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Abstract— Power has become a burning issue in modern VLSI
design. In modern integrated circuits, the power consumed by
clocking gradually takes a dominant part. Given a design, we
can reduce its power consumption by replacing some flip-flops
with fewer multi-bit flip-flops. However, this procedure may
affect the performance of the original circuit. Hence, the flip-flop
replacement without timing and placement capacity constraints
violation becomes a quite complex problem. To deal with the
difficulty efficiently, we have proposed several techniques. First,
we perform a co-ordinate transformation to identify those flip-
flops that can be merged and their legal regions. Besides, we
show how to build a combination table to enumerate possible
combinations of flip-flops provided by a library. Finally, we use
a hierarchical way to merge flip-flops. Besides power reduction,
the objective of minimizing the total wirelength is also considered.
The time complexity of our algorithm is �(n1.12) less than the
empirical complexity of �(n2). According to the experimental
results, our algorithm significantly reduces clock power by
20–30% and the running time is very short. In the largest test
case, which contains 1 700 000 flip-flops, our algorithm only takes
about 5 min to replace flip-flops and the power reduction can
achieve 21%.

Index Terms— Clock power reduction, merging, multi-bit
flip-flop, replacement, wirelength.

I. INTRODUCTION

DUE to the popularity of portable electronic products,
low power system has attracted more attention in recent

years. As technology advances, an systems-on-a-chip (SoC)
design can contain more and more components that lead to
a higher power density. This makes power dissipation reach
the limits of what packaging, cooling or other infrastruc-
ture can support. Reducing the power consumption not only
can enhance battery life but also can avoid the overheating
problem, which would increase the difficulty of packaging
or cooling [1], [2]. Therefore, the consideration of power
consumption in complex SOCs has become a big challenge
to designers. Moreover, in modern VLSI designs, power
consumed by clocking has taken a major part of the whole
design especially for those designs using deeply scaled CMOS
technologies [3]. Thus, several methodologies [4], [5] have
been proposed to reduce the power consumption of clocking.
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Fig. 1. Maximum loading number of a minimum-sized inverter of different
technologies (rising time 250 ps).

Given a design that the locations of the cells have been
determined, the power consumed by clocking can be reduced
further by replacing several flip-flops with multi-bit flip-flops.
During clock tree synthesis, less number of flip-flops means
less number of clock sinks. Thus, the resulting clock network
would have smaller power consumption and uses less routing
resource.

Besides, once more smaller flip-flops are replaced by larger
multi-bit flip-flops, device variations in the corresponding
circuit can be effectively reduced. As CMOS technology pro-
gresses, the driving capability of an inverter-based clock buffer
increases significantly. The driving capability of a clock buffer
can be evaluated by the number of minimum-sized inverters
that it can drive on a given rising or falling time. Fig. 1 shows
the maximum number of minimum-sized inverters that can be
driven by a clock buffer in different processes. Because of
this phenomenon, several flip-flops can share a common clock
buffer to avoid unnecessary power waste. Fig. 2 shows the
block diagrams of 1- and 2-bit flip-flops. If we replace the
two 1-bit flip-flops as shown in Fig. 2(a) by the 2-bit flip-flop
as shown in Fig. 2(b), the total power consumption can be
reduced because the two 1-bit flip-flops can share the same
clock buffer.

However, the locations of some flip-flops would be changed
after this replacement, and thus the wirelengths of nets con-
necting pins to a flip-flop are also changed. To avoid violating
the timing constraints, we restrict that the wirelengths of nets
connecting pins to a flip-flop cannot be longer than specified
values after this process. Besides, to guarantee that a new flip-
flop can be placed within the desired region, we also need to
consider the area capacity of the region. As shown in Fig. 3(a),
after the two 1-bit flip-flops f1 and f2 are replaced by the
2-bit flip-flop f3, the wirelengths of nets net1, net2, net3, and
net4 are changed. To avoid the timing violation caused by
the replacement, the Manhattan distance of new nets net1,
net2, net3, and net4 cannot be longer than the specified values.
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Fig. 2. Example of merging two 1-bit flip-flops into one 2-bit flip-flop.
(a) Two 1-bit flip-flops (before merging). (b) 2-bit flip-flop (after merging).

In Fig. 3(b), we divide the whole placement region into several
bins, and each bin has an area capacity denoting the remaining
area that additional cells can be placed within it.

Suppose the area of f3 is 7 and f3 is assigned to be placed
in the same bin as f1. We cannot place f3 in that bin since
the remaining area of the bin is smaller than the area of f3. In
addition to the considerations mentioned in the above, we also
need to check whether the cell library provides the type of the
new flip-flop. For example, we have to check the availability
of a 3-bit flip-flop in the cell library when we desire to replace
1- and 2-bit flip-flops by a 3-bit flip-flop.

A. Related Work

Chang et al. [6] first proposed the problem of using multi-bit
flip-flops to reduce power consumption in the post-placement
stage. They use the graph-based approach to deal with this
problem. In a graph, each node represents a flip-flop. If two
flip-flops can be replaced by a new flip-flop without violating
timing and capacity constraints, they build an edge between
the corresponding nodes. After the graph is built, the problem
of replacement of flip-flops can be solved by finding an
m-clique in the graph. The flip-flops corresponding to the
nodes in an m-clique can be replaced by an m-bit flip-
flop. They use the branch-and-bound and backtracking algo-
rithm [8] to find all m-cliques in a graph. Because one
node (flip-flop) may belong to several m-cliques (m-bit
flip-flop), they use greedy heuristic algorithm to find the
maximum independent set of cliques, which every node
only belongs to one clique, while finding m-cliques groups.
However, if some nodes correspond to k-bit flip-flops that
k � 1, the bit width summation of flip-flops correspond-
ing to nodes in an m-clique, j , may not equal m. If the
type of a j -bit flip-flop is not supported by the library,
it may be time-wasting in finding impossible combinations
of flip-flops.

B. Our Contributions

The difficulty of this problem has been illustrated in the
above descriptions. To deal with this problem, the direct way
is to repeatedly search a set of flip-flops that can be replaced
by a new multi-bit flip-flop until none can be done. However,
as the number of flip-flops in a chip increases dramatically,
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Fig. 3. (a) Combination of flip-flops possibly increases the wire length.
(b) Combination of flip-flops also changes the density.

the complexity would increase exponentially, which makes
the method impractical. To handle this problem more effi-
ciently and get better results, we have used the following
approaches.

1) To facilitate the identification of mergeable flip-flops, we
transform the coordinate system of cells. In this way, the
memory used to record the feasible placement region can
also be reduced.

2) To avoid wasting time in finding impossible combina-
tions of flip-flops, we first build a combination table
before actually merging two flip-flops. For example, if
a library only provides three kinds of flip-flops, which
are 1-, 2-, and 3-bit, we first separate the flip-flops
into three groups. Therefore, the combination of 1- and
3-bit flip-flops is not considered since the library does
not provide the type of 4-bit flip-flop.

3) We partition a chip into several subregions and perform
replacement in each subregion to reduce the complexity.
However, this method may degrade the solution quality.
To resolve the problem, we also use a hierarchical way
to enhance the result.

The rest of this paper is organized as follows. Section II
describes the problem formulation. Section III presents the
proposed algorithm. Section IV evaluates the computation
complexity. Section V shows the experimental results. Finally,
we draw a conclusion in Section VI.

II. PROBLEM FORMULATION

Before giving our problem formulation, we need the
following notations.

1) Let fi denote a flip-flop and bi denote its bit width.
2) Let A( fi ) denote the area of fi .
3) Let P( fi ) denote all the pins connected to fi .
4) Let M(pi , fi ) denote the Manhattan distance between

a pin pi and fi , where pi is an I/O pin that connects
to fi .

5) Let S(pi ) denote the constraint of maximum wirelength
for a net that connects to a pin pi of a flip-flop.

6) Given a placement region, we divide it into several bins
[see Fig. 3(b) for example], and each bin is denoted
by Bk .
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Fig. 4. Defined slack region of the pin.

7) Let RA(Bk) denote the remaining area of the bin Bk that
can be used to place additional cells.

8) Let L denote a cell library which includes different
flip-flop types (i.e., the bit width or area in each type is
different).

Given a cell library L and a placement which contains a
lot of flip-flops, our target is to merge as many flip-flops as
possible in order to reduce the total power consumption. If
we want to replace some flip-flops f1,..., f j−1 by a new flip-
flop f j , the bit width of f j must be equal to the summation
of bit widths in the original ones (i.e., �bi = b j , i = 1
to j−1). Besides, since the replacement would change the
routing length of the nets that connect to a flip-flop, it
inevitably changes timing of some paths. Finally, to ensure that
a legalized placement can be obtained after the replacement,
there should exist enough space in each bin. To consider these
issues, we define two constraints as follows.

1) Timing Constraint for a Net Connecting to a Flip-Flop
f j from a Pin pi : To avoid that timing is affected after the
replacement, the Manhattan distance between pi and f j cannot
be longer than the given constraint S(pi ) defined on the pin
pi [i.e., M(pi , f j ) ≤ S(pi )].

Based on each timing constraint defined on a pin, we can
find a feasible placement region for a flip-flop fj . See Fig. 4 for
example. Assume pins p1 and p2 connect to a 1-bit flip-flop
f1. Because the length is measured by Manhattan distance, the
feasible placement region of f1 constrained by the pin pi [i.e.,
M(pi , f1) ≤ S(pi )] would form a diamond region, which is
denoted by Rp(pi ), i = 1 or 2. See the region enclosed by
dotted lines in the figure. Thus, the legal placement region of
f1 would be the overlapping region enclosed by solid lines,
which is denoted by R( f1). R( f1) is the overlap region of
Rp(p1) and Rp(p2).

2) Capacity Constraint for Each Bin Bk : The total area
of flip-flops intended to be placed into the bin Bk cannot be
larger than the remaining area of the bin Bk (i.e., �A( fi ) ≤
RA(Bk)).

III. OUR ALGORITHM

Our design flow can be roughly divided into three stages.
Please see Fig. 5 for our flow. In the beginning, we have
to identify a legal placement region for each flip-flop fi .
First, the feasible placement region of a flip-flop associated
with different pins are found based on the timing constraints

Build a combination table

END

START

Merge flip-flops

Identify mergeable flip-flops

Fig. 5. Flow chart of our algorithm.

defined on the pins. Then, the legal placement region of
the flip-flop fi can be obtained by the overlapped area of
these regions. However, because these regions are in the
diamond shape, it is not easy to identify the overlapped area.
Therefore, the overlapped area can be identified more easily
if we can transform the coordinate system of cells to get
rectangular regions. In the second stage, we would like to build
a combination table, which defines all possible combinations
of flip-flops in order to get a new multi-bit flip-flop provided
by the library. The flip-flops can be merged with the help of
the table. After the legal placement regions of flip-flops are
found and the combination table is built, we can use them to
merge flip-flops. To speed up our program, we will divide
a chip into several bins and merge flip-flops in a local bin.
However, the flip-flops in different bins may be mergeable.
Thus, we have to combine several bins into a larger bin and
repeat this step until no flip-flop can be merged anymore.

In this section, we would detail each stage of our method.
In the first subsection, we show a simple formula to transform
the original coordination system into a new one so that a legal
placement region for each flip-flop can be identified more
easily. The second subsection presents the flow of building
the combination table. Finally, the replacements of flip-flops
will be described in the last subsection.

A. Transformation of Placement Space

We have shown that the shape of a feasible placement region
associated with one pin pi connecting to a flip-flop fi would
be diamond in Section II. Since there may exist several pins
connecting to f i , the legal placement region of f i are the
overlapping area of several regions. As shown in Fig. 6(a),
there are two pins p1 and p2 connecting to a flip-flop f1, and
the feasible placement regions for the two pins are enclosed
by dotted lines, which are denoted by Rp(p1) and Rp(p2),
respectively. Thus, the legal placement region R( f1) for f1
is the overlapping part of these regions. In Fig. 6(b), R( f1)
and R( f2) represent the legal placement regions of f1 and f2.
Because R( f1) and R( f2) overlap, we can replace f1 and f2
by a new flip-flop f3 without violating the timing constraint,
as shown in Fig. 6(c).

However, it is not easy to identify and record feasible
placement regions if their shapes are diamond. Moreover,
four coordinates are required to record an overlapping region
[see Fig. 7(a)]. Thus, if we can rotate each segment 45°, the
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Fig. 6. (a) Feasible regionsRp (p1) and Rp(p2) for pins p1 and p2 which are
enclosed by dotted lines, and the legal region R( f1) for f1 which is enclosed
by solid lines. (b) Legal placement regions R( f1) and R( f2) for f1 and f2,
and the feasible area R3 which is the overlap region of R( f1) and R( f2).
(c) New flip-flop f3 that can be used to replace f1 and f2 without violating
timing constraints for all pins p1, p2, p3, and p4.
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Fig. 7. (a) Overlapping region of two diamond shapes. (b) Rectangular
shapes obtained by rotating the diamond shapes in (a) by 45°.

shapes of all regions would become rectangular, which makes
identification of overlapping regions become very simple. For
example, the legal placement region, enclosed by dotted lines
in Fig. 7(a), can be identified more easily if we change its
original coordinate system [see Fig. 7(b)]. In such condition,
we only need two coordinates, which are the left-bottom corner
and right-top corner of a rectangle, as shown in Fig. 7(b), to
record the overlapped area instead of using four coordinates.

The equations used to transform coordinate system are
shown in (1) and (2). Suppose the location of a point in
the original coordinate system is denoted by (x , y). After
coordinate transformation, the new coordinate is denoted by
(x ′, y ′). In the original transformed equations, each value
needs to be divided by the square root of 2, which would
induce a longer computation time. Since we only need to
know the relative locations of flip-flops, such computation are
ignored in our method. Thus, we use x ′′ and y ′′, to denote the
coordinates of transformed locations

x ′ = x + y√
2

=> x ′′ = √
2 · x ′ = x + y (1)

y ′ = −x + y√
2

=> y ′′ = √
2 · y ′ = −x + y. (2)

R(f1)

R(f2)

DIS_X( f1, f2)

DIS_Y( f1, f2)
H(f1)

W(f1)

Fig. 8. Overlapping relation between available placement regions of f 1
and f 2.

Then, we can find which flip-flops are mergeable according to
whether their feasible regions overlap or not. Since the feasible
placement region of each flip-flop can be easily identified after
the coordinate transformation, we simply use (3) and (4) to
determine whether two flip-flops overlap or not

DIS_X ( f1, f2) <
1

2
(W ( f1) + W ( f2)) (3)

DIS_Y ( f1, f2) <
1

2
(H ( f1) + H ( f2)) (4)

where W ( f1) and H ( f1) [W ( f2) and H ( f2)] denote the width
and height of R( f1) [R( f2)], respectively, in Fig. 8, and the
function DIS_X( f1, f2) and (DIS_Y( f1, f2)) calculates the
distance between centers of R( f1) and R( f2) in x-direction
(y-direction).

B. Build a Combination Table

If we want to replace several flip-flops by a new flip-flop f ′
i

(note that the bit width of f ′
i should equal to the summation

of bit widths of these flip-flops), we have to make sure that the
new flip-flop f ′

i is provided by the library L when the feasible
regions of these flip-flops overlap. In this paper, we will build a
combination table, which records all possible combinations of
flip-flops to get feasible flip-flops before replacements. Thus,
we can gradually replace flip-flops according to the order of
the combinations of flip-flops in this table. Since only one
combination of flip-flops needs to be considered in each time,
the search time can be reduced greatly. In this subsection, we
illustrate how to build a combination table.

The pseudo code for building a combination table T is
shown in Algorithm 1. We use a binary tree to represent one
combination for simplicity. Each node in the tree denotes one
type of a flip-flop in L. The types of flip-flops denoted by
leaves will constitute the type of the flip-flop in the root.
For each node, the bit width of the corresponding flip-flop
equals to the bit width summation of flip-flops denoted by its
left and right child [please see Fig. 9(e) for example]. Let ni

denote one combination in T , and b(ni ) denote its bit width.
In the beginning, we initialize a combination ni for each kind
of flip-flops in L (see Line 1). Then, in order to represent
all combinations by using a binary tree, we may add pseudo
types, which denote those flip-flops that are not provided by
the library, (see Line 2). For example, assume that a library
only supports two kinds of flip-flops whose bit widths are 1
and 4, respectively. In order to use a binary tree to denote a
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Algorithm 1 Build Combination Table.

1 T = InitializationCombinationTable(L);
2 InsertPseudoType(L);
3 SortByBitNumber (L);
4 for each ni in T do
5 InsertChildrens (ni, NULL, NULL);
6 index = 0;
7 while index != size(T) do
8 range_first = index;
9 range_second = size(T);
10 index = size(T);
11 for each ni in T
12 for j = 1 to range_first do TypeVerify(ni, nj, T);
13 for j = i to range_second do TypeVerify(ni, nj, T);
14 T = DuplicateCombinationDelete(T);
15 T = UnusedCombinationDelete(T);

InsertPseudoType(L):
1 for i = (bmin+1) to (bmax-1)
2 if (L does not contain a type whose bit width is equal to i )
3 insert a pseudo type typej with bit width i to L;

InsertChildrens(n, n1, n2):
1 n.left_child ← n1;
2 n.right_child ← n2;

TypeVerify(n1, n2, T):
1 bsum = b(n1) + b(n2);
2 if (L contains a type whose bit width is bsum) 
3 insert a new combination n whose bit width bsum to T;
4 InsertChildrens( n , n1, n2);

combination whose bit width is 4, there must exist flip-flops
whose bit widths are 2 and 3 in L [please see the last two
binary trees in Fig. 9(e) for example]. Thus, we have to create
two pseudo types of flip-flops with 2- and 3-bit if L does
not provide these flip-flops. Function InsertPseudoType in
algorithm 1 shows how to create pseudo types. Let bmax and
bmin denote the maximum and minimum bit width of flip-flops
in L. In InsertPseudoType, it inserts all flip-flops whose bit
widths are larger than bmin and smaller than bmax into L if
they are not provided by L originally. After this procedure,
all combinations in L are sorted according to their bit widths
in the ascending order (Line 3). At present, all combinations
are represented by binary trees with 0-level. Thus, we would
assign NULL to its right and left child (see Lines 4 and 5).
Finally, for every two kinds of combinations in T , we try to
combine them to create a new combination (Lines 6–13). If
the new combination is the flip-flop of a feasible type (this
can be checked by the function TypeVerify), we would add
it to the table T . In the function TypeVerify, we first add
the bit widths of the two combinations together and store the
result in bsum (see Line 1 in TypeVerify). Then, we will add
a new combination n to T with bit width bsum if L has such
kind of a flip-flop. After these procedures, there may exist
some duplicated or unused combinations in T . Thus, we have

Library L

1-bit 4-bit

Type2Type1

Combination 
Table T

1-bit 4-bit
n2n1

Library L

1-bit 2-bit 3-bit 4-bit

Type1 Type2 Type3 Type4

Pseudo Pseudo

Combination 
Table T

1-bit 4-bit
n2n1

1 4

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n2n1

+

1 1 1

2

4

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

3-bit

n1

n3

n5

4-bit

n3

n3

n2n1

+

1 1 1

2

4 1 1

21

3

1 1

2

4

1 1

2

+ +

(c)

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

3-bit

n1

n3

n5

4-bit

n3

n3

n6

4-bit

n1

n4

n2n1

1 1 1

2

4 1 1

21

3

1 1

2

4

1 1

2

1 1

21

3

4

1

+ + + +

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

4-bit

n3

n3

n2n1

1 1 1

2

4 1 1

2

4

1 1

2

+ +

k k-bit flip-flop

k k-bit merged flip-flop

Library L

1-bit 4-bit

Type2Type1

Combination 
Table T

1-bit 4-bit
n2n1

Library L

1-bit 2-bit 3-bit 4-bit

Type1 Type2 Type3 Type4

Pseudo Pseudo

Combination 
Table T

1-bit 4-bit
n2n1

1 4(b)  

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n2n1

+

1 1 1

2

4

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

3-bit

n1

n3

n5

4-bit

n3

n3

n2n1

+

1 1 1

2

4 1 1

21

3

1 1

2

4

1 1

2

+ +

(c) (d)  

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

3-bit

n1

n3

n5

4-bit

n3

n3

n6

4-bit

n1

n4

n2n1

1 1 1

2

4 1 1

21

3

1 1

2

4

1 1

2

1 1

21

3

4

1

+ + + +

(e)

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

4-bit

n3

n3

n2n1

1 1 1

2

4 1 1

2

4

1 1

2

+ +

k k-bit flip-flop

k k-bit merged flip-flop

(f)

(a)      

Fig. 9. Example of building the combination table. (a) Initialize the library
L and the combination table T . (b) Pseudo types are added into L , and the
corresponding binary tree is also build for each combination in T . (c) New
combination n3 is obtained from combining two n1s. (d) New combination
n4 is obtained from combining n1 and n3, and the combination n5 is obtained
from combining two n3s. (e) New combination n6 is obtained from combining
n1 and n4. (f) Last combination table is obtained after deleting the unused
combination in (e).

to delete them from the table and the two functions Dupli-
cateCombinationDelete and UnusedCombinationDelete are
called for the purpose (Lines 14 and 15). In DuplicateCombi-
nationDelete, it checks whether the duplicated combinations
exist or not. If the duplicated combinations exist, only the one
with the smallest height of its corresponding binary tree is left
and the others are deleted. In UnusedCombinationDelete, it
checks the combinations whose corresponding type is pseudo
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Algorithm 2 Insert Pseudo Types (optional)

InsertPseudoType(L):
1 for each typej in L do
2 PseudoTypeVerifyInsertion( typej, L) ;

PseudoTypeVerifyInsertion( typej, L):
1 if (mod (b(typej) /2) == 0) 
2 b1 = [b(typej)/2],  b2 = [b(typej)/2];
3 else 
4 b1 = ⎣b(typej)/2⎦,  b2 = b(typej) - ⎣b(typej)/2⎦;
5 for i = 1 to 2
6 if ((bi > bmin) && 

(L does not contain a type whose bit width is equal to bi))
7 insert a pseudo type typej with bit width bi to L;
8 PseudoTypeVerifyInsertion(typej, L);

type in L. If the combination is not included into any other
combinations, it will be deleted.

For example, suppose a library L only provides two types
of flip-flops, whose bit widths are 1 and 4 (i.e., bmin = 1 and
bmax = 4), in Fig. 9(a). We first initialize two combinations n1
and n2 to represent these two types of flip-flops in the table
T [see Fig. 9(a)]. Next, the function InsertPseudoType is
performed to check whether the flip-flop types with bit widths
between 1 and 4 exist or not. Thus, two kinds of flip-flop types
whose bit widths are 2 and 3 are added into L, and all types
of flip-flops in L are sorted according to their bit widths [see
Fig. 9(b)]. Now, for each combination in T , we would build a
binary tree with 0-level, and the root of the binary tree denotes
the combination. Next, we try to build new legal combina-
tions according to the present combinations. By combing two
1-bit flip-flops in the first combination, a new combination
n3 can be obtained [see Fig. 9(c)]. Similarly, we can get a
new combination n4 (n5) by combining n1 and n3(two n3’s)
[see Fig. 9(d)]. Finally, n6 is obtained by combing n1 and n4.
All possible combinations of flip-flops are shown in Fig. 9(e).
Among these combinations, n5 and n6 are duplicated since
they both represent the same condition, which replaces four
1-bit flip-flops by a 4-bit flip-flop. To speed up our program,
n6 is deleted from T rather than n5 because its height is larger.
After this procedure, n4 becomes an unused combination [see
Fig. 9(e)] since the root of binary tree of n4 corresponds to the
pseudo type, type3, in L and it is only included in n6. After
deleting n6, n4 is also need to be deleted. The last combination
table T is shown in Fig. 9(f).

In order to enumerate all possible combinations in the
combination table, all the flip-flops whose bit widths range
between bmax and bmin and do not exist in L should be
inserted into L in the above procedure. However, this is time
consuming. To improve the running time, only some types of
flip-flops need to be inserted. There exist several choices if
we want to build a binary tree corresponding to a type type j .
However, the complete binary tree has the smallest height.
Thus, for building a binary tree of a certain combination ni

whose type is type j , only the flip-flops whose bit widths

REPLACE filp-flops 
in each subregion

Combine subregions and 
replace flip-flops

De-replace and replace flip-flops 
belongs to pseudo combination

Divide chip into subregions

Input

Output

Fig. 10. Detailed flow to merge flip-flops.

are (�b(type j)/2�) and (b(type j)–�b(type j)/2�) should exist
in L. Algorithm 2 shows the enhanced procedure to insert
flip-flops of pseudo types. For each type j in L, the function
PseudoTypeVerifyInsertion recursively checks the existence
of flip-flops whose bit widths around �b(type j)/2� and add
them into L if they do not exist (see Lines 1 and 2). In
the function PseudoTypeVerifyInsertion, it divides the bit
width b(type j) into two parts �b(type j)/2� and �b(type j )/2�
(�b(type j)/2� and b(type j)–�b(type j)/2�) if b(type j ) is an even
(odd) number (see Lines 1–4 in PseudoTypeVerifyInsertion),
and it would insert a pseudo type type j into L if the type is
not provided by L and its bit width is larger than the minimum
bit width (denoted by bmin) of flip-flops in L (see Lines 5–8
in PseudoTypeVerifyInsertion). The same procedure repeats
in the new created type. Note that this method works only
when the 1-bit type exists in L. We still have to insert pseudo
flip-flops by the function InsertPseudoType in Algorithm 1
if the 1-bit flip-flop is not provided by L.

For example, assume a library L only provides two kinds of
flip-flops whose bit widths are 1 and 7. In the new procedure, it
first adds two pseudo types of flip-flops whose bit widths are 3
and 4, respectively, for the flip-flop with 7-bit (i.e., L becomes
[1 3 4 7]). Next, the flip-flop whose bit width is 2 is added to
L for the flip-flop with 4-bit (i.e., L becomes [1 2 3 4 7]). For
the flip-flop with 3-bit, the procedure stops because flop-flops
with 1 and 2 bits already exist in L. In the new procedure, we
do not need to insert 5- and 6-bit pseudo types to L.

C. Merge Flip-Flops

We have shown how to build a combination table in
Section III-B. Now, we would like to show how to use the
combination table to combine flip-flops in this subsection. To
reduce the complexity, we first divide the whole placement
region into several subregions, and use the combination table
to replace flip-flops in each subregion. Then, several subre-
gions are combined into a larger subregion and the flip-flops
are replaced again so that those flip-flops in the neighboring
subregions can be replaced further. Finally, those flip-flops
with pseudo types are deleted in the last stage because they are
not provided by the supported library. Fig. 10 shows this flow.

1) Region Partition (Optional): To speed up our problem,
we divide the whole chip into several subregions. By suitable
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bin

bin
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bin
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Fig. 11. Example of region partition with six bins in one subregion.

partition, the computation complexity of merging flip-flops can
be reduced significantly (the related quantitative analysis will
be shown in Section V). As shown in Fig. 11, we divide the
region into several subregions, and each subregion contains
six bins, where a bin is the smallest unit of a subregion.

2) Replacement of Flip-flops in Each Subregion: Before
illustrating our procedure to merge flip-flops, we first give an
equation to measure the quality if two flip-flops are going to
be replaced by a new flip-flop as follows:

cost = routing_length − α × √
available_area (5)

where routing_length denotes the total routing length between
the new flip-flop and the pins connected to it, and avail-
able_area represents the available area in the feasible region
for placing the new flip-flop. α is a weighting factor (the
related analysis of the value α will be shown in Section V).
The cost function includes the term routing_length to favor
a replacement that induces shorter wirelength. Besides, if the
region has larger available space to place a new flip-flop, it
implies that it has higher opportunities to combine with other
flip-flops in the future and more power reduction. Thus, we
will give it a smaller cost. Once the flip-flops cannot be merged
to a higher-bit type (as the 4-bit combination n4 in Fig. 9),
we ignore the available_area in the cost function, and hence
α is set to 0.

After a combination has been built, we will do the replace-
ments of flip-flops according to the combination table. First,
we link flip-flops below the combinations corresponding to
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Fig. 12. Example of replacements of flip-flops. (a) Sets of flip-flops before
merging. (b) Two 1-bit flip-flops, f1 and f2, are replaced by the 2-bit flip-flop
f3. (c) Two 1-bit flip-flops, f4 and f5, are replaced by the 2-bit flip-flop f6.
(d) Two 2-bit flip-flops, f7 and f8, are replaced by the 4-bit flip-flop f9.
(e) Two 2-bit flip-flops, f3 and f6, are replaced by the 4-bit flip-flop f10.
(f) Sets of flip-flops after merging.

their types in the library. Then, for each combination n in
T, we serially merge the flip-flops linked below the left child
and the right child of n from leaves to root. Algorithm 3
shows the procedure to get a new flip-flop corresponding to
the combination n. Based on its binary tree, we can find the
combinations associated with the left child and right child of
the root. Hence, the flip-flops in the lists, named lleft and lright,
linked below the combinations of its left child and its right
child are checked (see Lines 2 and 3). Then, for each flip-flop
f i in lleft, the best flip-flop fbest in lright, which is the flip-flop
that can be merged with f i with the smallest cost recorded in
cbest, is picked. For each pair of flip-flops in the respective
list, the combination cost [based on (5)] is computed if they
can be merged and the pair with the smallest cost is chosen
(see Lines 4–11). Finally, we add a new flip-flop f ′ in the list
of the combination n and remove the picked flip-flops which
constitutes the f ′ (see Lines 12–14).

For example, given a library containing three types of flip-
flops (1-, 2-, and 4-bit), we first build a combination table T
as shown in Fig. 12(a). In the beginning, the flip-flops with
various types are, respectively, linked below n1, n2, and n3 in
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Subregion
New subregion
after combination

(a)               (b)

Fig. 13. Combination of flip-flops near subregion boundaries. (a) Result of
replace flip-flops in each subregion. (b) Result of replace flip-flops in each
new subregion which is obtained from combining twelve subregion in (a).

Original 
subregion Subregion after

combination
Subregion after

combination

(a) (b) (c)

Fig. 14. Combination of subregions to a larger one. (a) Placement is originally
partitioned into 16 subregions for replacement. (b) Subregion bounded by
bold line is obtained from combining four neighboring subregions in (a).
(c) Subregion bounded by bold line is obtained from combining four subre-
gions in (b).

T according to their types. Suppose we want to form a flip-
flop in n4, which needs two 1-bit flip-flops according to the
combination table. Each pair of flip-flops in n1 are selected
and checked to see if they can be combined (note that they also
have to satisfy the timing and capacity constraints described
in Section II). If there are several possible choices, the pair
with the smallest cost value is chosen to break the tie. In
Fig. 12(a), f1 and f2 are chosen because their combination
gains the smallest cost. Thus, we add a new node f3 in the
list below n4, and then delete f1 and f2 from their original list
[see Fig. 12(b)]. Similarly, f4 and f5 are combined to obtain a
new flip-flop f6, and the result is shown in Fig. 12(c). After all
flip-flops in the combinations of 1-level trees (n4 and n5) are
obtained as shown in Fig. 12(d), we start to form the flip-flops
in the combinations of 2-level trees (n6, and n7). In Fig. 12(e),
there exist some flip-flops in the lists below n2 and n4, and we
will merge them to get flip-flops in n6 and n7, respectively.
Suppose there is no overlap region between the couple of flip-
flops in n2 and n4. It fails to form a 4-bit flip-flop in n6. Since
the 2-bit flip-flops f3 and f6 are mergeable, we can combine
them to obtain a 4-bit flip-flop f10 in n7. Finally, because there
exists no couple of flip-flops that can be combined further, the
procedure finishes as shown in Fig. 12(f).

If the available overlap region of two flip-flops exists, we
can assign a new one to replace those flip-flops. Once there
is sufficient space to place the new flip-flop in the available
region, the algorithm will perform the replacement, and the
new generated flip-flop will be placed in the grid that makes
the wirelength between the flip-flop and its connected pins
smallest. If the capacity constraint of the bin, Bk , which

the grid belongs to will be violated after the new flip-flop
is placed on that grid, we will search the bins near Bk to
find a new available grid for the new flip-flop. If none of
bins which are overlapped with the available region of new
flip-flop can satisfy the capacity constraint after the placement
of new flip-flop, the program will stop the replacement of the
two flip-flops.

3) Bottom-Up Flow of Subregion Combinations (Optional):
As shown in Fig. 13(a), there may exist some flip-flops in
the boundary of each subregion that cannot be replaced by
any flip-flop in its subregion. However, these flip-flops may
be merged with other flip-flops in neighboring subregions as
shown in Fig. 13(b). Hence, to reduce power consumption
further more, we can combine several subregions to obtain
a larger subregion and perform the replacement again in
the new subregion again. The procedure repeats until we
cannot achieve any replacement in the new subregion. Fig. 14
gives an example for this hierarchical flow. As shown in
Fig. 14(a), suppose we divide a chip into 16 subregions in
the beginning. After the replacement of flip-flops is finished
in each subregion, four subregions are combined to get a larger
one as shown in Fig. 14(b). Suppose some flip-flops in new
subregions still can be replaced by new flip-flops in other new
subregions, we would combine four subregions in Fig. 14(b)
to get a larger one as shown in Fig. 14(c) and perform the
replacement in the new subregion again. As the procedure
repeats in a higher level, the number of mergeable flip-flops
gets fewer. However, it would spend much time to get little
improvement for power saving. To consider this issue, there
exists a trade-off between power saving and time consuming
in our program.

4) De-Replace and Replace (Optional): Since the pseudo
type is an intermediate type, which is used to enumerate all
possible combinations in the combination table T , we have to
remove the flip-flops belonging to pseudo types. Thus, after
the above procedures have been applied, we would perform
de-replacement and replacement functions if there exists any
flop-flops belonging to a pseudo type. For example, if there
still exists a flip-flop, fi , belonging to n3 after replacements
in Fig. 9(f), we have to de-replace fi into two flip-flops
originally belongs to n1. After de-replacing, we will do the
replacements of flip-flops according to T without consideration
of the combinations whose corresponding type is pseudo in L.

IV. COMPUTATION COMPLEXITY

This section analyzes the timing complexity of this algo-
rithm. The core is to continuously seek suitable combinations,
and find the optimized solution among all possibilities. Hence,
the timing complexity depends on the operation count of
the function of deciding whether two flip-flops can combine
together or not. For example, assume all flip-flops are of the
same type, 1-bit flip-flop. In the beginning, each flip-flop will
try to combine with all the other flip-flops. If the first flip-
flop finds the best solution, the two 1-bit flip-flops will form a
2-bit flip-flop and be removed from the list. Then, the second
flip-flop will perform identical procedures. Let N represent
the number of flip-flops per circuit. For an exhaustive run
for all the 1-bit cells, the timing complexity is O(N2). If the
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Fig. 15. (a) Influence of the region size on power. (b) Influence of the region
size on execution time.
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Fig. 16. (a) Influence of the weighting factor on power reduction.
(b) Influence of the weighting factor on wirelength reduction.

largest flip-flop the library provided is M-bit, the size of the
combination table is O(Mlog2(M)) when we use pseudo type
flip-flops. The total timing complexity is O(Mlog2(M)× N2),
equivalently equal to O(N2) because the value of M is much
less than the value of N .

V. EXPERIMENTAL RESULTS

This section shows our experimental results. We imple-
mented our algorithm in C++ language, and all experiments
were ran on workstation with a 3.33-GHz Intel Core i7-980X
processor with 16-GB memory. Our experiment can be divided
into two parts. In the first part, we compare our method
with Chang et al. [6] and the results are shown in the first
subsection. However, some conditions cannot be verified by
their test cases. Thus, we provide another set of test cases and
the experiment results are shown in the second subsection.

A. Performance Comparison With Chang et al. [6]

In this subsection, we first compare the experimental results
with [6]. They used six test cases which were provided by
Faraday corporation [7]. Table I shows the information of test
cases. The numbers of flip-flops range from 98 to 169 200,
and the available types (i.e., 1-, 2-, and 4-bit) of flip-flops in
all cases are the same. Table I shows the number of flip-flops
in each type in the initial condition.

In our algorithm, there exist two values which would affect
our results: the first one is the dimension of a subregion since
we would partition a chip into several subregions. The second
one is the parameter used in the cost function of (5). Thus,
we first do some experiments to explore better values for these
two parameters. The results for comparisons with [6] will be
shown in the last part of this subsection.

TABLE I

INDUSTRY BENCHMARK CIRCUITS

Circuit Number of
1-bit FFs

Number of
2-bit FFs

Number of
4-bit FFs

c1 76 22 0

c2 366 57 0

c3 1464 228 0

c4 4378 751 0

c5 9150 1425 0

c6 146400 22800 0

TABLE II

EXPERIMENTAL RESULTS OF [6] AND OUR APPROACH

Circuit
Approach in [6] Our approach

PR_Ratio
(%)

WR_Ratio
(%)

Times
(s)

PR_Ratio
(%)

WR_Ratio
(%)

Times
(s)

c1 14.8 0.917 0.01 15.9 0.928 0.07

c2 16.9 0.947 0.04 18.0 0.934 0.12

c3 17.1 0.948 0.10 17.8 0.928 0.24

c4 16.8 0.945 0.28 17.6 0.932 0.84

c5 17.1 0.949 0.60 17.8 0.936 1.51

c6 17.2 0.949 78.92 17.9 0.938 30.43

Comp. 0.95 1.01 2.41 1.00 1.00 1.00

1) Influence of Region Size on Performance: In this part,
we first determine a suitable size for each subregion during
partitioning. Since the execution time is actually dominated
by the average number of flip-flops included in a subregion,
we use the number of flip-flops in a single subregion to
represent the size of a subregion, which can be obtained from
multiplying the number of bins in a subregion by the average
number of flip-flops in a bin. Fig. 15 shows the simulation
results using the circuit c6 in Table I. We sweep the number of
flip-flops included in a subregion to observe its effect on power
consumption and execution time. The y-axis in Fig. 15(a)
and (b), respectively, represent the power reduction and tim-
ing improvement ratios relative to the size of a subregion.
While a subregion gets larger, the execution time becomes
longer. However, the power consumption does not decrease
proportionally. On the contrary, if the subregion size becomes
very small, the power consumption will increase significantly.
To balance execution time and power consumption, we select
600 as the number of flip-flops in a single subregion (the
normalized power and execution time are about 83% and 0.8%
if the number of flip-flops in a single subregion is 600 in
Fig. 15).

2) Influence of Weighting Factor α on Performance: Since
the parameter α used by (5) (see Section III-C.2) would
affect our results, it is necessary to find a suitable value for
getting better results. Similarly, we use circuit c6 to test our
program, and the simulation result is shown in Fig. 16. In
this experiment, we sweep α from 0 to 3 to get the data of
power consumption and wirelength. The y-axis in Fig. 16(a)
and (b) respectively represents the wirelength reduction ratio
and the power reduction ratio. While the value of α becomes
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TABLE III

EXPERIMENTAL RESULTS UNDER DIFFERENT CONDITIONS

Case 1 Case 2 Case 3 Case 4 Case 5

Library 1, 2, 4 1, 2, 4, 4, 8 1, 2, 4, 6, 13 1, 2, 4, 8 1, 2, 4, 8

Flip-flop number 120 953 5524 60 000 1 728 000

Powerori (unit 103) 12 95 552 6000 172 800

Powermerged (unit 103) 9 67 430 4208 136 509

PR_Ratio (%) 20.97 28.80 22.11 29.87 21.00

WLori (unit 103) 83 577 3563 53 625 1 199 304

WLmerged (unit 103) 71 506 2189 31 008 1 068 961

WR_Ratio (%) 85.62 87.77 61.44 57.82 89.13

Times (s) 0.08 0.24 1.07 36.7 2377

Times of parser 0.07 0.15 0.29 3.8 2153

Fig. 17. Average computational complexity of our algorithm.

larger, the power reduction ratio gets larger. If α is close to
0, the wirelength reduction ratio will be better than the power
reduction ratio. To balance wirelength reduction and power
reduction, we use the curves to select a suitable value for
α. Because the variation of α has the more apparent effect
on wirelength reduction than power reduction, the value of α
close to 0 is preferred. In the following experiments, we select
0.1 as the value of α.

3) Comparison Results: The comparison results between
[6] and our approach are listed in Table II. Column 1 lists
the names of benchmark circuits. In [6], their algorithm
was implemented on 2.66-GHz Intel i7 PC under the Linux
operation system, and our algorithm was implemented on a
3.33-GHz Intel Core i7-980X processor with 16-GB memory.
In Table II, we compare the results of PR_Ratio, WR_Ratio
and execution times with [6]. The comparison results are
listed in row 8. The values PR_Ratio and WR_Ratio can be
computed by the following equations:

PR_Ratio(%) = poweroriginal−powermerged

poweroriginal
· 100%

WR_Ratio(%) = wire_lengthmerged

wire_lengthoriginal
· 100%

where the powermerged and wire_lengthmerged are the measured
power and wirelength after the program is applied, and the
poweroriginal and wire_lengthoriginal are the measured power
and wirelength of the original test case. As shown in Table II,

Fig. 18. Distribution of flip-flops in the original design (120 flip-flops,
power = 12 000, wirelength = 83 285).

our results of PR_Ratio, WR_Ratio and execution time are all
better than the results in [6]. Our execution time of cases with
number of flip-flops smaller than about 10 000 is larger than
[6], because we have to spend additional time to build the
combination table. However, with the help of the combination
table, our experimental results of the execution time of c6
(about 170 000 flip-flops) is much less than [6].

B. Average-Case Performance

In this subsection, we provide another set of cases supported
by [9] to test our program. The content of test circuits and
experimental results are shown in Table III. Compared to the
cases in Table I, the available types of flip-flops are different
from Cases 1 to 5. Case 5 is the largest circuit of about
1 700 000 flip-flops. Because the execution time is dominated
by the number of flip-flops in the circuit, Case 5 is applied to
help to demonstrate the efficiency and robust of our algorithm.
Row 1 in the table lists all test cases and row 2 shows types of
different flip-flops that can be used in each test case. Rows 3
and 4 respectively, show numbers of flip-flops and total power
consumption in original test cases. After some flip-flops are
replaced by our algorithm, the power consumption of each
design is shown in row 5, and row 6 computes the ratio
of power reduction by our algorithm, which is denoted by
PR_Ratio. From rows 7 to 9, it shows the wirelength reduction
by our algorithm. Rows 7 and 8 show the original wirelength
and the wirelength after our program is applied. Finally, the
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Fig. 19. Resulting distribution of flip-flops (34 flip-flops, power = 9484,
wirelength = 71 304)

Fig. 20. Distribution of flip-flops in the original design. (5524 flip-flops,
power = 552 400, wirelength = 3 562 985).

ratio of wirelength reduction, which is denoted by WR_Ratio,
is shown in row 9.

The values of PR_Ratio in all cases are between 20 and 30.
Besides, the wirelength are less than the original circuit in all
cases, and the best value of WR_Ratio can achieve 42.18%
improvement. Row 10 shows the execution time of each case.
Because of the long execution time of parser, we show the
execution time of parser in row 11.

Fig. 17 displays the curve of the execution time with respect
to various flip-flop numbers in a circuit. The test cases are
obtained by duplicating Case 1 various times. The x-axis
represents the number of flip-flops, and the y-axis denotes
the percentage of a execution time compared with the longest
execution time. As the number of flip-flops increases, the
execution time of parser will be longer than execution time
which does not include parser. For this reason, the execution
time in Fig. 17 does not include the execution time of parser.
The largest case, which contains about 1 700 000 flip-flops,
takes the longest execution time (about 10 min). According to
Fig. 17, it shows that the timing complexity of our algorithm
is O(N1.12) instead of O(N2).

Figs. 18 and 19 show the original distribution of flip-flops
and the resulting distribution of flip-flops after applying our
program. In the figures, flip-flops are denoted by green circles
and pins by blue circles. Blue lines represent the wires that

Fig. 21. Resulting distribution of flip-flops. (1378 flip-flops, power =
430 260, wirelength = 2 189 215).

connect pins and flip-flops. In Fig. 18, there are 120 1-bit
flip-flops and 240 pins in the original circuit in Case 1. After
applying our program, there only exist 27 4-bit flip-flops, five
2-bit flip-flops and two 1-bit flip-flops in the new design shown
in Fig. 19. In Fig. 20, there exist 5524 2-bit flip-flops and
11 048 pins in the original circuit in Case 3. There only exist
two 6-bit, 1284 4-bit, 34 2-bit, and eight 1-bit flip-flops for
the new circuit shown in Fig. 21 after applying our program.

VI. CONCLUSION

This paper has proposed an algorithm for flip-flop replace-
ment for power reduction in digital integrated circuit design.
The procedure of flip-flop replacements is depending on the
combination table, which records the relationships among the
flip-flop types. The concept of pseudo type is introduced to
help to enumerate all possible combinations in the combination
table. By the guidelines of replacements from the combina-
tion table, the impossible combinations of flip-flops will not
be considered that decreases execution time. Besides power
reduction, the objective of minimizing the total wirelength
also be considered to the cost function. The experimental
results show that our algorithm can achieve a balance between
power reduction and wirelength reduction. Moreover, even
for the largest case which contains about 1 700 000 flip-flops,
our algorithm can maintain the performance of power and
wirelength reduction in the reasonable processing time.
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