
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract—Polar codes, as the first provable capacity-achieving

error-correcting codes, have received much attention in recent
years. However, the decoding performance of polar codes with
traditional successive-cancellation (SC) algorithm cannot match
that of the low-density parity-check (LDPC) or turbo codes.
Because SC list (SCL) decoding algorithm can significantly
improve the error-correcting performance of polar codes, design
of SCL decoders is important for polar codes to be deployed in
practical applications. However, because the prior latency
reduction approaches for SC decoders are not applicable for SCL
decoders, these list decoders suffer from the long latency
bottleneck. In this paper, we propose a multi-bit-decision
approach that can significantly reduce latency of SCL decoders.
First, we present a reformulated SCL algorithm that can perform
intermediate decoding of 2 bits together. The proposed approach,
referred as 2-bit reformulated SCL (2b-rSCL) algorithm, can
reduce the latency of SCL decoder from (3n-2) to (2n-2) clock
cycles without any performance loss. Then, we extend the idea of
2-bit-decision to general case, and propose a general decoding
scheme that can perform intermediate decoding of any 2K bits
simultaneously. This general approach, referred as 2K-bit
reformulated SCL (2Kb-rSCL) algorithm, can reduce the overall
decoding latency to as short as n/2K-2-2 cycles. Furthermore, based
on the proposed algorithms, VLSI architectures for 2b-rSCL and
4b-rSCL decoders are synthesized. Compared with a prior SCL
decoder, the proposed (1024, 512) 2b-rSCL and 4b-rSCL decoders
can achieve 21% and 60% reduction in latency, 1.66 times and
2.77 times increase in coded throughput with list size 2, and 2.11
times and 3.23 times increase in coded throughput with list size 4,
respectively.

Index Terms— polar codes, list decoding, successive
cancellation, algorithm reformulation, multi-bit decision

I. INTRODUCTION

OLAR codes are the first provable capacity-achieving codes
[1]. Due to their explicit structure and regular

encoding/decoding architectures, polar codes have received
much attention in recent years. To date many works have
addressed theoretical analysis [1-6] [20] and hardware
implementation [7-17] [21] of polar codes.

Although it has been proved that polar codes can achieve
channel capacity asymptotically, the decoding performance of
polar codes with the successive cancellation (SC) algorithm [1]

Manuscript received Feb. 20th, 2014. Authors are with Department of

Electrical and Computer Engineering, University of Minnesota, Twin Cities,
USA. Email: {yuan0103, parhi}@umn.edu.

is inferior to that of LDPC or Turbo codes. To improve the
decoding performance, a successive cancellation list (SCL)
decoding algorithm was presented in [4]. Simulation results
show that polar codes with the use of SCL algorithm combined
with simple CRC check and systematic encoding methods can
outperform the same length and rate LDPC codes [4]. As a
result, the SCL algorithm is believed to be the key for decoding
of polar codes to be applicable in practical systems.

However, due to the inherent serial nature of successive
cancellation computation, the SCL decoders suffer from long
latency and low throughput problems similar to early SC
decoders. Nowadays many techniques [3][7][12-15][21] have
been proposed to reduce the latency of SC decoders; however,
these approaches cannot be directly used to reduce the latency
of the SCL decoders. As a result, to date the known VLSI
designs of SCL decoder [16-17] still incur decoding latency of
3n-2 clock cycles.1

This paper presents multi-bit-decision approaches that can
reduce the latency of SCL decoders. First, 2-bit reformulated
SCL (2b-rSCL) algorithm, which can perform intermediate
decoding of 2 bits simultaneously, is presented to reduce the
overall latency from (3n-2) cycles to (2n-2) cycles. Then, by
generalizing the 2-bit-decision idea, we propose a general
2K-bit reformulated SCL (2Kb-rSCL) algorithm. By performing
intermediate decoding of 2K bits together, the proposed
2Kb-rSCL decoder has latency as short as n/2K-2-2 cycles. In
order to demonstrate the advantage of the proposed approaches,
VLSI architectures of 2b-rSCL and 4b-rSCL decoders are
synthesized. Compared with the prior SCL decoder, the
proposed (1024, 512) 2b-rSCL and 4b-rSCL decoders can
achieve 21% and 60% reduction in latency, 1.66 times and 2.77
times higher in coded throughput with list size 2, and 2.11 times
and 3.23 times higher in coded throughput with list size 4,
respectively.

The rest of this paper is organized as follows. Section II gives
a brief review of polar codes and SCL algorithm. The proposed
2b-rSCL and 2Kb-rSCL algorithms are presented in Section III.
Section IV presents the hardware architectures of the 2b-rSCL
and 4b-rSCL decoders. Hardware analysis and comparisons are
discussed in Section V. Section VI draws the conclusions.

1 The latency calculation in [16-17] is not 3n-2 but varies with code rate R.

In order to discuss the general case, in the rest of this paper we analyze the
latency without specific discussion of R. For the latency calculation in Section
V with specific code parameters, we will consider R for fair comparison.

Low-Latency Successive-Cancellation List
Decoders for Polar Codes with Multi-bit

Decision

Bo Yuan and Keshab K. Parhi, Fellow, IEEE

P

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

II. REVIEW OF POLAR CODES AND SCL ALGORITHM

A. Encoding Process of Polar Codes

Different from other block codes, an (n, k) polar code is
generated in two steps. First, the k-bit source message is
extended to an n-bit message x=(u1, u2,…un) by padding (n-k)
“0” bits. Notice that because the post-decoding reliability of n
bit positions of u can be pre-computed in [1], the k most reliable
positions of u are assigned k information bits and other (n-k)
least reliable positions are forced to be “0”. Then, the n-bit
message u is multiplied with an n×n generator matrix G to
generate the transmitted codeword x=(x1, x2,…,xn). Fig. 1
shows the implementation of a polar code encoder with n=4.

1

2

3

4

1,1 1 2

2,1 2

3,1 3 4

4,1 4

1,2 1

2,2 2

3,2 3

4,2 4

(a) (b)

Fig. 1. (a) Implementation of n=4 polar encoder. (b) Basic unit of polar encoder.

B. Successive Cancellation Decoding Algorithm

At the receiver end, due to the corruption from transmission
noise, the transmitted codeword x changes to the received
codeword y=(y1, y2,…,yn). Since the required information bits
are contained in u, a polar code decoder is needed to recover the
u from the y. In [1], Arıkan proposed a successive cancellation
(SC) decoder to perform this recovery. Fig. 2 shows the
example decoding procedure of this SC decoder for n=4 polar
code based on likelihood form. As seen in this figure, the SC
decoder consists of m=log2n=2 stages, where each stage
consists of two types of 4-input-2-output units, referred as f unit
and g unit, respectively. In addition, a 2-input-1-output
hard-decision unit denoted as h is used at the last stage of SC
decoder (stage-2) to determine the estimate of ui, referred as  iu .
Besides, each f or g unit is labeled a number to indicate the
clock cycle index when it is activated. This labeling system
reveals the inherent serial nature of the SC decoding algorithm.
For example, in Fig. 2 the decoded bits are output at cycles 2, 3,
5, 6, respectively.


1u


2u


3u


4u


1u


3u

 
1 2u u


2u

(a) (b)
Fig. 2. (a) SC decoding procedure with n=4. (b) Basic unit of SC decoder.

In addition, the functions of f and g units can be derived via
the analogy between polar code encoder and decoder. Fig. 1 (b)
and Fig. 2(b) show the general basic unit in polar encoder and
decoder, respectively. For the basic unit of encoder (see Fig.
1(b)), it performs a left-to-right transformation from in1 and in2

to out1 and out2. Hence, the transformation equations in Fig. 1(b)
are:

out1=in1  in2, and out2=in2, (1)
where  represents the exclusive-or operation.

On the other hand, for the basic unit of decoder in Fig. 2(b),
as indicated in [1], its function is just a right-to-left estimation
from the likelihoods of out1 and out2 to the likelihoods of in1
and in2. Therefore, according to the left-to-right transformation
equations (1), the “expected” relationship from the estimates of
out1 and out2 to the estimates of in1 and in2 can be derived as:
  

1 1 2 in out out , and  
2 2in out . (2)

With the help of the above “guideline” equations (2), we can
now develop the functions of f and g units in Fig. 2(b). First we
assume the previously decoded bits 1u ,  2u … 

2 2iu have been
determined as binary values z1, z2, …zi-1, respectively. For

simplicity, this event is denoted as  1
1

1 1

 
i

iu z . Then, the two

outputs of f unit, referred as c(0) and c(1), can be derived:

 

   

   

1
1

1 1 1

1 1
1 1

1 1 2 11 1

1 1
1 1

1 1 2 11 1

(0) Pr(0,)

Pr(0,) Pr(0,)

Pr(1,) Pr(1,)

(0) (0) (1) (1)

 =

 

  

  

  

   

    
 

i
i

i i
i i

i i
i i

c in u z

out u z out u z

out u z out u z

a b a b (3)

 

   

   

1
1

1 1 1

1 1
1 1

1 1 2 11 1

1 1
1 1

1 1 2 11 1

(1) Pr(1,)

Pr(0,) Pr(1,)

Pr(1,) Pr(0,)

(0) (1) (1) (0)

 =

 

  

  

  

   

    
 

i
i

i i
i i

i i
i i

c in u z

out u z out u z

out u z out u z

a b a b (4)

where a(0), a(1), b(0), b(1) are the inputs of f or g unit..
Due to the successive property of SC algorithm, d(0) and

d(1), as the outputs of g unit, are determined by the estimate of
in1. When it is 0, according to (2), we have:

  

   

1
1

2 1 1 1

1 1
1 1

1 1 2 11 1

(0) Pr(0, 0,)

Pr(0,) Pr(0,) (0) (0) (5)

i
i

i i
i i

d in in u z

out u z out u z a b

 

  

   

   

= =

  

   

1
1

2 1 1 1

1 1
1 1

1 1 2 11 1

(1) Pr(1, 0,)

Pr(1,) Pr(1,) (1) (1) (6)

i
i

i i
i i

d in in u z

out u z out u z a b

 

  

   

   

= =

Similarly, when 1in is 1, according to (2), we have:

  

   

1
1

2 1 1 1

1 1
1 1

1 1 2 11 1

(0) Pr(0, 1,)

Pr(1,) Pr(0,) (1) (0) (7)

= =

 

  

   

   

i
i

i i
i i

d in in u z

out u z out u z a b

  

   

1
1

2 1 1 1

1 1
1 1

1 1 2 11 1

(1) Pr(1, 1,)

Pr(0,) Pr(1,) (0) (1) (8)

i
i

i i
i i

d in in u z

out u z out u z a b

 

  

   

   

= =

 As a result, by summarizing (5)(6)(7)(8), we can obtain the
unified function for g unit:

    1

1
2 1 1 1(0) Pr(0, ,) () (0) =

    
i

i
sum sumd in in u u z a u b (9)

    1
1

2 1 1 1(1) Pr(1, ,) (1) (1) =
     

i
i

sum sumd in in u u z a u b (10)

 Besides, for h unit, since it is the hard-decision unit, we can
obtain its function as follows:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3





0 if (0) (1) or is frozen bit

1 if (0) (1) and is free bit

  


i
i

i

a a u
u

a a u
 (11)

In general, equations (3)(4)(9)(10)(11) describe the

likelihood-based SC algorithm.
On the other hand, from the view of code tree, the SC

algorithm can be described as a path searching process. Fig. 3
shows an example for n=4 and k=4 SC decoding procedure over
the code tree. This n=4 code tree consists of 4 levels, where
each level represents a decoded bit. The value associated with
each node is the likelihood-based metric for the decoding path
from root node to the current node. For example, 0.33 on the
leftmost side indicates that for the path 1u =0 and  2u =0, denoted
as the length-2 path (00), its metric is given by Pr(1u =0,  2u

=0)=0.33. For the 0.12 on the rightmost side, it indicates the
metric for path 1u =1,  2u =1 and  3u =1, denoted as the length-3
path (111), is given by Pr(1u =1,  2u =1,  3u =1)=0.12. In
particular, the path metrics associated with the nodes at the
lowest level (level 4) represent the different likelihoods for the
different combinations of (1u 

2u 
3u 

4u). The valid output of this
n=4 SC polar decoder should be the length-4 path which has the
largest metric at the lowest level. In this example it is (0010)
with path metric Pr(1u =0,  2u =0,  3u =1  4u =0)=0.19.

^^

Fig. 3. Searching process of SC decoder over code tree with n=4 and k=4.

Notice the aforementioned path metrics are calculated by the
f or g units in the last stage of the SC decoder (for example
stage-2 in Fig. 2(a)). For the length-i path, its path metric is
computed by the f or g unit associated with 1u . For example, for
n=4 polar code, the path metric for path (1u 

2u) is computed by
index-3 g unit in Fig. 2(a). Similarly, the path metric for path
(1u 

2u 
3u) is computed by index-5 f unit in Fig. 2(a).

In order to find the decoding path with the largest metric, SC
algorithm adopts a locally optimal searching strategy. As
shown in Fig. 3, the arrows represent the survival decoding path
of the SC decoder. In the i-th level, the SC decoder first visits
the two children nodes (striped nodes in Fig. 3) that are
connected to the current survival length-(i-1) path. Since the
metrics of length-i paths are associated with these children
nodes, the SC decoder then can obtain the metrics of length-i
paths. After comparing the metrics, the SC decoder only selects
the length-i path which has the larger metric as the updated
survival path, while the path which has the smaller metric will
never be explored in the future. Based on this searching strategy,
in Fig. 3 the length-4 path (0010) with metric 0.19 is selected as
the output of SC decoder. In this example, the SC decoder

works well since it finds the valid length-4 path with the largest
metric.

C. Successive Cancellation List Decoding Algorithm

An essential drawback of the SC algorithm is that its
searching strategy over the code tree is only locally optimal, but
not globally optimal. As a result, in many cases the (n, k) SC
decoder cannot find the length-n path with the largest metric.
For example, if we apply SC decoding approach in Fig. 4, its
output is (0010) with metric 0.19; however, the valid length-4
path with largest metric should be (1000) with metric 0.23.

Fig. 4. Searching process of SCL decoder with n=4, k=4 and L=2.

The reason for the inefficiency of SC algorithm in this
example is that sometimes the unexplored path, instead of the
chosen survival path, has the larger path metric. Based on this
observation, successive cancellation list (SCL) algorithm [4]
was proposed to perform searching process along multiple
survival paths at the same time. Here the maximum number of
the survival paths is referred as the list size (L). Fig. 4 shows an
example for the n=4 and k=4 SCL decoder with L=2. As shown
in Fig. 4, at the i-th level, the SCL decoder visits all the 2L
children nodes (striped nodes in Fig. 4) that are connected to the
length-(i-1) survival paths. After calculating all the 2L new path
metrics associated with these children nodes, the SCL decoder
selects the L length-i paths which have the larger metrics as the
updated survival paths. From Fig. 4 it can be seen that the valid
decoding path (1000), which could not be traced by SC decoder
before, now can be found by the SCL decoder.

III. THE PROPOSED REFORMULATED SCL ALGORITHMS

A. Long latency problem of original SCL decoder

 In general, the SCL algorithm can improve decoding
performance significantly over the SC algorithm [4]. However,
one of the major challenges for the practical use of SCL
decoder is the long latency problem. Because an L-size (n, k)
SCL decoder can be viewed as the combination of L copies of
(n, k) SC component decoders (see Fig. 5), an (n, k) SCL
decoder needs the same (2n-2) cycles to process its f and g units
as its SC component decoders do. In addition, since SCL
decoders need to sort 2L path metrics and select L largest
metrics for each decoded bit (see Fig. 5), extra n cycles are
needed to carry out the sorting and selecting function to avoid
long critical path [16]. Therefore, the latency of an (n, k) SCL
decoder is 3n-2 cycles. As discussed in Section I, although
some methods have been proposed to reduce the latency of SC

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

decoders, these approaches cannot be directly applied to the
SCL decoder. As a result, the latency of current known SCL
decoder [16-17] is still very long. Table I shows an example
decoding scheme of conventional SCL decoder for n=4 polar
code. Here in this table the symbols f and g represent the f and g
units in each SC component decoder of Fig. 2, respectively.
Besides, the symbol s represents the path metrics sorting and
selecting operation for each intermediately decoded bit.

Fig. 5. Block diagram of L-size SCL decoder.

TABLE I. DECODING SCHEME OF CONVENTIONAL SCL DECODER WITH N=4
Clock
cycle

1 2 3 4 5 6 7 8 9 10

Stage-1 f g
Stage-2 f s g s f s g s

Bit
decision

1
u

2
u

3
u

4
u

B. 2-bit reformulated SC List (2b-rSCL) Algorithm

As seen in Table I, more than 60% latency of SCL decoder is
due to the computation of f, g and s in the last stage (stage-2, in
Table I). This phenomenon implies that the reduction of latency
in the last stage can lead to significant reduction of the overall
latency of SCL decoder. Therefore, in this sub-section we
propose to reformulate the original computation of the last
stage. This reformulated computation in the last stage can save
many clock cycles without any performance loss.

Table I shows that the computation of the last stage can be
viewed as multiple “f s g s” functions to perform intermediate
decoding of two consecutive bits  2 1iu and  2iu . Since the f/g
units and s in the last stage contribute to path metrics
calculation and selection, respectively, hence the goal of our
reformulation on the last stage is to find a simplified method
that can compute path metrics and sort/select them to perform
intermediate decoding of  2 1iu and  2iu more quickly.

(a)

(b)
Fig. 6. Block diagram of (a) original SC component decoder of SCL decoder. (b)
reformulated SC component decoder of 2b-rSCL decoder.

Fig. 6 (a) and (b) show the block diagram of the original and
reformulated SC component decoder for SCL decoding,
respectively. From these two figures it can be seen that the

reformulated SC decoder replaces the original stage-m with two
new units, referred as metric computation unit (MCU) and
zero-forcing unit (ZFU), respectively. Besides that, as shown in
Fig. 5, a sorting block (s symbol in Table I) is also needed to
sort the path metrics output from all the L SC component
decoders. Because the sorting block is an individual block that
does not belong to any SC component decoder, in this
subsection we do not discuss sorting block but focus on the
functions of MCU and ZFU. The architecture of sorting block
will be presented in Section IV.
Metric Computation Unit (MCU)
 As shown in Fig. 7, metric computation unit (MCU)
calculates the likelihoods for different combinations of  2 1iu
and  2iu with the use of the messages a(0), a(1), b(0) and b(1)
output from stage-(m-1). The principle of this calculation can
be derived from (5)-(8). Since for the last stage of each SC
component decoder,  2 1iu and  2 1iu are the estimates of in1 and
in2, respectively, therefore by making  

1 2 -1iin u and  
2 2 iin u in

(5)-(8) we can have:

   2 2
2 2

2 1 2 1 1(00) Pr(0, 0,) (0) (0)
 

    
i

i
i iP u u u z a b

   2 2
2 2

2 1 2 1 1(01) Pr(0, 1,) (1) (1)
 

    
i

i
i iP u u u z a b

   2 2 2 2
2 1 2 1 1(10) Pr(1, 0,) (1) (0)

 
    

i i
i iP u u u z a b

   2 2
2 2

2 1 2 1 1(11) Pr(1, 1,) (0) (1)
i

i
i iP u u u z a b

 
     (12)

where  2 2
2 2

1 1

i
iu z

  denotes that the previously decoded bits 1u ,


2u … 
2 2iu are assumed to have been determined as z1, z2,… z2i-2,

respectively.

Fig. 7. Block diagram of MCU for 2b-rSCL decoder.

Equations (12) describe the calculation of the joint

likelihoods of  2 1iu ,  2iu and  2 2
2 2

1 1

i
iu z

  . Now we show that these

joint likelihoods are just the actual metrics of length-2i paths.
Consider one of the current length-(2i-2) survival path in the
code tree as (1u … 

2 2iu)=(z1…z2i-2). As shown in Fig. 8, with the
different combination of  2 1iu and  2iu , this length-(2i-2) path
can be extended to four length-(2i) paths as (1u … 

2 2iu 
2 1iu


2iu)=(z1…z2i-2pq), where p and q are binary 0 or 1. According to

the definition of path metric, with the four combinations of p

and q, Pr( 2 2iu =p,  2 2iu =q,  2 2 2 2
1 1

i iu z
 ) in (12) are just the actual

metrics of the above four extended length-(2i) paths. As a result,
according to equations (12), with the knowledge of a(0), a(1),
b(0) and b(1) output from the stage-(m-1), we can directly
obtain the actual path metrics of four length-(2i) paths.(1u …


2 2iu 
2 1iu 

2iu)=(z1…z2i-2pq).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Fig. 8. Extension from one length-(2i-2) path to four length-(2i) paths with
direct computation of actual path metrics.

Zero-Forcing Unit (ZFU)
Although equations (12) provide a fast approach to compute

the actual metrics of length-2i paths, a post-processing
operation is still needed before inputting those calculated
metrics into the sorting block. This is because the values of  2 1iu
and  2iu do not only depend on the corresponding path metrics,
but also on whether they are frozen bits or not. Notice that when
the current decoded bit  iu is a frozen bit, the paths with  iu =1
are not qualified and should never be selected even if they have
larger metrics than their counterparts. As a result, in order to
avoid selecting those unqualified paths, we need a zero-forcing
unit (ZFU) to force the metrics of those unqualified paths to 0.
The reason of this zero-forcing operation is that since the SCL
decoder only selects the L survival paths with larger metrics for
each  iu , therefore the unqualified paths with metric values 0
will never be classified into the group of L paths with larger
metrics. As a result, the validity of the function is guaranteed.

(a)

(b)

Fig. 9. L-size decoding scheme of (a) original SCL decoder. (b)2b- rSCL
decoder.

Since the proposed reformulated last stage involves both


2 1iu and  2iu , the function of ZFU is derived as follows:

 Assign M(pq)=P(pq) for path 2 -2
1()iz pq with p, q{0,1};

If  2 -1iu is frozen, then reassign M(10)=0 and M(11)=0;

If  2iu is frozen, then reassign M(01)=0 and M(11)=0. (13)

Equations (12) and (13) describe the reformulated function
of the last stage of SC component decoder. With the help of this
reformulation,  2 1iu and  2iu , as the two successive decoded bits,
can now be intermediately decoded at the same time. Fig. 9 (a)
and (b) show the decoding procedure of original SCL decoding
and the proposed reformulated approach with list size L,
respectively. In the conventional SCL algorithm, with the
comparison of their metrics, the L length-(2i-1) survival paths
are selected from 2L candidates for each time. And each
selection can only perform intermediate decoding of one
decoded bit (see Fig. 9(a)). Instead, in the reformulated
approach, the L length-(2i) survival paths are selected from 4L
candidates for each time. As a result, the two successive bits
can now be intermediately decoded simultaneously in each
selection (see Fig. 9(b)).
 Considering the proposed reformulation can allow two bits
to be intermediately decoded at the same time, this new SCL
algorithm is referred as 2-bit reformulated SCL (2b-rSCL)
algorithm and described in Scheme-A.


1 / 2

(2 - 2) (

Likelihoods of each bit in the received codeword

i n

i u



Scheme A: 2-bit SCL decoding (2b-rSCL) with list size L for (n, k) polar codes

1: Input:

2: For to

3: For each length- survival path  2 -2
1 2 -2 1...)

-1 ~ - (-1)

- (-1) (0), (1), (0), (1)

i
iu z

Activate stage stage m of SC component decoder

stage m outputs a a b b

Expand survival p



4: SC decoding:

5:

6:

7: Path Expansion:

8:  2 -2 2 -2
2 11 1() :

() 4 - (2) :

i i
i 2iath z to 4 candidate paths z u u

 1 length - (2i - 2) path 4 length - (2i) paths

Calculate actual path metrics P pq for length i paths





9:

10: Metric Computation:

11:

12: 2 -2 2 -2
1 1

2 -2 2 -2
1 1

(00) (0) (0) (00), (01) (1) (1) (01),

(10) (1) (0) (10), (11) (0) (1) (11)

i i

i i

P a b for path z P a b for path z

P a b for path z P a b for path z

Calculate

 = =

13: = =

14: Forcing Zero:

15:





2 -2
1

2 -1

2

() - :

() () () , {0,1}

, (10) 0 (11) 0

i

i

i

the new path metrics M pq with forcing zero operation

M pq P pq for path z pq with p q

if u is frozen then M and M

if u is fro

 

 

16:

17:

18: , (01) 0 (11) 0

()

zen then M and M

 Compare the metrics M pq of all the 4L length -(2i) candidate paths

 Select L paths with the L largest metrics as

 

19: End for

20: Compare and Prune:

21:

22: the new survival paths

Choose the length - n survival path with the largest metric

23: End for

24: Output:

The proposed 2b-rSCL algorithm can greatly reduce the

latency of the original SCL decoder. Recall that in the original
searching procedure (see Fig. 4), the SCL decoder needs to
compute the path metrics associated with the striped nodes in
each level of the code tree. On the other hand, since the
2b-rSCL only needs to compute the metrics for length-(2i)
paths, the metrics computation for length-(2i-1) paths are
totally avoided (see Fig. 8). As a result, for the same code tree
the 2b-rSCL decoder only needs to visit the striped nodes at
even levels instead of at all the levels. For example, by
comparing Fig. 4 and Fig. 10, it can be found that the
reformulated SCL decoder does not need to visit the nodes at
level 1 and level 3 anymore. As a result, this new decoding

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

scheme leads to immediate saving in clock cycles.

Fig. 10. Searching process of 2b-rSCL decoder over code tree with n=4, k=4
and L=2.

Table II shows the example decoding scheme of the proposed
2b-rSCL decoder with n=4. Here mc&zf in Table II denotes the
metric computation and zero-forcing operations, which are
described from line 10 to line 18 of Scheme-A in detail.
Compared with the scheme of conventional SCL decoder (see
Table I), it can be seen that the reformulation at the last stage
(stage-2 in this example) leads to significant reduction in clock
cycles. For the intermediate decoding of each two successive
bits  2 1iu and  2iu , the original SCL decoder (see Table I) needs
4 cycles (f, s, g, s), while the 2b-rSCL decoder in Table II only
needs 2 cycles (mc&zf, s). In general, for an (n, k) polar code,
the overall latency of 2b-rSCL decoder can reduce from 3n-2 to
2n-2 clock cycles.

TABLE II. DECODING SCHEME OF 2B-SCL DECODER WITH N=4
Clock
Cycle

1 2 3 4 5 6

Stage-1 f g
Stage-2 mc&zf s mc&zf s

Bit
decision

1
u 2
u

3u 4u

C. 2K-bit reformulated SC List (2Kb-rSCL) Algorithm

In subsections III-B we presented 2b-rSCL algorithm that can
perform intermediate decoding of 2 bits at the same time. In this
subsection, we extend the prior approach to a more general case,
and propose a new algorithm, referred as 2K-bit reformulated
SC List (2Kb-rSCL), which can perform intermediate decoding
of 2K bits simultaneously.

Fig. 11. Block diagram of reformulated SC component decoder of 2Kb-rSCL
decoder.

 As shown in Fig. 11, the 2Kb-rSCL decoder reformulates the
last K stages of original SCL decoder. Similar to the case in
2b-rSCL decoder, the reformulated part of 2Kb-rSCL decoder
consists of MCU and ZFU as well.
Metric Computation Unit (MCU)
 The function of MCU in 2Kb-rSCL decoder is to compute the

joint probabilities of 2K successive bits as  2 (1) 1 K iu ,  2 (1) 2 K iu , …

and  2K iu . Similar to the discussion in 2-bit-decision case, we

first investigate the transformation of
2 (1) 1 K i

u …
2K i

u .

 As shown in Fig. 12, the transformation of 2K successive bits
can be viewed as the multiplication with matrix U, where U is
2K×2K generator matrix G.

Denote 2K ,iu


 (
2 (1) 1K i

u
 

,
2 (1) 2K i

u
 

, …,
2K i

u) and 2Kout




(1out , 2out ,…
2Kout), then we have:

2 2K K ,iout =u U
 

 (14)
In particular, if we denote the j-th column vector of U as U(j),

then according to (23) we have:

outj= 2 ,K iu


U(j) (15)
Equation (24) describes the left-to-right transformation of

the
2 (1) 1K i

u
 

,
2 (1) 2K i

u
 

, … and
2K i

u in encoding phase.

U

Fig. 12. Encoding procedure for
2 (1) 1

K
i

u
 

,
2 (1) 2

K
i

u
 

, … and
2

K
i

u .

 Then, based on (15), the right-to-left “guideline” in decoding
procedure should be:
  1

2 , 2 2K K Kiu out U out U
  

  (16)

where  2K ,iu


 ( 2 (1) 1K iu   ,  2 (1) 2K iu   , …,  2K iu) and  2Kout




(1out ,  2out ,…
2Kout), respectively.

 According to (15) and (16), we have:


jout =  2 ,K iu


U(j) and  2 (1) 1K iu   = 2 ()Kout U j


. (17)

Note that in (16) we use the special property that U-1=U.
 As shown in Fig. 13, the inputs of MCU are a1(0), a1(1),…,

12
(0)Ka , 12

(1)Ka , b1(0), b1(1),…, 12
(0)Kb and 12

(1)Kb ,

respectively. With the help of (17), we can obtain the joint

probabilities of  2 (1) 1K iu   ,  2 (1) 2K iu   , … and  2K iu as follows.

   

     



 

()
()

() ()

()
()

()

(...)

Pr(, ,..., ,)

Pr((), (),..., (),

,)

Pr((),

1 2 3 2

2 1
2 1

2 1 1 2 1 2 2 11 2 12

1 2 2 2 2

2 1
2 1

1 1

2 1

1 1 1

1 2 2

1

K K K

K

K
,i ,i 2 ,i

2

u U u U u U

α U

   

  
 

   

 



   

   



  


  



K

K
K

K K K
K

K

K
K

K

i
i

i i i

i
i

i

P

u u u u z

out out out

u z

out u z

 

 

()

()
()

()
()

)

Pr((),)

... Pr((),)

(()) (())... (())1

2 1

2 1
2 1

2 1 1

2 1
2 1

2 1 1

1 2 2

2

2

1 2 2

K

K

K K K

2

t
2

K-1
2 2 2

 α U

 α U

α U α U α U



 

 

  

   







  

K

K
K

K
K

K

K

i

i
i

i
i

out u z

out u z

a a a

(())... (())1

1
1 2

2 1 2K K
K

2 2 α U α U
 

 
K

Kb b (18)

where K


2 (1 , 2 ,…

2K) is a vector consisting of 2K

binary 0 or 1.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

 According to (18), since (...)KP   1 2 2
 is the joint

probability of  ()K iu   2 1 1 1 ,  ()K iu   2 1 2 2 , …,  K
Kiu 2

2

and 
()

()
K

Ki
iu z

 
2 1

2 1
1 1 , it is just the metric of length-2Ki path

4 4
1 1 2 2

(...)K

iz    . Therefore, with a1(0), a1(1),…, 12
(0)Ka ,

12
(1)Ka , b1(0), b1(1),…, 12

(0)Kb and 12
(1)Kb output from

stage-(m-K) and equations (18), MCU can directly output the

actual metrics of 22
K

 length-2Ki paths.

.

.

.

Fig. 13. Block diagram of MCU for 2Kb-rSCL decoder.

Zero-Forcing Unit (ZFU)
Similar to the 2-bit-decision case, the function of ZFU in

2K-bit-decision scenario is also to force the metric of
unqualified length-2K paths to 0. Therefore, we can derive the
function of ZFU for 2Kb-rSCL decoder as follows:

Assign (...)KM   1 2 2
= (...)KP   1 2 2

 for path
4 4

1 1 2 2
(...)K

iz    with 1 , 2 ,…, K
2
{0,1};

If  2 (1) 1K iu   is frozen, then reassign all 2 3 2
(1 ...) 0KM     ;

If  2 (1) 2K iu   is frozen, then reassign all 1 3 2
(1 ...) 0KM     ;

......

If  2K iu is frozen, then reassign all 1 2 2 1
(... 1) 0KM   


 .(19)

 Based on MCU in (18) and ZFU in (19), we can develop a
general 2Kb-rSCL decoding algorithm as shown in Scheme-B.
Fig. 14 shows the decoding procedure of 2Kb-rSCL algorithm
with list size L. It can be seen that during the decoding
procedure 22

K L metrics of candidate paths are compared each
time, and the L paths with larger (...)KM   1 2 2

 metrics are

selected as the survival paths. As a result, 2K successive bits can
be determined simultaneously.

 
() ,... K K2 i 1 1 2 iu u

1u 
2u 

3u
Fig. 14. L-size decoding scheme of 2Kb-rSCL decoder.

1 / 2

(2 (-1))

K KScheme B: 2 -bit SCL decoding (2 b-rSCL) with list size L for (n, k) polar codes

1: Input:

2: For to

3: For each length- survival p

 K

K

Likelihoods of each bit in the received codeword

i n

i  

1 1 1

2 (1)
1 2 (-1) 1

1 1 1 12 2 2

(...)

-1 ~ - (-)

- (-) (0), (1)..., (0), (1), (0), (1)..., (0),

ath

4: SC decoding:

5:

6:   


K

K

K K K

i
iu u z

Activate stage stage m t of SC component decoder

stage m K outputs a a a a b b b

 

12

2 (-1) 2 2 (1)
2 (1) 1 21 1

2

(1)

2 (...) :

2

7: Path Expansion:

8:

9:

10: Metric Com




 



K

K K K
K K

K

i i
i i

K K

b

Expand survival path z to candidate paths z u u

 1 length -(2 (i -1)) path length -(2 i) paths

1

2
1 2 2

1 2 1 22 2

1

(...) 2 - () :

(...) ((1)) ((2))... ((2))

((2 1)

K K K

K

K-1
2 2 2

K-1
2

putation:

11:

12: = α U α U α U

13: α U

  

   

 

  



K

K

K K

KCalculate actual path metrics P for length 2 i paths

P a a a

b 1

2 (1)
1 1 22 2

1 2 2

1 2 1 22 2

)... ((2)) (...)

(...) - :

(...) (...)

K
K

2α U

14: Forcing Zero:

15:

16:

  

  

     






 K

K K

K

K K

ib for path z

Calculate the new path metrics M with forcing zero operation

M P for pat





2 (1)
1 1 2 12 2

2 (1) 1 2 3 2

2 1 2 2 1

(...) ,..., {0,1}

(1 ...) 0;

(... 1) 0.

17:

18:

19:

20: End for

21: Compare and P

    

  

  



 





 

 

K

K K

K
K

K
K

i

i

i

h z with

u is frozen all M

u is frozen all M

2
1 2 2

(...) 2 2

rune:

22:

23:

24: End for

25: Output:

  
K

K

K Compare metrics M of all the L length -(i) candidate paths

 Select L paths with the L largest metrics as the new survival paths

 Choose the length - n survival path with the largest metric

Table III lists the latency of 2Kb-rSCL decoder with different

values of K for (n, k) polar codes. From this table it can be seen
that 2b-rSCL decoder in subsection III-B can be viewed as the
specific case of 2Kb-rSCL with K=1. For a general 2Kb-rSCL
decoder, its latency is n/2K-2-2 clock cycles. Therefore, as K
increases, the overall latency is reduced. In an extreme case,
when K reaches m=log2n, the 2Kb-rSCL decoder becomes a
maximum likelihood (ML) decoder with latency as small as
only 2 cycles.

TABLE III. DECODING LATENCY OF 2KB-RSCL DECODER WITH DIFFERENT K

K
Decoding latency

(clock cycles)
Note

K=0 3n-2 Original SCL
K=1 2n-2 2b-rSCL
K=2 n-2 4b-rSCL
K=3 n/2-2 8b-rSCL
… … …

K=K n/2K-2-2 2Kb-rSCL (general case)
… … …

K=m=log2n 2
Maximum Likelihood

(ML) decoder

Although the increase of K can lead to the reduction of

latency, K cannot be set too large for hardware implementation.
That is because when K increases, the number of candidate
paths, as 22

K , increases rapidly. As a result, a large K causes a
large amount of path candidates and hence significantly
increases the overall complexity of metric computation and
path metrics comparison. For example, when K=m=log2n (ML
decoder), the number of path candidates is 2n. For (1024, 512)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

polar codes, that means 21024 path metrics need to be computed
and compared. The implementation of these extensive
operations will cause ultra-large silicon area and ultra-long
critical path. As a result, for practical implementation K is
suggested to be set as no more than 3, which can achieve a good
tradeoff between latency reduction and computation overhead.

D. Simulation results

Because the proposed reformulated SCL decoding
algorithms only avoid the unnecessary metric computations but
do not change the accuracy of metric computation, there is no
performance loss for the reformulated SCL algorithms over the
original SCL algorithm. This is consistent with the simulation
results shown in Fig. 15.

Fig. 15. Performance of 2Kb-rSCL algorithms for (1024, 512) polar codes.

IV. THE PROPOSED REFORMULATED SCL ARCHITECTURE

In this section, the hardware architectures of the
reformulated SCL (2Kb-rSCL) decoders are presented.
Different values of K correspond to different 2Kb-rSCL
decoders. For simplicity, in this section we focus on K=1 and
K=2 cases, which correspond to the 2b-rSCL decoder and
4b-rSCL decoder. Architectures with values of other K can be
developed with a similar way.

As shown in Fig. 11, the difference between SC component
decoder of 2b-rSCL or 4b-rSCL decoders and that of original
SCL decoder is on the last 1 or 2 stages. Therefore, the other
stages (f/g units) of original SC decoder are still used in the
reformulated SCL decoders. As a result, in this section we
focus on the architecture design of f/g units in the SC
component decoder, MCU/ZFU in the reformulated stage, and
metric sorting block, respectively.

A. Processing element for f/g units

As indicated in Section II, the likelihood-based function of f
and g units are described in (3)(4)(9)(10). However, these
equations contain multiplication which is not feasible for
hardware implementations. As a result, in order to simplify
computation, the log-likelihood-based f and g units are used in
our design. In this case, the likelihood-based (3)(4)(9)(10) are
reformulated to the following equations:



(0) *((0) (0), (1) (1) (20)

(1) *((0) (1), (1) (0) (21)

(0) () (0)

)

)

  
  

 sum

c max a b a b

c max a b a b

d a u b


(22)

(1) (1) (1) (23)

   sumd a u b

where max*(x, y)=max(x, y) + ln(e-|x-y|) represents the Jacobian
logarithm.

Notice that (20) (21) contain logarithmic operation (ln(•)),
which needs to be implemented using complex look-up table
(LUT) with a long critical path. Fortunately, in [16] it was
shown that the logarithmic item can be ignored with negligible
performance loss. As a result, (20)(21) can be further simplified
as:

c(0) = max(a(0) + b(0), a(1) + b(1)) (24)
c(1) = max(a(0) + b(1), a(1) + b(0)) (25)

 In general, equations (22)-(25) describe the log-likelihood
version of f and g units. Based on these equations, the basic
processing element (PE) of the SC component decoder, which
contains an f unit and a g unit, is developed and is shown in Fig.
16. Here, C&S unit represents the combined comparator and
2-to-1 selector. In addition, ctrl signal is the control signal that
indicates whether the PE functions as an f unit or a g unit.

Fig. 16. Architecture of PE for f and g units in the SC component decoder.

B. Metric computation unit (MCU) & Zero-Forcing
unit(ZFU)

As shown in Fig. 11, MCU and ZFU are the two essential
parts in 2Kb-rSCL decoders to help them decide multiple bits.
Similar to the case in Section IV-A, the likelihood-based
functions of MCU and ZFU need to be transformed to
log-likelihood version as well.

For K=1 case that corresponds to 2b-rSCL decoding
algorithm, its likelihood-based functions of MCU and ZFU
have been described in Scheme-A (line10~line18). For the
transformation for MCU , according to the transformation
principle in Section IV-A, P(pq)=a(p)b(q) in the line-12~line13
of Scheme-A is transformed to a(p)+b(q). In addition, since ln0
is negative infinite, M(pq)=0 (line-17~ line-18 in Scheme-A),
as the likelihood-based function of ZFU, is reformulated to
M(pq)=-Inf and where –Inf represents negative infinite. As a
result, the hardware architecture of MCU and ZFU for 2b-rSCL
decoder is developed as shown in Fig. 17(a). Here the ctrl1 and
ctrl2 in Fig. 17(a) are the two control signals that indicate
whether  2 1iu and  2iu are information bits or not.

1 1.5 2 2.5 3

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

F
E

R

Performance of polar (1024,512) codes with list decoding

SC
SCL L=2
2b-rSCL L=2
4b-rSCL L=2
SCL L=4
2b-rSCL L=4
4b-rSCL L=4

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

(a)

(b)

Fig. 17. Architecture of MCU+ZFU for (a) 2b-rSCL (b) 4b-rSCL decoders.

For K=2 case that corresponds to 4b-rSCL decoding
algorithm, its likelihood-based function of MCU and ZFU can
be derived from Scheme-B (line10~line19). For the function of
MCU (line12~line13), in K=2 case it is P(α1α2α3α4)=a1(α1 α2

 α3  α4)a2(α2  α4)b1(α3  α4)b2(α4). Then, with the
likelihood-to-log-likelihood transformation, it is reformulated
as P(α1α2α3α4)=a1(α1  α2  α3  α4)+a2(α2  α4)+b1(α3 
α4)+b2(α4). For the function of ZFU (line16~line19), in K=2
case it is M(α1α2α3α4)=0. Therefore, its log-likelihood version is
M(α1α2α3α4)=-Inf. As a result, the architecture of MCU and
ZFU for 4b-rSCL decoders are developed as shown in Fig. 17
(b). Here the ctrl1, ctrl2, ctrl3 and ctrl4 in Fig. 17(b) are the
four control signals that indicate whether  4 3iu ,  4 2iu ,  4 1iu and


4iu are information bits or not.

C. Metric Sorting block

After MCU and ZFU generate the metrics for different paths,
a sorting block is needed to compare those 2L metrics and select
the L paths with larger metrics. In the proposed designs, we use
the bitonic sorting algorithm [19] to find out the L larger
metrics. Fig. 18 illustrates an example architecture of the
proposed 8-input 4-output metric sorting block. It contains a
4x4 increasing order bitonic sorter and a 4x4 decreasing order

bitonic sorter. Each bitonic sorter is constructed by 2x2
increasing order sorters (IOS) and 2x2 decreasing order sorters
(DOS). With the help of the two 4x4 bitonic sorters, in1~in4 are
sorted as an array with increasing order (i1≤i2≤i3≤i4) while
in5~in8 are sorted as an array with decreasing order
(d1≥d2≥d3≥d4). Then, these two pre-sorted arrays are sent to a
stage of 4 C&S units. At the output end of these C&S units, the
4 larger elements among in1~in8 are found as outj=max(ij, dj),
where j=1, 2, 3 and 4. For the details of bitonic sorter, the reader
is referred to [19].

Fig. 18. Architecture of 8-input 4-output metric sorting block.

As indicated in [19], the critical path delay of a 2sx2s bitonic
sorter is 1+2+…+s=s(s+1)/2 TC&S, where TC&S is the critical
path delay of C&S unit. Therefore, a general 2s-input
2s-1-output metric sorting block consisting of two 2s-1x2s-1
bitonic sorters and a stage of C&S units has an overall critical
path delay of 1+2+...s-1+1=1+(s-1)s/2 TC&S.

Notice that the metric sorting block is a 2s-input 2s-1-output
(2sx2s-1) sorter that can find the 2s-1 largest elements among the
2s inputs. Since for the proposed L-size 2Kb-rSCL decoder, it
only needs to find the L largest metrics among 22

K L candidates,
hence the 2sx2s-1 sorter is enough for this sorting task and we do
not need the full-size sorting (2sx2s) function.

D. Data path balancing

As discussed in Section IV-C, the critical path delay of
2s-input 2s-1-output metric sorting block is 1+(s-1)s/2 TC&S. This
is much larger than the critical path delay of PE or MCU/ZFU.
For example, for a 4b-rSCL decoder with L=2, s=log2(16*2)=5.
Then the critical path delay of metric sorting block is 11TC&S,
while the critical path delays of PE and MCU/ZFU are less than
3TC&S. Because the clock speed is upper-bounded by the critical
path delay, the throughput of reformulated SCL decoder is
limited by the long critical path of metric sorting block.

Considering the unbalanced data path between metric sorting
block and other parts of reformulated SCL decoder, we propose
to re-pipeline those data paths to reduce critical path delay. Fig.
19(a) shows the original pipelining of 4b-rSCL decoder. Here
the register arrays for pipelining are inserted between different
blocks of SCL decoder. As a result, due to the unbalanced data
path between different blocks, the clock cycles for processing
PEs and MCU/ZFU are not fully utilized (see Fig. 19(b)). Fig.
19(c) shows the proposed re-pipelining strategy to the same
4b-rSCL decoder. It can be seen that the original registers
between stage-(m-2), MCU/ZFU and metric sorting block are
moved into metric sorting block. Fig. 19(d) shows the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

corresponding timing chart after re-pipelining. It can be seen
that the data path in each clock cycle is balanced. More
importantly, since metric sorting block is deeply pipelined, the
overall critical path delay is reduced significantly. Notice that
in Fig. 19(c) the metric sorting block is 2-stage pipelined. If
deeper pipelining is needed, we need to move the registers
between other stages of PE into metric sorting block. For
example, in order to perform 3-stage pipeline to metric sorting
block, we need to move the registers between stage-(m-3) and
stage-(m-2) in Fig. 19(c) into metric sorting block as well.

(a)

 (b)

(c)

(d)

Fig. 19. (a) Original pipelining for 4b-rSCL decoder. (b) Original timing chart.
(c) Re-pipelining for 4b-rSCL decoder. (d) Timing chart with balanced data
path.

The proposed data path balancing strategy is very useful for
high-speed polar list decoder design. For practical use of polar
codes, in order to achieve comparable error-correcting
performance with LDPC or Turbo codes with the similar
codelength, a large list size L is required. For example, [4]
reported that the 2048-length polar codes can achieve beyond
LDPC performance under the condition of L=32. In that case,
for the conventional SCL decoder, the s for sorting block is
log2(2*32)=6. As a result, even the proposed metric sorting
block is used, the critical path delay is still very large
(1+(s-1)s/2 TC&S=16TC&S), which impedes the application of
polar codes in high-speed systems. Notice that this
phenomenon becomes even more severe for 2Kb-rSCL decoder.
For example, for 4b-rSCL decoder with L=32, the number of
path metric candidates is 32*16=512, which corresponds to
s=log2512=9. As a result, the critical path delay of metric
sorting block increases to 1+(s-1)s/2 TC&S=37TC&S. However, if
we apply the proposed data path balancing technique to this

case, the critical path delay can be significantly reduced. For
example, in the case of 2048-length polar codes with L=32,
with the balance of the data path of metric sorting block,
MCU/ZFU block and all the stages of PE (stage-1~stage-9), the
critical path delay of 4b-rSCL decoder after data path balancing
is less than (37+3+3*9)/11≈6.1TC&S. This new critical path
delay is 4 times less than the case without use of data path
balancing, and it is even 1.5 times less than that of the original
SCL decoder. As a result, the use of the proposed data path
balancing strategy guarantees the high-speed design of polar
list decoder.

E. Quantization scheme

Similar to the case of SCL decoders, the architecture of
2Kb-rSCL decoders contain multiple stages of PE. As a result,
in order to avoid saturation problem that is pointed out in [16],
the quantization schemes for different stages of PE are different.
If we assume the log-likelihood (LL) information from channel
is quantized as Qch bits, then for the stage-i of 2Kb-rSCL
decoder, the corresponding bit-width is Qch+i. In addition, for
the MCU/ZFU and metric sorting blocks, they are quantized
with Qch+m bits. Notice that because the LL information in
different stages has different bit-widths, the corresponding
memories that store the LL information have different
bit-widths as well.

F. Memory requirement

Besides the aforementioned blocks, a large portion of the
2Kb-rSCL decoders is the memory banks. Similar to SCL
decoders [16], multi-bit-width memory banks in the proposed
design store the LL information from the channel as well as the
LL information processed by each stage. As discussed in the
Section IV-E, the quantization scheme for LL information is
non-uniform and varies depending on the corresponding stages,
therefore the memory banks for different stages have different
bit-widths. In addition, 1-bit-width memory banks are needed
to store the updated survival paths and partial sum bits  sumu .

Notice that compared to [16], the memory requirement of the
proposed 2Kb-rSCL decoder is larger. This is because the
number of path metric candidates increases in the proposed
decoders. As a result, more memories are required for storing
the calculated metrics from MCU/ZFU block. For example,
with L=32 and K=2, 32*16=512 LL messages for metrics needs
to be stored, while SCL decoder only needs to store 64 LL
message for metrics. Consider these metrics are always
quantized to more than 10 bits, the extra memory requirement
of 2Kb-rSCL decoder causes inevitable area overhead,
especially in the case of large L or K.

G. Overall architecture

Based on the aforementioned PE, ZFU&MCU and metric
sorting block, the overall architecture of an L-size reformulated
SCL decoder can be developed as illustrated in Fig. 20. Besides
the above presented blocks, the decoder needs LL memory
bank to store and update the log-likelihood information that are
processed by L SC component decoders. In addition, survival
path bank is also needed to store and update the L survival paths
during the list decoding procedure. Besides that, the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

reformulated SCL decoder needs a polar-encoder-like partial

sum generator (PSG) to compute  sumu for corresponding SC
component decoder. The architecture of PSG is similar to the
polar encoder shown in Fig. 1.

…
...

…

…
...

…
...

…
...

…
...

…
...

…
...

…
…

…

Fig. 20. The overall architecture of reformulated SCL decoders.

V. HARDWARE ANALYSIS AND COMPARISON

In this section, the hardware performance characteristics of
the proposed reformulated SCL decoding architectures are
analyzed. Table IV shows the hardware performance of
different SCL decoders with list size L=2 and 4 for polar (1024,
512) code. Here the designs of 2b-rSCL decoder and 4b-rSCL
decoder are synthesized by Synopsys Design Compiler with ST
CMOS 65nm library. Notice that in the proposed designs 3-bit
quantization scheme is used for the LL information output from
channel, which is the same as in [16]. Based on the quantization
scheme described in Section IV-E, the bit width of stage-i is 3+i.
For the MCU/ZFU block and metric sorting block, they are
quantized to 3+m=13 bits.

From Table IV it can be seen that, compared with prior
LL-based SC list decoder design [16], the proposed 2b-rSCL
decoder and 4b-rSCL decoder can achieve 21.0% and 60.5%
reduction in latency, respectively. Notice these reductions are
less than the analysis in Table III. This is because the latency
listed in Table IV is calculated based on the equation (12) in
[16], where code rate R=k/n is considered, while the analysis in
Table III discuss the general case without the specific
discussion on different code rate or distribution of frozen bit
positions. In general, as the code rate increases, the proposed
reformulated SCL decoders can save more clock cycles than the
original one in [16]. For example, for an R=1 polar code,
2b-rSCL decoder and 4b-rSCL decoder can achieve 33% and
66% less latency than the original SCL decoder, respectively.

With the use of data path balancing technique in Section
IV-D, the proposed 2b-rSCL and 4b-rSCL designs can achieve
high clock frequency. Therefore, as seen in Table IV, the coded
throughputs of 2b-rSCL decoder and 4b-rSCL decoder with
L=2 are 1.66 times and 3.45 times of that of original SCL
decoder, respectively. In addition, when L=4, the coded
throughputs of 2b-rSCL decoder and 4b-rSCL decoder are 2.11
times and 3.23 times of that of original SCL decoder,
respectively. Besides, the hardware efficiency of our designs,

which is defined as the ratio of throughput to area, increases as
well. When L=2, the hardware efficiencies of 2b-rSCL and
4b-rSCL decoders are 1.36 times and 2.08 times of that of
original SCL decoder; when L=4, the hardware efficiencies of
2b-rSCL and 4b-rSCL decoders are 1.87 times and 2.66 times
of that of original SCL decoder.

Recently, log-likelihood-ratio (LLR)-based SCL decoder
was proposed in [17], which requires much less bit-width than
LL-based decoder. As a result, the overall area and critical path
delay can be significantly reduced. Due to the generality of
LLR-based scheme in [17], it can be also applied to our
proposed 2Kb-rSCL decoders. In that case, the hardware
complexity and crucial path of our designs can be further
reduced while retaining the same short latency.

VI. CONCLUSION

In this paper we have presented reformulated SC list
decoding algorithms. These reformulated algorithms can
reduce the latency significantly without any performance loss.
Then, based on the proposed algorithm, we develop
corresponding latency-reducing hardware architectures for
SCL decoders. Hardware analysis shows that the proposed
2b-rSCL decoder and 4b-rSCL decoder can achieve significant
improvement in throughput and hardware efficiency.

REFERENCES
[1] E. Arıkan, “Channel polarization: A method for constructing

capacity-achieving codes for symmetric binary-input memoryless
channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, 2009.

[2] I. Tal and A. Vardy, “How to construct polar codes,” arXiv: 1105.6164v1,
May 2011.

[3] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified
successive-cancellation decoder for polar codes,” IEEE Commun. Lett.,
vol. 15, no. 12, pp. 1378-1380, 2011.

[4] I. Tal and A. Vardy, “List decoding of polar codes,” arXiv:1206.0050,
May 2012.

[5] K. Niu and K. Chen, “Stack decoding of polar codes,” Elect. Lett., vol. 48,
no. 12, pp. 695-696, 2012.

[6] E. Arıkan, “Polar codes: A pipelined implementation,” in Proc. 4th Int.
Symp. on Broad. Commun. ISBC 2010, pp. 11-14, July 2010.

[7] G. Sarkis and W. J. Gross, “Increasing the Throughput of Polar
Decoders”, IEEE Commun. Lett., vol. 17, no. 4, pp. 725-728, Apr. 2013

[8] A. Pamuk, “An FPGA implementation architecture for decoding of polar
codes,” in Proc. 8th Int. Symp. on Wireless Commun. Syst. (ICWCS), pp.
437-441, Nov. 2011.

[9] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Trans. Signal
Processing, vol. 61, no. 2, pp. 289-299, Jan. 2013.

[10] B. Yuan and K. K. Parhi, “Architecture optimizations for BP polar
decoders,” in Proc. IEEE Int. Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 2654-2658, May 2013.

[11] A. J. Raymond and W. J. Gross, “Scalable Successive-Cancellation
Hardware Decoder for Polar Codes”, in Proc. of 1st IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Dec.
2013, to appear. arXiv:1306.3529v1.

[12] C. Zhang and K. K. Parhi, “Low-latency sequential and overlapped
architectures for successive cancellation polar decoder,” IEEE Trans.
Signal Processing, vol. 61, no. 10, pp. 2429-2441, May, 2013.

[13] A. Pamuk and E. Arikan, “A two phase successive cancellation decoder
architecture for polar codes”, in Proc. of IEEE International Symposium
on Information Theory (ISIT), pp.957-961, July 2013.

[14] B. Yuan and K.K. Parhi, “Low-Latency successive-cancellation polar
decoder architectures using 2-bit decoding,” IEEE Trans. Circuits and
Systems-I: Regular Papers, vol. 61, no. 4, pp. 1241-1254, Apr. 2014.

.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

TABLE IV. HARDWARE PERFORMANCE OF DIFFERENT (N=1024, K=512) SC LIST DECODERS WITH LIST SIZE L=2,4
Hardware SCL [16] 2b-rSCL 4b-rSCL SCL [16] 2b-rSCL 4b-rSCL
List size 2 2 2 4 4 4

CMOS technology
(nm)

90 65 65 90 65 65

Area(mm2)
(scaled to 65nm)

0.8 0.97 1.06 1.76 1.98 2.14

Clock frequency
(MHz)

459 600 500 314 525 400

Latency
(clock cycles)

2592* 2046 1022 2592* 2046 1022

Coded
Throughput

(Mbps)
181 300 501 124 262 401

Hardware
efficiency

(Mbps/mm2) †
226.2 309.2 472.6 70.4 132.3 187.3

Power
Consumption

(mW)
N/A 321 395 N/A 734 718

* Decoding latency of [16] is calculated based on the equation (12) in [16].

† Hardware Efficiency is defined as Throughput/Area.

[15] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast Polar
Decoders: Algorithm and Implementation”, IEEE Journal on Selected
Areas in Comm., 2014, to appear. arXiv:1307.7154v2

[16] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross and A. Burg,
“Hardware Architecture for List SC Decoding of Polar Codes”,
arXiv:1303.7127v3.

[17] A. Balatsoukas-Stimming, M. Bastani Parizi and A. Burg, “LLR-based
Successive Cancellation List Decoding of Polar Codes”, in Proc. of 39th
IEEE Int. Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2014, to appear. arXiv:1401.3753v2.

[18] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation, New York, NY: John Wiley & Sons Inc., 1999.

[19] D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching, Third Edition. Addison-Wesley, 1998.

[20] B. Li, H. Shen and D. Tse, “Parallel Decoders of Polar Codes”
arXiv:1309.1026v1.

[21] A. Mishra, A. Raymond, L. Amaru, G. Sarkis, C. Leroux, P.
Meinerzhagen, A. Burg, and W. J. Gross, “A successive cancellation
decoder ASIC for a 1024-bit polar code in 180nm CMOS,” IEEE Asian
Solid-State Circuits Conference(A-SSCC), Nov. 2012.

[22] B. Yuan and K.K. Parhi, "Architectures for Polar BP Decoders Using
Folding," in Proc. of IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 205-208, June 2014.

[23] J. J. Kong and K. K. Parhi, “Low-latency architectures for
high-throughput rate Viterbi decoders,” IEEE Trans. VLSI, vol. 12, no.6,
pp. 642-651, June. 2004.

[24] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm implmenetation:
Breaking the ACS-bottleneck,” IEEE Trans. Commun., vol. 37,
pp.785-790, Aug. 1989.

[25] K. K. Parhi, “High-Speed VLSI Architectures for Huffman and Viterbi
Decoders,” IEEE Trans. on Circuits and Systems, Part II: Analog and
Digital Signal Processing, vol. 39, no. 6, pp. 385-391, June 1992.

[26] K. K. Parhi, “Pipelining In Dynamic Programming Architectures,” IEEE
Trans. on Signal Processing, vol. 39, no. 6, pp. 1442-1450, June 1991.

[27] L.E. Lucke, and K.K. Parhi, “Parallel Processing Architectures for
Rank-Order and Stack Filters,” IEEE Transactions on Signal Processing,
vol. 42, no. 5, pp. 1178-1189, May 1994.

