
1

Raising FPGA Logic Density Through
Synthesis-Inspired Architecture

Jason H. Anderson, Member, IEEE, Qiang Wang, Member, IEEE, and Chirag Ravishankar, Student Member, IEEE

Abstract—We leverage properties of the logic synthesis netlist
to define both a new FPGA logic element (function generator)
architecture and an associated technology mapping algorithm
that together provide improved logic density. We demonstrate
that an “extended” logic element with slightly modified K-input
LUTs achieves much of the benefit of an architecture with
K+1-input LUTs, while consuming silicon area close to a K-
LUT (a K-LUT requires half the area of a K+1-LUT). We
introduce the notion of “non-inverting paths” in a circuit’s AND-
inverter graph (AIG) and show their utility in mapping into
the proposed logic element architectures. We propose a general
family of logic element architectures, and present results showing
that they offer a variety of area/performance trade-offs. One of
our key results demonstrates that while circuits mapped to a
traditional 5-LUT architecture need 15% more LUTs and have
14% more depth than a 6-LUT architecture, our extended 5-
LUT architecture requires only 7% more LUTs and 5% more
depth than 6-LUTs, on average. Nearly all of the depth reduction
associated with moving from K-input to K+1-input LUTs can
be achieved with considerably less area using extended K-LUTs.
We further show that 6-LUT optimal mapping depths can be
achieved with a small fraction of the LUTs in hardware being
6-LUTs and the remainder being extended 5-LUTs, suggesting
that a heterogeneous logic block architecture may prove to be
advantageous.

Index Terms—Field-programmable gate arrays, FPGAs, archi-
tecture, logic synthesis, area, optimization.

I. INTRODUCTION

FOR over twenty years, the logic blocks (function genera-
tors) in field-programmable gate arrays (FPGAs) from the

two main commercial vendors have been based primarily on
look-up-tables (LUTs), registers and carry logic. During the
same time period, FPGA fabrication technology has scaled to
the present 40/45 nm, hard IP blocks have been incorporated,
and considerable innovations have appeared in FPGA routing
architecture. Relatively little change has been made to the
composition of core logic blocks in FPGAs, aside from the
shift toward larger LUTs. We speculate that a reason for
this may be a lack of research focus on synthesis techniques
for easy targeting and evaluation of non-LUT-based logic
block architectures. In this paper, we consider FPGA logic
block architecture and propose logic elements with superior

J. Anderson is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4 Canada (e-mail:
janders@eecg.toronto.edu).

Q. Wang is with Huawei Technologies (U.S.A.), Santa Clara,
CA 95050 USA (email: Qiang.sc.Wang@huawei.com).

C. Ravishankar is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, ON N2L 3G1 Canada (e-mail:
cravisha@uwaterloo.ca).

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada.

area-efficiency, as well as a simple mapping strategy for the
proposed logic elements.

The tight interaction between architecture and computer-
aided design (CAD) for FPGAs is well-established. The ap-
proach taken in most FPGA architecture research is hardware-
driven in the sense that the hardware “idea” comes first into the
architect’s mind, and CAD tools are subsequently developed
to target and gauge the benefit of the proposed hardware. A
classic work by Rose et al. studied what LUT size provides
the best area-efficiency in FPGAs [1]. Here, we re-visit the
question of area-efficiency, however in our case, architecture
research is turned upside down and the reverse approach is
taken: the CAD tools themselves suggest a particularly natural
architecture.

Raising logic density is the goal of this research and is one
which we believe to be well-motivated. There has recently
been a trend toward larger LUTs in commercial FPGAs. The
LUTs in the Xilinx Virtex-5 FPGA and the Altera Stratix-III
FPGA can realize 6-input logic functions [2], [3]. However,
since customer designs contain only a limited number of
large functions, LUTs in commercial chips are multi-output
and fracturable into several smaller LUTs. For example, the
6-LUT in Virtex-5 can implement any 6-input function, or
any two functions that together use up to 5 distinct inputs.
LUTs in Stratix-III offer even more fracture-flexibility and
can implement two independent 4-LUTs. From the vendor
perspective, while the delay benefits of 6-LUTs are desireable,
care has been taken to mitigate under-utilization and achieve
high logic density [4]. In this paper, we re-examine the LUT
structure and challenge the conventional wisdom that full
K-input LUTs are necessary to implement K-variable logic
functions in FPGA logic blocks. We show that a smaller K-
input logic element that uses fewer transistors can be used in
place of a K-LUT, with relatively little impact to circuit speed.
Logic density is improved through the use of the proposed
logic element. In this paper, logic density refers to amount of
silicon area (based on transistor count) required to implement
a given circuit.

We propose a new technology mapping approach and FPGA
logic element architecture, both of which are motivated by
properties of the logic synthesis netlist. Our mapping approach
and architecture are relatively small variations on published
techniques. Specifically, we use properties of logic synthesis
netlist to identify “gating” inputs to LUTs, where a gating
input is one that has a particular logic state (logic-0 or logic-1)
that forces the LUT output to evaluate to a particular logic state
(logic-0 or logic-1). We give a simple scheme for finding such
gating inputs and show that they occur frequently in circuits.



2

We leverage the gating input concept in the design of new
logic element architectures that offer considerably better logic
density compared with those in today’s commercial FPGAs.
Our combined “architecture + CAD approach” to attack logic
density is an entirely new direction and is in contrast to recent
CAD work which used don’t-cares to reduce LUT count in
mapped circuit implementations [5].

A preliminary version of a portion of this article appeared
in [6]. In this extended journal version, we generalize the
mapping approach to discover additional gating input signals
to LUTs. In particular, we offer an approach to identify
inputs that cause the LUT function to evaluate to logic-1,
in addition to the logic-0 case described in the conference
version. The extended LUT architecture is altered accordingly
to handle the scenario where a gating input forces a function
to logic-1. We propose a generalized family of extended LUT
architectures, each offering a different area/performance trade-
off. Finally, we present more comprehensive experimental
results, including results for an additional set of benchmark
circuits.

The remainder of the paper is organized as follows: Back-
ground and related work appear in Section II. Our mapping
approach and the proposed logic element architecture are
described in Section III. An experimental study is presented
in Section IV. Conclusions and suggestions for future work
are offered in Section V.

II. BACKGROUND

A. LUT Hardware Architecture

A K-input LUT (K-LUT) is a hardware implementation
of a truth table that can implement any logic function that
requires up to K variables. Central to our work is the property
that the required silicon area to implement a LUT increases
exponentially with the number of LUT inputs. Fig. 1 shows
the hardware for 2 and 3-input LUTs. 3-input LUTs have
8 SRAM cells to hold the truth table of the logic function
implemented by the LUT, and require a tree of seven 2-
to-1 multiplexers. 2-LUTs have 4 SRAM cells and require
three 2-to-1 multiplexers. In general, K-LUTs have 2K SRAM
cells and 2K − 1 multiplexers. 6-LUTs in today’s commercial
FPGAs have 64 SRAM cells. Adding additional inputs to a
LUT is clearly a costly endeavor, and the thrust of our work
is an approach for “getting away with” using smaller LUTs,
while at the same time realizing the benefits of larger LUTs.

B. FPGA Technology Mapping

Research on technology mapping for FPGAs was active in
the early 1990s with a wide range of algorithms proposed
(e.g. [7], [8]). In comparison with technology mapping for
ASIC standard cells, the FPGA mapping problem is simplified
as a consequence of the target gate being a K-LUT that can
implement any K-variable function. FPGA mappers need not
focus on finding logic functions in circuits that match with gate
functions in a target library; rather, FPGA mappers must cover
a circuit with K-variable functions (any K-variable functions).
Recent FPGA technology mappers are based on the notion
of cuts [9], [10], which we review here. The combinational

portion of a circuit can be represented by a directed acyclic
graph (DAG) G(V, E), where each node, z ∈ V , represents a
single-output logic function and edges between nodes, e ∈ E,
represent input/output dependencies among the corresponding
logic functions. For a node z in the circuit DAG, let Inputs(z)
represent the set of nodes that are fanins of z.

Fig. 2(a) illustrates the notion of a cut for a node z. A
cut for z is a partition, (V, V ), of the nodes in the subgraph
rooted at z, such that z ∈ V . For z’s cut in Fig. 2(a), V
consists of two nodes, x and z. A cut is called K-feasible if
the number of nodes in V that drive nodes in V is ≤ K . In
the case of Fig. 2(a), there are 3 nodes that drive nodes in V ,
and, the cut is 3-feasible. For a cut C = (V, V ), Inputs(C)
represents the nodes in V that drive a node in V . For the cut
in Fig. 2(a), Inputs(cut) = {a, d, c}. Nodes(C) represents
the set of nodes, V .

For a K-feasible cut, C = (V, V ), the logic function of the
subgraph of nodes V can be implemented by a single K-LUT
(since the cut is K feasible and a K-LUT can implement any
function of K variables). The key point to realize is that the
problem of finding all of the possible K-LUTs that generate a
node’s logic function is equivalent to the problem of finding all
K-feasible cuts for the node. Generally, there can be multiple
K-feasible cuts for a node in the network, corresponding to
multiple LUT implementations. Cuts(z) represents the set of
all feasible cuts for a node z.

Traversing the circuit DAG in topological order, the cuts
for a node z are generated by merging cuts from its fanin
nodes, using the method described in [10], [9] and outlined
here. Consider generating the K-feasible cuts for a node z
with two fanin nodes, x and c. The list of K-feasible cuts
for x and c have already been computed, due to the graph
traversal order. Assume that node x has one K-feasible cut,
CX , and node c has one K-feasible cut, CC , as shown in
Figure 2(b). We can merge CX and CC to create a cut, CZ , for
node z, such that Inputs(CZ) = Inputs(CX)∪ Inputs(CC)
and Nodes(CZ) = z ∪ Nodes(CX) ∪ Nodes(CC) (see
Figure 2(b)). If |Inputs(CZ)| > K , the resulting cut is not K-
feasible, and is discarded. In this example, input nodes x and c
have only one cut each, however, if instead they had multiple

i3i1 i2

S

S

S

S

S

S

S

S

i1 i2

S

S

S

S

a) 3-LUT b) 2-LUT

SRAM cell

Fig. 1. 2 and 3-input LUTs.



3

z

x

a

b

cd

cut

e

z

x

a

b

cd

e

CX

CC

CZ

a) Example cut b) Example of cut merging

Fig. 2. Illustration of K-feasible cuts.

cuts, all possible cut merges would be attempted to form the
complete cut set for z. This provides a general picture of how
the cut generation procedure works, however, there are several
special cases to consider and the reader is referred to [9] for
details.

Having computed the set of K-feasible cuts for each node
in the DAG, the graph is traversed in topological order again.
During this second traversal, a “best cut” is chosen for each
node. The best cut may be chosen based on any criteria,
whether it be area, power, delay, routability or a combination
of these. The best cuts define the LUTs in the final mapped
solution.

C. The ABC Synthesis Framework

Work on logic synthesis has been reinvigorated by the intro-
duction of the ABC system developed at UC Berkeley [11].
In ABC, the circuit DAGs are AND-inverter graphs (AIGs),
that is, logic functionality is represented as a network of 2-
input AND gates connected by invertible edges. An example
of an AND-inverter graph is shown in Fig. 3. The use of
AIGs eases the implementation of many useful logic synthesis
transformations (e.g., [12], [13]).

Among other advantages, AIGs have proven to be effective
for cut-based LUT mapping. In [14], Mischenko et al. intro-
duced the notion of priority cuts, where instead of storing all
possible cuts for each node, only a subset of “priority cuts”
is stored, based on a cost function. When generating the cut
set for a node, only the priority cuts of its fanin nodes are
considered for merging. Despite that many cuts are pruned
with this technique, little quality degradation is observed in
practice, and results are comparable to any competing mapper.
Mapping quality is not compromised by using AIGs compared
with other network representations [14].

We conduct our research using AIGs within the ABC
framework and we propose new logic element architectures
and a mapping approach. Our logic elements contain structures
beyond LUTs and experimental results demonstrate the area
and performance benefits of the proposed logic elements. It
is worth mentioning that a few recent works also studied
technology mapping into non-LUT structures. Ling et al. used
SAT-based techniques for mapping into blocks with LUTs and
gates [15]. Recent work from Actel used cut-based techniques
to map into a logic block architecture with gates, and then
applied Boolean matching to filter cuts that could not be
legally mapped to the target block [16]. Both of these prior

a b c d

z

a b c d

z

complemented
edge

a) Logic network b) Equivalent and-inverter graph (AIG)

Fig. 3. AIG example.

works considered the mapping problem in isolation, and not
from the architecture evaluation perspective.

III. LOGIC ELEMENT ARCHITECTURE AND MAPPING

Our architecture and technology mapper take advantage of
the AIG representation of logic functions. In particular, the
proposed logic element architecture relies on the property that
only AND gates and inverters can appear in the graph. We
introduce the proposed architecture using the example AIG
shown in Fig. 4(a). Two 4-input cuts are shown: cut0 and
cut1, corresponding to LUTs implementing the functions z =
q · i2 · i1 · i0 and z = i4 · i3 · i2 · m, respectively.

Both cut0 and cut1 are 4-feasible cuts. However, a key
observation can be made regarding cut0 and cut1 in Fig. 4(a).
Looking first at cut0, observe that one of the inputs to the
cut is the output signal of gate q, and that signal is also a
direct input of gate z (the root node). Since gate z is an AND
gate, we know that when the output of q is logic-0, then the
output of z must necessarily be logic-0. Conversely, when the
output of q is logic-1, the output of z is the output of gate
l (complemented), which in this case is only a 3-input logic
function. Hence, for the case of cut0, even though the cut
is 4-feasible and represents a logic function of 4 variables,
we do not need the full flexibility of a 4-LUT in hardware
to realize the function. In fact, we can realize the function
using the logic element shown in Fig 5(a), comprising a 3-
LUT and a single AND gate – an extended LUT. Since the AIG
subject graph contains only 2-input AND gates with optional
edge complementation, we need not be concerned with gates
other than AND appearing in the input circuit graph. In essence,
we are using a property of the synthesis graph to inspire our
logic element architecture.

Turning now to cut1 in Fig. 4(a), one can see that the same
observation also applies: if either i4 or i3 is logic-0, then the
output z is also logic-0. In this case, however, none of the cut
inputs are also inputs to the root AND gate. Yet again, we do
not need the full power of a 4-LUT to express the function of
cut1. Regarding cut1, observe that the “gating” property does
not hold for all of the inputs to the cut, for example, if input
m is logic-0, we cannot determine whether z will be logic-0
or logic-1, as it will depend on the values of the other cut
inputs.



4

It is worth mentioning the relationship between gating
inputs to a function and unate inputs, which are well-described
in the literature [17]. Consider a function f with an input
variable x. x is said to be a unate input to f if and only if f ’s
sum-of-products (SOP) representation contains either x or x,
but not both. If x is a unate input and f ’s SOP representation
contains x (in true form), then a transition on x can only cause
a transition on f in the same direction. On the other hand, if
f ’s SOP represention contains only x, then a transition on
x can only cause a transition on f in the opposite direction.
Certainly, gating inputs to a function are unate inputs; however,
the converse is not necessarily true: a unate input may not
necessarily be a gating input.

A. Mapping Approach: Non-Inverting Paths in the AIG

The core of our approach is to restrict cuts with K inputs to
those that resemble the cuts in Fig. 4(a). The defining feature
of such cuts is the presence of a non-inverting path from at
least one of the cut inputs to the root of the cut. Some examples
are shown in Fig. 4(b). In this case, when any of inputs i1, i2,
or i5 is logic-0, root node r’s output must be logic-0. Observe
that the edge crossing the cut may be a complemented edge, as
is the case for (i2, l) in the figure. However, edges along the
path from the cut “frontier” nodes1 to the root must be non-
inverting. It is a straightforward process during cut generation
to traverse the graph downward from the root and determine
whether K-input cuts have at least one non-inverting path to a
cut input. Fig. 4(c) gives an example cut with no non-inverting
path from any of its inputs.

Restricting cuts with K inputs to be those that contain non-
inverting paths will produce mappings that can be accom-
modated in an architecture with extended K-1-LUTs, which
require about half the silicon area of K-LUTs. The extension
to which we refer is the presence of an AND gate on the
LUT output, as shown in Fig. 5(b). The other input to the
AND gate can be programmably connected to either the true
or complemented form of an input signal, i. The optional
inversion is needed to handle the case of complemented edges
crossing the cut, such as (i2, l) in Fig. 4(b). The restriction that
cuts have non-inverting paths is only imposed for cuts with K
inputs; cuts that use less than K inputs remain unrestricted.
When the logic element in Fig. 5(b) is used to implement
functions that require less than K inputs, we assume that the
input i is tied to either VCC or ground and that the multiplexer
select SRAM cell is set such that the AND gate is bypassed.
We believe this to be a reasonable assumption, as unused logic
block inputs are common in FPGA designs and commercial
FPGAs contain circuitry to tie unused inputs to a known logic
state.

The obvious question that arises is: What is the impact of
restricting the cuts of size K from the # of logic elements and
speed (depth) perspectives? Surprisingly, as we will demon-
strate in our experimental study, our mapping approach and
logic element achieve much of the benefits of K-LUTs, while
consuming much less area.

1AND gates driven by cut edges.

3-LUT

K-1-LUT

a) LUT with AND-gate

b) Extended (K-1)-LUT with 
AND-gate on output

Si

Fig. 5. Extended LUT with additional AND gate.

To define our approach formally, let SCuts(z) be the set of
cuts for a root node z that use less than K inputs, as computed
using the standard merging procedure described in Section II:

SCuts(z) = {C ∈ Cuts(z) s.t. |Inputs(C)| < K} (1)

and let LCuts(z) be the set of K-input cuts of z that contain
a non-inverting path to one of the cut inputs:

LCuts(z) = {C ∈ Cuts(z) s.t. (2)

|Inputs(C)| = K ∧
(∃ πi,z ⊂ AIG s.t. i ∈ Inputs(C) ∧
πi,z is non − inverting)}

where πi,z is a path in the AIG from a cut input i to the
cut root z. If i directly drives z, then the path is a single
edge and is a non-inverting path. Otherwise, there must be k
intermediate nodes on the path from i to z and without loss of
generality, we can represent πi,z as a sequence of AIG edges:

πi,z = (i, n1), (n1, n2), ..., (nk, z) (3)

As described in Section III-A, for path πi,z to be called non-
inverting in (2), all of the edges on the partial path from n 1 to
z must be uncomplemented, i.e. the edges (n1, n2), ..., (nk, z)
must be true edges. The edge crossing the cut, (i, n1), may
be true or complemented.

Finally, the set of filtered cuts that will be considered for a
node z in our technology mapper is:

FCuts(z) = SCuts(z) ∪ LCuts(z) (4)



5

z

q

i0

i2

i4i3

i1i0

cut0

cut1

m

l p

q

i2 i4i3i1

l

r

i5

a) Example cuts in AIG b) Example non-inverting paths (bold) c) Cut with no non-inverting paths

Fig. 4. Cut examples.

B. Identifying Additional Gating Inputs

While the discussion above centers on identifying a LUT
input that cause the LUT’s function to evaluate to logic-0,
there may also exist easily identifyable LUT inputs that cause
a function to evaluate to logic-1. An example case is illustrated
in Fig. 6, which shows a cut from one of the benchmark
circuits used in our experimental study (alu4). The logic
function implemented by the cut is: f = i1 · i2 · i3 · i4 ·
i4 · i5 · i6. An inspection of the AIG reveals that no input
to the cut has a non-inverting path to the root – no single
input can cause the function to evaluate to logic-0. Applying
De Morgan’s law to the two clauses in the cut’s Boolean
function, we attain the function in conjunctive normal form:
f = (i1+ i2+ i3+ i4) · (i4+ i5+ i6). In this form, we see by
inspection that input i4 is a gating input to the cut: When i4
is logic-0, function f evaluates to logic-1. Observe in the AIG
that there are reconvergent paths from input i4 to the cut root
f . Though the cut in Fig. 6 does not contain an non-inverting
path, it does indeed have a gating input. We again do not need
the full power of a 6-LUT to implement the function.

The block architecture shown in Fig. 7 is capable of
handling both cases where a gating input causes the function
to evaluate either logic-0 or logic-1. It has approximately
the same silicon area as the block in Fig. 5(b)2, with the
key change being that the 2-input AND gate in Fig. 5(b) is
replaced with a 2-to-1 multiplexer, MUX2, in Fig. 7. One
of MUX2’s data inputs is received from the LUT; its second
data input is received from an SRAM configuration cell. The
SRAM configuration cell is configured according to whether
the gating input causes the function to evaluate to logic-0 or
logic-1. As before, multiplexer MUX1 permits the input’s
gating state to be either logic-0 or logic-1. The architecture in
Fig. 7 is also referred to as an extended LUT, however, in this
case, the LUT is extended with a MUX instead of an AND.

A straightforward extension of the mapping approach out-
lined above can be used to identify cut inputs that cause a
function to evaluate to logic-1. Let r be the root gate of the

2The block in Fig. 7 uses an extra SRAM configuration cell.

i1

i2

i3 i4

i5
i6

cut

f

Fig. 6. Example AIG cut from benchmark circuit alu4 with a controlling
input i4 that causes the function to evaluate to logic-1.

K-1-LUT

S

S

MUX1

MUX2

Fig. 7. Extended LUT with additional 2-to-1 multiplexer.



6

5-LUT

S

S

Fig. 8. 5-LUT with two cascaded AND gates.

cut under consideration; let a and b represent r’s fanins; and,
let i be the cut input we wish to analyze. Input i is a gating
input that causes the cut function to evaluate to logic-1 if the
following conditions are met:

• The fanin edges of r are inverted.
• There are non-inverting paths from i to a, and from i

to b. The non-inverting paths from i cause a and b to
evaluate to logic-0 when i is in a particular logic state
(either logic-0 or logic-1).

In essence, we seek partial non-inverting paths from a cut
input to the fanin nodes of the cut’s root node, with the added
requirement that the root’s fanin edges be complemented. Note
that the logic element in Fig. 7 can also accommodate cases
where a gating cut input causes the cut root to evaluate to
logic-0. Such cases can be discovered using the approach
outlined in Section III-A above, namely, finding a single non-
inverting path from an input to the root.

In our experimental study, we consider both AND-extended
LUTs (Fig. 5(b)) as well as MUX-extended LUTs (Fig. 7),
and we show that the added flexibility afforded by the MUX-
extended LUT provides modestly better performance and area
results3.

C. Generalized Architectural Families: Extended LUTs

Having considered two classes of gating inputs to LUTs,
we now broaden the scope to consider cases wherein there
are multiple gating input signals. The AND and MUX-extended
LUT logic element architectures described above (and shown
in Figs. 5(b) and 7) can be viewed as members of a family
of logic element architectures, each containing an L-input
LUT with M cascaded gates on its output. For example,
Fig. 8 shows a 5-LUT with two cascaded AND gates. We
characterize such logic element architectures in a general form
as {L,M}-AND-extended LUTs and {L,M}-MUX-extended
LUTs. For example, a {4,2}-AND-extended LUT contains a 4-
input lookup table, followed by two cascaded AND gates. The
generalized forms are depicted in Fig. 9. Our experimental
study considers a wide range of logic element architectures
that fall into these generalized logic element families.

3The conference version of this paper considered only AND-extended
LUTs [6].

L-LUT

S

S

...
M stages

a) L-LUT with M cascaded AND-gates

L-LUT

S

S

S

S

...

b) L-LUT M with cascaded 2-to-1 multiplexers

M stages

Fig. 9. L-LUT with cascade of M gates.

We envision that LUTs extended with other types of gates,
for example an exclusive-OR-extended LUT, may also
prove useful, however, mapping circuits into such architectures
is not straightforward and cannot be achieved through a simple
traversal of the AIG representation.

D. Overall Architecture

Fig. 10 gives an abstract view of an FPGA and illustrates
the proposed architectural change. The FPGA itself is a two-
dimensional array of tiles with programmable logic and rout-
ing resources. The figure shows that in addition to LUTs, tiles
contain other logic, for example fast carry chain arithmetic
logic and storage elements (programmable flip-flops). We
propose to replace the K-input LUTs with alternative logic
elements that also use K inputs, namely the extended LUTs
that use considerably fewer transistors (and less area) than K-
LUTs (illustrated on the lower-right of Fig. 10). The arithmetic
and other logic surrounding the LUTs can remain unchanged
in the proposed architecture.

Regarding carry logic, in Xilinx FPGA families such as
Virtex-5 and Virtex-6, coupled with each 6-LUT is a 2-to-
1 carry chain multiplexer driven by the LUT output. The
multiplexer realizes the carry generate/propagate functionally
in carry look-ahead addition. Specifically, for the addition
of two bits A and B, the 6-LUT is used in dual-output
mode, where one of the two outputs produces the propagate
function (A ·B) and the second output produces the generate
function (A⊕B). Two functions of two common inputs can be



7

LE

LE

LE

LE

LE

other  logic

I1 I2 IK I1 I2 IK

O

K-LUT K-Input
Extended-LUT

LE

Programmable Tile

Sw
itch-Connect Block

New logic element
Traditional LUT 
function generator

O

Fig. 10. Illustration of proposed architectural change.

realized in a dual-output 3-LUT and consequently, as long as
the proposed extended LUT contains at least a 3-LUT, carry
arithmetic can be handled identically to today’s commercial
chips. Note also that in some commercial FPGAs, the SRAM
cells in the LUTs can be used to implement small memories
and/or shift registers. Such functionality is also possible using
the proposed extended LUTs, albeit with few SRAM bits
available.

Since the original K-LUTs and the proposed elements use
the same number of inputs, it is expected that they will
exert a similar demand on the FPGA’s programmable routing
fabric. The equivalent pin demand implies that the new logic
elements can be interchanged with the orignal LUTs, while
the programmable routing fabric remains constant. In other
words, the new logic elements do not necessitate a change in
the FPGA’s routing fabric – a property that makes them fairly
straightforward to incorporate into an existing commercial
architecture.

E. CAD Implementation

Fig. 11 illustrates the typical FPGA design flow, comprising
HDL and logic synthesis, technology mapping, placement,
routing and finally bitstream generation. Only the technology
mapping phase needs to be specialized for the proposed
architectural change. No changes are necessary for the other
phases of the flow, e.g. changes to placement and routing.
Supporting the proposed architecture is relatively low-cost
from the tools’ standpoint.

Mapping circuits into logic elements with multiple cascaded
gates (L > 1) can be achieved through repeated application of
the techniques described above, with the added requirement
that finding more than one non-inverting path in the AIG may
be necessary. For example,to map a 7-input logic function into
the architecture of Fig. 8, we must identify two gating inputs.
Mapping a function into a logic element with a cascade of
MUX gates is also straightforward. For example, we wish to
evaluate whether a 6-variable function, f , can map into a logic
element with a 4-LUT and two cascaded MUX gates. We first

Technology Mapping

Logic Optimization

RTL Synthesis

Bitstream
Generation

Placement

Routing

Design 
in HDL

FPGA

Logic 
Design 
Phase

Physical 
Design 
Phase

FPGA Design Flow

Configuration bit-stream

Fig. 11. Standard FPGA CAD flow.

identify a gating input, i, to the function f using the approach
described in Section III-B. If that is successful, we are left
with a 5-variable function, g, that is a factor of f (variable i
is factored out)4. We then use the same procedure to search
for a gating input to g. If such an input to g can be identified,
then function f can be realized in the logic element.

Note that the structure of cascaded gates in Fig. 8 is for
illustration/clarity only – two cascaded AND gates can be
implemented more efficiently in CMOS as single larger AND
gate, rather than multiple serially connected small gates – a 2-
input AND gate requires 6 transistors (a 2-NAND followed by an
inverter); a 3-input AND gate requires 8 transistors (a 3-NAND
followed by an inverter). Note that the CAD and architectural
perspectives of the proposed logic elements can be separated
from the circuit-level details: From the point of view of the
technology mapping, knowing the K and L parameters along
with the logic element style (AND or MUX) are sufficient to
produce a legal mapping.

In cut-based FPGA technology mapping to K-LUTs, for
a node v with n nodes in its transitive fanin cone, there
are at most O(nK) potential cuts [18]. For each such cut,
performing the check for non-inverting paths requires, in the
worst case, traversing the entire fanin cone – O(n) time. Hence
the overall complexity for mapping is O(n ·nK) = O(nK+1),
which is polynomial time as K is a fixed constant. In general,
we did not observe any appreciable increase in mapper run-
time for targeting the proposed architectures versus targeting a
traditional LUT-based architecture. The placement and routing
steps are, by far, the most compute-intensive phases of the
FPGA CAD flow.

We map circuits into the proposed architectures using a

4In fact, g is either the 0-cofactor or 1-cofactor of f after Shannon
decomposition with respect to input i.



8

modified version of the ABC technology mapper based on
priority cuts [14]. Our modified mapper can operate in one
of two ways:

1) Hard: When the technology mapper is generating the
set of K-feasible cuts for a node, we ignore all cuts
that cannot be accommodated in the architecture being
targeted. The mapping solution produced is therefore
guaranteed to contain only logic element instances that
fit into the target logic element architecture.

2) Soft: We do not ignore any of the K-feasible cuts
generated for any node. Rather, we change the way
cuts are ranked by the priority cuts mapping algorithm.
Specifically, we use the mapped depth as the primary
criterion for ranking cuts, and as a secondary criterion,
we prefer to choose cuts that legally fit into the target
logic element architecture.

The purpose of the “soft” flow is to evaluate, for a K-
LUT-based logic element architecture, how many LUTs in
the mapping solution need to be full K-LUTs if optimal
mapping depth is to be achieved, with the remainder being
accommodated by extended LUTs.

While the AIG circuit representation was the inspiration for
our proposed architectures, its use is not required to identify
gating inputs, nor required to target the proposed logic element
architectures. Consider, for example, the standard sum-of-
products (SOP) and product-of-sums (POS) representations
of logic functions (as an alternative to AIGs). Any input in
a function’s SOP representation that is present in all of its
product terms in one polarity (either true or complemented) is
a gating input that can force the function to logic-0. Likewise,
any input in a function’s POS representation that is present in
each of its sum clauses in one polarity is a gating input that
can force the function to logic-1. Hence, while AIGs offer a
convenient way to find gating inputs – through non-inverting
paths – it is also easy to identify gating inputs for functions
SOP/POS form. We believe it to be straightforward to modify
any cut-based FPGA technology mapper to target the proposed
extended LUTs, by filtering candidate cuts that do not meet
the gating requirements.

IV. EXPERIMENTAL STUDY

A. Methodology

We use the mapper in [14] as the baseline mapper to
which we compare. The baseline mapper was executed in
depth mode, which achieves the minimum depth mapping and
then performs area-driven post-passes based on the area-flow
concept [19]. The technology-independent transformations ap-
plied to circuits prior to technology mapping have considerable
impact on mapping results. Multiple technology-independent
transformation scripts are included with the ABC package.
Prior to technology mapping, we applied the resyn2 script.
We also investigated using the compress2 script, but found
it produced slightly worse depth results, on average. For
mapping into extended K-LUTs, we altered the area-driven
post-passes in ABC to ensure that they produced mappings
compliant with the logic element architectures targeted.

We borrow the approach of [5] and use two different sets
of benchmark circuits in our experimental study: 1) The
20 combinational and sequential circuits commonly used in
academic FPGA CAD and architecture research, and 2) the
13 largest circuits from the widely used VPR 5.0 circuit
set [20]. We used Altera’s Quartus 9.1 tool to synthesize
the VPR 5.0 circuits from Verilog to BLIF. Altera’s QUIP
(Quartus University Interface Program) flow [21] was used
to produce BLIF for each circuit following HDL elaboration
and technology independent synthesis. For all architectures
and circuits considered, technology independent optimization
(using resyn2) and technology mapping was executed 6
times and the best result achieved is reported. A similar multi-
pass methodology was applied in [22].

B. Results

We present two sets of results. We first present results
for 6-input logic element architectures. Such logic elements
could be directly interchanged with the 6-LUTs in a modern
commercial FPGA, such as the Xilinx Virtex-5. Changes to
the interconnection fabric would not be required, as the fabric
is already designed to handle the routing demand imposed by
6-input logic elements. Subsequently, we present results for
7-input logic element architectures. Early commercial FPGAs
(in the 1980s and 1990s) used 4-LUTs and the recent trend
has been towards larger LUTs. In the future, we may well see
commercial architectures with 7-input elements, and conse-
quently, it is desirable to evaluate area/performance trade-offs
for 7-input logic elements.

Table I gives results for mapping circuits into 6-LUTs (the
baseline), 5-LUTs, and six different 6-input logic element
architectures: {5,1}-AND, {5,1}-MUX, {4,2}-AND, {4,2}-MUX,
{3,3}-AND, {3,3}-MUX. Recall that {L,M}-AND and {L,M}-
MUX architectures contain an L-LUT followed by a cascade
of M gates (AND or MUX). Hence, the architectures presented
in the table use progressively less silicon area as the table
is read from left to right. With the exception of the 5-LUTs,
all architectures in the table require 6 inputs and hence, they
could all be embedded into similar FPGA routing fabric that
consumes a fixed amount of silicon area. For each architecture
and circuit considered, both the depth of the mapped network
(labeled “DEP”) and the number of logic elements are given
(labeled “#LEs”). The top half of the table shows results
for the 20 circuits most commonly used in FPGA research;
the bottom half of the table shows results for the VPR 5.0
circuits. We observed markedley different results for the two
different benchmark circuit sets and therefore, we decided to
give geometric mean results for each circuit set, as well as for
all of the circuits together (last rows of the table).

We first consider results for 5-LUTs versus 6-LUTs (see the
“6-LUTs” and “5-LUTs” columns of Table I). For the 20 stan-
dard benchmarks, 5-LUT mapping solutions are 12% deeper
and use 15% more LUTs than 6-LUT mapping solutions. For
the VPR 5.0 circuits, 5-LUT mappings are 18% deeper and
use 13% more LUTs than 6-LUT mappings. The VPR 5.0
circuits are more sensitive to changes in the number of LUT
inputs versus the 20 standard circuits commonly used in FPGA



9

TA
B

L
E

I
R

E
S

U
L

T
S

F
O

R
6

-I
N

P
U

T
L

O
G

IC
E

L
E

M
E

N
T

A
R

C
H

IT
E

C
T

U
R

E
S

A
N

D
5

-L
U

T
S
.

C
ir

cu
it

6-
L

U
T

s
5-

L
U

T
s

5,
1-

A
N

D
5,

1-
M

U
X

4,
2-

A
N

D
4,

2-
M

U
X

3,
3-

A
N

D
3,

3-
M

U
X

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

al
u4

5
77

4
6

86
6

6
77

8
5

80
4

6
82

3
6

76
8

6
87

6
6

76
0

ap
ex

2
6

86
8

7
99

0
6

88
7

6
90

6
6

95
5

6
91

3
7

97
2

6
93

0
ap

ex
4

5
75

2
6

84
0

5
78

0
5

76
1

5
82

4
5

80
5

6
81

0
5

78
8

bi
gk

ey
3

57
9

3
80

6
3

69
1

3
69

1
3

69
5

3
69

6
3

12
54

3
81

1
cl

m
a

10
27

95
12

31
79

10
29

85
10

29
17

12
30

79
10

32
78

13
33

54
11

29
22

de
s

4
69

1
5

94
8

5
90

6
5

83
9

5
10

11
5

92
8

6
12

90
5

10
10

di
ff

eq
8

63
6

9
75

7
9

73
2

9
72

1
11

80
6

10
77

3
15

11
44

13
81

9
ds

ip
3

68
9

3
69

2
3

69
3

3
69

1
3

69
6

3
69

4
3

13
69

3
69

7
el

lip
tic

10
17

97
12

18
73

11
18

55
11

18
28

14
18

80
12

19
03

19
29

50
18

21
00

ex
10

10
6

24
52

7
27

55
6

24
83

6
25

05
7

23
50

6
25

33
7

26
13

6
25

73
ex

5p
5

50
4

5
59

4
5

53
4

5
51

6
5

56
2

5
53

2
5

60
6

5
54

1
fr

is
c

13
17

35
14

18
42

13
18

23
13

18
31

15
19

24
13

19
08

21
28

78
20

20
27

m
is

ex
3

5
72

3
6

81
1

5
77

0
5

74
5

5
81

8
5

78
6

6
83

8
5

77
1

pd
c

7
19

48
7

24
95

7
21

07
7

20
57

7
23

20
7

20
67

7
23

92
7

20
70

s2
98

8
64

1
9

73
1

8
67

7
8

64
2

9
71

0
8

70
2

10
74

3
9

64
1

s3
84

17
7

25
67

8
30

68
7

30
02

7
29

85
8

31
65

7
32

21
10

36
95

9
35

62
s3

85
84

.1
6

22
87

7
26

88
6

25
86

6
25

29
6

32
67

6
30

83
8

38
10

7
32

28
se

q
5

78
0

5
90

8
5

79
5

5
80

8
5

84
5

5
82

7
5

87
6

5
81

2
sp

la
6

16
70

7
19

06
7

16
73

7
16

94
7

19
19

7
17

12
7

20
23

7
17

16
ts

en
g

8
64

7
9

69
2

8
68

5
8

68
0

10
72

1
9

70
4

12
94

1
11

72
9

G
E

O
M

E
A

N
6.

08
10

75
.1

6
6.

82
12

41
.4

3
6.

32
11

54
.7

5
6.

26
11

40
.9

2
6.

78
12

28
.3

5
6.

42
11

95
.2

5
7.

69
14

85
.9

5
7.

06
12

20
.5

9
R

A
T

IO
V

S
6-

L
U

T
s:

1.
12

1.
15

1.
04

1.
07

1.
03

1.
06

1.
11

1.
14

1.
06

1.
11

1.
26

1.
38

1.
16

1.
14

C
ir

cu
it

6-
L

U
T

s
5-

L
U

T
s

5,
1-

A
N

D
5,

1-
M

U
X

4,
2-

A
N

D
4,

2-
M

U
X

3,
3-

A
N

D
3,

3-
M

U
X

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

D
E

P
#L

E
s

cf
co

rd
ic

v
18

18
18

9
38

22
11

44
61

10
42

05
10

42
02

12
54

44
11

53
87

18
71

24
17

64
67

cf
fir

24
16

16
18

10
92

9
18

11
66

8
18

11
84

3
18

11
71

8
24

14
79

6
19

15
62

0
36

17
32

7
36

17
15

2
de

s
pe

rf
3

32
64

4
49

59
4

43
37

4
42

13
4

56
06

4
47

51
6

94
30

6
77

53
m

ac
1

17
19

59
21

22
15

18
22

77
18

21
43

22
28

47
19

28
54

29
36

97
20

28
90

m
ac

2
31

69
06

39
74

91
32

76
01

32
73

61
39

97
98

33
98

41
52

12
53

5
34

98
85

oc
54

22
23

93
24

27
26

22
26

01
22

25
98

28
32

53
23

33
10

39
36

94
38

32
97

pa
j

bo
un

dt
op

hi
er

ar
ch

y
4

12
94

6
13

76
4

13
73

4
13

71
5

14
07

4
14

06
5

15
71

4
15

09
pa

j
ra

yg
en

to
p

hi
er

ar
ch

y
16

63
14

17
66

77
17

66
96

17
66

47
22

77
90

18
79

12
30

94
45

30
90

78
pa

j
to

p
hi

er
ar

ch
y

33
32

96
7

34
35

01
6

34
35

19
6

34
35

11
9

44
40

88
2

34
43

53
6

65
49

80
4

65
48

30
0

rs
de

co
de

r
2

11
16

49
14

22
65

13
20

76
13

18
85

16
24

54
16

22
63

22
33

61
18

26
97

sv
ch

ip
0

hi
er

ar
ch

y
5

12
61

5
6

12
95

5
6

12
97

0
6

12
97

0
8

13
69

3
7

13
95

0
11

14
37

4
10

14
25

3
sv

ch
ip

1
hi

er
ar

ch
y

8
25

47
3

9
26

88
2

9
27

10
7

9
26

37
6

11
31

16
2

10
32

92
9

15
39

65
2

15
35

77
6

sv
ch

ip
2

hi
er

ar
ch

y
18

46
44

0
19

50
10

4
19

50
21

5
19

49
97

3
24

59
43

7
22

58
67

5
33

60
00

0
33

60
00

0

G
E

O
M

E
A

N
11

.8
8

63
84

.0
2

13
.9

8
72

33
.5

5
12

.9
3

70
94

.3
4

12
.9

3
69

46
.4

3
16

.0
1

84
63

.1
9

13
.9

1
84

37
.1

5
21

.9
0

10
41

3.
09

19
.6

7
93

91
.6

4
R

A
T

IO
V

S
6-

L
U

T
s:

1.
18

1.
13

1.
09

1.
11

1.
09

1.
09

1.
35

1.
33

1.
17

1.
32

1.
84

1.
63

1.
66

1.
47

A
L

L
C

IR
C

U
IT

S
G

E
O

M
E

A
N

7.
92

21
68

.8
7

9.
05

24
85

.7
3

8.
38

23
60

.9
1

8.
33

23
24

.3
6

9.
51

26
27

.4
1

8.
70

25
81

.1
2

11
.6

1
31

99
.7

0
10

.5
7

27
26

.8
9

R
A

T
IO

V
S

6-
L

U
T

s:
1.

14
1.

15
1.

06
1.

09
1.

05
1.

07
1.

20
1.

21
1.

10
1.

19
1.

47
1.

48
1.

34
1.

26



10

research. In general, while more 5-LUTs are needed than 6-
LUTs to implement a circuit, a 5-LUT requires just half the
silicon area of a 6-LUT. On the other hand, 6-LUTs deliver
a considerable depth reduction over 5-LUTs (14% across all
circuits in both benchmark sets) which is the prime reason that
commercial FPGA vendors have trended to 6-LUTs recently
in their high performance product lines.

Moving onto the proposed {5,1}-AND and {5,1}-MUX ar-
chitectures, observe that across all circuits (bottom rows of
Table I), relative to 6-LUTs, the {5,1}-AND architecture in-
creases depth by 6% and the {5,1}-MUX architecture increases
depth by 5%. As compared with 6-LUTs, the number of logic
elements is increased by 9 and 7% for the {5,1}-AND and
{5,1}-MUX architectures, respectively. Both of the proposed
architectures require silicon area close to that of a 5-LUT,
yet they both deliver most of the depth benefit of 6-LUTs.
Moreover, not as many of the extended 5-LUTs are needed
to implement circuits versus pure 5-LUTs. On the depth and
logic element count axes, the added flexibility offered by the
MUX architecture provides slightly better results than the AND
architecture.

It is worthwhile to examine the dependence of the results on
the benchmark set. For the {5,1}-MUX architecture, mapping
depth is 3% higher than 6-LUTs, on average, for the stan-
dard 20 benchmarks. However, for the VPR 5.0 benchmarks,
mapping depth is 9% higher than 6-LUTs, on average. The
results demonstrate that the choice of benchmark set can
have a significant impact on both architectural conclusions as
well as the perceived efficacy of CAD algorithms. While it
remains unclear which of the two benchmark sets is more
representative of the universe of all circuits, the VPR 5.0
circuits appear to carry a higher “richness” in their logic
functions and exact a higher demand on the underlying logic
element architecture.

The {4,2}-AND and {4,2}-MUX in Table I contain a 4-LUT
with 2 cascaded gates. The gap in mapped depth between these
two architectures is wider than in the {5,1} case. Relative to
6-LUTs, the {4,2}-AND architecture increases depth by 20%
and logic element count by 21%, whereas the {4,2}-MUX
architecture increases depth by just 10% and logic element
count by 19%. The MUX architectures can accommodate a
wider range of logic functions. Fig. 12 illustrates a cut that
can be implemented in a {4,2}-MUX architecture yet cannot
be implemented in a {4,2}-AND architecture. In the example,
input i6 has a non-inverting path to the root. With i6 factored
out, the remaining function is: f = (i1+i2+i3)·(i3+i4+i5),
in which i3 is a gating input whose logic-0 state causes f
to evaluate to logic-1. While i3 is not a gating input to the
overall function g, it is indeed a gating input to function f ,
revealed only after i6 is selected as a first gating input to g.
The right-side of Fig. 12 shows how the signals map to pins
of the logic element architecture. A last observation in relation
to the {4,2} architectures is that the {4,2}-MUX architecture
actually produces mapping solutions having smaller depth than
5-LUTs, despite the fact that the {4,2} solution uses half of
the area of a 5-LUT.

The data in the right-most columns of Table I for the
{3,3}-AND and {3,3}-MUX architectures is included for com-

i1
i2 i3 i4

i5

f

i6

g

cut

4-LUT
1

0

0

1
0

1

gf

i6i3i1
i2
i4
i5

Fig. 12. Cut mapping into {4,2}-MUX architecture.

pleteness. Such architectures increase depth by over 34%
percent versus 6-LUTs, on average. We do not believe such a
performance loss would be acceptable in a future commercial
architecture.

Table II shows the results for 7-LUTs (baseline), 6-LUTs,
and a variety of 7-input logic element architectures. Looking
at the last rows of the “6-LUTs” columns, we see that 6-LUT
mappings are 22% deeper than 7-LUT mappings and require
9% more LUTs, on average, across all circuits. For both circuit
sets, the depth advantage of moving to 7-LUTs from 6-LUTs
is larger than that observed for moving to 6-LUTs from 5-
LUTs. We expect that some modern commercial designs may
be highly pipelined and therefore more “shallow” than the
circuits considered here. Highly pipelined circuits may exhibit
less dependence on LUT size.

The architectural trends observed in Table II are similar to
those in Table I. As before, we observe that most of the depth
benefit of moving from 6-LUTs to 7-LUTs can be achived
with the {6,1}-AND and {6,1}-MUX architectures, with the
MUX architecture providing slightly better results. On average,
across all circuits, the {6,1}-MUX architecture offer mappings
that are 8% deeper than 7-LUTs and use 7% more logic
elements. This can be compared with 6-LUTs, which have
roughly the same silicon area, yet whose mapping depth is
22% higher than 7-LUTs. As was the case in Table I, we
observe a pronounced difference between the two circuit sets.
In general, the standard 20 benchmarks are considerably less
sensitive to the target element architecture.

The data in Table II suggests that if vendors added an MUX
gate to their 6-LUT outputs and then mapped to such extended
6-LUTs, depth would be cut by about 14%, on average. In so
doing, the 6-LUT-based blocks would need additional logic
block inputs to provide a signal to the MUX input, possibly
impacting routing demand. However, the Xilinx Virtex-5, for
example, already has extra inputs on its logic blocks (e.g. the
bypass inputs), which could perhaps be made dual-usage for
driving the MUX gate.

Table III gives the approximate hardware cost of the key
logic element architectures considered in this paper, account-
ing for the cost of the cascaded gates. For each architecture,
we list the # of SRAM configuration cells (including cells



11

TABLE II
RESULTS FOR 7-INPUT LOGIC ELEMENT ARCHITECTURES AND 6-LUTS.

Circuit 7-LUTs 6-LUTs 6,1-AND 6,1-MUX 5,2-AND 5,2-MUX

DEP #LEs DEP #LEs DEP #LEs DEP #LEs DEP #LEs DEP #LEs
alu4 5 667 5 774 5 680 5 671 5 753 5 690

apex2 5 822 6 868 5 875 5 861 6 848 6 815
apex4 5 657 5 752 5 689 5 675 5 715 5 696

bigkey 2 467 3 579 2 467 2 467 3 691 2 464
clma 9 2408 10 2795 9 2562 9 2559 10 2873 10 2662

des 4 611 4 691 4 747 4 705 5 875 4 805
diffeq 6 585 8 636 7 615 7 605 9 743 8 718

dsip 2 911 3 689 2 911 2 911 2 915 2 913
elliptic 9 1754 10 1797 9 1775 9 1775 11 1854 10 1857
ex1010 6 2125 6 2452 6 2250 6 2215 6 2297 6 2307

ex5p 4 418 5 504 4 513 4 503 4 564 4 514
frisc 10 1636 13 1735 11 1656 11 1646 13 1793 12 1783

misex3 5 612 5 723 5 665 5 635 5 711 5 657
pdc 5 1806 7 1948 6 1923 6 1867 6 2089 6 1950

s298 7 536 8 641 7 606 7 565 8 633 8 582
s38417 6 2425 7 2567 6 2561 6 2547 7 2954 7 2921

s38584.1 5 2063 6 2287 6 2230 5 2242 6 2545 6 2474
seq 4 731 5 780 5 706 4 775 5 746 5 715
spla 5 1419 6 1670 6 1560 5 1586 6 1659 5 1751

tseng 7 616 8 647 7 647 7 635 8 680 8 670

GEOMEAN: 5.15 977.68 6.08 1075.16 5.42 1040.13 5.26 1028.66 5.97 1140.28 5.65 1078.43
RATIO VS 7-LUTs: 1.18 1.10 1.05 1.06 1.02 1.05 1.16 1.17 1.10 1.10

Circuit 7-LUTs 6-LUTs 6,1-AND 6,1-MUX 5,2-AND 5,2-MUX
DEP #LEs DEP #LEs DEP #LEs DEP #LEs DEP #LEs DEP #LEs

cf cordic v 18 18 18 7 3598 9 3822 8 3878 8 3877 10 4214 10 4166
cf fir 24 16 16 12 10699 18 10929 15 11885 15 11810 18 11843 18 11893

des perf 2 2752 3 3264 3 3264 3 3264 4 4320 4 4058
mac1 15 1817 17 1959 15 2018 15 2000 18 2261 16 2102
mac2 26 6551 31 6906 27 7113 27 7101 32 7600 28 7279
oc54 16 2021 22 2393 18 2323 18 2326 22 2586 21 2528

paj boundtop hierarchy 4 1262 4 1294 4 1289 4 1289 4 1349 4 1346
paj raygentop hierarchy 12 5870 16 6314 14 6588 14 6528 17 6685 17 6643

paj top hierarchy 23 31329 33 32967 27 34096 27 34041 34 35152 34 35073
rs decoder 2 10 1482 11 1649 11 1583 11 1553 14 2064 13 1833

sv chip0 hierarchy 4 12360 5 12615 5 12656 5 12656 6 12968 6 12923
sv chip1 hierarchy 6 24125 8 25473 8 26471 8 26448 9 27088 9 26523
sv chip2 hierarchy 15 41515 18 46440 17 46708 17 46564 19 50446 18 50253

GEOMEAN: 9.35 5915.06 11.88 6384.02 10.87 6486.38 10.87 6461.58 13.00 7073.98 12.58 6877.38
RATIO VS 7-LUTs: 1.27 1.08 1.16 1.10 1.16 1.09 1.39 1.20 1.35 1.16

ALL CIRCUITS
GEOMEAN: 6.51 1986.84 7.92 2168.87 7.13 2139.12 7.00 2121.59 8.12 2340.29 7.75 2237.52

RATIO VS 7-LUTs: 1.22 1.09 1.09 1.08 1.08 1.07 1.25 1.18 1.19 1.13

in LUTs, cells to control optional input inversion, and cells to
feed data inputs on multiplexers), the # of 2-to-1 multiplexers 5,
and the number of inputs to the logic element. We have
assumed that LUTs are implemented using a tree of 2-to-
1 multiplexers, as shown in Fig. 1. The right-most columns
of Table III give the ratio of the # of SRAM cells and #
of multiplexers to baseline 6-LUTs. Such ratios represent the
approximate hardware area cost of each architecture versus
6-LUTs. We stress that the ratios are approximate as we
have not, for example, included any buffer costs and expect
that large LUTs implemented as multiplexer trees contain
repeaters at intermediate tree nodes. Likewise, we have not
included transistor sizings, which we expect to be vendor
and device specific. In general, the data in Table III support
the observation logic element logic area is dominated by
LUT area, with the LUT dominance decreasing as gates are
successively added in cascade to the LUT output. For example
the {5,1}-MUX architecture is estimated to consume 52% of a

5We assume a 2-input AND is roughly the same size as a 2-to-1 multiplexer.

6-LUT’s area.

C. Die Area and Delay Impact

Using the data in Table III and in the results Table I, we
can make a coarse estimate of the overall improvement in
logic density. Using an extended 5-LUT, such as the {5,1}-
MUX architecture, instead of a 6-LUT will reduce the tile area
needed for a logic element by roughly 50%. Smaller tiles
will reduce wirelengths, interconnect capacitance and delay.
As shown in Fig. 13(a), we estimate that in a CLB, such as
the Xilinx Virtex-5 FPGA, the interconnection fabric (and its
configuration circuitry and SRAM cells) consumes 50% of the
tile layout area; the eight 6-LUTs in a Virtex-5 CLB (and their
SRAM cells) consume 30% of the tile; and flip-flops and other
circuitry comprise 20% of the tile.

Fig. 13(b) gives an estimate of the tile area when the eight
6-LUTs are replaced with eight extended 5-LUTs. We assume
LUT area is halved, and therefore total tile area is reduced
by 15% and LUTs now comprise about 17.5% of the tile.



12

TABLE III
HARDWARE COST OF LOGIC ELEMENT ARCHITECTURES

SRAM ratio vs. MUX ratio vs.
Architecture # SRAM cells # 2-to-1 MUX # inputs 6-LUTs 6-LUTs

5-LUT 32 31 5 0.50 0.49
6-LUT 64 63 6 1.00 1.00

5,1-AND 33 33 6 0.52 0.52
5,1-MUX 34 33 6 0.53 0.52
4,2-AND 18 19 6 0.28 0.30
4,2-MUX 20 19 6 0.31 0.30

7-LUT 128 127 7 2.00 2.02
6,1-AND 65 65 7 1.02 1.03
6,1-MUX 66 65 7 1.03 1.03
5,2-AND 34 35 7 0.53 0.56
5,2-MUX 36 35 7 0.56 0.56

This implies that if the original tile area were 1 unit2, as in
Fig. 13(a), the new tile area would be 0.85 units2. Results
in Table I demonstrate that 7% more extended 5-LUTs are
needed vs. 6-LUTs to implement circuits. Consequently, logic
density in silicon will scale by 1.07 × 0.85 = 0.91, which
is roughly a 9% improvement in logic density vs. 6-LUTs.
In other words, a given logic circuit would require 9% less
silicon area if the proposed architecture is used.

Assuming a square tile layout, the tile dimensions are
reduced from 1 × 1 to 0.92 × 0.92, as shown in Fig. 13(b)
(
√

0.85 = 0.92). Thus, the x-dimension and y-dimension
have each been reduced by about 8%. Metal wire capacitance
would be reduced accordingly, mitigating the higher logic
depth associated with extended 5-LUTs. Recognize that a frac-
tion of interconnection capacitance is metal capacitance and
fraction is switch capacitance (capacitive load due to routing
switches attached to metal wire segments). Switch capacitance
is unaffected, so we cannot assume that interconnect delay will
be reduced by 8%. Nevertheless, the tile size reduction bodes
well for the practicality of the proposed logic block.

To further validate our results, we used VPR 5.0 [20]
to pack, place and route circuits into logic blocks contain-
ing eight 6-LUTs and flip-flops. The cluster size of eight
matches closely with Virtex-5 and Stratix-III FPGAs, whose
logic blocks contain eight and ten 6-LUTs, respectively. A
simple routing architecture with unidirectional length-4 wire
segments was used. The circuits mapped into pure 6-LUTs
were placed and routed and the minimum number of tracks per
channel, WMIN , needed to route each circuit was determined.

6-LUTs
(30%)

FFs, other
(20%)

Interconnect (50%
)

1 unit

1 unit

LUTs
(17.5%)

FFs, other
(23.5%)

Interconnect (59%
)

0.92 unit

0.92 unit

a) Breakdown of original tile b) Breakdown of modified tile

Fig. 13. Estimated tile area impact.

Then, both the baseline and experimental (enhanced 5-LUT)
mapping solutions were packed, placed and routed into an
architecture with 1.2 · WMIN tracks per channel. That is,
routing architecture was held invariant between the baseline
and experimental routing solutions. Each circuit was placed
and routed 3 times with different placement seeds and the
minimum critical path delay across the 3 runs was determined
for each circuit. On average, critical path delay was 6% worse
with the extended 5-LUTs, which concurs reasonably with
the depth results given above. Note that 6% is a conservative
upper bound on the performance hit, as it does not include the
benefit of smaller tiles and reduced capacitance provided by
the extended 5-LUTs.

D. Architectural Analysis

Finally, we did a preliminary architectural investigation
of the value of heterogeneous logic blocks. We posed the
question: If 6-LUT optimal depth must be achieved, how
many of the LUTs need to have the full functionality of a
6-LUT vs. how many can be implemented using extended
5-LUTs, i.e. the {5,1}-MUX architecture? The results of this
analysis are shown in Table IV. The left side of the table
shows results for the standard 20 benchmark circuits; the right
side of the table gives results for the VPR 5.0 circuits. For
each circuit, two percentages are given. The first percentage,
in the “ABC mapping” column shows the fraction of LUTs
in mapping solutions produced by the baseline mapper [14]
that require the full functionality of a 6-LUT (and could
not be implemented using an extended 5-LUT). The second
percentage, in the “Alternate mapping” column, gives results
for the the mapping approach described in Section III-E that
prefers to use extended 5-LUTs, but but does not impose
hard restrictions and will not use extended 5-LUTs if mapping
depth is compromised. These mapping solutions have the same
optimal-depth as the mapping solutions of the baseline 6-LUT
mapper.

The results in Table IV show that even using the baseline
mapper, only 12% of LUTs need the full functionality of a
6-LUT to achieve optimal depth. Note that for this work, we
used a more recent version of ABC than was used in [6]. The
mapper in the new version of ABC incorporates the WireMap
algorithm described in [23], which tends to produce fewer
LUTs that use all 6 inputs. With the alternative mapping, we



13

TABLE IV
FRACTION OF LUTS IN MAPPING SOLUTIONS THAT NEED FULL 6-LUTS TO ACHIEVE OPTIMAL MAPPING DEPTH (VERSUS THAT COULD BE

ACCOMMODATED IN A {5,1}-EXTENDED MUX ARCHITECTURE.

Circuit ABC mapping Alternate mapping Circuit ABC mapping Alternate mapping

alu4 8.1% 1.7% cf cordic v 18 18 18 10.5% 0.9%
apex2 8.4% 0.9% cf fir 24 16 16 18.1% 0.2%
apex4 8.0% 2.6% des perf 12.3% 12.3%

bigkey 38.9% 0.0% mac1 10.5% 0.2%
clma 8.6% 2.7% mac2 5.6% 0.1%

des 18.2% 3.9% oc54 15.0% 0.3%
diffeq 20.3% 1.5% paj boundtop hierarchy no mem 6.8% 0.0%

dsip 0.1% 0.0% paj raygentop hierarchy no mem 12.5% 0.4%
elliptic 8.0% 3.0% paj top hierarchy no mem 16.6% 0.1%
ex1010 8.7% 5.7% rs decoder 2 25.1% 3.0%

ex5p 6.2% 1.7% sv chip0 hierarchy no mem 4.9% 0.3%
frisc 7.4% 0.2% sv chip1 hierarchy no mem 9.3% 2.4%

misex3 6.5% 0.6% sv chip2 hierarchy no mem 10.5% 0.7%
pdc 11.2% 1.3%

s298 7.1% 0.7% Average: 12.1% 1.6%
s38417 22.3% 3.1%

s38584.1 17.0% 0.2%
seq 6.5% 0.7%
spla 12.8% 0.3%

tseng 8.8% 0.6%

Average: 11.7% 1.6%

observe that only 1.6% of LUTs need to be full 6-LUTs to
achieve optimal depth. The data in Table I revealed that in
most cases, optimal depth can be achieved without any pure
6-LUTs. Yet, observe that no circuit has a value of 0 in the
“Alternative mapping” column of Table IV. This is due to our
cost function that only prefers to use extended 5-LUTs, and
is therefore heuristic.

In summary, we suggest that a heterogeneous architecture
with a fraction of pure 6-LUTs and a fraction of extended 5-
LUTs may be viable. Very few pure 6-LUTs are needed in the
architecture, perhaps 5% at most.

V. CONCLUSIONS AND FUTURE WORK

We proposed a family of FPGA logic element architectures
inspired by the AIG network representation used in modern
logic synthesis research. The logic element is an extended
LUT, which contains a L-LUT along with M cascaded AND or
MUX gates on its output. Results show that that a {5,1}-MUX
extended LUT provides performance close to a 6-LUT, yet
has silicon area close to that of a 5-LUT. We believe our work
should keenly interest commercial vendors whose logic blocks
are based on 6-LUTs. Higher logic density can be achieved by
exchanging some or all of the 6-LUTs with extended 5-LUTs,
with little negative impact on circuit delay.

It is worth recalling an early work published in 1992 by
Chung and Rose that considered mapping circuits into multiple
LUTs that were hard-wired together in specific configura-
tions [24]. One sample architecture considered in that work
was two cascaded 4-LUTs – the output of one LUT hard-wired
to an input of a second LUT. The observation that modern
FPGAs do not incorporate such hard-wired LUTs is perhaps
reflective of the difficulty in mapping to such architectures.
In our work, the logic element architecture is driven by the
netlist representation which greatly simplifies mapping.

Finally, in this work, mapping was performed directly on
netlists produced by technology independent transformation
scripts. Future work will involve exploration of technology
independent transformations to encourage creation of netlist
topologies that can be accom,odated by the extended LUT
element.

ACKNOWLEDGEMENTS

The authors thank Alan Mishchenko at UC Berkeley for
providing the source code for the most recent ABC framework.

REFERENCES

[1] J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: the effect of logic block functionality on
area efficiency,” IEEE JSSC, vol. 25, no. 5, pp. 1217–1225, Oct 1990.

[2] Virtex-5 FPGA Data Sheet, Xilinx, Inc., San Jose, CA, 2007.
[3] Stratix-III FPGA Family Data Sheet, Altera, Corp., San Jose, CA, 2008.
[4] T. Ahmed, P. Kundarewich, J. Anderson, B. Taylor, and R. Aggarwal,

“Architecture-specific packing for Virtex-5 FPGAs,” in ACM/SIGDA
Int’l Symposium on FPGAs, Monterey, CA, 2008, pp. 5–13.

[5] A. Mishchenko, R. Brayton, J. Jiang, and S. Jang, “Scalable don’t care
based logic optimization and resynthesis,” in ACM Int’l Symposium on
Field Programmable Gate Arrays, Monterey, CA, 2009, pp. 151–160.

[6] J. Anderson and Q. Wang, “Improving logic density through synthesis-
inspired architecture,” in IEEE International Conference on Field Pro-
grammable Logic and Applications, Prague, Czech Republic, 2009, pp.
105 – 111.

[7] R. Francis, J. Rose, and K. Chung, “Chortle: A technology mapping
program for lookup table-based field programmable gate arrays,” in
ACM/IEEE DAC, 1990, pp. 613–619.

[8] J. Cong and Y. Ding, “Flowmap: An optimal technology mapping
algorithm for delay optimization in look-up-table based FPGA designs,”
IEEE Transactions on CAD, vol. 13, no. 1, pp. 1–12, 1994.

[9] M. Schlag, J. Kong, and P. Chan, “Routability-driven technology map-
ping for lookup table-based FPGAs,” IEEE Transactions on CAD,
vol. 13, no. 1, pp. 13–26, 1994.

[10] J. Cong, C. Wu, and E. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in ACM/SIGDA Int’l
Symposium on FPGAs, 1999, pp. 29–35.

[11] “ABC – a system for sequential synthesis and verification,”
http://www.eecs.berkeley.edu/∼alanmi/abc/, 2009.



14

[12] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis,” in ACM/IEEE
DAC, 2006, pp. 532–536.

[13] A. C. Ling, J. Zhu, and S. D. Brown, “Delay driven AIG restructuring
using slack budget management,” in ACM/IEEE Great Lakes Symposium
on VLSI, 2008, pp. 163–166.

[14] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in IEEE/ACM Int’l Con. on
CAD, 2007.

[15] A. Ling, D. Singh, and S. Brown, “FPGA PLB architecture evaluation
and area optimization techniques using boolean satisfiability,” IEEE
Trans. on CAD, vol. 26, no. 7, pp. 1196–1210, July 2007.

[16] A. Kennings, K. Vorwerk, A. Kundu, V. Pevzner, and A. Fox, “FPGA
technology mapping with encoded libraries and staged priority cuts,” in
ACM/SIGDA Int’l Symp. on FPGAs, 2009, pp. 143–150.

[17] J. Jacob and A. Mishchenko, “Unate decomposition of Boolean func-
tions,” in Int’l Workshop on Logic Synthesis, 2001, pp. 66–71.

[18] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: enabling a
general and efficient FPGA mapping solution,” in ACM Int’l Symposium
on FPGAs, 1999, pp. 29–35.

[19] V. Manohararajah, S. Brown, and Z. Vranesic, “Heuristics for area
minimization in LUT-based FPGAs,” in International Workshop on
Logic and Synthesis, 2004, pp. 14–21.

[20] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, M. Fang, and J. Rose,
“VPR 5.0: FPGA CAD and architecture exploration tools with single-
driver routing, heterogeneity and process scaling,” in ACM/SIGDA Int’l
Symp. on FPGAs, 2009, pp. 133–142.

[21] Altera Corp., “Quartus university interface program,”
http://www.altera.com/education/univ/research/unv-quip.html, 2009.

[22] A. Mishchenko, R. Brayton, and S. Jang, “Global delay optimization
using structural choices,” in ACM/SIGDA International Symposium on
FPGAs, Monterey, CA, 2010, pp. 181–184.

[23] S. Jang, B. Chan, K. Chung, and A. Mishchenko, “WireMap: FPGA
technology mapping for improved routability,” in ACM Int’l Symp. on
FPGAs, 2008, pp. 47–55.

[24] K. Chung and J. Rose, “TEMPT: Technology mapping for the ex-
ploration of FPGA architectures with hard-wired connections,” in
IEEE/ACM DAC, Anaheim, CA, 1992, pp. 361–367.

Jason H. Anderson (S’96-M’05) received the
B.Sc. degree in computer engineering from the
University of Manitoba, Winnipeg, MB, Canada, in
1995 and the Ph.D. and M.A.Sc. degrees in electrical
and computer engineering from the University of
Toronto (U of T), Toronto, ON, Canada, in 2005
and 1997, respectively. He is an Assistant Professor
with the Department of Electrical and Computer
Engineering (ECE), U of T. In 1997, he joined the
field-programmable gate array (FPGA) implementa-
tion tools group at Xilinx, Inc., San Jose, CA. From

2005 to 2008, he managed groups at Xilinx focused on strategic research and
development projects. He became a Principal Engineer at Xilinx in 2007. He
joined the ECE Department at U of T in 2008. His research interests include
all aspects of computer-aided design (CAD) and architecture for FPGAs.

Dr. Anderson was a recipient of the Ross Freeman Award for Technical
Innovation, the highest innovation award given by Xilinx, for his contributions
to the Xilinx placer technology in 2000. Since joining the U of T faculty,
he has twice received awards for excellence in undergraduate teaching, in
2009 and 2010. He has authored numerous papers in refereed conferences
and journals, and holds over twenty issued U.S. patents. He serves on the
technical program committees of various conferences, including the ACM
International Symposium on Field Programmable Gate Arrays and the IEEE
International Conference on Field Programmable Technology.

Qiang Wang (S’91-M’99) received the M.A.Sc. and
Ph.D. degrees in electrical and computer engineering
from the University of Toronto (U of T), Toronto,
ON, Canada, in 1993 and 1999, respectively.

Dr. Wang is currently a Principal Engineer in the
Wireless R & D Department at Huawei Technologies
(U.S.A.), Santa Clara, CA, where he is working
on baseband ESL designs. From 2002 to 2010, he
was with the field-programmable gate array (FPGA)
implementation tools group at Xilinx Inc., San Jose,
CA, where he developed placement and other phys-

ical design tools for Virtex and Spartan series FPGAs and was involved in
the development of new FPGA architectures. From 1999 to 2002, he was a
member of the FPGA core group at Lattice Semiconductor Corp., San Jose,
CA, where he participated in the development of Lattices first FPGA family.

Dr. Wang has served on the technical program committee of the ACM In-
ternational Symposium on Field Programmable Gate Arrays. He has authored
a number of papers and currently holds six issued U.S. patents.

Chirag Ravishankar (S’11) received the
B.A.Sc. degree from the Department of Electrical
and Computer Engineering, University of Toronto,
Toronto, ON, Canada in 2010. He is currently
pursuing the M.A.Sc. degree at the Department of
Electrical and Computer Engineering, University of
Waterloo, Waterloo, ON, Canada.

His research interests include field-programmable
gate array architectures and CAD algorithms.
Specifically, he is interested in logic synthesis
and technology mapping algorithms from the

perspective of area and power reduction. He is also interested in parallel
implementations to reduce the run-time of CAD tools.

Mr. Ravishankar was the recipient of the Undergraduate Student Research
Award (USRA) from the Natural Sciences and Engineering Research Council
(NSERC) of Canada in 2009.


