counts and throughput of
is less tham + d. the serial and factor-7 parallel schemes based ofighg KK
decoder and those of the serial and factor-5 parallel scheme
_ based on th€16,8) KK decoder in Table V.

A. Implementation Results In Table V, we simply use multiple KK decoders for paral-
We implement our decoder architecture in Verilog for akel implementations. Parallel KK decoders actually shée t
(8,4) Gabidulin code oveff,s and a(16,8) one overFyis, sameA, L, X, and \y(z). Hence, some hardware can be
which can correct errors of rank up to two and four, respealso shared, such as the left part of Gaussian elimination fo

tively. We also implement our decoder architecture for theieduction in Fig. 6 and the interpolation block fog (z). With
corresponding KK codes, which can correcerrors, 1 era- the same latency, these hardware savings are roughly 7% of
sures, and deviations as long a& + i + ¢ is no more than one single KK decoder.



TABLE V
PERFORMANCE OFKK DECODERS FORS12-BYTE PACKETS
ND) 41 3.8
Decoder Serial | 7-Parallel | Serial 5-Parallel
Gates 71134 497938 | 421477 | 2107385
Area (mm?) 0.335 2.345 1.954 9.770
CPD (ns) 2.199 3.617
Est. Power fn W) 55.190 | 386.330 | 319.281| 1596.405
Latency (cycles) 34896 5112 67808 13952
Throughput Mbit/s) 214 1498 134 670

C. Discussions

Our implementation results above show that the hardware
implementations of RLNC over small fields and with Iimitec{ll]
error control are quite feasible, unless there are verpgrit
area and power requirements. However, small field sizesyimpl
limited block length and limited error control. As shown abp
the block length of a constant-dimension code can be inedeas

by lifting a Cartesian product of Gabidulin codes. Whilesthi

(5]

(6]
(7]

(8]

El

[10]

[12]

easily provides arbitrarily long block length, it does nat- a (13!
dress the limited error control associated with small figtés
For example, a Cartesian product(8f4) Gabidulin codes has [14]
the same error correction capability as {8e4) KK decoder,
and their corresponding constant-dimension codes alse hi?!
the same error correction capability. If we want to increase
the error correction capabilities of both Gabidulin and KHKL€]

codes, longer codes are needed and in turn larger fields are

required. A larger field size implies a higher complexity fofi7]
finite field arithmetic, and longer codes with greater error
correction capability also lead to higher complexity. in@@ns
to be seen whether the decoder architectures continue to bé constant-dimension codes,” Rroc. |EEE Int. Symp. Information Theory
affordable for longer codes over larger fields, and this bl
the subject of our future work.

This paper presents novel hardware architectures for Ga-
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