
1

A Low-Complexity Turbo Decoder Architecture for
Energy-Efficient Wireless Sensor Networks

Liang Li, Robert G. Maunder, Bashir M. Al-Hashimi and Lajos Hanzo
School of ECS, University of Southampton, SO17 1BJ, UK

Email: {ll08r, rm, bmah, lh}@ecs.soton.ac.uk

Abstract—Turbo codes have recently been considered for
energy-constrained wireless communication applications, since
they facilitate a low transmission energy consumption. However,
in order to reduce the overall energy consumption, Look-Up-
Table-Log-BCJR (LUT-Log-BCJR) architectures having a low
processing energy consumption are required. In this paper, we
decompose the LUT-Log-BCJR architecture into its most funda-
mental Add Compare Select (ACS) operations and perform them
using a novel low-complexity ACS unit. We demonstrate that our
architecture employs an order of magnitude fewer gates than the
most recent LUT-Log-BCJR architectures, facilitating a 71% en-
ergy consumption reduction. Compared to state-of-the-art Max-
imum Logarithmic Bahl-Cocke-Jelinek-Raviv (Max-Log-BCJR)
implementations, our approach facilitates a 10% reduction in
the overall energy consumption at ranges above 58 m.

Index Terms—energy-efficient, error-correcting code, turbo
code, Log-BCJR algorithm

I. INTRODUCTION

Wireless Sensor Networks (WSNs) can be considered to
be energy constrained wireless scenarios, since the sensors
are operated for extended periods of time, while relying on
batteries that are small, lightweight and inexpensive. In envi-
ronmental monitoring WSNs for example, despite employing
low transmission duty cycles and low average throughputs of
less than 1 Mbit/s [1], [2], the sensors’ energy consumption
is dominated by the transmission energy Etx

b (measured in
J/bit), since they may be separated by up to 1 km. For
this reason, turbo codes have recently found application in
these scenarios [3], [4], since their near-capacity coding gain
facilitates reliable communication when using a reduced trans-
mission energy Etx

b . Note however that this reduction in Etx
b

is offset by the turbo decoder’s energy consumption Epr
b , as

well as the (typically negligible) energy consumption of the
turbo encoder [4]. Therefore, turbo codes designed for energy
constrained scenarios have to minimize the overall energy
consumption (Etx

b + Epr
b).

Recent Application-Specific Integrated Circuit (ASIC)
based turbo decoder architectures [5]–[7] have been designed
for achieving a high transmission throughput, rather than for
a low transmission energy. For example, turbo codes have
facilitated transmission throughputs in excess of 50 Mbit/s
in cellular standards, such as the 3rd Generation Partnership
Project 3GPP Long Term Evolution (LTE) and recent ASIC
turbo decoder architectures have been designed for through-
puts that are in excess of 100 Mbit/s [5], [6]. This has been
achieved by employing the Max-Log-BCJR turbo decoding

algorithm, which is a low-complexity approximation of the
optimal Logarithmic Bahl-Cocke-Jelinek-Raviv (Log-BCJR)
algorithm [8].

The Max-Log-BCJR algorithm appears to lend itself to
both high-throughput scenarios, as well as to the above-
mentioned energy-constrained scenarios. This is because a
low turbo decoder energy consumption Epr

b is implied by
Max-Log-BCJR algorithm’s low complexity. However, this
is achieved at the cost of degrading the coding gain by
0.5 dB compared to the optimal Log-BCJR algorithm [9],
increasing the required transmission energy Etx

b by 10%.
As we shall demonstrate in Section IV, this disadvantage of
the Max-Log-BCJR outweighs its attractively low complexity,
when optimizing the overall energy consumption Etx

b + Epr
b

of sensor nodes that are separated by dozens of meters.

This motivates the employment of the Look-Up-Table-Log-
BCJR (LUT-Log-BCJR) algorithm [8] in energy-constrained
scenarios, since it approximates the optimal Log-BCJR more
closely than the Max-Log-BCJR and therefore does not suffer
from the associated coding gain degradation. However, to the
best of our knowledge, no LUT-Log-BCJR ASICs have been
specifically designed for energy-constrained scenarios. Pre-
vious LUT-Log-BCJR turbo decoder designs [10]–[13] were
developed as a part of the on-going drive for higher and higher
processing throughputs, although their throughputs have since
been eclipsed by the Max-Log-BCJR architectures. This opens
the door for a new generation of LUT-Log-BCJR ASICs that
exchange processing throughput for energy efficiency.

As we shall discuss in Section II, the energy consumption
Epr

b of conventional LUT-Log-BCJR architectures cannot be
significantly reduced by simply reducing their clock fre-
quency and throughput. This motivates our novel architec-
ture of Section III, which is specifically designed to have
a minimal hardware complexity and hence a low energy
consumption Epr

b . In Section IV, we validate our architecture
in the context of an LTE turbo decoder and demonstrate
that it has an order of magnitude lower chip area, hence
reducing the energy consumption Epr

b of the state-of-the-art
LUT-Log-BCJR implementation by 71%. Compared to state-
of-the-art Max-Log-BCJR implementations, our approach fa-
cilitates a 10% reduction in the overall energy consumption
of (Etx

b + Epr
b) at transmission ranges above 58 m. Finally,

Section V concludes the paper.

2

II. CONVENTIONAL LUT-LOG-BCJR ARCHITECTURE

As shown in Figure 1, a turbo encoder [14] comprises a
parallel concatenation of two convolutional encoders, each
of which has a structure comprising m number of memory
elements, where m = 3 is used in the LTE encoders, for
example. Each encoder converts an uncoded bit sequence
b1 = {b1,j}Nj=1 into the corresponding encoded bit sequence
b2 = {b2,j}Nj=1, where N is the length of the input bit
sequences. Correspondingly, Figure 1 depicts a turbo decoder
[15], [16], which comprises a parallel concatenation of two
decoders, that employ the LUT-Log-BCJR algorithm. Rather

b2

πππ−1

+ +

+

Channel

Lower
convolutional

encoder

Upper
convolutional

encoder

π

Upper

decoder

decoder

Lower

LUT-Log-BCJR

LUT-Log-BCJR

b̃a
2

b̃a
1

b̃e
1

b1

Fig. 1. A turbo encoder and decoder scheme.

than operating on bits, each LUT-Log-BCJR decoder processes
Logarithmic Likelihood Ratios (LLRs) [14], where each LLR
b̃ = ln P (b=0)

P (b=1) quantifies the decoder’s confidence concerning
its estimate of a bit b from the bit sequences b1 and b2.
Each LUT-Log-BCJR decoder processes two a priori LLR se-
quences, namely b̃a

1 = {b̃a1,j}Nj=1 and b̃a
2 = {b̃a2,j}Nj=1, which

are converted into the extrinsic LLR sequence b̃e
1 = {b̃e1,j}Nj=1.

This extrinsic LLR sequence is iteratively exchanged with that
generated by the other LUT-Log-BCJR decoder, which is used
as the a priori LLR sequence b̃a

1 in the next iteration [17].
Figure 2 (a) depicts the conventional LUT-Log-BCJR ar-

chitecture, which employs the sliding-window technique [18],
[19] to generate the LLR sequence b̃e

1 as the concatenation
of W equal-length sub-sequences. Each of these windows is
generated separately, using a forward, a pre-backward and a
backward recursion, as shown in Figure 2. These three differ-
ent recursions are performed concurrently for three different
windows, as exemplified in Figure 2 (b) for W = 5. This
schedule results in the completion of the windows in their
natural order, starting with that containing the first LLR b̃e1,1
and ending with the one containing the last LLR b̃e1,N .

When the forward recursion is performed for a particular
window, one pair of its corresponding a priori LLRs b̃a1,j
and b̃a2,j is read from Mem 1 of Figure 2 (a) and processed
per clock cycle, in the ascending order of the bit index j.
The forward recursion of the LUT-Log-BCJR algorithm can

window 3

window 4

window 5

window 1

window 2

(b)

bit

N

T0
time

γ unit Mem 2

γ unit

LLR unit b̃e
1γ unit δ unitβ unit

backward recursion

b̃a
1

b̃a
2

forward recursion

pre-backward recursion

backward recursion

α unit

β unit

pre-backward recursion

forward recursion

Mem 1

(a)

Fig. 2. (a) Conventional LUT-Log-BCJR architecture. (b) Timing of the
sliding-window technique.

be performed in two pipelined steps using the corresponding
dedicated hardware components of Figure 2 (a):

1) Firstly, the transition metrics Γ [20, Equation (2)], that
correspond to the current window are generated. Here,
each γ transition metric γi,j(s, s

′) is set either equal
to the corresponding a priori LLR b̃ai,j or to zero,
depending on the particular pair of states s and s′ that the
transition is between and on the Generator Polynomials
(GPs) of the encoder.

2) Next, the state metrics A [20, Equation (3)] that corre-
spond to the current window are generated. Here, each
α state metric is given by

αj+1(s
′) = max*

s→s′

(
αj(s) +

2∑
i=1

γi,j(s, s
′)

)
, (1)

where, s → s′ represents the set of all states s that
can transition into the state s′, depending on the GPs
of the encoder. Note that the forward recursion for the
first window is initialized independently. By contrast, the
forward recursion for the other windows is initialized
using α state metrics that were obtained during the
forward recursion of the preceding window. It is for
this reason that the windows must be processed in their
natural order, as shown in Figure 2. The max* operation
is used to represent the Jacobian logarithm detailed in
[21], which may be approximated using a Look-Up
Table (LUT) [17] for the parameters p and q according

3

to

max*(p̃, q̃) ≈ max(p̃, q̃)

+

0.75 if |p̃− q̃| = 0
0.5 if |p̃− q̃| ∈ {0.25, 0.5, 0.75}
0.25 if |p̃− q̃| ∈ {1, 1.25, 1.5, 1.75, 2}
0 otherwise

(2)

and can be extended to three or more parameters using
associativity. Here, we assume the employment of a
twos complement fixed-point LLR representation, which
includes a 5-bit integer part and a z = 2-bit fraction part.
As a result, there are 2z = 4 entries in the LUT, each
of which has values that are multiples of 2−z = 0.25.
As we will show in Figure 7, this arrangement yields
a near-ideal BER performance [22], provided that the
integer parts of the LLR values are clipped to the range
that can be represented using three bits.

During the forward recursion, one set of α state metrics is
written to Mem 2 of Figure 2 (a) per clock cycle in the
ascending order of the bit index j.

When the backward recursion is performed for a particular
window, one pair of its corresponding a priori LLRs b̃a1,j
is read from Mem 1 of Figure 2 (a) and processed per
clock cycle, in the descending order of the bit index j.
Simultaneously, the corresponding set of α state metrics are
read from Mem 2 and processed per clock cycle. As a result, a
particular window’s backward recursion cannot be performed
until after its forward recursion has been completed, as shown
in Figure 2 (b). The backward recursion of the LUT-Log-BCJR
algorithm can be performed in four pipelined steps using the
corresponding dedicated hardware components of Figure 2 (a):

1) Firstly, the transition metrics Γ that correspond to the
current window are re-generated, as described above.

2) Next, the state metrics B [20, Equation (4)] that corre-
spond to the current window are generated. Here, each
β state metric is given by

βj−1(s) = max*
s→s′

(
βj(s

′) +

2∑
i=1

γi,j(s, s
′)

)
. (3)

Note that the backward recursion for the last window
is initialized independently. By contrast, the backward
recursion for the other windows is initialized using β
state metrics that were previously obtained during the
pre-backward recursion of the next window. This is
achieved using step 1 and 2 of the backward recursion
and initializing the latter independently. It is for this
reason that the pre-backward recursions of Figure 2 (b)
are performed before the backward recursions of the
preceding windows.

3) Next, the transition metrics ∆ [20, Equation (5)] that
correspond to the current window are generated, accord-
ing to

δj(s, s
′) = αj(s) + γ2,j(s, s

′) + βj(s
′). (4)

4) Finally, the value of each extrinsic LLR in the current

window of the sequence b̃e
1 is generated according to

b̃e1,j = max*
s 0
→ s′

[δj(s, s
′)]−max*

s 1
→ s′

[δj(s, s
′)], (5)

where s x
→s
′ is the set of transitions that imply bi,j has

a binary value of x.
As shown in Figure 2 (b), one extrinsic LLR b̃e1,j is output per
clock cycle in descending order of the bit index j. By pipelin-
ing the forward, pre-backward and backward recursions using
separate dedicated hardware for implementing the operations
of Equations (1), (3), (4) and (5), the conventional architecture
generates one extrinsic LLR per clock cycle, as shown in
Figure 2. Therefore, it achieves a high throughput, provided
that it can be operated at a high clock frequency. However,
the recursions involve calculations that must be performed in
series. Therefore, conventional architectures typically employ
additional hardware1 during synthesis to achieve a short crit-
ical path, a high clock frequency and a high throughput [24].
A number of variants of the LUT-Log-BCJR architecture of
Figure 2 have been proposed for further increasing the decod-
ing throughput. For example, [25] employs parallel repetitions
of the blocks shown in Figure 2 (a) to ’parallel-process’ the
schedule of Figure 2 (b). Alternatively, [12] employs a radix-4
variant, which processes two sets of α or β state metrics at a
time. In summary, conventional LUT-Log-BCJR architectures
achieve high throughputs by employing substantial hardware,
which imposes a high chip area and consequently a high
energy consumption, as quantified later in Section IV.

Note that the energy consumption of the conventional
LUT-Log-BCJR architecture cannot be significantly reduced
by simply reducing the clock frequency, in order to meet the
lower throughput demands of energy-constrained scenarios.
While this would allow voltage scaling and a correspond-
ing reduction of energy consumption, this approach would
waste energy by powering the additional hardware that was
introduced to manage the critical path. On the other hand, if
voltage scaling is not employed, the limit on the critical path
is relaxed, allowing the removal of the additional hardware
that was introduced to manage it. While this facilitates a
corresponding reduction in the dynamic energy consumption,
the reduced throughput implies an increased static energy
consumption, particularly in the case of high-density tech-
nologies. Furthermore, the lengthening of the critical path
implies a greater variety of path lengths, particularly since
the backward recursion path of Figure 2 (a) is significantly
longer than those of the other recursions. This in turn implies
that a greater fraction of the static energy consumption can
be considered to be wasted, by giving short data paths more
time to settle than necessary. In summary, efforts to slow
down the conventional LUT-Log-BCJR architecture result in
energy wastage, which cannot be avoided without completely
redesigning the architecture.

III. PROPOSED LUT-LOG-BCJR ARCHITECTURE

In this section, we propose a novel LUT-Log-BCJR ar-
chitecture for energy-constrained scenarios, which avoids the

1This approach is analogous to using the faster but more complicated
lookahead adder [23], instead of the slow but simple ripple carry adder.

4

wastage of energy that is inherent in the conventional ar-
chitecture of Section II. Our philosophy is to redesign the
timing of the conventional architecture in a manner that allows
its components to be efficiently merged. This produces an
architecture comprising only a low number of inherently low-
complexity functional units, which are collectively capable
of performing the entire LUT-Log-BCJR algorithm. Further
wastage is avoided, since the critical paths of our functional
units are naturally short- and equally-lengthed, eliminating the
requirement for additional hardware to manage them. Further-
more, our approach naturally results in a low area and a high
clock frequency, which implies a low static energy consump-
tion. As we will show in Section III-A, the LUT-Log-BCJR
algorithm is naturally suited to this philosophy, since it can
be decomposed into classic ACS operations. In Section III-B
we tackle the challenge of devising an architecture that is
sufficiently flexible for performing the entire LUT-Log-BCJR
algorithm, using only a small number of functional units.
Furthermore, Section III-C proposes a functional unit that
is capable of performing ACS operations, while maintaining
a short critical path and a low complexity. Finally, in Sec-
tion III-D, we will design a controller for our architecture,
using the LUT-Log-BCJR decoder of the 3GPP LTE turbo
decoder as an application example.

A. Decomposition of the LUT-Log-BCJR algorithm

Observe that Equations (1), (3), (4) and (5) of the
LUT-Log-BCJR algorithm comprise only additions, subtrac-
tions and the max* calculation of Equation (2). While each
addition and subtraction constitutes a single ACS operation,
each max* calculation can be considered equivalent to four
ACS operations, as shown in Table I. In the general case,

TABLE I
DECOMPOSITION OF max* OPERATION.

Op 1 simultaneously calculate
max(p̃, q̃) and |p̃− q̃|

Op 2 determine if |p̃− q̃| > 0.75
Op 3 determine if |p̃− q̃| > 0 or |p̃− q̃| > 2,

depending on the outcome of Operation 2
Op 4 add max(p̃, q̃) to the value selected

from the set {0.75, 0.5, 0.25, 0}

where z > 0 fraction bits are employed in the twos comple-
ment fixed-point LLR representation, a total of (z + 2) ACS
operations are required to carry out the max∗ calculation. By
contrast, only a single ACS operation is required when z = 0
or when employing the Max-Log-BCJR algorithm, which
approximates the max∗ by the max operation. Similarly, fewer
ACS operation are required, when employing the Constant-
Log-BCJR [26] algorithm. These alternative algorithms reduce
the hardware complexity and increase the throughput, there-
fore reducing the energy consumption Epr

b . However, this is
achieved at the cost of requiring a higher transmission energy
Etx

b to achieve the same BER performance. As a result, these
transformations are typically detrimental to the overall energy
consumption of (Etx

b + Epr
b), as discussed in Section I.

B. Proposed energy-efficient LUT-Log-BCJR architecture

Inspired by the analysis of Section III-A, the proposed
energy-efficient LUT-Log-BCJR architecture is shown in Fig-
ure 3. Unlike conventional architectures, it does not use
separate dedicated hardware for the three recursions shown
in Figure 2. Instead, our architecture implements the entire
algorithm using 2m ACS units in parallel, each of which
performs one ACS operation per clock cycle. Furthermore, the

interm
ediate calculation results

LUT elements and current LLRs

REG bank 1 REG bank 2

ACS ACS ACS

R3R3

R2

R1

R2

R1

R3

R2

R1
m
em

in
m
em

ou
t

m
ain

m
em

ory

current metrics (α, β or δ values)
LLR sequences and α values from previous window

Fig. 3. Energy-efficient LUT-Log-BCJR architecture.

proposed architecture employs a twin-level register structure to
minimize the highly energy-consuming main-memory access
operations. At the first register level, each ACS unit is paired
with a set of general purpose registers R1, R2 and R3. These
are used to store intermediate results that are required by the
same ACS unit in consecutive clock cycles. For example,
this allows the four ACS operations equivalent to a max*

calculation to be performed in four consecutive clock cy-
cles using a single ACS unit, as detailed in Section III-C.
The second register level comprises REG bank 1 and REG
bank 2 of Figure 3, which are used to temporarily store
the LUT-Log-BCJR variables between consecutive values of
the bit index j during the recursions decoding processes.
The REG bank 1 comprises registers for the a priori LLRs
b̃a1,j and b̃a2,j and dummy registers for the required LUT
constants of Equation (2). Meanwhile, the sets of α, β or
δ metrics are stored in REG bank 2 of Figure 3. The main
memory stores all the required a priori LLR sequences and
extrinsic LLR sequences during the decoding process and the
α state metrics from the previous window, which facilitates
the processing of the entire LUT-Log-BCJR algorithm. Since
the proposed architecture supports a fully parallel arrangement
of an arbitrary number of ACS units of Figure 3, it may be
readily applied to any LUT-Log-BCJR decoder, regardless of
the specific convolutional encoder parameters2 employed. Note
that in contrast to the different-length data paths of Figure 2
(a), the 2m identical parallel data paths shown in Figure 3
have equal lengths, which avoids energy wastage, as described
above.

2These parameters include the number of uncoded and encoded bit se-
quences, the constraint length and the GPs.

5

C. Novel ACS unit

In this section we propose the novel low-gate-count ACS
unit of Figure 4, which performs one ACS operation per clock
cycle. The control signals of the ACS unit are provided by the

+

Loading signal for 1-bit register C2

0

1

q̃

p̃

r̃

O0

O1

O2

C0

carry

C0

C1

C2

C1

C2

7

7

7

7

77

M
S
B

O3

O4

O5

Loading signal for 1-bit register C0

Loading signal for 1-bit register C1

Fig. 4. ACS unit.

operation code O = {O0, O1, O2, O3, O4, O5}, which can be
used to perform the functions listed in Table II. Note that

TABLE II
OPERATIONS OF THE ACS UNIT.

O function
0000002 r̃ = p̃+ q̃
1000002 r̃ = p̃− q̃

1011002 r̃ =

{
p̃− q̃ if p̃ ≥ q̃
(q̃ − p̃)− 0.25 if p̃ < q̃

C0 =

{
02 if p̃ ≥ q̃
12 if p̃ < q̃

1100102 r̃ =

{
p̃− q̃ if C0 = 02
p̃− q̃ − 0.25 if C0 = 12

C1 =

{
02 if r̃ ≥ 0
12 if r̃ < 0

1100012 r̃ =

{
p̃− q̃ if C0 = 02
p̃− q̃ − 0.25 if C0 = 12

C2 =

{
02 if r̃ ≥ 0
12 if r̃ < 0

the operation code O = 1011002 approximates the absolute
difference between two operands, as required by Equation (2).
Its result is equivalent to r̃ = |p̃− q̃| for p̃ ≥ q̃. However, for
p̃ < q̃, the result is given by p̃− q̃. In the two’s complement
operand representation employing z = 2 fraction bits, this
is equivalent to decrementing the binary representation of
(q̃ − p̃), which is equivalent to subtracting 2−z = 0.25.
Note that a simpler ACS unit implementation is facilitated by
this deliberately introduced inaccuracy, which can be trivially
canceled out during the max* calculation. More specifically,
a max* calculation can be performed with the following four
operations, which store intermediate results in the registers R1,
R2 and R3, of Figure 3.

Op 1 In this clock cycle the max* calculation is activated
by using the operation code O = 1011002 of Table II
and loading operands p̃ and q̃ from the registers R1

and R2 of Figure 3, respectively. The result r̃ is then
stored in register R3, which is the approximated as
|R1 −R2|. The result C0 determines max(R1, R2).

Op 2 The LUT comparison performed during the second
ACS operation is activated by the operation code

O = 1100102 of Table II. Operand p̃ uses the
constant decimal value 0.75, which is provided by
the register bank 1 in the architecture of Figure 3.
Operand q̃ takes value from R3, which is the approx-
imated |R1 − R2| that was obtained in the previous
clock cycle. In this clock cycle, the result r̃ is not
stored, while the result stored in C1 provides the
outcome of the test |R1−R2| > 0.75, as required by
the second ACS operation described in Section III-A.

Op 3 Similarly to the previous clock cycle, the result of the
test |R1 − R2| > 0 or of the test |R1 − R2| > 2 is
determined depending on whether it was previously
decided that |R1−R2| > 0.75. More specifically, we
employ the operation code O = 1100012 of Table II,
use the value stored in R3 for the ACS unit’s operand
q̃ and substitute the constant value of 0 or 2 for p̃, as
appropriate. As shown in Equation (2), these constant
values are the first and third entries of the LUT.

Op 4 The max* calculation of Equation (2) is completed
in the fourth clock cycle by using the operation
code O = 0000002 of Table II. Here the operand
p̃ is provided by the maximum of R1 and R2,
as identified by C0 of Figure 4. Meanwhile, a
value for the operand q̃ is selected from the set
{0.75, 0.5, 0.25, 0}, depending on the contents of C1

and C2 of Figure 4. As a result, we have

r̃ = max(R1, R2)+

0.75 if C1 = 02, C2 = 02
0.5 if C1 = 02, C2 = 12
0.25 if C1 = 12, C2 = 02
0 if C1 = 12, C2 = 12

,

(6)
as required by Equation (2).

D. Example controller design

As described in Section III-B, the proposed architecture can
be readily applied to any LUT-Log-BCJR decoder, regardless
of the corresponding convolutional encoder parameters em-
ployed. This is achieved by specifically designing a controller
for the LUT-Log-BCJR decoder. To exemplify this, we de-
signed a controller for a sliding-window implementation of the
LTE turbo code’s LUT-Log-BCJR decoder, which corresponds
to an encoder having m = 3 memory elements. Since the
proposed architecture employs 2m = 8 parallel ACS units,
it facilitates the parallel processing of 2m = 8 α or β state
metrics at a time. As a result, ‘just-in-time’ processing of the
forward and backward recursions may be achieved, dispensing
with the need for additional registers. This facilitates a reason-
able throughput and a low energy consumption, as shown later
in Section IV.

Our controller meets the timing diagram of Figure 5,
which was designed to implement the sliding-window based
LUT-Log-BCJR algorithm. To reduce the memory required for
storing the α state metrics of Equation (1), the sliding-window
implementation performs the forward and backward recursions
of the LUT-Log-BCJR algorithm for windows of just N = 128
bit indices j. For the pre-backward recursion, windows of 24
bit indices j are employed, as advocated in [27]. As shown in

6

reading from the registers

Forward

128
repetitions

0 4
(clock cycle)

t
0 4

(clock cycle)

t t
0 4 8 12 16 18 20 24

(clock cycle)

addition/subtraction calculation max* calculation

writing to the registers

Recursion

REG bank 1

REG bank 2

ACS−8

ACS−7

ACS−6

ACS−5

ACS−4

ACS−3

ACS−2

ACS−1

Recursion
Pre−backward

repetitions
24

LLRs

Backward Recursion

128 repetitions

α β β δ

Fig. 5. Hardware activation schedule.

the columns of Figure 5, both the forward and pre-backward
recursions require 7 clock cycles per bit index j, while the
backward recursion requires 24 clock cycles. Observe that a
total of (7× 128 + 7× 24 + 24× 128)=4136 clock cycles are
required for processing a window of N = 128 LLRs, which
gives an average of 32.31 clock cycles per LLR. The activities
of the ACS units and the two register banks are shown in the
rows of Figure 5, where both additions and subtractions require
a single clock cycle, while the max* calculations require four
clock cycles. The hardware inactivity during the extrinsic LLR
calculation is caused by the data dependencies that are implied
by Equation (5), requiring an implementation using a binary
tree structure of max* operations.

As shown in Figure 5, the proposed architecture performs
the pre-backward recursion for just 24 of the 128 bit-indices
in each window. By contrast, the conventional architectures
typically perform the pre-backward recursion for all bit-indices
in each window, as shown in Figure 2 (b). This therefore
represents wastage, which is eliminated in the proposed archi-
tecture, giving an energy saving as discussed above. Moreover,
the proposed architecture can be readily scaled to include
either more or less ACS units, as well as reconfigured by
adjusting the controller design. It can therefore be readily ap-
plied to other turbo code designs or decoding algorithms, such
as the Viterbi algorithm or other variations of the Log-BCJR
algorithm.

For example, for a turbo code employing convolutional
encoders having an input bit sequence b1 and an output bit
sequence b2, but a different number of memory elements m,
the optimal number of ACS units to include in the architecture
is given by 2m. Regardless of m, the calculation of the 2m

state metrics α or β will still require the same seven clock
cycles, as in Figure 5, since the 2m ACS units are capable
of computing these in parallel, each employing one max*

and two addition operations. Similarly, the calculation of the
2m+1 δ transition metrics will still require the same four clock
cycles, as shown in Figure 5, since each of the 2m ACS
units is capable of calculating a pair of δ transition metrics
using three addition operations. Finally, the LLR calculation
of Figure 5 requires (4m + 1) clock cycles, which is the

duration required for carrying out m max* operations and one
subtraction. Since the specific choice of m has little effect on
the timing diagram of Figure 5, it may be readily employed as
the basis of the controller design for a wide variety of turbo
code configurations.

IV. TURBO DECODER COMPLEXITY AND ENERGY
ANALYSIS

To analyze the complexity and the energy efficiency of
the proposed LUT-Log-BCJR architecture, we implemented an
LTE turbo decoder using Taiwan Semiconductor Manufactur-
ing Company (TSMC) 90 nm technology. The turbo decoder
comprises four parts, namely a LUT-Log-BCJR decoder, an
interleaver π, a controller and the memory. The interleaver
π was implemented according to the latest low-complexity
LTE interleaver designs [28], [29]. The memory employs one
(128× 64)-bit on-chip single-port SRAM module for storing
the α state metrics. Similarly, it employs five (6144 × 6)-bit
on-chip single-port SRAM modules for storing the two sets of
a priori LLRs, the two sets of extrinsic LLRs and the single
set of systematic LLRs. The layout of the decoder is provided
in Figure 6. As shown in Figure 6, the hardware complexity of

SRAM

SRAM

SRAM

SRAM

SRAM

SR
A
M

Fig. 6. Chip layout of the turbo decoder.

the proposed architecture is so low that the chip area is actually
dominated by the memory module, which consumes 40% of
the overall energy consumption according to our post-layout
simulation results. By contrast, the chip area of conventional
LUT-Log-BCJR architectures is typically dominated by the
decoder, despite employing similar amounts of memory.

In Table III, we compare the proposed architecture to the lat-
est LUT-Log-BCJR and Max-Log-BCJR decoder architectures
[5], [6], [10], [11], [13]. The area and energy consumptions are
estimated based on post-layout simulations. The implementa-
tion results arising from different technologies are also scaled3

to give a fair comparison. As shown in Table III, the energy
consumption Epr

b of the proposed architecture is significantly
lower than that of the conventional LUT-Log-BCJR architec-
tures. Furthermore, our proposed architecture has a similar
energy consumption Epr

b to that of the recent Max-Log-BCJR
decoders, but facilitates a 10% lower transmission energy Etx

b ,
as discussed in Section I.

To analyze the overall energy consumption (Etx
b + Epr

b)
of the LUT-Log-BCJR and the Max-Log-BCJR decoders, the

3The energy consumption and area are adjusted using scaling factors of
1/s3 and 1/s2 respectively, where s is the ratio of the old technology scale
to the new one [6].

7

TABLE III
COMPARISON OF THE IMPLEMENTED TURBO DECODER.

Publication Proposed [10] [11] [13] [5] [6]
Algorithm LUT-Log LUT-Log LUT-Log LUT-Log Max-Log Max-Log
Block size (bit) 6144 5114 5114 5114 6144 6144
Technology (nm) 90 180 180 180 65 120
Supply voltage (V) 1.0 1.8 1.8 1.8 - 1.2
Area A (mm2) 0.35 9 14.5 8.2 2.1 3.57
(Scaled for 90 nm) (2.25) (3.63) (2.05) (4.0) (2.0)
Gate count (exclusive of memory) 7.5k 85k 410k 65k - 553k
Memory required (kbit) 188 239 450 161 - 129
Clock frequency F (MHz) 333 111 145 100 300 390.6
Decoding iterations 5 10 8 6.5 6 5.5
Throughput T (Mb/s) 1.03 2 10.8 4.17 150 390.6
Power consumption (mW) 4.17 292 956 320 300 788.9
(Scaled for 90 nm) (36.5) (119.4) (40) (796.4) (332.8)
Energy consumption (nJ/bit/iteration) 0.4 14.6 11.1 12.7 0.31 0.37
(Scaled for 90 nm) (1.8) (1.4) (1.59) (0.81) (0.16)
Etx

b +Epr
b (nJ/bit) when transmitting over

39 m (5 iterations)
10.16 17.16 15.16 16.06 13.42 10.17

Etx
b +Epr

b (nJ/bit) when transmitting over
58 m (5 iterations)

41.92 48.92 46.92 47.82 49.88 46.63

BER performance of the proposed architecture and the ideal
performance of the two types of the decoders are quantified
in Figure 74. Here, BPSK modulation is assumed, since it
is widely adopted in the existing wireless sensor networks
[30]. Furthermore, we assumed transmissions over a non-
dispersive uncorrelated worst-case Rayleigh fading channel.
As shown in Figure 7, the BER performance of the proposed

The proposed implementation
Ideal Max-Log-BCJR

Ideal Log-BCJR

SNR

B
E
R

-2.2-2.6-3-3.4-3.8-4.2-4.6-5-5.4-5.8-6.2

1

0.01

0.0001

1e-06

SNR

B
E
R

-2.2-2.6-3-3.4-3.8-4.2-4.6-5-5.4-5.8-6.2

1

0.01

0.0001

1e-06

SNR

B
E
R

-2.2-2.6-3-3.4-3.8-4.2-4.6-5-5.4-5.8-6.2

1

0.01

0.0001

1e-06

SNR

B
E
R

-2.2-2.6-3-3.4-3.8-4.2-4.6-5-5.4-5.8-6.2

1

0.01

0.0001

1e-06

Fig. 7. BER performance of various decoding algorithms, in the case
where 5 iterations are employed to decode a 6144-bit LTE block, which was
transmitted over an uncorrelated Rayleigh fading channel.

LUT-Log-BCJR architecture is within a tiny fraction of a
decibel from that achieved by the ideal Log-BCJR algorithm.
Furthermore, as discussed in Section I, the low complexity
of the Max-Log-BCJR is achieved at the cost of requiring a
0.5 dB higher transmission energy per bit to achieve a BER of
10−4, as shown in Figure 7. As a result, the LUT-Log-BCJR
algorithm facilitates an overall energy consumption - including

4Since different simulation parameters and channel models are used in
previous publications, we compare the BER performance of our proposed
architecture with the idealized upper-bound performance of the various
algorithms, which was obtained using floating-point simulation.

the energy consumed during both transmission and decoding
- that is 10% lower than that of the Max-Log-BCJR at long
transmission ranges, where the energy consumption Epr

b of
the turbo decoder is negligible compared to the transmission
energy Etx

b required. Indeed, the analysis5 of [3], [31] reveals
that a small difference in BER performance has a significant
effect on the overall energy consumption (Etx

b + Epr
b). As

a result, the proposed architecture offers the lowest overall
energy consumption when the transmission distance is beyond
39 m, as shown in Table III. Compared to the most energy
efficient Max-Log-BCJR design [6] in Table III, which has
an energy consumption of 0.16 nJ/bit/iteration, the proposed
LUT-Log-BCJR decoder achieves more than 10% overall
energy savings when the transmission distance reaches 58 m,
as shown in Table III.

Indeed, Figure 8 shows the overall energy consumption
difference between the Max-Log-BCJR of [6] and the pro-
posed architecture, which is formulated as f(d) = (Etx

b +
Epr

b)Max-Log-BCJR − (Etx
b + Epr

b)LUT-Log-BCJR. As indicated by
negative values of f(d) in Figure 8, the Max-Log-BCJR
decoder of [6] has a (slightly) lower overall energy con-
sumption than the proposed decoder when transmitting across
short ranges of less than 39 m. By contrast, the proposed
architecture offers a significant overall energy saving that
increases exponentially beyond a range of 39 m, relative to
the state-of-the-art Max-Log-BCJR decoder [6].

As discussed in Section III, the proposed architecture
achieves an energy saving, because it efficiently employs a
novel low-complexity ACS unit having a short critical path,
which avoids the energy wastage that occurs in conventional
architectures. As discussed in Section III-D, this principle may
be generally applied to any arbitrary turbo code configuration,
for achieving similar energy savings to those demonstrated for
our example of the topical LTE LUT-Log-BCJR turbo decoder.

5This analysis assumes a receiver noise figure of 5 dB, a power amplifier
efficiency of 33%, a carrier frequency of 5.8 GHz and a worst-case path-loss
exponent of 4.

8

Transmission range (m)

T
ra
n
sm

is
si
on

en
er
gy

d
iff
er
en
ce

f
(d
)
(n
J
/b

it
)

100806040200

60

50

40

30

20

10

0

-10

Fig. 8. The energy consumption difference between the Max-Log-BCJR
decoder of [6] and the proposed architecture at BER = 10−4.

V. CONCLUSIONS

In this paper, we demonstrated that upon aiming for a high
throughput, conventional LUT-Log-BCJR architectures may
have wasteful designs requiring high chip areas and hence
high energy consumptions. However, in energy-constrained
applications, achieving a low energy consumption has a higher
priority than having a high throughput. This motivated our
low-complexity energy-efficient architecture, which achieves a
low area and hence a low energy consumption by decomposing
the LUT-Log-BCJR algorithm into its most fundamental ACS
operations. In addition, the proposed architecture may be
readily reconfigured for different turbo codes or decoding algo-
rithms. We validated the architecture by implementing an LTE
turbo decoder, which was found, in Table III, to have an order-
of-magnitude lower area than conventional LUT-Log-BCJR
decoder implementations and an approximately 71% lower
energy consumption of 0.4 nJ/bit/iteration. Compared to state
of the art Max-Log-BCJR implementations, our approach
facilitates a 10% reduction in the overall energy consumption
at transmission ranges above 58 m. Furthermore, we demon-
strated that our implementation has a throughput of 1.03 Mb/s,
which is appropriate for energy-constrained applications, such
as in environmental monitoring WSNs [2], [32].

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks: The International
Journal of Computer and Telecommunications Networking, vol. 52, pp.
292–422, 2008.

[2] P. Corke, T. Wark, R. Jurdak, H. Wen, P. Valencia, and D. Moore,
“Environmental Wireless Sensor Networks,” Proceedings of the IEEE,
vol. 98, no. 11, pp. 1903–1917, 2010.

[3] S. L. Howard, C. Schlegel, and K. Iniewski, “Error Control Coding in
Low-Power Wireless Sensor Networks: When is ECC Energy-Efficient?”
EURASIP Journal of Wireless Communications and Networking, Special
Issue: CMOS RF Circuits for Wireless Applications, vol. 2006, Arti, pp.
1–14, 2006.

[4] L. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “An energy-
efficient error correction scheme for IEEE 802.15.4 wireless sensor
networks,” Transactions on Circuits and Systems II, vol. 57, no. 3, pp.
233–237, 2010.

[5] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP
LTE Turbo Code Decoder,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), Dresden, Germany, 2010, pp. 1420–
1425.

[6] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and
Implementation of a Parallel Turbo-Decoder ASIC for 3GPP-LTE,”
IEEE Jouranal of Solid-State Circuits, vol. 46, pp. 8–17, 2011.

[7] C. Wong, Y. Lee, and H. Chang, “A 188-size 2.1mmˆ2 Reconfigurable
Turbo Decoder Chip with Parallel Architecture for 3GPP LTE System,”
in 2009 Symposium on VLSI Circuits, Kyoto, Japan, 2009, pp. 288–289.

[8] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and Sub-Optimal
Maximum A Posteriori Algorithms Suitable for Turbo Decoding,” Eu-
ropean Transactions on Telecommunications, vol. 8, no. 2, pp. 119–125,
1997.

[9] W.-P. Ang and H. K. Garg, “A new iterative channel estimator for the
log-MAP & max-log-MAP turbo decoder in Rayleigh fading channel,”
in Global Telecommunications Conference, vol. 6, San Antonio, TX ,
USA, 2001, pp. 3252–3256.

[10] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup,
G. Zhou, L. M. Davis, G. Woodward, C. Nicol, and R.-H. Yan, “A
unified turbo/Viterbi channel decoder for 3GPP mobile wireless in 0.18-
µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp.
1555–1564, 2002.

[11] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A
24Mb/s radix-4 Log-MAP turbo decoder for 3GPP-HSDPA mobile
wireless,” in IEEE International Solid-State Circuits Conference, vol. 1,
2003, pp. 150–484.

[12] Z. Wang, “High-Speed Recursion Architectures for MAP-Based Turbo
Decoders,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 4, pp. 470–474, 2007.

[13] F.-M. Li, C.-H. Lin, and A.-Y. Wu, “Unified Convolutional/Turbo
Decoder Design Using Tile-Based Timing Analysis of VA/MAP Kernel,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 10, pp. 1063–8210, 2008.

[14] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit
Error Correcting Coding and Decoding: Turbo Codes,” in Proceedings of
the IEEE International Conference on Communications, vol. 2, Geneva,
Switzerland, 1993, pp. 1064–1070.

[15] L. Hanzo, T. H. Liew, B. L. Yeap, R. Tee, and S. X. Ng, Turbo Coding,
Turbo Equalisation and Space-Time Coding. John Wiley & Sons Inc,
2011.

[16] L. Hanzo, J. P. Woodard, and P. Robertson, “Turbo decoding and
detection for wireless applications,” in Proceedings of the IEEE, vol. 95,
no. 6, 2007, pp. 1178–1200.

[17] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
Sub-optimal MAP decoding algorithms operating in the log domain,”
in Proceedings of IEEE International Conference of Communication,
vol. 2, Seattle, WA, USA, 1995, pp. 1009–1013.

[18] C. Schurgers, F. Catthoor, and M. Engels, “Memory Optimization of
MAP Turbo Decoder Algorithms,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 9, no. 2, pp. 305–312, 2001.

[19] G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni,
“Architectural Strategies for Low-Power VLSI Turbo Decoders,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 10,
no. 3, pp. 279–285, 2002.

[20] C. M. Wu, M. D. Shieh, C. H. Wu, Y. T. Hwang, and J. H. Chen,
“VLSI Architectural Design Tradeoffs for Sliding-Window Log-MAP
Decoders,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 13, no. 4, pp. 439–447, 2005.

[21] A. J. Viterbi, “An Intuitive Justification and a Simplified Implementation
of the MAP Decoder for Convolutional Codes,” IEEE Journal on
Selected Areas in Communications, vol. 16, no. 2, pp. 162–264, 1998.

[22] L. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “Design of
Fixed-Point Processing Based Turbo Codes Using Extrinsic Information
Transfer Charts,” in Proceeding of IEEE Vehicular Technology Confer-
ence, Ottawa, Canada, 2010, pp. 1–5.

[23] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative Decoding of Con-
catenated Convolutional Codes: Implementation Issues,” in Proceedings
of the IEEE, vol. 95, no. 6, 2007, pp. 1201–1227.

[24] Y. Zhang and K. K. Parhi, “High-throughput radix-4 logMAP turbo
decoder architecture,” in Asilomar conference on Signals, System and
Computers, Pacific Grove, CA, USA, 2006, pp. 1711–1715.

[25] Z. He, P. Fortier, and S. Roy, “Highly-Parallel Decoding Architectures
for Convolutional Turbo Codes,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, no. 10, pp. 1063–8210, 2006.

9

[26] M. C. Valenti and J. Sun, “The UMTS turbo Code and an Efficient
Decoder Implementation Suitable for Software-Defined Radios,” Inter-
national Journal of Wireless Information Networks, vol. 8, no. 4, pp.
203–215, 2001.

[27] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “Design and
Optimization of an HSDPA Turbo Decoder ASIC,” IEEE Journal of
Solid-State Circuits, vol. 44, no. 1, pp. 98–106, 2009.

[28] S.-G. Lee, C.-H. Wang, and W.-H. Sheen, “Architecture Design of QPP
Interleaver for Parallel Turbo Decoding,” in IEEE Vehicular Technology
Conference, Taipei, Taiwan, 2010, pp. 1–5.

[29] Y. Sun and J. R. Cavallaro, “Efficient Hardware Implementation of A
Highly-Parallel 3GPP LTE, LTE-Advance Turbo Decoder,” Integration,
the VLSI Journal, vol. 44, no. 1, pp. 1–11, 2010.

[30] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Communications of the ACM, vol. 43, no. 5, pp. 51–58, May 2000.

[31] N. Sadeghi, S. Howard, S. Kasnavi, K. I. V. C. Gaudet, and C. Schlegel,
“Analysis of error control code use in ultra-low-power wireless sensor
networks,” in Proceedings of International Symposium on Circuits and
Systems, Island of Kos, 2006, pp. 3558–3561.

[32] G. Barrenetxea, F. Ingelres, G. Schaefer, and M. Vetterli, “Wireless
Sensor Networks for Environmental Monitoring: The SensorScope Ex-
perience,” in IEEE International Zurich Seminar on Communications,
Zurich, 2008, pp. 98–101.

Liang Li received his B.S. degree in Mircoelectron-
ics from Peking University, Beijing, China, in 2006
and his M.Sc. degree from University of Southamp-
ton, Uk, in 2008. He is currently working toward
the Ph.D. degree with the Communications Research
Group, School of Electronics and Computer Science,
University of Southampton, Southampton, UK. His
research interests include energy-efficient hardware
architectures for turbo or LDPC codes and their
applications in energy-constrained scenarios, such as
wireless sensor networks.

Robert G. Maunder has studied with the School
of Electronics and Computer Science, University
of Southampton, UK, since October 2000. He was
awarded a first class honors BEng in Electronic
Engineering in July 2003, as well as a PhD in Wire-
less Communications and a lectureship in December
2007. Rob’s research interests include the imple-
mentation of joint source/channel coding, iterative
decoding, irregular coding and modulation schemes.
He has published a number of IEEE papers in these
areas.

Bashir M. Al-Hashimi (M99-SM01-F09) received
the B.Sc. degree (with 1st-class classification) in
Electrical and Electronics Engineering from the Uni-
versity of Bath, UK, in 1984 and the Ph.D. degree
from York University, UK, in 1989. Following this
he worked in the microelectronics design industry
and in 1999, he joined the School of Electron-
ics and Computer Science, Southampton Univer-
sity, UK, where he holds the Endowment ARM
Chair in Computer Engineering. He has authored
one book on SPICE simulation, (CRC Press, 1995),

and coauthored two books, Power Constrained Testing of VLSI circuits
(Springer, 2002), and System-Level Design Techniques for Energy-Efficient
Embedded Systems (Springer, 2004). He edited the book, System-on-Chip:
Next Generation Electronics (IEE Press, 2006). He has published over 260
refereed papers in journals conference proceedings. He is a Fellow of the IEE
and a Fellow of the British Computer Society. He is the Editor-in-Chief of the
IEE Proceedings: Computers and Digital Techniques, and a member of the
editorial board of the Journal of Electronic Testing: Theory and Applications
(JETTA), and Journal of Low Power Electronics. He was the General Chair
of the 11th IEEE European Test Symposium (UK 2006), and the General
Chair of DATE 2011. He is the coauthor of two Best Paper Awards: the
James Beausang at the ITC 2000, relating to low power BIST for RTL data
paths, and at the CODES-ISSS Symposium 2009, relating to low-energy fault-
tolerance techniques. He is a co-author of a paper on test data compression
which has been selected for a Springer book featuring the most influential
work over the ten years of the DATE conference.

Lajos Hanzo (http://www-mobile.ecs.soton.ac.uk)
FREng, FIEEE, FIET, Fellow of EURASIP, DSc
received his degree in electronics in 1976 and
his doctorate in 1983. In 2009 he was awarded
the honorary doctorate “Doctor Honaris Causa” by
the Technical University of Budapest. During his
35-year career in telecommunications he has held
various research and academic posts in Hungary,
Germany and the UK. Since 1986 he has been with
the School of Electronics and Computer Science,
University of Southampton, UK, where he holds the

chair in telecommunications. He has successfully supervised in excess of
70 PhD students, co-authored 20 John Wiley/IEEE Press books on mobile
radio communications totalling in excess of 10 000 pages, published 1200+
research entries at IEEE Xplore, acted both as TPC and General Chair
of IEEE conferences, presented keynote lectures and has been awarded a
number of distinctions. Currently he is directing an academic research team,
working on a range of research projects in the field of wireless multimedia
communications sponsored by industry, the Engineering and Physical Sciences
Research Council (EPSRC) UK, the European IST Programme and the Mobile
Virtual Centre of Excellence (VCE), UK. He is an enthusiastic supporter of
industrial and academic liaison and he offers a range of industrial courses. He
is also a Governor of the IEEE VTS. Since 2008 he has been the Editor-in-
Chief of the IEEE Press and since 2009 a Chaired Professor also at Tsinghua
University, Beijing. In 2012 he became one of four EURASIP Fellows. For
further information on research in progress and associated publications please
refer to http://www-mobile.ecs.soton.ac.uk

