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New Crosstalk Avoidance Codes
Based on a Novel Pattern Classification
Feng Shi,Student Member, IEEE,Xuebin Wu, and Zhiyuan YanSenior Member, IEEE

Abstract—The crosstalk delay associated with global on-chip
interconnects becomes more severe in deep submicron technology,
and hence can greatly affect the overall system performance.
Based on a delay model proposed by Sotiriadiset al., transition
patterns over a bus can be classified according to their delays.
Using this classification, crosstalk avoidance codes (CACs) have
been proposed to alleviate the crosstalk delays by restricting the
transition patterns on a bus. In this paper, we first propose a
new classification of transition patterns, and then devise anew
family of CACs based on this classification. In comparison tothe
previous classification, our classification has more classes and
the delays of its classes do not overlap, both leading to more
accurate control of delays. Our new family of CACs includes
some previously proposed codes as well as new codes with
reduced delays and improved throughput. Thus, this new family
of crosstalk avoidance codes provides a wider variety of tradeoffs
between bus delay and efficiency. Finally, since our analytical
approach to the classification and CACs treats the technology-
dependent parameters as variables, our approach can be easily
adapted to a wide variety of technology.

Index Terms—Crosstalk avoidance codes, delay, interconnects

I. INTRODUCTION

RECENT International Technology Roadmap of Semicon-
ductors (ITRS) [1] has shown a troubling trend: while

gate delaydecreaseswith scaling, global wire delayincreases.
This is because with the process technologies scaling down
into deep submicrometer (DSM), the crosstalk delay becomes
dominant in global wire delay due to the increasing coupling
capacitance between adjacent wires. Hence, the crosstalk delay
has become a serious bottleneck of the overall system perfor-
mance.

The analytical model proposed by Sotiriadiset al. [2], [3],
a widely used delay model, gives upper bounds on the delay
of all wires on a bus. According to [2], [3], the delay of the
k-th wire (k ∈ {1, 2, · · · ,m}) of anm-bit bus is given by

Tk =







τ0[(1 + λ)∆2
1 − λ∆1∆2], k = 1

τ0[(1 + 2λ)∆2
k − λ∆k(∆k−1 +∆k+1)], k 6= 1,m

τ0[(1 + λ)∆2
m − λ∆m∆m−1], k = m,

(1)
whereλ is the ratio of the coupling capacitance between ad-
jacent wires and the ground capacitance,τ0 is the propagation
delay of a wire free of crosstalk, and∆k is 1 for 0 → 1
transition, -1 for 1→ 0 transition, or 0 for no transition on
thek-th wire. In this model, the delay of thek-th wire depends
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on the transition patterns of at most three wires,k− 1, k, and
k+1 only. The transition patterns over these three wires can be
classified based on Eq. (1) into five classes, denoted byDi for
i = 0, 1, 2, 3, 4, and the patterns inDi have a worst-case delay
(1 + iλ)τ0. This classification enables one to limit the worst-
case delay over a bus by restricting the patterns transmitted on
the bus. That is, by avoiding all transition patterns inDi for
i > i0, one can achieve a worst-case delay of(1+ i0λ)τ0 over
the bus. Based on this principle, crosstalk avoidance codes
(CACs) of different worst-case delays have been proposed
(see, for example, [4]–[6]). For example, forbidden overlap
codes (FOCs), forbidden transition codes (FTCs), forbidden
pattern codes (FPCs), and one lambda codes (OLCs) achieve
a worst-case delay of(1 + 3λ)τ0, (1 + 2λ)τ0, (1 + 2λ)τ0,
and (1 + λ)τ0, respectively. Based on Eq. (1), a worst-case
delay of τ0 can be achieved by assigning two protection
wires to each data wire [5]. Other types of CACs, such as
those with equalization [7] or two-dimensional CACs [8], have
been proposed in the literature. For CACs, since the area and
power consumption of their encoder/decoder (CODECs) are
all overheads, the complexities of the CODECs are important
to the effectiveness of CACs. Thus, efficient CODECs have
been proposed for CACs [9]–[11].

The classification of transition patterns based on the model
in [2], [3] has two drawbacks. First, the model in [2], [3]
has limited accuracy because of its dependence on only three
wires: the model overestimates the delays of patterns inD1
throughD4, while it underestimates the delays of patterns
in D0. For this reason, the scheme with a worst-case delay
of τ0 in [5] is invalid since its actual delay is much greater.
Second, the actual delay ranges in some classes overlap with
others. This, plus the overestimation of delays forD1 through
D4, implies that the delays of existing CACs are not tightly
controlled. These drawbacks motivate us to include more wires
and to classify the transition patterns without overlapping
delay ranges.

In [12], we have proposed a new analytical five-wire delay
model. Two extra neighboring wires are included in the
delay model [12], and the delay of the middle wire of five
neighboring wires is determined by the transition patternson
all five wires. This five-wire model has better accuracy than
the model in [2], [3] forDi for i = 0, 1, 2, 3, 4 [12]. This work
confirms that using more wires leads to improved accuracy.

There are two main contributions in this paper:
• First, we approximate the crosstalk delay in a five-wire

model and propose a new classification of transition
patterns.

• Second, we propose a family of CACs based on our
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classification.

The work in this paper is different from previous works,
including our previous works, in several aspects:

• First, although the delay approximation in this paper is
also based on a five-wire model, it is different from that
in our previous work [12]. The delay approximation in
this paper is carried out by extending the approach in
[13] from a three-wire model to a five-wire one.

• Second, our classification of transition patters is different
from that in [2], [3] (based on Eq. (1)), in two aspects.
First, our classification has seven classes as opposed to
five based on Eq. (1). Second, while the delays of some
classes overlap for the classification based on Eq. (1), all
classes in our classification have non-overlapping delays.
These two key differences allow us to have a more
accurate control of delays for transition patterns.

• Our new family of CACs is also different from previ-
ously proposed CACs, all of which are based on the
classification in [2], [3] (based on Eq. (1)). While some
codes in this new family are shown to be the same as
existing CACs, OLCs, FPCs, and FOCs, this family also
includes new codes that achieve smaller worst-case delays
and improved throughputs than OLCs, which have the
smallest worst-case delays among all existing CACs.

The rest of the paper is organized as follows. In Section II,
we first propose our classification and compare it with that
in [2], [3]. We then present our new family of CACs in
Section III and compare their performance with existing CACs
in Section IV. Some concluding remarks are provided in
Section V.

II. INTERCONNECT DELAYS AND
CLASSIFICATION

A. Interconnect Modeling

Since the functionality and performance in DSM technology
are greatly affected by the parasitics, distributed RC models
are widely employed to analyze on-chip interconnects. In this
paper, we consider the distributed RC model of five wires
shown in Fig. 1, whereVi(x, t) denotes the transient signal
at time t and positionx (0 ≤ x ≤ L) over wire i for
i ∈ {1, 2, 3, 4, 5}, r and c denote the resistance and ground
capacitance per unit length, respectively. Also,λc denotes the
coupling capacitance per unit length between two adjacent
wires. The value ofλ depends on many factors, such as the
metal layer in which we route the bus, the wire width, the
spacing between adjacent wires, and the distance to the ground
layer. We consider a uniformly distributed bus with the same
parametersr, c, andλ for all the wires.

B. Derivation of Closed-form Expressions

When determining the delay of a wire, the model in [2], [3]
considers only the effects of eitherone or two neighboring
wires (cf. Eq. (1)). To address the drawbacks of the model
in [2], [3] described above, additional neighboring wires need
to be accounted for. In our delay derivation below, whenever
possible we considerfour neighboring wires of a wire, two

Wire 1

Wire 2

Wire 3

Wire 5

x

r   x
c   x

c   x

V1(0,t)

V2(0,t)

V3(0,t)

V5(0,t)
V5(L,t)

V3(L,t)

V2(L,t)

V1(L,t)

L

Wire 4

V4(0,t)
V4(L,t)

6

6
6

6

λ

Fig. 1. A distributed RC model for five wires.

neighboring wires on each side, to determine its delay. To
approximate the delay of a side wire (wires1, 2, n−1 or n) of
an n-wire bus,three neighboring wires are considered. This
is because the side wires are affected by fewer neighboring
wires. This scheme is similar to the model in [2], [3] and
appears to work well. We focus on the 50% delay, which is
defined as the time required for the unit step response to reach
50% of its final value.

In [13], the crosstalk of two coupled lines was described
by partial differential equations (PDEs), and a technique
for decoupling these highly coupled PDEs was introduced
by using eigenvalues and corresponding eigenvectors. In our
work, we extend this approach from a three-wire model to a
five-wire one. Specifically, we first use the technique in [13]to
decouple the PDEs that describe the crosstalk of four coupled
wires, then solve these independent PDEs for closed-form
expressions, and finally approximate the delays of each wire.

The PDEs characterizing five wires with lengthL are given
by:

∂2

∂x2
V(x, t) = RC

∂

∂t
V(x, t), (2)

where R = diag{r r r r r}, V(x, t) =
[V1(x, t) V2(x, t) V3(x, t) V4(x, t) V5(x, t)]

T , and

C = c





1+λ −λ 0 0 0
−λ 1+2λ −λ 0 0
0 −λ 1+2λ −λ 0
0 0 −λ 1+2λ −λ
0 0 0 −λ 1+λ



 .

The eigenvalues ofC/c are given byp1 = 1, p2 = 1 +
5+

√
5

2 λ, p3 = 1 + 5−
√
5

2 λ, p4 = 1 + 3+
√
5

2 λ, and p5 = 1 +
3−

√
5

2 λ. Their corresponding eigenvectorsei’s are given by
e1 = [1 1 1 1 1]T , e2 = [

√
5−1
4 − 1+

√
5

4 1 − 1+
√
5

4

√
5−1
4 ]T ,

e3 = [−
√
5+1
4

√
5−1
4 1

√
5−1
4 −

√
5+1
4 ]T , e4 = [−1

√
5+1
2 0 −√

5+1
2 1]T , ande5 = [−1 −

√
5−1
2 0

√
5−1
2 1]T , respectively.

With a technique for decoupling partial differential equa-
tions similar to [13], Eq. (2) is transformed into

∂2

∂x2
Ui(x, t) = rcpi

∂

∂t
Ui(x, t), for i = 1, 2, 3, 4, 5, (3)

whereUi(x, t) = V
T (x, t)ei denotes the transformed signals.

The decoupled PDEs in Eq. (3) are independent of each
other. EachUi(x, t) describes a single wire with a modified
capacitancecpi. The solution toUi(L, t) is given by a series of
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the formUi(L, t) = Vdd +
∑∞

k=0 rke
− t

s
k
τ . As shown in [13],

a single-exponent approximationVdd(1 + r0e
− t

s0τ ) is enough
for t/τ > 0.1, wherer0 ands0 are the coefficients of the most
significant term.

For different transitions, we solve Eq. (3) forUi(x, t) and
obtainV3(L, t) =

1
5 [U1(L, t) + 2U2(L, t) + 2U3(L, t)], which

is given by a sum of a constant and three exponent terms,
Vdd(1− c0e

− t

a0τ − c1e
− t

a1τ − c2e
− t

a2τ ). Then the 50% delay
of wire 3 can be evaluated by solvingV3(L, t) = 0.5Vdd.

For side wires, PDEs characterizing four wires with length
L are given by:

∂2

∂x2
V(x, t) = RC

∂

∂t
V(x, t), (4)

where R = diag{r r r r}, V(x, t) =
[V1(x, t) V2(x, t) V3(x, t) V4(x, t)]

T , and C =

c

[

1+λ −λ 0 0
−λ 1+2λ −λ 0
0 −λ 1+2λ −λ
0 0 −λ 1+λ

]

.

The eigenvalues ofC/c are given byp1 = 1, p2 = 1 +
(2 −

√
2)λ, p3 = 1 + 2λ, and p4 = 1 + (2 +

√
2)λ. Their

corresponding eigenvectorsei’s are given bye1 = [1 1 1 1]T ,
e2 = [−1 (1 −

√
2) − (1 −

√
2) 1]T , e3 = [1 − 1 − 1 1]T ,

ande4 = [−1 (1 +
√
2) − (1 +

√
2) 1]T , respectively.

By decoupling the PDEs in Eq. (4), we have

∂2

∂x2
Ui(x, t) = rcpi

∂

∂t
Ui(x, t), for i = 1, 2, 3, 4, (5)

The expressions of wires 1 and 2 are given byV1(L, t) =
1
4U1(L, t) − 2+

√
2

8 U2(L, t) +
1
4U3(L, t) − 2−

√
2

8 U4(L, t) and
V2(L, t) =

1
4U1(L, t)−

√
2
8 U2(L, t)− 1

4U3(L, t)+
√
2
8 U4(L, t),

respectively. Then the 50% delays of wires 1 and 2 can be
evaluated by solvingVi(L, t) = 0.5Vdd for i = 1, 2.

C. Pattern Classification

First, we consider the classification of transition patterns
over five wires with respect to the delay of the middle wire
(wire 3). In this paper, we use “↑” to denote a transition
from 0 to the supply voltageVdd (normalized to 1), “-” no
transition, and “↓” a transition fromVdd to 0. We first focus
on patterns with a↑ transition on wire 3 in a five-wire bus
and deriveV3(L, t) for each pattern as described in Sec. II-B.
There are34 = 81 different transition patterns, which can be
partitioned into 25 subclasses according to the expressions of
the output signals on wire 3: All transition patterns in each
subclass have the same expressionV3(L, t). The expressions
of all 25 subclasses are shown in Tab. I. Then the expressions
V3(L, t) of all patterns in the 25 subclasses are evaluated for
their 50% delays. By grouping subclasses with close delays
into one class, we can divide the 81 transition patterns into
seven classesCi for i = 0, 1, · · · , 6 shown in Tab. I. For all
25 subclasses, simulated delays are also provided in Tab. I.
For all seven classes, the difference between evaluated delay
and simulated delay in Tab. I is small.

All evaluations and simulations are based on a freePDK
45nm CMOS technology with 10 metal layers [14]. We assume
that the top two metal layers, layers 9 and 10, are used for
routing global interconnects, and that metal layer 8 is usedas
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Fig. 2. Delays of the middle wire for all patterns with respect to λ in a
five-wire bus (τ0 = 1.42ps).

the ground layer. An interconnect model in [15] is used for
parasitic extraction. For a 5mm bus in the top metal layer, the
key parasitics, resistance, ground capacitance, and coupling
capacitance, are given byR = 68.75Ω, Cgnd = 41.32fF , and
Ccouple = 505.68fF , respectively. The bus is modeled by a
distributed RC model as shown in Fig. 1 with 100 segments.
The two important parameters used in our delay approximation
areτ0 = 0.5RCgnd = 1.42ps andλ = Ccouple/Cgnd = 12.24.
Since the crosstalk delay on the bus constitutes a major partof
the whole delay, the delays introduced by buffers are ignored.
We assume that ideal step signals are applied on the bus
directly. The closed-form expressions are evaluated for 50%
delays via MATLAB and the simulation is done by HSPICE.

From Tab. I, it can be easily verified thatC5 andC6 are the
same asD3 andD4 in [2], [3], respectively. That is, the middle
three wires of the transition patterns inC5 (C6, respectively)
constituteD3 (D4, respectively). The transition patterns in
D0, D1, andD2 are divided into five classesC0—C4 in our
classification with following relations,C4 ⊂ D2, C3 ⊂ D1∪
D2, C2 ⊂ D0∪D1, C1 ⊂ D0∪D1∪D2, andC0 ⊂ D0∪D1.

Note that the coefficientsci for i = 0, 1, 2 of the expression
of wire 3 are independent of technology and determined by
different patterns. For a given pattern, the coefficientsci are
fixed and the delay is a function ofτ0 andλ. Since the ratio
t/τ0 appears in the exponent term, varyingτ0 would scale
delays in all classes. Thus, the classification does not depend
on τ0. The coupling factorλ could affect the delay differently.
In the following, we verify our classification for technology
with different coupling factor,λ = 1, 2, · · · , 13, and show the
results in Fig. 2. Different classes are denoted by different line
styles. Each class contains multiple lines, which represents a
subclass. Patterns in each subclass have the same delay. For
λ ≥ 3, the ranges of delays in all classes do not overlap.
Also, the delay in each subclass increases linearly withλ.
This implies that our classification is valid provided that the
coupling factorλ is at least 3.
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TABLE I
CLOSED-FORM EXPRESSIONS FOR THE OUTPUT SIGNALS ON WIRE3 IN A FIVE -WIRE BUS WITH EVALUATED AND SIMULATED 50%DELAYS

(τ0 = 1.42 ps, τ = 8
π2

τ0 , λ = 12.24, a0 = 1, a1 = 1 + 5−
√

5
2

λ, AND a2 = 1 + 5+
√

5
2

λ FOR ALL CLASSES).

Classi Patterns
Closed-form expression for output signal on wire 3

Evaluated delays (ps) Sim. delay (ps)
Vdd(1 − c0e

−
t

a0τ − c1e
−

t

a1τ − c2e
−

t

a2τ )
c0 c1 c2

0
↑↑↑↑↑ 4

π
0 0 1.08 1.18

-↑↑↑↑, ↑↑↑↑- 16
5π

2(1+
√

5)
5π

2(1−
√

5)
5π

1.41 1.50

↑-↑↑↑, ↑↑↑-↑ 16
5π

2(1−
√

5)
5π

2(1+
√

5)
5π

1.41 1.50

1
-↑↑↑-, ↓↑↑↑↑, ↑↑↑↑↓ 12

5π
4(1+

√

5)
5π

4(1−
√

5)
5π

2.35 2.40
- -↑↑↑, ↑↑↑- -, -↑↑-↑, ↑-↑↑- 12

5π
4
5π

4
5π

2.35 2.40

↑-↑-↑, ↑↑↑↓↑, ↑↓↑↑↑ 12
5π

4(1−
√

5)
5π

4(1+
√

5)
5π

2.35 2.45

2
-↑↑↑↓, ↓↑↑↑- 8

5π
6(1+

√

5)
5π

6(1−
√

5)
5π

6.17 6.84
- -↑↑-, -↑↑- -, ↓-↑↑↑, ↓↑↑-↑, 8

5π
2(3+

√

5)
5π

2(3−
√

5)
5π

9.62 9.21↑-↑↑↓, ↑↑↑-↓
↓↑↑↑↓ 4

5π
8(1+

√

5)
5π

8(1−
√

5)
5π

9.90 10.70

3

- -↑↑↓, ↓↑↑- -, -↑↑-↓, ↓-↑↑- 4
5π

4(2+
√

5)
5π

4(2−
√

5)
5π

14.07 14.22

↓-↑↑↓, ↓↑↑-↓ 0 2(5+3
√

5)
5π

2(5−3
√

5)
5π

16.91 17.18
- -↑-↑, ↑-↑- -, -↑↑↓↑, ↑↑↑↓-, 8

5π
2(3−

√

5)
5π

2(3+
√

5)
5π

19.24 18.47
-↓↑↑↑, ↑↓↑↑-

4

- -↑- -, ↑-↑-↓, ↓-↑-↑,
4
5π

8
5π

8
5π

22.67 22.60-↑↑↓-, ↑↑↑↓↓, ↓↑↑↓↑,
-↓↑↑-, ↑↓↑↑↓, ↓↓↑↑↑,
- -↑-↓, ↓-↑- -, -↑↑↓↓, ↓↑↑↓-, 0 2(5+

√

5)
5π

2(5−
√

5)
5π

24.58 24.68-↓↑↑↓, ↓↓↑↑-

↓-↑-↓, ↓↑↑↓↓, ↓↓↑↑↓ − 4
5π

4(3+
√

5)
5π

4(3−
√

5)
5π

25.84 26.03

5

↓↓↑-↓, ↓-↑↓↓ − 8
5π

2(7+
√

5)
5π

2(7−
√

5)
5π

36.63 36.91
- -↑↓↓, ↓↓↑- -, -↓↑-↓, ↓-↑↓- − 4

5π
12
5π

12
5π

37.24 37.52
- -↑↓-, -↓↑- -, ↑-↑↓↓, ↑↓↑-↓, 0 2(5−

√

5)
5π

2(5+
√

5)
5π

38.07 38.35↓-↑↓↑, ↓↓↑-↑,

- -↑↓↑, ↑↓↑- -, -↓↑-↑, ↑-↑↓- 4
5π

4(2−
√

5)
5π

4(2+
√

5)
5π

39.22 39.47

↑-↑↓↑, ↑↓↑-↑ 8
5π

6(1−
√

5)
5π

6(1+
√

5)
5π

40.87 41.11

6

↓↓↑↓↓ − 12
5π

16
5π

16
5π

48.43 48.85

↓↓↑↓-, -↓↑↓↓ − 8
5π

2(7−
√

5)
5π

2(7+
√

5)
5π

50.43 50.86

-↓↑↓-, ↑↓↑↓↓, ↓↓↑↓↑ − 4
5π

4(3−
√

5)
5π

4(3+
√

5)
5π

52.78 53.25

↑↓↑↓-, -↓↑↓↑ 0 4(5−3
√

5)
5π

4(5+3
√

5)
5π

55.48 55.97

↑↓↑↓↑ 4
5π

8(1−
√

5)
5π

8(1+
√

5)
5π

58.52 59.04

Then, we consider the classification of transition patterns
over four wires with respect to the delays of the side wires.
We classify patterns by considering the worst-case delays of
wires 1 and 2, respectively. Note that the classification with
respect to the delays of wires 4 and 5 would be the same
by symmetry. We first focus on patterns with a↑ transition
on wire 2 in a four-wire bus. There are33 = 27 different
transition patterns. As described in Sec. II-B, we first derive
the expressionsV2(L, t) of these 27 patterns shown in Tab. II.
By evaluating these patterns for their 50% delays, we group
patterns with close delays into one class, and form 5 classes
jC for j = 0, 1, 2, 3, 4 as shown in Tab. II. Then, we focus
on patterns with a↑ transition on wire 1. There are33 = 27
different transition patterns. As described in Sec. II-B, we first
derive the expressionsV1(L, t) of these 27 patterns shown in
Tab. III. By evaluating these patterns for their 50% delays,we
group patterns with close delays into one class, and form 3
classesjC for j = 0, 1, 2 as shown in Tab. III. When both
wires 1 and 2 have transitions, the delay on wire 2 is larger

than that of wire 1, which can be verified from Tabs. II and III.
In this case, we focus on the delay of wire 2. When only wire 1
has transition, we focus on the delay of wire 1. The difference
between evaluated delay and simulated delay is small as shown
in Tabs. II and III with one exception (the pattern↑↑↓↑ in 1C
in Tab. II), which doesn’t change our classification.

From Tabs. II and III, the classes3C and 4C of our
classification are exactly the same asD3 andD4 in [2], [3],
respectively. The class1C and 2C of our classification are
subsets ofD1 andD2 in [2], [3], respectively. The class0C
is a subset ofD0 ∪D1 in [2], [3].

Similar to the classification of middle wires, we conclude
that the classification on side wires does not depend onτ0. To
verify our classification for technology with different coupling
effects, we consider coupling factorλ = 1, 2, · · · , 13, and
show the results in Fig. 3. Each class contains multiple lines,
each of which represents a pattern in Tabs. II and III. For
λ ≥ 1, the ranges of delays in all classes do not overlap.
Also, the delay in each subclass increases linearly withλ. This
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TABLE II
CLOSED-FORM EXPRESSIONS FOR THE OUTPUT SIGNALS ON WIRE2 IN A FOUR-WIRE BUS WITH EVALUATED AND SIMULATED 50% DELAYS

(τ0 = 1.42 ps, τ = 8
π2

τ0 , λ = 12.24, a0 = 1, a1 = 1 + (2−
√
2)λ, a2 = 1 + 2λ, AND a3 = 1 + (2 +

√
2)λ FOR ALL CLASSES).

jC Patterns
Closed-form expression for the output signal on wire 2

Evaluated delays (ps) Sim. delay (ps)
Vdd(1− c0e

−
t

a0τ − c1e
−

t

a1τ − c2e
−

t

a2τ − c3e
−

t

a3τ )
c0 c1 c2 c3

0

↑↑↑↑ 4
π

0 0 0 1.08 1.18

↑↑↑- 3
π

√

2
2π

1
π

−
√

2
2π

1.55 1.61

↑↑-↑ 3
π

2−
√

2
2π

− 1
π

− 2+
√

2
2π

1.55 1.62

-↑↑↑ 3
π

−
√

2
2π

1
π

√

2
2π

1.55 1.64

1

↑↑↑↓ 2
π

√

2
π

2
π

−
√

2
π

3.33 3.22
↑↑- - 2

π
1
π

0 1
π

4.54 3.48
-↑↑- 2

π
0 2

π
0 7.21 5.15

↑↑-↓ 1
π

2+
√

2
2π

1
π

2−
√

2
2π

9.70 9.38

↑↑↓↑ 2
π

0 2−
√

2
2π

− 2
π

9.98 3.92

-↑↑↓ 1
π

√

2
2π

3
π

−

√

2
2π

12.89 13.03

2

↑↑↓- 1
π

4−
√

2
2π

− 1
π

4+
√

2
2π

17.02 16.05

-↑-↑ 2
π

1−
√

2
π

0 1+
√

2
π

19.67 18.79
↑↑↓↓ 0 2

π
0 2

π
20.05 19.85

-↑- - 1
π

2−
√

2
2π

1
π

2+
√

2
2π

22.59 22.48
-↑-↓ 0 1

π
2
π

1
π

24.12 24.22

↓↑↑↑ 2
π

−
√

2
π

2
π

√

2
π

26.02 26.06

↓↑↑- 1
π

−
√

2
2π

3
π

√

2
2π

26.89 27.06
↓↑↑↓ 0 0 4

π
0 27.45 27.68

3

-↑↓↓ − 1
π

4−
√

2
2π

1
π

4+
√

2
2π

37.44 37.74

-↑↓- 0 2−
√

2
π

0 2+
√

2
π

38.61 38.89

↓↑-↓ − 1
π

2−
√

2
2π

3
π

2+
√

2
2π

39.06 39.40

-↑↓↑ 1
π

4−
√

2
2π

− 1
π

4+
√

2
2π

40.12 40.39

↓↑- - 0 1−
√

2
π

2
π

1+
√

2
π

40.21 40.55

↓↑-↑ 1
π

2−3
√

2
2π

1
π

2+3
√

2
2π

41.63 41.98

4
↓↑↓↓ − 2

π
2−

√

2
π

2
π

2+
√

2
π

50.92 51.36

↓↑↓- − 1
π

4−3
√

2
2π

1
π

4+3
√

2
2π

52.99 53.44

↓↑↓↑ 0 2−2
√

2
π

0 2+2
√

2
π

55.28 55.79
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Fig. 3. Delays of side wires for all patterns with respect toλ in a four-wire
bus (τ0 = 1.42ps).

implies that our classification on side wires is valid provided
that the coupling factorλ is at least 1.

In addition to being a finer classification, the new classi-
fication has no overlapping delays among different classes.
Fig. 4 compares the simulated delays of different classes based
on the classification in [2], [3] and our new classification. In
Fig. 4, the grey bars identify the minimum and maximum
simulated delays in every class. Note that only two extremes
are important, and not all delay values in the grey bars are
achievable by some transition patterns. In Fig. 4(a), the thick
line segments denote the upper bounds for delay of each class
based on Eq. (1). The upper bounds by the model in [2], [3]
overestimate the delays ofD1 throughD4 and underestimate
the delay ofD0. As shown in Fig. 4(a), the actual delays
in D0, D1, andD2 overlap with each other. Some patterns
with smaller delays have potential to transmit information
at a higher speed, but are categorized into a class with a
larger delay bound. Thus, the classification by the model
in [2], [3] does not result in effective crosstalk avoidance
codes. In contrast, the delays of different classes in our new
classification do not overlap as shown in Fig. 4(b), 4(c), and
4(d). By classifying patterns this way, we have a more accurate
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TABLE III
CLOSED-FORM EXPRESSIONS FOR THE OUTPUT SIGNALS ON WIRE1 IN A FOUR-WIRE BUS WITH EVALUATED AND SIMULATED 50% DELAYS

(τ0 = 1.42 ps, τ = 8
π2

τ0 , λ = 12.24, a0 = 1, a1 = 1 + (2−
√
2)λ, a2 = 1 + 2λ, AND a3 = 1 + (2 +

√
2)λ FOR ALL CLASSES).

jC Patterns
Closed-form expression for the output signal on wire 1

Evaluated delays (ps) Sim. delay (ps)
Vdd(1− c0e

−
t

a0τ − c1e
−

t

a1τ − c2e
−

t

a2τ − c3e
−

t

a3τ )
c0 c1 c2 c3

0

↑↑↑↑ 4
π

0 0 0 1.08 1.18

↑↑↑- 3
π

− 2+
√

2
2π

− 1
π

2−
√

2
2π

1.55 1.59

↑↑-↑ 3
π

√

2
2π

1
π

−
√

2
2π

1.55 1.61

↑-↑↑ 3
π

−
√

2
2π

1
π

√

2
2π

1.55 1.64

1

↑↑↑↓ 2
π

2+
√

2
π

− 2
π

2−
√

2
π

2.50 2.70

↑↑- - 2
π

1+
√

2
π

0 1−
√

2
π

2.83 2.90

↑↑↓↑ 2
π

√

2
π

2
π

−
√

2
π

3.33 3.20

↑↑-↓ 1
π

4+3
√

2
2π

− 1
π

4−3
√

2
2π

4.65 4.99
↑-↑- 2

π
1
2π

0 1
2π

4.54 3.49

↑↑↓- 1
π

2+3
√

2
2π

1
π

2−3
√

2
2π

5.53 5.88

↑↑↓↓ 0 2+2
√

2
π

0 2−2
√

2
π

7.03 7.39
↑- -↑ 2

π
0 2

π
0 7.21 5.15

↑-↑↓ 1
π

4+
√

2
2π

− 1
π

4−
√

2
2π

7.41 6.89

↑- - - 1
π

2+
√

2
2π

1
π

2−
√

2
2π

9.70 9.35

↑- -↓ 0 2+
√

2
π

0 2−
√

2
π

10.68 10.54

↑-↓↑ 1
π

√

2
2π

3
π

−

√

2
2π

12.89 13.03

↑-↓- 0 2+2
√

2
2π

2
π

2−2
√

2
2π

13.03 13.14

↑-↓↓ − 1
π

4+3
√

2
2π

1
π

4−3
√

2
2π

13.11 13.21

2

↑↓↑↓ 0 2
π

0 2
π

20.05 19.85

↑↓-↓ − 1
π

4+
√

2
2π

1
π

4−
√

2
2π

21.86 21.91

↑↓↑- 1
π

2−
√

2
2π

1
π

2+
√

2
2π

22.59 22.48

↑↓↓↓ − 2
π

2+
√

2
π

2
π

2−
√

2
π

23.10 23.23
↑↓- - 0 1

π
2
π

1
π

24.12 24.22

↑↓↓- − 1
π

2+
√

2
2π

3
π

2−
√

2
2π

25.10 25.30

↑↓↑↑ 2
π

−

√

2
π

2
π

√

2
π

26.02 26.06

↑↓-↑ 1
π

−
√

2
2π

3
π

√

2
2π

26.89 27.06
↑↓↓↑ 0 0 4

π
0 27.45 27.68

control of delays for transition patterns.

III. NEW MEMORYLESS CROSSTALK AVOIDANCE
CODES

A. Previous CAC Design

CACs reduce the crosstalk delay for on-chip global intercon-
nects by encoding ak-bit data word(x1x2 · · ·xk) into ann-bit
(n > k) codeword(c1c2 · · · cn). Two kinds of CACs, CACs
with memory and memoryless CACs, have been investigated in
the literature. CACs with memory, as shown in Fig. 5(a), need
to store all codebooks corresponding to different codewords
(c1c2 · · · cn), since the encoding depends on the data word
(x1x2 · · ·xk) as well as the preceding codeword. In contrast,
memoryless CACs, as shown in Fig. 5(b), require a single
codebook to generate codewords for transmission, because the
encoding depends on the data word only. Hence, memoryless
CACs are simpler to implement than CACs with memory. We
focus on memoryless CACs in this paper.

The codebook of a memoryless CAC satisfies the property
that each codeword must be able to transition to every other
codeword in the codebook with a delay less than the require-
ment. Most memoryless CACs in the literature are based on

the model in [2], [3]. The key idea is to eliminate undesirable
patterns for transmission. Existing memoryless CACs include
OLCs, FPCs, FTCs, and FOCs [4]–[6], [16], which achieve a
worst-case delay of(1 + λ)τ0, (1 + 2λ)τ0, (1 + 2λ)τ0, and
(1+3λ)τ0, respectively. As mentioned above, the scheme that
was proposed to achieve a worst-case delay ofτ0 is invalid
since the model in [2], [3] underestimates the delays for0C.
Thus, OLCs achieve the smallest worst-case delay(1 + λ)τ0
among existing CACs.

There exist several methods to obtain a memoryless code-
book based on pattern pruning, transition pruning, or recursive
construction. The pattern pruning technique is quite straight
forward, and gives a codebook with a smaller worst-case delay
by eliminating some patterns. For example, FOCs cannot have
both 010 and 101 patterns around any bit position, and FPCs
are free of 010 and 101 patterns [16]. The transition pruning
technique [6] is based on graph theory. This method first builds
a transition graph with all possible codewords as nodes and all
valid transitions as edges, and then finds a maximum clique.
A clique is defined as a subgraph where every pair of nodes
are connected with an edge. A maximum clique is defined as a
clique of the largest possible size in a given graph. Since every
pair of nodes is connected, a maximum clique in this graph
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C2

C3

C4

C5

C6

C0

C1

Delay  

New Classification for Wire 3

(a)

(b)

(c)

New Classification for Wire 1

20 30 40 50 60 70
Delay  (ps)

100 20 30 40 50 60 70
(ps)

0C

1C

2C

3C

4C

100 20 30 40 50 60 70
Delay  (ps)

New Classification for Wire 2

(d)

0C

1C

2C

100 20 30 40 50 60 70
Delay  (ps)

Fig. 4. Simulated delays of different classes of transitionpatterns using (a)
Classification based on (1); (b) Classification with respectto the delay of the
middle wire in a five-wire bus; (c) Classification with respect to the delay of
wire 2 in a four-wire bus; (d) Classification with respect to the delay of wire
1 in a four-wire bus (λ = 12.24 and τ0 = 1.42ps).

constitutes a memoryless codebook with the largest size. The
codebook generation method is based on exhaustive search.
Although it is easy to get a maximum clique from a transition
graph with a smalln, the complexity increases rapidly with
n. This is because the number of edges in ann-bit transition
graph is upper bounded by2n−1(2n − 1), which increases
exponentially withn. In fact, it is an NP problem to find
a maximum clique for given constraints [17]. The recursive
technique constructs an(n + 1)-bit codebook from ann-bit
codebook [4], [5]. Since for a smalln, a largest codebook can
be obtained easily via the second method, a codebook for an
n-wire bus can be constructed recursively.

B. CAC Design with New Classification

Since our classification of patterns is different from that in
[2], [3], the CAC designs should be reconsidered with our new
classification. In the following, we first introduce a recursive

method for codebook construction under different constraints,
and then derive the size of codebooks.

In our work, we use the recursive method to obtain a
memoryless codebook for the following two reasons. First,
it is complex to apply the pattern pruning technique, since our
new classification is based on transitions over five wires, and
it is not clear which patterns have larger worst-case delays
and should be removed. Second, it is hard to find a maximum
clique for a transition graph with a largen. In our method,
we first start with a 5-bit codebook, obtained by searching
for maximum cliques in a five-wire bus, and then build an
(n+ 1)-bit codebook by appending ’0’ and ’1’ to codewords
of ann-bit codebook while satisfying delay constraints.

Our new classifications partition patterns over five adjacent
wires into seven classes,C0 to C6, and patterns over four
adjacent wires into five classes,0C to 4C. Similar to the CAC
design based on the model in [2], [3], the new classifications
are conducive to the design of CACs by eliminating undesir-
able transition patterns with large worst-case delays.

To get valid 5-bit codebooks, we first assume the allowed
patterns are fromC0 to Ci for i = 0, 1, · · · , 6 in our
classification for middle wires. Then, for the side wires, we
assume patterns are from0C to jC based on the classification
for side wires. Under these two assumptions, there are many
configurations of constraints, which are referred as(Ci, jC),
wherei ∈ {0, 1, · · · , 6} andj ∈ {0, 1, · · · , 4}.

Since the worst-case delay of a bus is determined by the
largest delays among all wires, for ann-bit (n ≥ 5) bus under
(Ci, jC) we require that the worst-case delays on middle
wires and side wires are close enough. By our classifications,
we find 0C is close toC0, 1C close toC2 and C3, 2C
close toC4, 3C close toC5, and 4C close toC6. Hence,
among all configurations of constraints(Ci, jC), we only
focus on(C0, 0C), (C2, 1C), (C3, 1C), (C4, 2C), (C5, 3C),
and (C6, 4C). When n ≤ 4, the constraintCi cannot be
enforced. Hence, the constraint(Ci, jC) reduces tojC. The
constraint(C0, 0C) appears to be too restrictive, and hence
we do not investigate it in this paper. The last configuration
(C6, 4C) is trivial, since it allows arbitrary transitions.

In the following, we propose a scheme for finding ann-bit
codebookC(Ci,jC)(n). For simplicity, we denoteC(Ci,jC)(n)
as C(n) when there is no ambiguity about the constraint.
First, for a five-wire bus under constraint(Ci, jC), a pattern
transition graph is obtained. We search the graph for the largest
5-bit codebooks. One or two 5-bit codebooks of maximum
sizes exist for each constraint in Tab. IV, where we denote
an n-bit binary codeword(c1c2 · · · cn) as a decimal number
∑n

i=1 ci2
n−i for simplicity. In [6], a bit boundary in a set of

codewords is said to be01-type if only codewords with 00, 01,
and 11 are allowed across that boundary, and a bit boundary is
said to be10-type when only codewords with 00, 10, and 11
are allowed across that boundary. It is shown that the largest
clique for a given constraint has alternating boundary types.
Thus, there are two largest cliques. Similarly, from Tab. IV,
we conjecture that the largest codebooks have alternating
constraints,C0

5 andC1
5 , for every five consecutive wires. For

constraint(C4, 2C), only one maximum 5-bit codebook exists.
We assumeC1

5 is the same asC0
5 for constraint(C4, 2C).
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Fig. 5. System model for (a) CACs with memory; (b) MemorylessCACs.

Since we have two types of constraints, two largest codebooks
for each constraint can be obtained, except for (C4, 2C), where
the two codebooks are the same. Then we apply Alg. 1 to
obtainC(n). In the initialization, we pick a 5-bit codebook
C5 = C0

5 . Then, the algorithm recursively appends one bit
to the codewords in the codebook in each iteration. For
ck = (c1c2 · · · ck), the appended bitx needs to satisfy that
the last five bits (ck−3ck−2ck−1ckx) form a codeword inCs

5 ,
which alternates betweenC0

5 and C1
5 . If we pick the other

5-bit codebookC5 = C1
5 , we would obtain another codebook.

Algorithm 1 Codebook design under(Ci, jC)

Input: C0
5 , C1

5 , n;
Initialize : k = 5, C5 = C0

5 , s = 1;
while k ≤ n− 1 do

for ∀ck = (c1c2 · · · ck) ∈ C(k) do
if (ck−3ck−2ck−1ck0) ∈ Cs

5 then
append 0 tock and add the new codeword toC(k+
1);

else if (ck−3ck−2ck−1ck1) ∈ Cs
5 then

append 1 tock and add the new codeword toC(k+
1);

end if
end for
s = 1− s;
k = k + 1;

end while
Output: C(n).

The recursive construction allows us to derive the size of
the codebooks. LetV(Ci,jC) be an all-onem-dimensional
row vector (m = |C0

5 |) under constraint(Ci, jC). Let
c
s
k be a k-bit codeword with last five consecutive bits

(ck−4ck−3ck−2ck−1ck) ∈ Cs
5 for s = 0 or 1. If a 0 or

1 can be appended tocsk to form a (k + 1)-bit codeword
whose last five bits(ck−3ck−2ck−1ckck+1) ∈ C1−s

5 , such an
expansion is called a valid expansion. Otherwise, it is called

an invalid expansion. An expansion matrix is denoted as a
m × m matrix D

s
(Ci,jC), whereDs

(Ci,jC)(i, j) = 0 denotes
an invalid expansion andDs

(Ci,jC)(i, j) = 1 a valid expansion
from the i-th codeword inCs

5 to the j-th codeword inC1−s
5

under constraint(Ci, jC). Each row ofDs
(Ci,jC) has at most

two ones, since eachk-bit codeword can be appended to
form at most two(k + 1)-bit codewords whose last five bits
satisfy the appropriate constraints. LetY be anm ×m anti-
diagonal matrix with all ones. Due to symmetry betweenC0

5

andC1
5 , D0 andD1 satisfyD1

(Ci,jC) = YD
0
(Ci,jC)Y. Define

D(Ci,jC) = D
0
(Ci,jC)Y = YD

1
(Ci,jC). We denoteV(Ci,jC)

and D(Ci,jC) as V and D, respectively, when there is no
ambiguity about the constraint. Then, forn ≥ 5, the number
of codewords in ann-bit bus is equal to counting the valid
transitions and is given by

|C(n)| = VD
0
D

1 · · ·VT

=

{

V(D0
YYD

1)
n−5

2 V
T if n is odd;

V(D0
YYD

1)
n−6

2 D
0
YYV

T if n is even;

= VD
n−5

YV
T .

(6)
In the following, we first focus on constraints(C3, 1C),

(C4, 2C), and(C5, 3C). The codes based on these constraints
are shown to have the same codebooks as OLCs, FPCs, and
FOCs, respectively. Then, we consider constraint(C2, 1C),
which would lead to codes with a smaller delay at the expense
of a lower code rate.

C. Codes Under(C3, 1C)

The one Lambda codes have a worst-case delay(1 + λ)τ .
According to [16], the worst-case delay(1 + λ)τ can only
be achievedif and only if the transitions↑↓ ×, -↑-, and ↑-
↑ plus their symmetric and complement versions (e.g.↑↓ ×
and × ↓↑ are symmetric, and -↓- is the complement of -
↑-) are avoided, where↑, ↓, ×, and - denote 0→1, 1→0,
don’t care, and no transition, respectively. The first constraint
of avoiding ↑↓ × ensures that a transition between any two
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TABLE IV
LARGEST5-BIT CODEBOOK(S) UNDER CONSTRAINT(Ci, jC).

Constraint C0
5 C1

5

(C5, 3C)
{0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 14, {0, 1, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16,

15, 16, 17, 18, 19, 24, 25, 26, 27, 28, 30, 31} 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31}
(C4, 2C) {0, 1, 3, 6, 7, 12, 14, 15, 16, 17, 19, 24, 25, 28, 30, 31}
(C3, 1C) {0, 3, 14, 15, 24, 30, 31} {0, 1, 7, 16, 17, 28, 31}
(C2, 1C) {0, 3, 15, 24, 30, 31} {0, 1, 7, 16, 28, 31}

TABLE V
EXPANSION MATRIX FOR (C3, 1C), (C4, 2C), AND (C5, 3C).

D(C3,1C) =







0 0 0 0 0 1 1
0 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0






, D(C4,2C) =



























0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0



























, D(C5,3C) =













































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0













































.

codewords does not cause opposite transition on any wire. This
condition is referred as a forbidden-transition (FT) condition.
The second constraint of avoiding -↑- ensures that 2C patterns
are removed. This constraint ensures two adjacent bit bound-
aries cannot both be 01-type or 10-type, and is referred as a
forbidden adjacent boundary pattern (FABP) condition [16].
The last two forbidden patterns give the constraint that no
patterns 010 and 101 appear in the codeword, which is referred
as a forbidden-pattern (FP) condition [16]. Codes satisfying
these necessary and sufficientconditions are called one
Lambda codes (OLCs). We denote the largest OLC codebook
size for ann-bit bus asGn, andGn is given by

Gn = Gn−1 +Gn−5 (7)

with initial conditionsG1 = 2, G2 = 3, G3 = 4, G4 = 5, and
G5 = 7 [18].

With our classification, we explore codes under constraint
(C3, 1C). From Tab. IV, the two largest 5-bit codebooks are
given byC0

5={0, 3, 14, 15, 24, 30, 31} andC1
5={0, 1, 7, 16,

17, 28, 31}. An n-bit codebookC(n) can be obtained via
Alg. 1. The number of codewords is given by

|C(n)| = VD
n−5
(C3,1C)V

T for n ≥ 5, (8)

whereV is a seven-dimensional all one vector andD(C3,1C)

is a 7 × 7 expansion matrix as shown in Tab. V. We further
establish that the largest codebook sizes under constraint
(C3, 1C) satisfy the recursion:

Lemma III.1. For n ≥ 8, |C(C3,1C)(n)| is given by a recur-
sion |C(C3,1C)(n)| = |C(C3,1C)(n − 2)|+ |C(C3,1C)(n − 3)|,
with initial conditions|C(C3,1C)(n)| =7, 9, 12, forn =5, 6,
7, respectively.

See the appendix for the proof. In fact, we can further relate
these codes with OLCs by the following:

Theorem III.1. The codes under (C3, 1C) have the same
codebooks as OLCs. Hence,Gn = |C(C3,1C)(n)|.

See the appendix for the proof. Theorem III.1 implies that
the codes under constraint(C3, 1C) are equivalent to the class
of OLC codes.

D. Codes Under(C4, 2C)

The (1 + 2λ) codes have a worst-case delay of(1 + 2λ)τ .
No necessary and sufficient condition is known for a code to
be a(1 + 2λ) code. Two sufficient conditions FT and FP are
found, which lead to two families of(1+2λ) codes, FTC and
FPC, respectively. The size of an FTC codebook for ann-wire
bus is given byFn+2, whereFn is the Fibonacci sequence
that satisfiesFn+2 = Fn+1 + Fn and has initial conditions
F1 = F2 = 1 [6]. The FPCs for ann-wire bus have a larger
codebook size2Fn+1 [4].

With our classification, we explore codes under constraint
(C4, 2C). From Tab. IV, only one largest 5-bit codebook is
found C0

5={0, 1, 3, 6, 7, 12, 14, 15, 16, 17, 19, 24, 25, 28,
30, 31}. An n-bit codebookC(n) can be obtained via Alg. 1
by settingC1

5 = C0
5 . The number of codewords is given by

|C(n)| = VD
n−5
(C4,2C)V

T for n ≥ 5 (9)

whereV is a 16-dimensional all one vector andD(C4,2C) is a
16 × 16 expansion matrix as shown in Tab. V. We further
establish that the largest codebook sizes under constraint
(C4, 2C) satisfy the recursion:

Lemma III.2. For n ≥ 9, |C(C4,2C)(n)| can be simpli-
fied as recursion|C(C4,2C)(n)| = 2|C(C4,2C)(n − 1)| −
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|C(C4,2C)(n − 2)| + |C(C4,2C)(n − 4)|, with boundary con-
ditions |C(C4,2C)(n)| =16, 26, 42, 68, forn =5, 6, 7, 8,
respectively.

See the appendix for the proof. Again, we can relate these
codes to existing CACs by the following:

Theorem III.2. The codes under (C4, 2C) have the same
codebooks as FPCs. Hence,2Fn+1 = |C(C4,2C)(n)|.

See the appendix for the proof. Since FPCs and our codes
under (C4, 2C) can be obtained by excludingD3 plus D4
patterns andC5 plusC6 patterns, respectively, Theorem III.2
is not surprising given thatC5 andC6 are the same asD3
andD4, respectively. Theorem III.2 implies that results in the
literature regarding FPCs are also applicable to codes under
constraint (C4, 2C).

E. Codes Under(C5, 3C)

The (1 + 3λ) codes have a worst-case delay of(1 + 3λ)τ ,
which can be achievedif and only if ↓↑↓ and↑↓↑ are avoided.
So thenecessary and sufficientcondition for the(1 + 3λ)
codes is that the codebook cannot have both 010 and 101
appearing centered around any bit position, which is referred
as a forbidden-overlap (FO) condition. Codes satisfying the FO
condition are called FOCs. It is shown that the largest FOC
codebook for ann-bit bus is given byTn+2, whereTn =
Tn−1 + Tn−2 + Tn−3 is the tribonacci number sequence with
initial conditionsT1 = 1, T2 = 1, andT3 = 2 [16].

With our classification, we explore codes under constraint
(C5, 3C). Two largest 5-bit codebooksC0

5={0, 1, 2, 3, 6, 7,
8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 28,
30, 31} andC1

5={0, 1, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17,
19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31} are found. Via
Alg. 1, ann-bit codebookC(n) can be obtained. The number
of codewords is given by

|C(n)| = VD
n−5
(C5,3C)V

T for n ≥ 5, (10)

whereV is a 24-dimensional all one vector andD(C5,3C) is
a 24× 24 expansion matrix as shown in Tab. V.

We further establish that the largest codebook sizes under
constraint(C5, 3C) satisfy the recursion:

Lemma III.3. For n ≥ 8, |C(C5,3C)(n)| can be simpli-
fied as recursion|C(C5,3C)(n)| = |C(C5,3C)(n − 1)| −
|C(C5,3C)(n − 2)| + |C(C5,3C)(n − 3)|, with boundary con-
ditions |C(C5,3C)(n)| =24,44,81, forn =5, 6, 7, respectively.

See the appendix for the proof. Again we can relate these
codes to existing CACs by the following:

Theorem III.3. The codes under (C5, 3C) have the same
codebooks as FOCs. Hence,Tn+2 = |C(C5,3C)(n)|.

See the appendix for the proof. Theorem III.3 is not
surprising, since FOCs and our codes under(C5, 3C) can be
obtained by excludingD4 andC6 patterns, respectively, and
D4 andC6 have been shown to be the same. Theorem III.3
implies that results in the literature regarding FOCs are also
applicable to codes under constraint (C5, 3C).

F. Codes Under(C2, 1C)

With our classification, we explore codes under constraint
(C2, 1C). From Tab. IV, the two largest 5-bit codebooks are
given byC0

5={00000, 00011, 01111, 11000, 11110, 11111}
and C1

5={00000, 00001, 00111, 10000, 11100, 11111}. An
n-bit codebookC(n) can be obtained via Alg. 1. The number
of codewords is given by

|C(n)| = VD
n−5

V
T for n ≥ 5, (11)

where V is a six-dimensional all one vector andD =




0 0 0 0 1 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



.

We further establish that the largest codebook sizes under
constraint(C2, 1C) satisfy the recursion:

Lemma III.4. For n ≥ 10, |C(C3,1C)(n)| can be simplified as
recursion|C(C2,1C)(n)| = |C(C2,1C)(n− 2)|+ |C(C2,1C)(n−
5)|, with initial conditions|C(C2,1C)(n)| =6, 7, 9, 11, 14, for
n =5, 6, 7, 8, 9, respectively.

See the appendix for the proof.

Lemma III.5. The codebook under (C2, 1C) is a subset of
OLC.

See the appendix for the proof.

G. Pruned Codes Under(C2, 1C)

For (C2, 1C), the restriction on the side wires is more
relaxed than that on the middle wires, which results in larger
worst-case delays for the side wires. Hence, we prune the
CACs under constraint(C2, 1C) by removing codewords with
larger delays on the side wires in order to achieve a smaller
worst-case delay. Since the pruned codes have a smaller delay
than OLCs, we call these pruned CACs improved one Lambda
codes (IOLCs). We obtain IOLCs by first finding ann-bit
codebook via Alg. 1 as in Sec. III-F, and then pruning the
codebook with Alg. 2. To prune the codebookC(n), we search
for maximum subsets ofCi

5 (i = 0, 1) with smaller delays
on the side wires. ForC0

5 , two maximum subsetsC0,0
5 ={0,

3, 15, 30, 31} andC0,1
5 ={0, 15, 24, 30, 31} are found with

smaller worst-case delays on wires 1 and 2 and wires 4 and
5, respectively. ForC1

5 , a maximum subsetC1,1
5 ={0, 1, 7,

16, 31} is found with smaller worst-case delays on wires 4
and 5. Finally, a validn-bit codebook is obtained with the
leftmost five bits belonging toC0,0

5 , and the rightmost five
bits belonging toC0,1

5 or C1,1
5 depending on whethern is odd

or even.
The pruning algorithm for CACs under(C2, 1C) on ann-

bit bus is shown in Alg. 2. By pruning all codewordscn in
C(n), the algorithm removes codewords with larger delay on
side wires. With Alg. 2, we get ann-bit IOLC under constraint
(C2, 1C), and its size is given by

|CIOLC(n)| = W1D
n−5

YW
T
2 for n ≥ 5, (12)

whereW1 = [1 1 1 0 1 1], W2 = [1 0 1 1 1 1], andD is
the same as that in Eq. (11). Note thatW1 andW2 are used
instead ofV, because of the pruning of valid patterns on side
wires.



11

Algorithm 2 Pruning CACs under(C2, 1C)

Input: C0,0
5 , C0,1

5 , C1,1
5 , C(n);

if n is odd then
i = 1;

else
i = 0;

end if
for ∀cn = (c1c2 · · · cn) ∈ C(n) do

if (c1c2c3c4c5) 6∈ C0,0
5 or (cn−4cn−3cn−2cn−1cn) 6∈

C1−i,1
5 then
eliminatecn from C(n);

end if
end for
Output: C(n).

We further establish that the largest codebook sizes of
IOLCs satisfy the recursion:

Lemma III.6. For n ≥ 10, |CIOLC(n)| can be simplified as
recursion|CIOLC(n)| = |CIOLC(n − 2)|+ |CIOLC(n− 5)|,
with initial conditions|CIOLC(n)| =4, 5, 7, 8, 11, forn =5,
6, 7, 8, 9, respectively.

This recursion is the same as that in that in Lemma III.4.
It can be proved in the same fashion as for Lemma III.4, and
hence its proof is omitted.

Lemma III.7. The IOLC codebook is a subset of OLC.

See the appendix for the proof.

TABLE VI
SIMULATED DELAYS OF OUR IOLC, UNPRUNED(C2, 1C ) CODE, AND

OLC [5] FOR A 10-BIT BUS (λ = 12.24 AND τ0 = 1.42PS).

Wire i
Delays (ps)

IOLCs (C2, 1C) OLCs
1 10.08 5.49 10.55
2 7.03 9.13 2.92
3 9.31 9.31 5.94
4 9.31 9.45 6.09
5 9.59 9.36 10.73
6 9.41 9.41 13.64
7 10.14 10.14 14.06
8 9.65 10.57 14.84
9 8.97 9.14 8.99
10 5.28 13.50 14.84

IV. PERFORMANCEEVALUATION

In this section, we evaluate the performance of CACs based
on our classification with extensive simulations, and compare
them with existing CACs. Each CAC has two key performance
metrics: delay and rate. The delay of a CAC is the worst-
case delay when the codewords from the CAC are transmitted
over the bus. Codebook size and code rate are often used to
measure the overhead of CACs. The codebook size of a CAC
is simply the number of codewords. Suppose a CAC of size
M is transmitted over ann-bit bus, then its rate is defined
as ⌊log

2
M⌋

n
. A CAC of rate k/n implies thatn − k extra

wires are used in addition tok data wires so as to reduce the
crosstalk delay. Hence, the code rate measures the area and

TABLE VII
SIMULATED DELAYS OF OUR IOLC, UNPRUNED(C2, 1C ) CODE, AND

OLC [5] FOR A 16-BIT BUS (λ = 12.24 AND τ0 = 1.42PS).

Wire i
Delays (ps)

IOLCs (C2, 1C) OLCs
1 10.32 13.92 15.95
2 7.43 9.51 10.03
3 9.57 10.88 15.54
4 9.83 10.21 15.75
5 10.16 10.16 15.02
6 10.33 10.34 15.57
7 10.39 10.39 15.70
8 10.23 10.23 15.48
9 9.87 10.25 15.57
10 10.40 10.39 15.66
11 10.34 10.33 15.52
12 10.17 10.21 14.88
13 10.25 10.39 15.85
14 9.98 10.92 15.59
15 9.61 9.62 10.13
16 5.58 13.92 16.11

power overhead of CACs: the higher the rate, the smaller the
overhead. Obviously, there is a tradeoff between the code rate
and delay of a CAC: typically a lower rate code is needed
to achieve a smaller delay. To measure the overall effects of
both rate and delay, we also define the throughput of a CAC
as the ratio of code rate and delay. The assumptions for this
definition are: (1) the clock rate of the bus is determined by
the inverse of the worst-case delay; (2) the throughput of the
bus is linearly proportional tok, the number of data wires.

Since codes under (C3, 1C), (C4, 2C), and (C5, 3C) have
exactly the same codebooks as OLCs, FPCs, and FOCs, their
delay, rate, and throughput are also the same. Under constraint
(C2, 1C), we propose two kinds of codes, unpruned codes and
pruned codes (IOLCs). In the following, we compare their
performance with OLCs in [5] with extensive simulations.

To compare the worst-case delay of our IOLCs, unpruned
(C2, 1C) codes, and OLCs, we simulate two buses, a 10-
bit bus and a 16-bit bus, with all transitions between any
two codewords in their codebooks and obtain the worst-case
delays of each wire. The simulation environment has been
explained in Sec. II-C. Both buses have a length of 5mm, and
τ0 = 1.42ps andλ = 12.24. The simulation results are shown
in Tabs. VI and VII, where for each CAC the largest delays
among all wires are in boldface. As commented above for
unpruned(C2, 1C) codes, the delays of the two outmost wires
are significantly greater than those of other wires. For a 10-bit
bus, the worst-case delays of our IOLC, unpruned (C2, 1C)
code, and an OLC are given by 10.14ps, 13.50ps, and 14.84ps,
respectively. The worst-case delay of our IOLC and unpruned
(C2, 1C) code are 31.67% and 9.03% smaller than that of
the OLC, respectively. For a 16-bit bus, the worst-case delays
of our IOLC, unpruned (C2, 1C) code, and an OLC are given
by 10.40ps, 13.92ps, and 16.11ps, respectively. The worst-case
delay of our IOLC and unpruned (C2, 1C) code are 35.44%
and 13.59% smaller than that of the OLC, respectively.

For all simulations, our IOLCs have better delay per-
formance than OLCs. Although both IOLCs and unpruned
(C2, 1C) codes have almost the same code rate and better



12

TABLE VIII
COMPARISON OF CODEBOOK SIZE AND THROUGHPUT OFIOLC, UNPRUNED(C2, 1C ) CODE, AND OLC [5] (λ = 12.24 AND τ0 = 1.42PS).

# of IOLC (C2, 1C) OLC
wires # of words # of bits Throughput Gain # of words # of bits Throughput Gain # of words # of bits

5 4 2 1.55 6 2 1.10 7 2
6 5 2 1.07 7 2 0.78 9 3
7 7 2 1.02 9 3 1.14 12 3
8 8 3 1.12 11 3 0.84 16 4
9 11 3 1.10 14 3 0.84 21 4
10 12 3 1.10 17 4 1.10 28 4
11 16 4 1.18 21 4 0.88 37 5
12 18 4 1.19 26 4 0.89 49 5
13 23 4 1.03 32 5 0.96 65 6
14 27 4 1.02 40 5 0.95 86 6
15 34 5 1.27 49 5 0.95 114 6
16 41 5 1.11 61 5 0.83 151 7

delay performance than OLCs, the delay performance of
IOLCs is much better than the unpruned (C2, 1C) codes.
With a more advanced technology where the coupling effect
is significant, the improvement of our IOLCs is bigger.

The comparisons of the codebook size between our IOLCs,
unpruned (C2, 1C) codes, and OLCs [5] and the throughput
gain with respect to OLCs are shown in Tab. VIII. The
throughput gain of our CACs with respect to OLCs is given
by the ratio between the throughput of our CACs and the
throughput of OLCs. The codebook sizes of the three codes
are close. In all cases, the difference of the number of bits
between our IOLCs and unpruned (C2, 1C) codes is within 1
bit. The difference of the number of bits between our IOLCs
and OLCs [5] is within 2 bits forn ≤ 16. In respect to
throughput, our IOLCs always have a greater throughput than
OLCs, and their throughput gain ranges from 1.02 to 1.55
for an n-wire bus (5 ≤ n ≤ 16). The unpruned(C2, 1C)
codes have better throughput in some cases than OLCs, and
the throughput gain ranges from 0.78 to 1.10 for ann-wire
bus (5 ≤ n ≤ 16). When unpruned(C2, 1C) codes have a
lower throughput than OLCs, IOLCs can be used.

Our IOLCs and unpruned (C2, 1C) codes provide additional
options for the tradeoff between code rate and code delay. In
addition to achieving higher throughputs, the new CACs are
also appropriate for interconnects where the delay is of top
priority.

It has been shown that the encoding and decoding of OLCs,
FPCs, and FOCs have quadratic complexity based on numeral
systems [11]. Since codes under (C3, 1C), (C4, 2C), and
(C5, 3C) have exactly the same codebooks as OLCs, FPCs,
and FOCs, their CODECs also have quadratic complexity.
Also, it is expected that the encoding and decoding of our
IOLCs and unpruned (C2, 1C) codes have a quadratic com-
plexity, since the codebooks of our IOLCs and unpruned
(C2, 1C) codes are proper subsets of OLCs.

We remark that the simulation results in Sections II-C and
IV are all based on a 45nm CMOS technology. We have also
run the same set of simulations based on a 0.1-µm technology
(omitted for brevity). Between the two sets of simulation
results, the main conclusions of the manuscript and the key
features of our proposed classification and CACs remain the
same. For instance, the delays of the patterns in different
classes do not overlap, regardless of the technology. Also,the

proposed CACs based on the new classification are also the
same. This actually demonstrates that our approach to delay
classification and CACs is applicable to a wide variety of
technology. This is because in our approach, the dependencyof
the crosstalk delay on the technology is represented by the two
parameters, the propagation delayτ0 of a wire free of crosstalk
and the coupling factorλ. Since our analytical approach to
the classification and CACs treats these two parameters as
variables, our approach can be easily adapted to a wide variety
of technology.

V. CONCLUSIONS

In this paper, we propose a new classification of transition
patterns. The new classification has finer classes and the
delays do not overlap among different classes. Hence the new
classification is conducive to the design of CACs. To illustrate
this, we design a family of CACs with different constraints.
Some codes of the family are the same as existing codes,
OLCs, FPCs, and FOCs. We also propose two new CACs with
a smaller worst-case delay and better throughput than OLCs.
Since our analytical approach to the classification and CACs
treats the technology-dependent parameters as variables,our
approach can be easily adapted to a wide variety of technology.

APPENDIX

Proof of Lemma III.1: The eigenvalues ofD are given
by solvingdet |λI−D| = 0. Then,

det |λI−D| = 0
⇒ λ7 − λ5 − λ4 = 0
⇒ D

7 = D
5 −D

4

⇒ VD
7
V

T = VD
5
V

T +VD
4
V

T

⇒ |C(n)| = |C(n− 2)|+ |C(n− 3)|.
For n = 5, 6, 7, the boundary conditions can be obtained

by Eq. (8) as|C(5)| = 7, |C(6)| = 9, and|C(7)| = 12. Thus,
the lemma holds forn ≥ 8.

Proof of Theorem III.1:It has been shown that an(n+1)-
bit OLC codebookC(n+1) can be constructed from ann-bit
codebookC(n) [5]. The necessary and sufficient condition
for OLCs defines the same expansion matrix as our codes.
The OLC construction is the same as that of our codes under
(C3, 1C) shown in Alg. 1. Forn = 5, the OLC codebooks
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are the same as our codes under(C3, 1C). So, for ann-bit
bus (n ≥ 5), codes under constraint(C3, 1C) are the same
as OLCs. For ann-bit bus (n ≤ 4), the constraint(C3, 1C)
reduces to1C, and leads to the same codebooks as OLCs.
Hence, our codes under (C3, 1C) have the same codebooks
as OLCs, which implies thatGn = |C(n)|.

Proof of Lemma III.2: The eigenvalues ofD are given
by solvingdet |λI−D| = 0. Then,

det |λI−D| = 0
⇒ D

16 = 2D15 −D
14 +D

12

⇒ VD
16
V

T = 2VD
15
V

T −VD
14
V

T +VD
12
V

T

⇒ |C(n)| = 2|C(n− 1)| − |C(n− 2)|+ |C(n− 4)|.
For n = 5, 6, 7, 8, the boundary conditions can be obtained

by Eq. (9) as|C(5)| = 16, |C(6)| = 26, |C(7)| = 42, and
|C(8)| = 68. Thus, the lemma holds forn ≥ 9.

Proof of Theorem III.2:It has been shown that an(n+1)-
bit FPC codebookC(n+1) can be constructed from ann-bit
codebookC(n) [4]. The sufficient condition (FP condition)
for FPCs defines the same expansion matrix as our codes.
The FPC construction is the same as that of our codes under
(C4, 2C) shown in Alg. 1. Forn = 5, the FPC codebooks
are the same as our codes under(C4, 2C). So, for ann-bit
bus (n ≥ 5), codes under constraint(C4, 2C) are the same
as FPCs. For ann-bit bus (n ≤ 4), the constraint(C4, 2C)
reduces to2C, and leads to the same codebooks as FPCs.
Hence, our codes under (C4, 2C) have the same codebooks
as FPCs, which implies that2Fn+1 = |C(n)|.

Proof of Lemma III.3: The eigenvalues ofD are given
by solvingdet |λI−D| = 0. Then,

det |λI−D| = 0
⇒ D

24 = D
23 +D

22 +D
21

⇒ VD
24
V

T = VD
23
V

T +VD
22
V

T +VD
21
V

T

⇒ |C(n)| = |C(n− 1)|+ |C(n− 2)|+ |C(n− 3)|.
For n = 5, 6, 7, 8, the boundary conditions can be obtained

by Eq. (10) as|C(5)| = 24, |C(6)| = 44, and |C(7)| = 81.
Thus, the lemma holds forn ≥ 9.

Proof of Theorem III.3:It has been shown that an(n+1)-
bit FOC codebookC(n+1) can be constructed from ann-bit
codebookC(n) [4]. The necessary and sufficient condition
(FO condition) for FOCs defines the same expansion matrix
as our codes. The FOC construction is the same as that of our
codes under(C5, 3C) shown in Alg. 1. Forn = 5, the FOC
codebooks are the same as our codes under(C5, 3C). So, for
an n-bit bus (n ≥ 5), codes under constraint(C5, 3C) are
the same as FOCs. For ann-bit bus (n ≤ 4), the constraint
(C5, 3C) reduces to3C, and leads to the same codebooks
as FOCs. Hence, our codes under (C5, 3C) have the same
codebooks as FOCs, which implies thatTn+2 = |C(n)|.

Proof of Lemma III.4: The eigenvalues ofD are given
by solvingdet |λI−D| = 0. Then,

det |λI−D| = 0
⇒ D

6 = D
4 −D

⇒ VD
6
V

T = VD
4
V

T +VDV
T

⇒ |C(n)| = |C(n− 2)|+ |C(n− 5)|.

For n = 5, 6, 7, 8, 9, the boundary conditions can be
obtained by Eq. (11) as|C(5)| = 6, |C(6)| = 7, |C(7)| = 9,
|C(8)| = 11, and |C(9)| = 14. Thus, the lemma holds for
n ≥ 10.

Proof of Lemma III.5: As shown in Tab. IV,Ci
5 under

(C2, 1C) is a subset ofCi
5 under (C3, 1C) for i = 0, 1. Thus,

the valid expansions fromCi
5 to C1−i

5 under (C2, 1C) is part
of that under (C3, 1C). So, for ann-bit bus,C(C2,1C)(n) ⊂
C(C3,1C)(n). According to Thm. III.1, then-bit codebook
C(C2,1C)(n) is a subset of an OLC codebook.

Proof of Lemma III.7: Since the IOLC codebook is a
subset of the unpruned codes under (C2, 1C), this follows
Lemma III.5.
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