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 
Abstract—Polar codes, as the first provable capacity-achieving 

error-correcting codes, have received much attention in recent 
years. However, the decoding performance of polar codes with 
traditional successive-cancellation (SC) algorithm cannot match 
that of the low-density parity-check (LDPC) or turbo codes. 
Because SC list (SCL) decoding algorithm can significantly 
improve the error-correcting performance of polar codes, design 
of SCL decoders is important for polar codes to be deployed in 
practical applications. However, because the prior latency 
reduction approaches for SC decoders are not applicable for SCL 
decoders, these list decoders suffer from the long latency 
bottleneck. In this paper, we propose a multi-bit-decision 
approach that can significantly reduce latency of SCL decoders. 
First, we present a reformulated SCL algorithm that can perform 
intermediate decoding of 2 bits together. The proposed approach, 
referred as 2-bit reformulated SCL (2b-rSCL) algorithm, can 
reduce the latency of SCL decoder from (3n-2) to (2n-2) clock 
cycles without any performance loss. Then, we extend the idea of 
2-bit-decision to general case, and propose a general decoding 
scheme that can perform intermediate decoding of any 2K bits 
simultaneously. This general approach, referred as 2K-bit 
reformulated SCL (2Kb-rSCL) algorithm, can reduce the overall 
decoding latency to as short as n/2K-2-2 cycles. Furthermore, based 
on the proposed algorithms, VLSI architectures for 2b-rSCL and 
4b-rSCL decoders are synthesized. Compared with a prior SCL 
decoder, the proposed (1024, 512) 2b-rSCL and 4b-rSCL decoders 
can achieve 21% and 60% reduction in latency, 1.66 times and 
2.77 times increase in coded throughput with list size 2, and 2.11 
times and 3.23 times increase in coded throughput with list size 4, 
respectively. 
 

Index Terms— polar codes, list decoding, successive 
cancellation, algorithm reformulation, multi-bit decision 

I. INTRODUCTION 

OLAR codes are the first provable capacity-achieving codes 
[1]. Due to their explicit structure and regular 

encoding/decoding architectures, polar codes have received 
much attention in recent years. To date many works have 
addressed theoretical analysis [1-6] [20] and hardware 
implementation [7-17] [21] of polar codes. 

Although it has been proved that polar codes can achieve 
channel capacity asymptotically, the decoding performance of 
polar codes with the successive cancellation (SC) algorithm [1] 
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is inferior to that of LDPC or Turbo codes. To improve the 
decoding performance, a successive cancellation list (SCL) 
decoding algorithm was presented in [4]. Simulation results 
show that polar codes with the use of SCL algorithm combined 
with simple CRC check and systematic encoding methods can 
outperform the same length and rate LDPC codes [4]. As a 
result, the SCL algorithm is believed to be the key for decoding 
of polar codes to be applicable in practical systems. 

However, due to the inherent serial nature of successive 
cancellation computation, the SCL decoders suffer from long 
latency and low throughput problems similar to early SC 
decoders. Nowadays many techniques [3][7][12-15][21] have 
been proposed to reduce the latency of SC decoders; however, 
these approaches cannot be directly used to reduce the latency 
of the SCL decoders. As a result, to date the known VLSI 
designs of SCL decoder [16-17] still incur decoding latency of 
3n-2 clock cycles.1 

This paper presents multi-bit-decision approaches that can 
reduce the latency of SCL decoders. First, 2-bit reformulated 
SCL (2b-rSCL) algorithm, which can perform intermediate 
decoding of 2 bits simultaneously, is presented to reduce the 
overall latency from (3n-2) cycles to (2n-2) cycles. Then, by 
generalizing the 2-bit-decision idea, we propose a general 
2K-bit reformulated SCL (2Kb-rSCL) algorithm. By performing 
intermediate decoding of 2K bits together, the proposed 
2Kb-rSCL decoder has latency as short as n/2K-2-2 cycles. In 
order to demonstrate the advantage of the proposed approaches, 
VLSI architectures of 2b-rSCL and 4b-rSCL decoders are 
synthesized. Compared with the prior SCL decoder, the 
proposed (1024, 512) 2b-rSCL and 4b-rSCL decoders can 
achieve 21% and 60% reduction in latency, 1.66 times and 2.77 
times higher in coded throughput with list size 2, and 2.11 times 
and 3.23 times higher in coded throughput with list size 4, 
respectively. 

The rest of this paper is organized as follows. Section II gives 
a brief review of polar codes and SCL algorithm. The proposed 
2b-rSCL and 2Kb-rSCL algorithms are presented in Section III. 
Section IV presents the hardware architectures of the 2b-rSCL 
and 4b-rSCL decoders. Hardware analysis and comparisons are 
discussed in Section V. Section VI draws the conclusions. 

 
1 The latency calculation in [16-17] is not 3n-2 but varies with code rate R. 

In order to discuss the general case, in the rest of this paper we analyze the 
latency without specific discussion of R. For the latency calculation in Section 
V with specific code parameters, we will consider R for fair comparison. 
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II. REVIEW OF POLAR CODES AND SCL ALGORITHM 

A. Encoding Process of Polar Codes 

Different from other block codes, an (n, k) polar code is 
generated in two steps. First, the k-bit source message is 
extended to an n-bit message x=(u1, u2,…un) by padding (n-k) 
“0” bits. Notice that because the post-decoding reliability of n 
bit positions of u can be pre-computed in [1], the k most reliable 
positions of u are assigned k information bits and other (n-k) 
least reliable positions are forced to be “0”. Then, the n-bit 
message u is multiplied with an n×n generator matrix G to 
generate the transmitted codeword x=(x1, x2,…,xn). Fig. 1 
shows the implementation of a polar code encoder with n=4. 
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(a)                     (b) 

Fig. 1. (a) Implementation of n=4 polar encoder. (b) Basic unit of polar encoder. 

B. Successive Cancellation Decoding Algorithm 

At the receiver end, due to the corruption from transmission 
noise, the transmitted codeword x changes to the received 
codeword y=(y1, y2,…,yn). Since the required information bits 
are contained in u, a polar code decoder is needed to recover the 
u from the y. In [1], Arıkan proposed a successive cancellation 
(SC) decoder to perform this recovery. Fig. 2 shows the 
example decoding procedure of this SC decoder for n=4 polar 
code based on likelihood form. As seen in this figure, the SC 
decoder consists of m=log2n=2 stages, where each stage 
consists of two types of 4-input-2-output units, referred as f unit 
and g unit, respectively. In addition, a 2-input-1-output 
hard-decision unit denoted as h is used at the last stage of SC 
decoder (stage-2) to determine the estimate of ui, referred as  iu . 
Besides, each f or g unit is labeled a number to indicate the 
clock cycle index when it is activated. This labeling system 
reveals the inherent serial nature of the SC decoding algorithm. 
For example, in Fig. 2 the decoded bits are output at cycles 2, 3, 
5, 6, respectively. 
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1u


3u

 
1 2u u


2u     

(a)                                                            (b) 
Fig. 2. (a) SC decoding procedure with n=4. (b) Basic unit of SC decoder. 

In addition, the functions of f and g units can be derived via 
the analogy between polar code encoder and decoder. Fig. 1 (b) 
and Fig. 2(b) show the general basic unit in polar encoder and 
decoder, respectively. For the basic unit of encoder (see Fig. 
1(b)), it performs a left-to-right transformation from in1 and in2 

to out1 and out2. Hence, the transformation equations in Fig. 1(b) 
are:  

out1=in1  in2, and out2=in2,                  (1) 
where   represents the exclusive-or operation. 

On the other hand, for the basic unit of decoder in Fig. 2(b), 
as indicated in [1], its function is just a right-to-left estimation 
from the likelihoods of out1 and out2 to the likelihoods of in1 
and in2. Therefore, according to the left-to-right transformation 
equations (1), the “expected” relationship from the estimates of 
out1 and out2 to the estimates of in1 and in2 can be derived as:  
  

1 1 2 in out out , and  
2 2in out .                (2) 

With the help of the above “guideline” equations (2), we can 
now develop the functions of f and g units in Fig. 2(b). First we 
assume the previously decoded bits 1u ,  2u … 

2 2iu  have been 
determined as binary values z1, z2, …zi-1, respectively. For 

simplicity, this event is denoted as  1
1

1 1

 
i

iu z . Then, the two 

outputs of f unit, referred as c(0) and c(1), can be derived: 
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where a(0), a(1), b(0), b(1) are the inputs of f or g unit.. 
Due to the successive property of SC algorithm, d(0) and 

d(1), as the outputs of g unit, are determined by the estimate of 
in1. When it is 0, according to (2), we have: 
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Similarly, when 1in  is 1, according to (2), we have: 
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 As a result, by summarizing (5)(6)(7)(8), we can obtain the 
unified function for g unit:

 
    1

1
2 1 1 1(0) Pr( 0, , ) ( ) (0) = 

    
i

i
sum sumd in in u u z a u b       (9) 

    1
1

2 1 1 1(1) Pr( 1, , ) (1 ) (1) = 
     

i
i

sum sumd in in u u z a u b    (10) 

 Besides, for h unit, since it is the hard-decision unit, we can 
obtain its function as follows: 
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

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a a u
u

a a u
        (11)

 
In general, equations (3)(4)(9)(10)(11) describe the 

likelihood-based SC algorithm. 
On the other hand, from the view of code tree, the SC 

algorithm can be described as a path searching process. Fig. 3 
shows an example for n=4 and k=4 SC decoding procedure over 
the code tree. This n=4 code tree consists of 4 levels, where 
each level represents a decoded bit. The value associated with 
each node is the likelihood-based metric for the decoding path 
from root node to the current node. For example, 0.33 on the 
leftmost side indicates that for the path 1u =0 and  2u =0, denoted 
as the length-2 path (00), its metric is given by Pr( 1u =0,  2u

=0)=0.33. For the 0.12 on the rightmost side, it indicates the 
metric for path 1u =1,  2u =1 and  3u =1, denoted as the length-3 
path (111), is given by Pr( 1u =1,  2u =1,  3u =1)=0.12. In 
particular, the path metrics associated with the nodes at the 
lowest level (level 4) represent the different likelihoods for the 
different combinations of ( 1u 

2u 
3u 

4u ). The valid output of this 
n=4 SC polar decoder should be the length-4 path which has the 
largest metric at the lowest level. In this example it is (0010) 
with path metric Pr( 1u =0,  2u =0,  3u =1  4u =0)=0.19. 

^^

 
Fig. 3. Searching process of SC decoder over code tree with n=4 and k=4. 

Notice the aforementioned path metrics are calculated by the 
f or g units in the last stage of the SC decoder (for example 
stage-2 in Fig. 2(a)). For the length-i path, its path metric is 
computed by the f or g unit associated with 1u . For example, for 
n=4 polar code, the path metric for path ( 1u 

2u ) is computed by 
index-3 g unit in Fig. 2(a). Similarly, the path metric for path 
( 1u 

2u 
3u ) is computed by index-5 f unit in Fig. 2(a). 

In order to find the decoding path with the largest metric, SC 
algorithm adopts a locally optimal searching strategy. As 
shown in Fig. 3, the arrows represent the survival decoding path 
of the SC decoder. In the i-th level, the SC decoder first visits 
the two children nodes (striped nodes in Fig. 3) that are 
connected to the current survival length-(i-1) path. Since the 
metrics of length-i paths are associated with these children 
nodes, the SC decoder then can obtain the metrics of length-i 
paths. After comparing the metrics, the SC decoder only selects 
the length-i path which has the larger metric as the updated 
survival path, while the path which has the smaller metric will 
never be explored in the future. Based on this searching strategy, 
in Fig. 3 the length-4 path (0010) with metric 0.19 is selected as 
the output of SC decoder. In this example, the SC decoder 

works well since it finds the valid length-4 path with the largest 
metric. 

C. Successive Cancellation List Decoding Algorithm 

An essential drawback of the SC algorithm is that its 
searching strategy over the code tree is only locally optimal, but 
not globally optimal. As a result, in many cases the (n, k) SC 
decoder cannot find the length-n path with the largest metric. 
For example, if we apply SC decoding approach in Fig. 4, its 
output is (0010) with metric 0.19; however, the valid length-4 
path with largest metric should be (1000) with metric 0.23. 

 
Fig. 4. Searching process of SCL decoder with n=4, k=4 and L=2. 

The reason for the inefficiency of SC algorithm in this 
example is that sometimes the unexplored path, instead of the 
chosen survival path, has the larger path metric. Based on this 
observation, successive cancellation list (SCL) algorithm [4] 
was proposed to perform searching process along multiple 
survival paths at the same time. Here the maximum number of 
the survival paths is referred as the list size (L). Fig. 4 shows an 
example for the n=4 and k=4 SCL decoder with L=2. As shown 
in Fig. 4, at the i-th level, the SCL decoder visits all the 2L 
children nodes (striped nodes in Fig. 4) that are connected to the 
length-(i-1) survival paths. After calculating all the 2L new path 
metrics associated with these children nodes, the SCL decoder 
selects the L length-i paths which have the larger metrics as the 
updated survival paths. From Fig. 4 it can be seen that the valid 
decoding path (1000), which could not be traced by SC decoder 
before, now can be found by the SCL decoder. 

III. THE PROPOSED REFORMULATED SCL ALGORITHMS 

A. Long latency problem of original SCL decoder 

 In general, the SCL algorithm can improve decoding 
performance significantly over the SC algorithm [4]. However, 
one of the major challenges for the practical use of SCL 
decoder is the long latency problem. Because an L-size (n, k) 
SCL decoder can be viewed as the combination of L copies of 
(n, k) SC component decoders (see Fig. 5), an (n, k) SCL 
decoder needs the same (2n-2) cycles to process its f and g units 
as its SC component decoders do. In addition, since SCL 
decoders need to sort 2L path metrics and select L largest 
metrics for each decoded bit (see Fig. 5), extra n cycles are 
needed to carry out the sorting and selecting function to avoid 
long critical path [16]. Therefore, the latency of an (n, k) SCL 
decoder is 3n-2 cycles. As discussed in Section I, although 
some methods have been proposed to reduce the latency of SC 
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decoders, these approaches cannot be directly applied to the 
SCL decoder. As a result, the latency of current known SCL 
decoder [16-17] is still very long. Table I shows an example 
decoding scheme of conventional SCL decoder for n=4 polar 
code. Here in this table the symbols f and g represent the f and g 
units in each SC component decoder of Fig. 2, respectively. 
Besides, the symbol s represents the path metrics sorting and 
selecting operation for each intermediately decoded bit. 

Fig. 5. Block diagram of L-size SCL decoder. 

TABLE I. DECODING SCHEME OF CONVENTIONAL SCL DECODER WITH N=4 
Clock 
cycle 

1 2 3 4 5 6 7 8 9 10

Stage-1 f     g     
Stage-2  f s g s  f s g s 

Bit 
decision 

  
1
u   

2
u   

3
u  

4
u

B. 2-bit reformulated SC List (2b-rSCL) Algorithm 

As seen in Table I, more than 60% latency of SCL decoder is 
due to the computation of f, g and s in the last stage (stage-2, in 
Table I). This phenomenon implies that the reduction of latency 
in the last stage can lead to significant reduction of the overall 
latency of SCL decoder. Therefore, in this sub-section we 
propose to reformulate the original computation of the last 
stage. This reformulated computation in the last stage can save 
many clock cycles without any performance loss. 

Table I shows that the computation of the last stage can be 
viewed as multiple “f s g s” functions to perform intermediate 
decoding of two consecutive bits  2 1iu  and  2iu . Since the f/g 
units and s in the last stage contribute to path metrics 
calculation and selection, respectively, hence the goal of our 
reformulation on the last stage is to find a simplified method 
that can compute path metrics and sort/select them to perform 
intermediate decoding of  2 1iu  and  2iu  more quickly. 

(a) 

(b) 
Fig. 6. Block diagram of (a) original SC component decoder of SCL decoder. (b) 
reformulated SC component decoder of 2b-rSCL decoder. 

Fig. 6 (a) and (b) show the block diagram of the original and 
reformulated SC component decoder for SCL decoding, 
respectively. From these two figures it can be seen that the 

reformulated SC decoder replaces the original stage-m with two 
new units, referred as metric computation unit (MCU) and 
zero-forcing unit (ZFU), respectively. Besides that, as shown in 
Fig. 5, a sorting block (s symbol in Table I) is also needed to 
sort the path metrics output from all the L SC component 
decoders. Because the sorting block is an individual block that 
does not belong to any SC component decoder, in this 
subsection we do not discuss sorting block but focus on the 
functions of MCU and ZFU. The architecture of sorting block 
will be presented in Section IV. 
Metric Computation Unit (MCU) 
 As shown in Fig. 7, metric computation unit (MCU) 
calculates the likelihoods for different combinations of  2 1iu  
and  2iu  with the use of the messages a(0), a(1), b(0) and b(1) 
output from stage-(m-1). The principle of this calculation can 
be derived from (5)-(8). Since for the last stage of each SC 
component decoder,  2 1iu  and  2 1iu  are the estimates of in1 and 
in2, respectively, therefore by making  

1 2 -1iin u  and  
2 2 iin u  in 

(5)-(8) we can have:  

   2 2
2 2

2 1 2 1 1(00) Pr( 0, 0, ) (0) (0) 
 

    
i

i
i iP u u u z a b  

   2 2
2 2

2 1 2 1 1(01) Pr( 0, 1, ) (1) (1) 
 

    
i

i
i iP u u u z a b  

   2 2 2 2
2 1 2 1 1(10) Pr( 1, 0, ) (1) (0) 

 
    

i i
i iP u u u z a b  

   2 2
2 2

2 1 2 1 1(11) Pr( 1, 1, ) (0) (1)
i

i
i iP u u u z a b

 
         (12) 

where  2 2
2 2

1 1

i
iu z

   denotes that the previously decoded bits 1u , 


2u … 
2 2iu  are assumed to have been determined as z1, z2,… z2i-2, 

respectively. 

 
Fig. 7. Block diagram of MCU for 2b-rSCL decoder. 

Equations (12) describe the calculation of the joint 

likelihoods of  2 1iu ,  2iu  and  2 2
2 2

1 1

i
iu z

  . Now we show that these 

joint likelihoods are just the actual metrics of length-2i paths. 
Consider one of the current length-(2i-2) survival path in the 
code tree as ( 1u … 

2 2iu )=(z1…z2i-2). As shown in Fig. 8, with the 
different combination of  2 1iu  and  2iu , this length-(2i-2) path 
can be extended to four length-(2i) paths as ( 1u … 

2 2iu 
2 1iu


2iu )=(z1…z2i-2pq), where p and q are binary 0 or 1. According to 

the definition of path metric, with the four combinations of p 

and q, Pr(  2 2iu =p,  2 2iu =q,  2 2 2 2
1 1

i iu z
  ) in (12) are just the actual 

metrics of the above four extended length-(2i) paths. As a result, 
according to equations (12), with the knowledge of a(0), a(1), 
b(0) and b(1) output from the stage-(m-1), we can directly 
obtain the actual path metrics of four length-(2i) paths.( 1u …


2 2iu 
2 1iu 

2iu )=(z1…z2i-2pq). 
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Fig. 8. Extension from one length-(2i-2) path to four length-(2i) paths with 
direct computation of actual path metrics. 

Zero-Forcing Unit (ZFU) 
Although equations (12) provide a fast approach to compute 

the actual metrics of length-2i paths, a post-processing 
operation is still needed before inputting those calculated 
metrics into the sorting block. This is because the values of  2 1iu  
and  2iu  do not only depend on the corresponding path metrics, 
but also on whether they are frozen bits or not. Notice that when 
the current decoded bit  iu  is a frozen bit, the paths with  iu =1 
are not qualified and should never be selected even if they have 
larger metrics than their counterparts. As a result, in order to 
avoid selecting those unqualified paths, we need a zero-forcing 
unit (ZFU) to force the metrics of those unqualified paths to 0. 
The reason of this zero-forcing operation is that since the SCL 
decoder only selects the L survival paths with larger metrics for 
each  iu , therefore the unqualified paths with metric values 0 
will never be classified into the group of L paths with larger 
metrics. As a result, the validity of the function is guaranteed. 

 
(a) 

 
(b) 

Fig. 9. L-size decoding scheme of (a) original SCL decoder. (b)2b- rSCL 
decoder. 

Since the proposed reformulated last stage involves both 


2 1iu  and  2iu , the function of ZFU is derived as follows: 

 Assign M(pq)=P(pq) for path 2 -2
1( )iz pq  with p, q{0,1}; 

If  2 -1iu  is frozen, then reassign M(10)=0 and M(11)=0; 

If  2iu  is frozen, then reassign M(01)=0 and M(11)=0.  (13) 

Equations (12) and (13) describe the reformulated function 
of the last stage of SC component decoder. With the help of this 
reformulation,  2 1iu  and  2iu , as the two successive decoded bits, 
can now be intermediately decoded at the same time. Fig. 9 (a) 
and (b) show the decoding procedure of original SCL decoding 
and the proposed reformulated approach with list size L, 
respectively. In the conventional SCL algorithm, with the 
comparison of their metrics, the L length-(2i-1) survival paths 
are selected from 2L candidates for each time. And each 
selection can only perform intermediate decoding of one 
decoded bit (see Fig. 9(a)). Instead, in the reformulated 
approach, the L length-(2i) survival paths are selected from 4L 
candidates for each time. As a result, the two successive bits 
can now be intermediately decoded simultaneously in each 
selection (see Fig. 9(b)). 
 Considering the proposed reformulation can allow two bits 
to be intermediately decoded at the same time, this new SCL 
algorithm is referred as 2-bit reformulated SCL (2b-rSCL) 
algorithm and described in Scheme-A. 


1 / 2

(2 - 2) (

Likelihoods of each bit in the received codeword

i n

i u



Scheme A: 2-bit SCL decoding (2b-rSCL) with list size L for (n, k) polar codes  

1: Input:        

2: For  to 

3:   For each length-  survival path  2 -2
1 2 -2 1... )

-1 ~ - ( -1)

- ( -1) (0), (1), (0), (1)

i
iu z

Activate stage stage m of SC component decoder

stage m outputs a a b b

Expand survival p

   

4:    SC decoding: 

5:              

6:          

7:    Path Expansion: 

8:            2 -2 2 -2
2 11 1( ) :

( ) 4 - (2 ) :

i i
i 2iath z to 4 candidate paths z u u

      1 length - (2i - 2) path  4 length - (2i) paths

Calculate actual path metrics P pq for length i paths




   

9:     

10:   Metric Computation:

11:                

12: 2 -2 2 -2
1 1

2 -2 2 -2
1 1

(00) (0) (0) ( 00), (01) (1) (1) ( 01),

(10) (1) (0) ( 10), (11) (0) (1) ( 11)

i i

i i

P a b for path z P a b for path z

P a b for path z P a b for path z

Calculate

         =   =   

13:         =   =   

14:    Forcing Zero:

15:        





2 -2
1

2 -1

2

( ) - :

( ) ( ) ( ) , {0,1}

, (10) 0 (11) 0

i

i

i

the new path metrics M pq with forcing zero operation

M pq P pq for path z pq with p q

if u  is frozen then M and M

if u  is fro

 

 

       

16:               

17:                 

18:             , (01) 0 (11) 0

( )

zen then M and M

 Compare the metrics M pq of  all the 4L length -(2i) candidate paths 

 Select L paths with the L largest metrics as

     

19:    End for

20:    Compare and Prune:

21:        

22:       the new survival paths

 

Choose the length - n survival path with the largest metric

23: End for            

24: Output:                          

 

 
The proposed 2b-rSCL algorithm can greatly reduce the 

latency of the original SCL decoder. Recall that in the original 
searching procedure (see Fig. 4), the SCL decoder needs to 
compute the path metrics associated with the striped nodes in 
each level of the code tree. On the other hand, since the 
2b-rSCL only needs to compute the metrics for length-(2i) 
paths, the metrics computation for length-(2i-1) paths are 
totally avoided (see Fig. 8). As a result, for the same code tree 
the 2b-rSCL decoder only needs to visit the striped nodes at 
even levels instead of at all the levels. For example, by 
comparing Fig. 4 and Fig. 10, it can be found that the 
reformulated SCL decoder does not need to visit the nodes at 
level 1 and level 3 anymore. As a result, this new decoding 
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scheme leads to immediate saving in clock cycles. 

 
Fig. 10. Searching process of 2b-rSCL decoder over code tree with n=4, k=4 
and L=2. 

Table II shows the example decoding scheme of the proposed 
2b-rSCL decoder with n=4. Here mc&zf in Table II denotes the 
metric computation and zero-forcing operations, which are 
described from line 10 to line 18 of Scheme-A in detail. 
Compared with the scheme of conventional SCL decoder (see 
Table I), it can be seen that the reformulation at the last stage 
(stage-2 in this example) leads to significant reduction in clock 
cycles. For the intermediate decoding of each two successive 
bits  2 1iu  and  2iu , the original SCL decoder (see Table I) needs 
4 cycles (f, s, g, s), while the 2b-rSCL decoder in Table II only 
needs 2 cycles (mc&zf, s). In general, for an (n, k) polar code, 
the overall latency of 2b-rSCL decoder can reduce from 3n-2 to 
2n-2 clock cycles. 

TABLE II. DECODING SCHEME OF 2B-SCL DECODER WITH N=4 
Clock 
Cycle 

1 2 3 4 5 6 

Stage-1 f   g   
Stage-2  mc&zf s  mc&zf s 

Bit 
decision 

  
1
u 2
u    

3u 4u

C. 2K-bit reformulated SC List (2Kb-rSCL) Algorithm 

In subsections III-B we presented 2b-rSCL algorithm that can 
perform intermediate decoding of 2 bits at the same time. In this 
subsection, we extend the prior approach to a more general case, 
and propose a new algorithm, referred as 2K-bit reformulated 
SC List (2Kb-rSCL), which can perform intermediate decoding 
of 2K bits simultaneously. 

 
Fig. 11. Block diagram of reformulated SC component decoder of 2Kb-rSCL 
decoder. 

 As shown in Fig. 11, the 2Kb-rSCL decoder reformulates the 
last K stages of original SCL decoder. Similar to the case in 
2b-rSCL decoder, the reformulated part of 2Kb-rSCL decoder 
consists of MCU and ZFU as well. 
Metric Computation Unit (MCU) 
 The function of MCU in 2Kb-rSCL decoder is to compute the 

joint probabilities of 2K successive bits as  2 ( 1) 1 K iu ,  2 ( 1) 2 K iu , … 

and  2K iu . Similar to the discussion in 2-bit-decision case, we 

first investigate the transformation of 
2 ( 1) 1 K i

u …
2K i

u . 

 As shown in Fig. 12, the transformation of 2K successive bits 
can be viewed as the multiplication with matrix U, where U is 
2K×2K generator matrix G.  

Denote 2K ,iu


 (
2 ( 1) 1K i

u
 

,
2 ( 1) 2K i

u
 

, …, 
2K i

u ) and 2Kout




( 1out , 2out ,…
2Kout ), then we have: 

2 2K K ,iout =u U
 

                  (14) 
In particular, if we denote the j-th column vector of U as U(j), 

then according to (23) we have: 

outj= 2 ,K iu


U(j)                     (15) 
Equation (24) describes the left-to-right transformation of 

the 
2 ( 1) 1K i

u
 

,
2 ( 1) 2K i

u
 

, … and 
2K i

u  in encoding phase. 

U
 

Fig. 12. Encoding procedure for 
2 ( 1) 1

K
i

u
 

,
2 ( 1) 2

K
i

u
 

, … and 
2

K
i

u . 

 Then, based on (15), the right-to-left “guideline” in decoding 
procedure should be: 
  1

2 , 2 2K K Kiu out U out U
  

              (16) 

where  2K ,iu


 (  2 ( 1) 1K iu   ,  2 ( 1) 2K iu   , …,  2K iu ) and  2Kout




(1out ,  2out ,…
2Kout ), respectively. 

 According to (15) and (16), we have: 


jout =  2 ,K iu


U(j) and  2 ( 1) 1K iu   = 2 ( )Kout U j


.      (17) 

Note that in (16) we use the special property that U-1=U. 
 As shown in Fig. 13, the inputs of MCU are a1(0), a1(1),…, 

12
(0)Ka , 12

(1)Ka , b1(0), b1(1),…, 12
(0)Kb and 12

(1)Kb , 

respectively. With the help of (17), we can obtain the joint 

probabilities of  2 ( 1) 1K iu   ,  2 ( 1) 2K iu   , … and  2K iu  as follows. 

   

     



 

( )
( )

( ) ( )

( )
( )

( )

( ... )

Pr( , ,..., , )

Pr( ( ), ( ),..., ( ),

, )

Pr( ( ),

1 2 3 2

2 1
2 1

2 1 1 2 1 2 2 11 2 12

1 2 2 2 2

2 1
2 1

1 1

2 1

1 1 1

1 2 2

1

K K K

K

K
,i ,i 2 ,i

2

   

u U u U u U

       

α U

   

  
 

   

 



   

   



  


  



K

K
K

K K K
K

K

K
K

K

i
i

i i i

i
i

i

P

u u u u z

out out out

u z

out u z

 

 

( )

( )
( )

( )
( )

)

Pr( ( ), )

... Pr( ( ), )

( ( )) ( ( ))... ( ( ))1

2 1

2 1
2 1

2 1 1

2 1
2 1

2 1 1

1 2 2

2

2

1 2 2

K

K

K K K

2

t
2

K-1
2 2 2

  α U

  α U

α U α U α U



 

 

  

   







  

K

K
K

K
K

K

K

i

i
i

i
i

out u z

out u z

a a a

( ( ))... ( ( ))1

1
1 2

2 1 2K K
K

2 2   α U α U
 

 
K

Kb b             (18) 

where K


2 ( 1 , 2 ,…

2K ) is a vector consisting of 2K 

binary 0 or 1. 
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 According to (18), since ( ... )KP   1 2 2
 is the joint 

probability of  ( )K iu   2 1 1 1 ,  ( )K iu   2 1 2 2 , …,  K
Kiu 2

2
 

and 
( )

( )
K

Ki
iu z

 
2 1

2 1
1 1 , it is just the metric of length-2Ki path 

4 4
1 1 2 2

( ... )K

iz    . Therefore, with a1(0), a1(1),…, 12
(0)Ka , 

12
(1)Ka , b1(0), b1(1),…, 12

(0)Kb and 12
(1)Kb  output from 

stage-(m-K) and equations (18), MCU can directly output the 

actual metrics of 22
K

 length-2Ki paths. 

. . . . . .

. . . . . .

. . . . . .

 
Fig. 13. Block diagram of MCU for 2Kb-rSCL decoder. 

Zero-Forcing Unit (ZFU) 
Similar to the 2-bit-decision case, the function of ZFU in 

2K-bit-decision scenario is also to force the metric of 
unqualified length-2K paths to 0. Therefore, we can derive the 
function of ZFU for 2Kb-rSCL decoder as follows: 

Assign ( ... )KM   1 2 2
= ( ... )KP   1 2 2

 for path 
4 4

1 1 2 2
( ... )K

iz     with 1 , 2 ,…, K
2
{0,1}; 

If  2 ( 1) 1K iu    is frozen, then reassign all 2 3 2
(1 ... ) 0KM     ; 

If  2 ( 1) 2K iu    is frozen, then reassign all 1 3 2
( 1 ... ) 0KM     ; 

...... 

If  2K iu  is frozen, then reassign all 1 2 2 1
( ... 1) 0KM   


 .(19) 

 Based on MCU in (18) and ZFU in (19), we can develop a 
general 2Kb-rSCL decoding algorithm as shown in Scheme-B. 
Fig. 14 shows the decoding procedure of 2Kb-rSCL algorithm 
with list size L. It can be seen that during the decoding 
procedure 22

K L metrics of candidate paths are compared each 
time, and the L paths with larger ( ... )KM   1 2 2

 metrics are 

selected as the survival paths. As a result, 2K successive bits can 
be determined simultaneously. 

 
( ) ,... K K2 i 1 1 2 iu u

1u 
2u 

3u  
Fig. 14. L-size decoding scheme of 2Kb-rSCL decoder.
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K KScheme B: 2 -bit SCL decoding (2 b-rSCL) with list size L for (n, k) polar codes  

1: Input:        

2: For  to 

3:   For each length-  survival p

 K

K

Likelihoods of each bit in the received codeword

i n

i  

1 1 1

2 ( 1)
1 2 ( -1) 1

1 1 1 12 2 2

( ... )

-1 ~ - ( - )

- ( - ) (0), (1)..., (0), (1), (0), (1)..., (0),

ath   

4:    SC decoding: 

5:              

6:            


K

K

K K K

i
iu u z

Activate stage stage m t of SC component decoder

stage m K outputs a a a a b b b

 

12

2 ( -1) 2 2 ( 1)
2 ( 1) 1 21 1

2

(1)

2 ( ... ) :

2

 

7:    Path Expansion: 

8:              

9:     

10:   Metric Com




 



K

K K K
K K

K

i i
i i

K K

b
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1

2
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1
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K K K

K

K-1
2 2 2

K-1
2
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11:                

12:        = α U α U α U

13:                  α U

  

   

 
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

K

K

K K
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2 ( 1)
1 1 22 2

1 2 2

1 2 1 22 2

)... ( (2 )) ( ... )
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K
K

2α U   

14:    Forcing Zero:

15:               

16:          

  

  
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




 K

K K

K

K K

ib for path z

Calculate the new path metrics M with forcing zero operation

M P for pat





2 ( 1)
1 1 2 12 2

2 ( 1) 1 2 3 2

2 1 2 2 1

( ... ) ,..., {0,1}

(1 ... ) 0;

( ... 1) 0.

  

17:           

18:        ......

19:           

20:    End for

21:    Compare and P

    

  

  



 





 

 

K

K K

K
K

K
K

i

i

i

h z with

u  is frozen all M

u  is frozen all M

2
1 2 2

( ... ) 2 2

rune:

22:       

23:     

24: End for            

25: Output: 

  
K

K

K Compare metrics M of  all the L length -( i) candidate paths 

 Select L paths with the L largest metrics as the new survival paths

 

                        Choose the length - n survival path with the largest metric

 
Table III lists the latency of 2Kb-rSCL decoder with different 

values of K for (n, k) polar codes. From this table it can be seen 
that 2b-rSCL decoder in subsection III-B can be viewed as the 
specific case of 2Kb-rSCL with K=1. For a general 2Kb-rSCL 
decoder, its latency is n/2K-2-2 clock cycles. Therefore, as K 
increases, the overall latency is reduced. In an extreme case, 
when K reaches m=log2n, the 2Kb-rSCL decoder becomes a 
maximum likelihood (ML) decoder with latency as small as 
only 2 cycles. 

TABLE III. DECODING LATENCY OF 2KB-RSCL DECODER WITH DIFFERENT K 

K 
Decoding latency 

(clock cycles) 
Note 

K=0 3n-2 Original SCL 
K=1 2n-2 2b-rSCL 
K=2 n-2 4b-rSCL 
K=3 n/2-2 8b-rSCL 
… … … 

K=K n/2K-2-2 2Kb-rSCL (general case) 
… … … 

K=m=log2n 2 
Maximum Likelihood  

(ML) decoder 
 
Although the increase of K can lead to the reduction of 

latency, K cannot be set too large for hardware implementation. 
That is because when K increases, the number of candidate 
paths, as 22

K , increases rapidly. As a result, a large K causes a 
large amount of path candidates and hence significantly 
increases the overall complexity of metric computation and 
path metrics comparison. For example, when K=m=log2n (ML 
decoder), the number of path candidates is 2n. For (1024, 512) 
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polar codes, that means 21024 path metrics need to be computed 
and compared. The implementation of these extensive 
operations will cause ultra-large silicon area and ultra-long 
critical path. As a result, for practical implementation K is 
suggested to be set as no more than 3, which can achieve a good 
tradeoff between latency reduction and computation overhead. 

D. Simulation results 

Because the proposed reformulated SCL decoding 
algorithms only avoid the unnecessary metric computations but 
do not change the accuracy of metric computation, there is no 
performance loss for the reformulated SCL algorithms over the 
original SCL algorithm. This is consistent with the simulation 
results shown in Fig. 15. 

 
Fig. 15. Performance of 2Kb-rSCL algorithms for  (1024, 512) polar codes. 

IV. THE PROPOSED REFORMULATED SCL ARCHITECTURE 

In this section, the hardware architectures of the 
reformulated SCL (2Kb-rSCL) decoders are presented. 
Different values of K correspond to different 2Kb-rSCL 
decoders. For simplicity, in this section we focus on K=1 and 
K=2 cases, which correspond to the 2b-rSCL decoder and 
4b-rSCL decoder. Architectures with values of other K can be 
developed with a similar way. 

As shown in Fig. 11, the difference between SC component 
decoder of 2b-rSCL or 4b-rSCL decoders and that of original 
SCL decoder is on the last 1 or 2 stages. Therefore, the other 
stages (f/g units) of original SC decoder are still used in the 
reformulated SCL decoders. As a result, in this section we 
focus on the architecture design of f/g units in the SC 
component decoder, MCU/ZFU in the reformulated stage, and 
metric sorting block, respectively. 

A. Processing element for f/g units 

As indicated in Section II, the likelihood-based function of f 
and g units are described in (3)(4)(9)(10). However, these 
equations contain multiplication which is not feasible for 
hardware implementations. As a result, in order to simplify 
computation, the log-likelihood-based f and g units are used in 
our design. In this case, the likelihood-based (3)(4)(9)(10) are 
reformulated to the following equations: 



(0) *( (0) (0), (1) (1) (20)

(1) *( (0) (1), (1) (0) (21)

(0) ( ) (0)

 )                               

 )                                

                                                  

  
  

 sum

c max a b a b

c max a b a b

d a u b


(22)

(1) (1 ) (1) (23)

      

                                                      sumd a u b

where max*(x, y)=max(x, y) + ln(e-|x-y|) represents the Jacobian 
logarithm. 

Notice that (20) (21) contain logarithmic operation (ln(•)), 
which needs to be implemented using complex look-up table 
(LUT) with a long critical path. Fortunately, in [16] it was 
shown that the logarithmic item can be ignored with negligible 
performance loss. As a result, (20)(21) can be further simplified 
as: 

c(0) = max(a(0) + b(0), a(1) + b(1))         (24) 
c(1) = max(a(0) + b(1), a(1) + b(0))         (25) 

 In general, equations (22)-(25) describe the log-likelihood 
version of f and g units. Based on these equations, the basic 
processing element (PE) of the SC component decoder, which 
contains an f unit and a g unit, is developed and is shown in Fig. 
16. Here, C&S unit represents the combined comparator and 
2-to-1 selector. In addition, ctrl signal is the control signal that 
indicates whether the PE functions as an f unit or a g unit. 

 
Fig. 16. Architecture of PE for f and g units in the SC component decoder. 

B. Metric computation unit (MCU) & Zero-Forcing 
unit(ZFU) 

As shown in Fig. 11, MCU and ZFU are the two essential 
parts in 2Kb-rSCL decoders to help them decide multiple bits. 
Similar to the case in Section IV-A, the likelihood-based 
functions of MCU and ZFU need to be transformed to 
log-likelihood version as well. 

For K=1 case that corresponds to 2b-rSCL decoding 
algorithm, its likelihood-based functions of MCU and ZFU 
have been described in Scheme-A (line10~line18). For the 
transformation for MCU , according to the transformation 
principle in Section IV-A, P(pq)=a(p)b(q) in the line-12~line13 
of Scheme-A is transformed to a(p)+b(q). In addition, since ln0 
is negative infinite, M(pq)=0 (line-17~ line-18 in Scheme-A), 
as the likelihood-based function of ZFU, is reformulated to 
M(pq)=-Inf and where –Inf represents negative infinite. As a 
result, the hardware architecture of MCU and ZFU for 2b-rSCL 
decoder is developed as shown in Fig. 17(a). Here the ctrl1 and 
ctrl2 in Fig. 17(a) are the two control signals that indicate 
whether  2 1iu  and  2iu  are information bits or not. 
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(a) 

 
(b) 

Fig. 17. Architecture of MCU+ZFU for (a) 2b-rSCL (b) 4b-rSCL decoders. 

For K=2 case that corresponds to 4b-rSCL decoding 
algorithm, its likelihood-based function of MCU and ZFU can 
be derived from Scheme-B (line10~line19). For the function of 
MCU (line12~line13), in K=2 case it is P(α1α2α3α4)=a1(α1 α2

 α3  α4)a2(α2  α4)b1(α3  α4)b2(α4). Then, with the 
likelihood-to-log-likelihood transformation, it is reformulated 
as P(α1α2α3α4)=a1(α1  α2  α3  α4)+a2(α2  α4)+b1(α3 
α4)+b2(α4). For the function of ZFU (line16~line19), in K=2 
case it is M(α1α2α3α4)=0. Therefore, its log-likelihood version is 
M(α1α2α3α4)=-Inf. As a result, the architecture of MCU and 
ZFU for 4b-rSCL decoders are developed as shown in Fig. 17 
(b). Here the ctrl1, ctrl2, ctrl3 and ctrl4 in Fig. 17(b) are the 
four control signals that indicate whether  4 3iu ,  4 2iu ,  4 1iu  and 


4iu  are information bits or not. 

C. Metric Sorting block 

After MCU and ZFU generate the metrics for different paths, 
a sorting block is needed to compare those 2L metrics and select 
the L paths with larger metrics. In the proposed designs, we use 
the bitonic sorting algorithm [19] to find out the L larger 
metrics. Fig. 18 illustrates an example architecture of the 
proposed 8-input 4-output metric sorting block. It contains a 
4x4 increasing order bitonic sorter and a 4x4 decreasing order 

bitonic sorter. Each bitonic sorter is constructed by 2x2 
increasing order sorters (IOS) and 2x2 decreasing order sorters 
(DOS). With the help of the two 4x4 bitonic sorters, in1~in4 are 
sorted as an array with increasing order (i1≤i2≤i3≤i4) while 
in5~in8 are sorted as an array with decreasing order 
(d1≥d2≥d3≥d4). Then, these two pre-sorted arrays are sent to a 
stage of 4 C&S units. At the output end of these C&S units, the 
4 larger elements among in1~in8 are found as outj=max(ij, dj), 
where j=1, 2, 3 and 4. For the details of bitonic sorter, the reader 
is referred to [19]. 

 
Fig. 18. Architecture of 8-input 4-output metric sorting block. 

As indicated in [19], the critical path delay of a 2sx2s bitonic 
sorter is 1+2+…+s=s(s+1)/2 TC&S, where TC&S is the critical 
path delay of C&S unit. Therefore, a general 2s-input 
2s-1-output metric sorting block consisting of two 2s-1x2s-1 
bitonic sorters and a stage of C&S units has an overall critical 
path delay of 1+2+...s-1+1=1+(s-1)s/2 TC&S. 

Notice that the metric sorting block is a 2s-input 2s-1-output 
(2sx2s-1) sorter that can find the 2s-1 largest elements among the 
2s inputs. Since for the proposed L-size 2Kb-rSCL decoder, it 
only needs to find the L largest metrics among 22

K L candidates, 
hence the 2sx2s-1 sorter is enough for this sorting task and we do 
not need the full-size sorting (2sx2s) function. 

D. Data path balancing 

As discussed in Section IV-C, the critical path delay of 
2s-input 2s-1-output metric sorting block is 1+(s-1)s/2 TC&S. This 
is much larger than the critical path delay of PE or MCU/ZFU. 
For example, for a 4b-rSCL decoder with L=2, s=log2(16*2)=5. 
Then the critical path delay of metric sorting block is 11TC&S, 
while the critical path delays of PE and MCU/ZFU are less than 
3TC&S. Because the clock speed is upper-bounded by the critical 
path delay, the throughput of reformulated SCL decoder is 
limited by the long critical path of metric sorting block. 

Considering the unbalanced data path between metric sorting 
block and other parts of reformulated SCL decoder, we propose 
to re-pipeline those data paths to reduce critical path delay. Fig. 
19(a) shows the original pipelining of 4b-rSCL decoder. Here 
the register arrays for pipelining are inserted between different 
blocks of SCL decoder. As a result, due to the unbalanced data 
path between different blocks, the clock cycles for processing 
PEs and MCU/ZFU are not fully utilized (see Fig. 19(b)). Fig. 
19(c) shows the proposed re-pipelining strategy to the same 
4b-rSCL decoder. It can be seen that the original registers 
between stage-(m-2), MCU/ZFU and metric sorting block are 
moved into metric sorting block. Fig. 19(d) shows the 
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corresponding timing chart after re-pipelining. It can be seen 
that the data path in each clock cycle is balanced. More 
importantly, since metric sorting block is deeply pipelined, the 
overall critical path delay is reduced significantly. Notice that 
in Fig. 19(c) the metric sorting block is 2-stage pipelined. If 
deeper pipelining is needed, we need to move the registers 
between other stages of PE into metric sorting block. For 
example, in order to perform 3-stage pipeline to metric sorting 
block, we need to move the registers between stage-(m-3) and 
stage-(m-2) in Fig. 19(c) into metric sorting block as well. 

 
(a) 

 
   (b) 

 
(c) 

 

 
(d) 

Fig. 19. (a) Original pipelining for 4b-rSCL decoder. (b) Original timing chart. 
(c) Re-pipelining for 4b-rSCL decoder. (d) Timing chart with balanced data 
path. 

The proposed data path balancing strategy is very useful for 
high-speed polar list decoder design. For practical use of polar 
codes, in order to achieve comparable error-correcting 
performance with LDPC or Turbo codes with the similar 
codelength, a large list size L is required. For example, [4] 
reported that the 2048-length polar codes can achieve beyond 
LDPC performance under the condition of L=32. In that case, 
for the conventional SCL decoder, the s for sorting block is 
log2(2*32)=6. As a result, even the proposed metric sorting 
block is used, the critical path delay is still very large 
(1+(s-1)s/2 TC&S=16TC&S), which impedes the application of 
polar codes in high-speed systems. Notice that this 
phenomenon becomes even more severe for 2Kb-rSCL decoder. 
For example, for 4b-rSCL decoder with L=32, the number of 
path metric candidates is 32*16=512, which corresponds to 
s=log2512=9. As a result, the critical path delay of metric 
sorting block increases to 1+(s-1)s/2 TC&S=37TC&S. However, if 
we apply the proposed data path balancing technique to this 

case, the critical path delay can be significantly reduced. For 
example, in the case of 2048-length polar codes with L=32, 
with the balance of the data path of metric sorting block, 
MCU/ZFU block and all the stages of PE (stage-1~stage-9), the 
critical path delay of 4b-rSCL decoder after data path balancing 
is less than (37+3+3*9)/11≈6.1TC&S. This new critical path 
delay is 4 times less than the case without use of data path 
balancing, and it is even 1.5 times less than that of the original 
SCL decoder. As a result, the use of the proposed data path 
balancing strategy guarantees the high-speed design of polar 
list decoder. 

E. Quantization scheme 

Similar to the case of SCL decoders, the architecture of 
2Kb-rSCL decoders contain multiple stages of PE. As a result, 
in order to avoid saturation problem that is pointed out in [16], 
the quantization schemes for different stages of PE are different. 
If we assume the log-likelihood (LL) information from channel 
is quantized as Qch bits, then for the stage-i of 2Kb-rSCL 
decoder, the corresponding bit-width is Qch+i. In addition, for 
the MCU/ZFU and metric sorting blocks, they are quantized 
with Qch+m bits. Notice that because the LL information in 
different stages has different bit-widths, the corresponding 
memories that store the LL information have different 
bit-widths as well.  

F. Memory requirement 

Besides the aforementioned blocks, a large portion of the 
2Kb-rSCL decoders is the memory banks. Similar to SCL 
decoders [16], multi-bit-width memory banks in the proposed 
design store the LL information from the channel as well as the 
LL information processed by each stage. As discussed in the 
Section IV-E, the quantization scheme for LL information is 
non-uniform and varies depending on the corresponding stages, 
therefore the memory banks for different stages have different 
bit-widths. In addition, 1-bit-width memory banks are needed 
to store the updated survival paths and partial sum bits  sumu . 

Notice that compared to [16], the memory requirement of the 
proposed 2Kb-rSCL decoder is larger. This is because the 
number of path metric candidates increases in the proposed 
decoders. As a result, more memories are required for storing 
the calculated metrics from MCU/ZFU block. For example, 
with L=32 and K=2, 32*16=512 LL messages for metrics needs 
to be stored, while SCL decoder only needs to store 64 LL 
message for metrics. Consider these metrics are always 
quantized to more than 10 bits, the extra memory requirement 
of 2Kb-rSCL decoder causes inevitable area overhead, 
especially in the case of large L or K.  

G. Overall architecture 

Based on the aforementioned PE, ZFU&MCU and metric 
sorting block, the overall architecture of an L-size reformulated 
SCL decoder can be developed as illustrated in Fig. 20. Besides 
the above presented blocks, the decoder needs LL memory 
bank to store and update the log-likelihood information that are 
processed by L SC component decoders. In addition, survival 
path bank is also needed to store and update the L survival paths 
during the list decoding procedure. Besides that, the 
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reformulated SCL decoder needs a polar-encoder-like partial 

sum generator (PSG) to compute  sumu  for corresponding SC 
component decoder. The architecture of PSG is similar to the 
polar encoder shown in Fig. 1. 

…
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…
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…
...

…
…

…

 
Fig. 20. The overall architecture of reformulated SCL decoders. 

V. HARDWARE ANALYSIS AND COMPARISON 

In this section, the hardware performance characteristics of 
the proposed reformulated SCL decoding architectures are 
analyzed. Table IV shows the hardware performance of 
different SCL decoders with list size L=2 and 4 for polar (1024, 
512) code. Here the designs of 2b-rSCL decoder and 4b-rSCL 
decoder are synthesized by Synopsys Design Compiler with ST 
CMOS 65nm library. Notice that in the proposed designs 3-bit 
quantization scheme is used for the LL information output from 
channel, which is the same as in [16]. Based on the quantization 
scheme described in Section IV-E, the bit width of stage-i is 3+i. 
For the MCU/ZFU block and metric sorting block, they are 
quantized to 3+m=13 bits. 

From Table IV it can be seen that, compared with prior 
LL-based SC list decoder design [16], the proposed 2b-rSCL 
decoder and 4b-rSCL decoder can achieve 21.0% and 60.5% 
reduction in latency, respectively. Notice these reductions are 
less than the analysis in Table III. This is because the latency 
listed in Table IV is calculated based on the equation (12) in 
[16], where code rate R=k/n is considered, while the analysis in 
Table III discuss the general case without the specific 
discussion on different code rate or distribution of frozen bit 
positions. In general, as the code rate increases, the proposed 
reformulated SCL decoders can save more clock cycles than the 
original one in [16]. For example, for an R=1 polar code, 
2b-rSCL decoder and 4b-rSCL decoder can achieve 33% and 
66% less latency than the original SCL decoder, respectively. 

With the use of data path balancing technique in Section 
IV-D, the proposed 2b-rSCL and 4b-rSCL designs can achieve 
high clock frequency. Therefore, as seen in Table IV, the coded 
throughputs of 2b-rSCL decoder and 4b-rSCL decoder with 
L=2 are 1.66 times and 3.45 times of that of original SCL 
decoder, respectively. In addition, when L=4, the coded 
throughputs of 2b-rSCL decoder and 4b-rSCL decoder are 2.11 
times and 3.23 times of that of original SCL decoder, 
respectively. Besides, the hardware efficiency of our designs, 

which is defined as the ratio of throughput to area, increases as 
well. When L=2, the hardware efficiencies of 2b-rSCL and 
4b-rSCL decoders are 1.36 times and 2.08 times of that of 
original SCL decoder; when L=4, the hardware efficiencies of 
2b-rSCL and 4b-rSCL decoders are 1.87 times and 2.66 times 
of that of original SCL decoder. 

Recently, log-likelihood-ratio (LLR)-based SCL decoder 
was proposed in [17], which requires much less bit-width than 
LL-based decoder. As a result, the overall area and critical path 
delay can be significantly reduced. Due to the generality of 
LLR-based scheme in [17], it can be also applied to our 
proposed 2Kb-rSCL decoders. In that case, the hardware 
complexity and crucial path of our designs can be further 
reduced while retaining the same short latency. 

VI. CONCLUSION 

In this paper we have presented reformulated SC list 
decoding algorithms. These reformulated algorithms can 
reduce the latency significantly without any performance loss. 
Then, based on the proposed algorithm, we develop 
corresponding latency-reducing hardware architectures for 
SCL decoders. Hardware analysis shows that the proposed 
2b-rSCL decoder and 4b-rSCL decoder can achieve significant 
improvement in throughput and hardware efficiency. 
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