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Abstract— This paper presents the implementation on FPGA 

of an speaker verification system. The algorithm is executed by 

software over an embedded system that includes a MicroBlaze 

microprocessor connected to a Vector Floating-Point Unit 

(VFPU). The VFPU is designed to speed up the resolution of any 

vector floating-point operation involved in the verification 

algorithm, whereas the microprocessor manages the control of 

the process and executes the rest of operations. With a clock 

frequency of 40 MHz, the system is capable of executing in real-

time the complete algorithm, processing a voice frame in 9.1 ms. 

The same verification process was carried out over two different 

systems: an ARM Cortex A8 microprocessor and configuring 

MicroBlaze with the scalar Floating-Point Unit provided by 

Xilinx. Experimental results show that when comparing our 

proposal against both systems, the number of clock cycles is 

reduced by a factor of x11.2 and x15.4, respectively. The main 

advantage provided by the VPFU is its flexibility, which allows 

quickly adapting the software to the potential changes produced 

in both the system and the user requirements. The algorithm was 

tested over a public database, which contains utterances of 

different users acquired under different environmental 

conditions, providing good recognition rates.    

 

Index Terms—Biometrics, field programmable gate arrays, 

hardware-software co-design, speaker recognition, system-on-

chip. 

I. INTRODUCTION 

PEAKER verification is one of the most widespread 

technologies used today in biometrics. This modality is 

supported by a solid signal processing theory developed for 

decades, and is based on robust algorithms that provide high 

recognition rates [1]. Moreover, the low price of microphones 
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is a significant advantage against other types of biometrics 

requiring more expensive capture devices. Such a feature is 

fundamental for the rapid expansion of this technology in the 

low-cost consumer market. Nowadays, some smartphones 

already include applications that allow authorized users to 

unlock their phone by reproducing a passphrase, which replace 

the traditional methods based on key or PIN numbers. In 

addition, commercial transactions, or remote personal 

verification by phone, are also applications of speaker 

verification that could be currently used by a large segment of 

the population [1], [2].    

 Most speaker verification systems adopt an architecture that 

consists of two differentiated phases: enrolment and 

classification. During the enrolment phase, the system is 

trained with several utterances provided by a specific user. 

Utterances are processed in order to obtain a set of features 

that represent the specific physical structure of the individual’s 

vocal tract. Although there are many approaches for extracting 

these features, the Mel-Frequency Cepstrum Coefficients 

(MFCC) have been the most widely used in speaker 

verification, as well as in speech recognition [3]-[5]. These 

coefficients have the ability to faithfully represent the 

distinguishing features of a signal of voice belonging to a 

particular user. In addition, they show a robust behaviour 

against background noise, providing high recognition accuracy 

even in text-independent scenarios. Finally, based on these 

coefficients, a model for each user is generated. In the 

classification phase, the user, whose identity should be 

verified, pronounces a new utterance. This utterance is 

processed and its feature vector, based on the MFCC 

coefficients, is extracted and compared against the model 

previously stored during the enrolment phase. The comparison 

returns a result, which is used to accept or deny the identity 

claimed by the user.          

 The classification phase, also known as the matching 

process, is based on algorithms capable of distinguishing the 

extracted features of any individual from the genuine user. 

Algorithms based on generative models, such as Hidden 

Markov Models or Gaussian Mixture Models, have 

traditionally been applied to speaker verification [6], [7]. The 

success of these statistical methods depends on the proper 

estimation of their parameters, which are calculated by 
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maximizing the likelihood of the data for a particular model. 

Such estimation provides good convergence properties, 

although it does not guarantee finding the global maximum 

[8], [9]. In contrast, Support Vector Machine (SVM) is a 

discriminative approach that is intended to estimate a decision 

surface directly, rather than modeling a probability 

distribution function [10]. Several versions of this algorithm, 

which use different kernels, have already been employed in 

speaker verification, providing outstanding matching results 

[11]. 

On other hand, due to the large number of computationally 

demanding operations performed during the verification 

process, the computational cost of these algorithms is usually 

high. Additionally, the platform in which the system is 

implemented, should be able to manage an important amount 

of data in real time. These issues are especially important in 

text-independent scenarios, where the verification process is 

achieved by pronouncing utterances of several seconds in 

length. Microprocessors of moderate economic cost have been 

proposed as a compromise solution for the implementation of 

biometric systems. The flexibility of a software 

implementation allows the rapid development of applications 

using fixed hardware architectures. However, the complexity 

of some algorithms leads to only high-performance 

microprocessors, included in personal computers, being 

appropriated for their processing in real time, at the expense of 

increasing the price and power consumption of the whole 

system. Hardware architectures based on Field Programmable 

Gate Arrays (FPGAs) are another alternative for implementing 

these algorithms. At a reasonably low-cost, these devices 

allow designing high-speed architectures useful for 

implementing biometric algorithms [12], [13]. There are also 

some publications addressing the implementation of speaker 

or speech recognition systems on FPGAs. Most of these 

publications proposed the implementation of only one stage, 

feature extraction or classification, for accelerating the total 

execution time [14]-[17]. Recently, the work of Ramos et al. 

[18], presented a more advanced implementation of a 

complete speaker verification system on an FPGA. Authors 

pointed out that their implementation was able to carry out the 

feature extraction and classification stages in a shorter time 

than the frame length (real-time processing). However, this 

performance was achieved at the expense of designing the 

system according to a specific sample frequency, a particular 

codification rate and transforming the original floating-point 

operations to a fixed-point format. Note that, any change 

introduced in any of the previous parameters involves 

redesigning the entire system.    

These drawbacks can be partially overcome by adding a 

Floating-Point Unit (FPU) as part of the FPGA design. 

However, most of the proposed FPUs only include basic 

arithmetic operations (mul, add, sub and div) and are unable to 

process biometric algorithms in real time [19], [20]. An 

additional disadvantage, within the framework of biometrics, 

is that these math coprocessors only admit scalar numbers as 

input operands. Many functions used in speaker verification 

perform computations whose input operands are vectors of 

variable length. Although the FPU is able to resolve these 

computations, the time needed for their calculation could be 

significantly accelerated if a Vector Floating-Point Unit 

(VFPU) is used [21], [22]. When operating with vectors, the 

VFPU increases the throughput by reducing both the number 

of CPU fetches and the number of memory accesses.             

This paper presents the implementation of a whole MFCC-

SVM speaker verification system on an FPGA. The system 

consists of the Xilinx MicroBlaze general-purpose 32-bit 

microprocessor, and a VFPU that calculates any vector 

operation defined in floating-point format. The architecture of 

the VFPU is generic, so that it can be easily adapted to other 

soft-core microprocessors or FPGA families. Compared with a 

custom-hardware implementation, the main feature of the 

VFPU is its flexibility, which provides the possibility of easily 

introducing modifications in the algorithm or adding new 

processing stages. Besides, in the particular case of a speaker 

verification system, such flexibility allows designing the 

VFPU independently of the number of bits used for the 

codification of the input samples or the number of coefficients 

included in the feature vector. Furthermore, in applications in 

which samples of voice are affected by environmental 

conditions (background noise, distortion, etc.), or users have a 

remarkable common characteristic in their voice (due to age, 

prosodic features, etc.), changes in the parameters can be 

quickly introduced for adapting the system to such particular 

characteristics in order to improve the recognition rates. For 

instance, in [23] authors proposed a training process that 

includes simulated noisy data that provides an improvement 

higher than 23% compared with a classic training method. In 

[24], it is shown as due to the effect of aging, the recognition 

rates can be degraded by approximately 20% every 1-2 years. 

Finally, in [25] it is demonstrated as recognition performance 

based on cepstral features is improved by adding higher-level 

information, including prosodic and lexical features, which 

allows the equal error rate to be reduced by up to 19%.   

The paper is organized as follows. Section II describes the 

basic theory about the algorithm presented based on MFCC 

and SVM. Section III presents the internal structure of the 

VFPU and the floating-point operations being implemented. 

Section IV shows the experimental results, and finally Section 

V shows the conclusions.    

II. ONLINE SPEAKER VERIFICATION ALGORITHM 

The architecture of the proposed speaker verification system 

is well-documented, so it will be briefly reviewed here [18]. 

Specifically, the block feature extraction is based on the 

MFCC coefficients, whereas the SVM algorithm is the basis 

for designing the block creation model and classification. 

A. MFCC-based feature extraction 

The MFCC are the essential elements used for obtaining the 

feature vector xm. During the feature extraction, the speech 

signal is segmented into frames of 25 ms in length. The frame 

m is the basic unit from which the feature vector is obtained. 

Any frame is overlapped by 15 ms with its previous one, being 

10 ms the frame advance.  
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Usually, the optimal number of parameters that form the 

feature vector is 26. The first one, C0(m), is the Napierian 

logarithm of the energy localized in a temporal window; the 

following twelve, C1(m),…,C12(m), are directly based on the 

Mel-frequency Cepstrum Coefficients, which represent the 

spectral envelope of the signal of voice [3]-[5]; and the last 

thirteen are known as differential or delta coefficients and are 

denoted as ∆C0(m),…, ∆C12(m). Such delta coefficients 

represent the variation of the MFCC between adjacent frames. 

Table I summarizes the complete sequence of functions and 

operations involved in the calculation of the feature vector. 

Functions are listed in sequential order regarding their 

execution (the final parameters are outlined in bold). Note that 

the first parameter is directly obtained in step 3. The MFCC 

coefficients are calculated in step 10, after applying several 

functions over the original frame m. Finally, delta coefficients 

are obtained in step 11 with a delay of 2 frames. As can be 

seen, to compute these delta coefficients it is necessary to 

calculate before the MFCC of previous frames m-2, m-1, and 

subsequent frames m+1 and m+2, respectively.   

B. Model creation 

The aim of the training stage is to create a model for each 

user, which contains the main characteristics that represent the 

user’s voice. The data employed to build such a model include 

several feature vectors of this user (genuine), as well as other 

feature vectors belonging to different people (impostors). The 

model is obtained off-line, using a training algorithm that runs 

in a desktop computer, and in this particular case, employing 

the public database BANCA [26]. Since the classification 

stage is implemented by an SVM algorithm, the model 

consists of a set of Q support vectors yj(i) (i=0..25, j=0..Q-1) 

and their associated parameters (ρ, γ, Pj). Note that the size of 

yj(i) (26 elements) coincides with the number of parameters 

that form the feature vector xm. LIBSVM or Torch are specific 

libraries suitable to perform the training process of classifiers 

based on SVM models [27], [28]. The training algorithm is 

executed several times, changing the number of feature 

vectors, and adjusting a characteristic threshold called ρ. The 

purpose is to find the optimal number Q of support vectors 

yj(i) that lead to the best classification results. In this particular 

case, we found that such optimal number Q is 3,636. Each of 

these support vectors yj(i) has an associated constant Pj 

(Lagrange coefficient) provided as a result of the training 

algorithm, along with an additional parameter γ common to all 

support vectors. The optimal values obtained for γ and ρ are 

0.4 and -0.44, respectively. Besides, the total number of 

feature vectors used in this off-line training process is 8,000, 

including genuine and impostor users Thus, the model λ for a 

specific user can be described as: 

( ) 0..25i and 1-..Q0j  ,P),i(y, jj === ργλ        (1) 

C. SVM-based classification 

The aim of the SVM classifier is to figure out whether the 

feature vector matches or not the user’s model. Such a 

comparison returns a binary result, which assigns 1 when the 

match is positive, and 0 when is negative. Note that this 

comparison is performed for each frame m.   

SVM maps the input data into a higher dimension feature 

space, in which a hyperplane, that separates and maximizes 

the margin between classes, is found. Such a transformation, 

from an initial space to another of a higher dimension, is 

achieved by means of a function kernel. One of the most 

common kernels used in identification is the radial basis 

function. This function, adapted to the context of speaker 

verification, is represented by the following expression:    

( )
∑
−

=

−− ∑
⋅= =

1

0

)()(·
25

0

2

)(
Q

j

iyix

j
i

jm

ePm
γ

α            (2) 

being  xm(i) the feature vector of frame m described by: 
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The calculation of expression (2) is, by far, the most time-

consuming process that involves the most intensive 

computations. The result α(m), along with the threshold 

parameter ρ obtained during the training stage, is employed for 

determining the assignation value β(m):     
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Finally, after analyzing all the frames in the utterance, if the 

TABLE I 

FUNCTIONS USED TO CALCULATE THE FEATURE VECTOR ASSOCIATED 

WITH FRAME m USING A NUMBER OF SAMPLES V=200.  
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TABLE II 

LATENCY AND THROUGHPUT FOR OPERATIONS PERFORMED BY THE FPU 

Operation Latency Throughput 

Addition, subtraction, int. to 

float, multiplication  

4·TCLK 1 MFLOP/MHz 

(1·TCLK) 

Division,  square root 33·TCLK 38.5 kFLOP/MHz 

(26·TCLK) 

Absolute value, negation 1·TCLK 1 MFLOP/MHz 

(1·TCLK) 

Exponential, logarithm 37·TCLK 34.5 kFLOP/MHz 

(29·TCLK) 

 

percentage (denoted as Matching) of feature vectors belonging 

to the user’s model overcomes a threshold, the identity 

claimed by the user is confirmed as genuine (T refers to the 

total number of frames):  
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III. VECTOR FLOATING-POINT UNIT ARCHITECTURE 

A. VFPU description 

Fig. 1 and Fig. 2 show the internal architecture of the VFPU 

presented in this paper. Its main features can be summarized 

as follows: 

1)  The VFPU executes computations on vectors of arbitrary 

size using operands of single precision (32-bit) defined by the 

standard IEEE-754. Using this format the total compatibility 

between the data shared by the microprocessor and the VFPU 

is ensured. Although a design based on half-precision (16-bit) 

would consume lower hardware resources, in such case a 

block for data conversion should be included to guarantee the 

compatibility between both formats, which may introduce for 

some stages a penalty on the execution time. Furthermore, 

using half-precision the computations performed in some 

stages may lead to produce underflow (overflow) errors, 

which should be conveniently managed to avoid their potential 

effect on the recognition process.   

2)  Computations can be performed with vectors stored in 

external memory, scalar numbers provided by the 

microprocessor, or any combination of them. Likewise, the 

result of any computation can be placed on an external 

memory, or read by the microprocessor. 

3) The internal architecture of the VFPU is designed to 

optimize vector computations based on the execution of a set 

of basic floating-point operations. In this way, these 

computations can be performed avoiding unnecessary accesses 

to external memory, which are used to store temporary results. 

The data-path, described in Fig. 1, basically consists of four 

blocks. The Bus Interface connects the VFPU to the 

microprocessor through the system bus. This Interface is in 

charge of managing the writing in registers S0 to S7 of both 

scalar operands and memory addresses, in which the vectors 

are located. The Memory FIFO reads these vectors directly 

from external RAM, and writes in the same memory the 

resulting vector obtained after finishing a set of operations. 

The Register File contains 16 registers of 32-bits (R0 to R15), 

which store the result provided by the FPU. These registers 

can be used as new operands in subsequent operations. The 

FPU is designed in order to perform the operations described 

in Table II. As Fig. 2 shows, its internal design includes a 

specific block capable of performing the exponential function, 

which is the basis of the kernel employed by the SVM 

classifier. The addition of this block, as part of the VFPU, is 

necessary to solve the algorithm in real-time, since the SVM is 

the most time-consuming process. Furthermore, the table also 

presents the throughput and the latency (in clock cycles, TCLK) 

for each operation. As the FPU is internally segmented into 

several stages, the number of results per second available at its 

output depends on the type of operations launched by the 

control unit. For instance, although the latency of an 

exponential function is 37·TCLK, when such an operation is 

consecutively executed more than once the second and 

subsequent results are obtained in 29·TCLK (throughput of 34.5 

kFLOP/MHz). The rest of the operations behave in a similar 

way, so that as indicated in Table II, the maximum throughput 

provided by the VFPU is 1 MFLOP/MHz.  

The de-normalization block (Denorm) turns the IEEE-754 

format into a fixed point more suited to carry out any 

operation. Once the process of calculation is finished, the 

normalization (Norm) and rounding (Round) blocks perform 

the opposite operation providing the result in the original 

format.         

B. Architecture for maximum speed processing 

The design of the VFPU should be performed in order to 

ensure the capacity of the system to work in real time, so that 

the feature extraction and matching processing of frame m 

should be performed before a new frame (m+1) is ready to be 
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processed (in our particular case this time is 10 ms, which is 

the frame advance). The aim of this section is to highlight the 

computational features of the architecture proposed in section 

III.A. For that purpose, a simple example based on the 

processing function represented in (6) is chosen: 

( )
∑
=

−∑
= =

3635

0j

)i(y)i(x
25

0i

2
jm

e)m(α           (6) 

Note that this function is very similar to the kernel used by 

the SVM classifier shown in (2), but setting γ and Pj at -1 and 

1, respectively, and fixing the number of support vectors to 

3,636. It should be pointed out that, as it is described in 

section II.B, the actual values used in the experimental results 

for γ, ρ and Pj are different and are obtained by applying the 

training algorithm. For the sake of simplicity, let us suppose 

that initially the resolution of (6) is performed using only one 

control unit (UC). The program that should be executed is 

represented in Fig. 3.  

Clearly, in such a program two loops can be identified: the 

external loop, indexed by j and related to the number of 

support vectors; and the internal loop managed by index i, 

whose upper limit is determined by the size of the feature 

vector. Note that such a code is highly vectorizable, that is, 

elements of the input (output) vectors xm(i) and yj(i) are read 

(written) in sequential order and the same sequence of 

operations is repeated over all the elements of a vector. As it 

will be shown in section IV, this property is very important to 

achieve high acceleration factors by the VFPU. Thus, the 

microprocessor manages the execution process and solves the 

non-vectorizable code, whereas the VFPU is in charge of 

performing all the vectorizable operations involved in (6). Fig. 

4 shows as such operations are launched sequentially, 

according to their particular latency represented in Table II. 

This simple structure works properly, but it has two important 

drawbacks:    

• The UC only launches a new operation if both the input 

operands and the block used for implementing the operation 

are available. As a consequence, additions, subtractions and 

multiplications employed to calculate the exponent of (6) take 

4·TCLK. This time is far from the maximum throughput 

achievable by these operations (1 MFLOP/MHz).   

• Note that once the exponential function is launched, the 

processing of a new exponent could be started (the exponential 

result is not required for its evaluation). However, since 

operations are executed sequentially, the UC must wait until 

the result of the exponential is accumulated in register R12.      

The efficiency of this structure can be readily improved by 

introducing some modifications in the software program 

oriented to mitigate the first drawback. The idea, shown in 

Fig. 5, is very simple and allows the throughput to be 

maximized when calculating the exponent value. Now, the 

outer loop is partially unrolled to compute groups of four 

support vectors at the same time. For instance, in the example 

of Fig. 5, the VFPU operates with support vectors (j+i) 

(i∈ [0:3], being j=4·k and k∈ [0:908]). Thus, the UC would 

launch four times the same operation in four consecutive clock 

cycles; one for each of the four support vectors processed in 

parallel. As Fig. 4 shows, and taking into account latencies 

presented in Table II, using the initial pseudocode any support 

vector can be processed in 353·TCLK. However, as indicated in 

Fig. 5, when introducing the proposed software modification, 

four support vectors can be processed in 440·TCLK, which is 

equivalent to processing each one in only 110·TCLK. Note that 

the second and subsequent exponentials are calculated in 

29·TCLK, according to the throughput of this operation.        

On the other hand, the speed of the memory controller, 

along with the amount of data to be read, may limit the 

performance of the VFPU. The memory controller has been 

designed to read new data in 1·TCLK. Since vectors xm(i) and 

yj(i) have 26 elements in each one, the exponent evaluation 

involves reading 208 data ([26·xm(i) + 26·yj(i)]·4 support 

vectors). The execution time needed to process (6) is not only 

affected by the memory bandwidth, but also by the 

improvement obtained when processing groups of four support 

clk

4 TCLK 4 TCLK

R0=R0*R0 R4=R4+R0

4 TCLK

R0=R0*R0 R4=R4+R0

4 TCLK 4 TCLK 4 TCLK

R4
R12=R12+R8R8=e

4 TCLK 4 TCLK37 TCLK

(4·3·26)=312 TCLK 41 TCLK

353 TCLK

subtraction(j) multiplicat.(j) addition(j) exponential(j) addition(j)subtraction(j) multiplicat.(j) addition(j)

R0=x(0)-
y(j)(0)

R0=x(25)-
y(j)(25)

Fig. 4. Operations and results for a VFPU that includes only one control unit.  

 

while (T<Num_Frames) {  

R12=0;  

for (j=0; j<3636; j=j+1) {  

VFPU_UC { 

R4=0;  

Loop (i=0; i<26: i++) {   

R0���� xm(i) – yj (i);  // xm(i) – yj (i);   

R0���� R0 · R0;      // [xm(i) – yj (i)]2  

R4���� R4 + R0;    // Σ[xm(i) – yj (i)]2  

} 

R8���� exp j (R4);       // exp {Σ[xm(i) – yj (i)]2}  

R12���� R12+R8;      // Σ exp {Σ[xm(i) – yj (i)]2}  

} 

}  

}                                        Code executed by the VFPU 
 

Fig. 3. Code executed by the VFPU for solving expression (6).  
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vectors in parallel. Then, taking into account these 

considerations, this time could be approximated by the 

following expression:   

( )[ ]
4

4493636
·440,208max·

4

3636 CLK
CLKINITUC

T
TNT

⋅⋅
=+= (7) 

where max(a,b) is a function that returns the maximum value. 

NINIT represents the initial latency (not included in Fig. 4 and 

Fig. 5) necessary for the initialization of the UC (5·TCLK) and 

those registers (4·TCLK) that work as accumulators 

(NINIT=9·TCLK). 

The second drawback, related to the wait-states cycles 

introduced by the UC, could be eliminated including two 

control units (UC1 and UC2) and using pipeline techniques at 

function level. Using this new structure, the UC1 controls the 

calculation of the exponent, whereas the UC2 manages the 

evaluation of the exponential. Since both control units try to 

access the FPU, an arbiter is needed to manage the 

permissions (see Fig. 1). Fig. 6 shows as the control units 

launch operations following a specific sequence, so that during 

the calculation of the jth exponent, the exponential of the 

previous one (j-1)th, is also processed in parallel. Using only 

one control unit (Fig. 4), the exponent and exponential 

function (including the accumulation) are solved in 312·TCLK 

and 41·TCLK, respectively. However, if both operations are 

launched in parallel, the execution time is mainly dominated 

by the calculation of the exponent, which is the longer 

operation. In addition, if this hardware structure is combined 

by programming the VFPU in such a way that groups of four 

support vectors are processed at the same time (loop 

unrolling), the resulting throughput is substantially increased. 

This improvement is represented in Fig. 7, which shows as 

operations are launched in a specific order by the control units 

and their impact on execution time. This design of the VFPU 

has some interesting features: 

• Note that the operations (subtraction, multiplication and 

addition) launched by the UC1 are executed in pipeline 

(throughput 1 MFLOP/MHz), so that their execution time is 

equal to the number of operations managed by such a control 

unit (NUC1=312·TCLK). 

•  The operations launched by UC2 interrupt the pipeline 

created by UC1, since UC2 takes the control of the bus arbiter 

and stops the operations controlled by UC1. The delay 

introduced by this interruption adds an additional execution 

time, which is equal to the number of operations managed by 

UC2 (NUC2=8·TCLK). 

•  As Fig. 2 shows, the normalization and rounding blocks 

are shared by all operations except by abs(a) and neg(a). 

Thus, when a new result is available at the output of the 

exponential, the UC1 is forced to delay 1·TCLK the launching 

of a new operation. This clock cycle is the time needed by the 

block Norm of Fig. 2 to normalize any value. Therefore, the 

clk

4 TCLK 4 TCLK

Op_UC1 subtraction (j) multiplicat.(j)

Result R0=R0*R0

addition(j)

R4=R4+R0

4 TCLK

R0=R0*R0 R4=R4+R0

exponential(j-1) addition(j-1)

4 TCLK 4 TCLK 4 TCLK

R4 R12=R12+R8R8=e

37 TCLK

312 TCLK

Op_UC2

subtraction (j) multiplicat.(j) addition(j)

4 TCLK

R4=R4+R0

R0=x(0)-y(0) R0=R0*R0

(UC1) (UC1) (UC1)

(UC1) (UC1)

(UC2) (UC2)

(UC1)(UC1) (UC1) (UC1)

subtraction (j) multiplicat.(j)

4 TCLK 4 TCLK

24 TCLK 2 TCLK

R0=x(0)-
y(j)(0)

R0=x(25)-
y(j)(25)

 
Fig. 6. Operations and results for a VFPU with 2 control units (here, the technique of using groups of four support vectors is not employed). 

 

clk

Operation

Result

4 TCLK 4 TCLK

subtraction(j) multiplicat.(j) exponential(j)

312+37+4=353 TCLK

exponential(j+1)

R0=R0*R0 R4 R12=R12+R8R8=e

R1=R1*R1 R5
R13=R13+R9

R2=x(0)-
y(j+2)(0) R2=R2*R2 R6 R14=R14+R10

R3=x(0)-
y(j+3)(0) R3=R3*R3 R7 R15=R15+R11

R9=e

R10=e

R11=e

29 TCLK

440 TCLK

addition(j)

addition(j+1)

29TCLK 29 TCLK

subtraction(j+1) multiplicat.(j+1)

subtraction(j+2) multiplicat.(j+2)

subtraction(j+3) multiplicat.(j+3)

exponential(j+2)

exponential(j+3)

addition(j+2)

addition(j+3)

4 TCLK

R5=R5+R1

R6=R6+R2

R7=R7+R3

R0=x(0)-
y(j)(0)

R1=x(0)-
y(j+1)(0)

Fig. 5. Increasing the thoughput by software. Groups of four support vectors are managed by the VFPU (only one control unit). 
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delay added to the execution time is equal to 4·TCLK, which is 

the number of exponential functions managed by UC2.  

In order to obtain a general expression, let Q and F be the 

number of support vectors and the size of a feature vector, 

respectively, and let NINIT be the initial configuration delay 

defined previously. The time needed to solve (6) using a 

VFPU with two control units and resolving groups of four 

support vectors in parallel could be approximated by: 

[ ]

[ ] CLKINIT

CLKUCUCINITUC

TFFN
Q

TNNFN
Q

T

·)3·3,·2·max(4·
4

                               

·)4,·2·4max(
4

212

++

=+++=

  (8) 

Note that like expression (7), this execution time T2UC does 

not depend on the speed of the memory controller, since the 

addition of NUC1=(4·3·F) plus NUC2=(4·2) is higher than 4·2·F 

(the number of cycles devoted to read data from external 

memory). Analyzing expression (8) and substituting F and Q 

by 26 and 3636, respectively, it is easy to conclude that the 

total number of clock cycles needed to calculate (6) is 

302,697·TCLK. Consequently, the average throughput provided 

when processing these computations is about 0.96 

MFLOP/MHz, very close to the maximum theoretical value of 

1 MFLOP/MHz provided by the VFPU. 

A simple way of increasing the computational capability of 

the VFPU is augmenting the number of lanes that form the 

architecture. Lanes are implemented by creating N identical 

copies of the FPU included in Fig. 1. Thus, from a theoretical 

point of view, the execution time is reduced by N, since the 

system is able to process in parallel N groups of four support 

vectors yj(i). However, this reduction is also achieved at the 

expense of increasing the total area by N. Additionally, the 

more lanes are included, the more important is the 

computational capability of the VFPU, but also the more 

significant are the limitations introduced by the memory 

controller. If the system includes N lanes related to N identical 

FPU, expression (8) is modified as follows: 

CLKINIT

CLKUCUCINITNLanes

TFFNN
N

Q

TNNFNN
N

Q
T

)]·3·3,·2··max(4[
4
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4
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++
⋅

=

+++
⋅
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(9) 

Note that time reduction is not proportional to the number 

of lanes N. In fact, depending on both, the size of the feature 

vector F and the number of lanes N, this time TNLanes could be 

limited by either the amount of memory accesses (N·4·2·F) or 

by the number of cycles needed by both control units 

4·(3·F+3) to solve the operations. Thus, the addition of new 

lanes does not always provide the expected benefits in terms 

of computational capability.  

However, in situations in which the memory access is the 

most restrictive term in (9), there are some modifications that 

can be added in the design of the VFPU. Usually, these 

modifications involve a trade-off between resource utilization 

and performance. For instance, the vector xm(i), which is 

identical for all support vectors yj(i) (j=0..3665), could be read 

only once in order to save memory accesses. Such a vector 

could be initially stored in an internal circular shift register 

(CSR) and used when required by the operations involved in 

(6). Thus, when including a CSR as part of the VFPU, 

expression (9) would be modified as follows: 

[ ]
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                       (10) 

where (NINT+F) represents the time needed to read xm(i), which 

could be neglected when compared with the rest of terms of 

(10). Unlike expression (9), when N=2 the execution time is 

now limited by the number of operations launched by both 

control units, rather than by the memory accesses. After 

performing some preliminary designs, we realized that when 

clk

4 TCLK 4 TCLK

Op_UC1

subtraction (j) multiplicat.(j)

Result

addition(j)

4 TCLK

(26·12+8+4) TCLK

4 TCLK25 TCLK 4 TCLK
29 TCLK

subtraction(j+1) multiplicat.(j+1) addition(j+1)

subtraction(j+2) multiplicat.(j+2) addition(j+2)

subtraction(j+3) multiplicat.(j+3)

Op_UC2

S M

exponential(j-4) addition(j-4)

exponential(j-3)

exponential(j-2)

exponential(j-1)

addition(j-3)

addition(j-2)

addition(j-1)

subtraction (j)

subtraction(j+1)

subtraction(j+2)

subtraction(j+3)

addition(j)

addition(j+1)

addition(j+2)

addition(j+3)

29 TCLK 29 TCLK

E AS S S M M M AAAA

UC1 UC1 UC1 UC1 UC1UC1 UC2 UC2UC1UC1 UC1 UC1UC1 UC1 UC1 UC1UC1

AA

S = subtractrion,   M = multiplication,   A = addition,   E = exponential

E A

UC2 UC2UC1UC1

AA E A

UC2 UC2UC1UC1

M AA E A

UC2 UC2UC1UC1

M AA

UC1 UC1

Delay cycle introduced

by the exponetial result

addition(j+3)
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Fig. 7. Operations and results using 2 control units. Groups of four support vectors are processed at the same time. 
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including the CSR the area is increased about 0.1·N. Table III 

shows the trade-off between area and performance for 

different values of N and using one or two control units (1 UC 

or 2 UCs). Results are normalized regarding the simplest 

design, which is based on one lane and one UC (first row of 

table III). Note that the maximum value tested for N is four, 

since with a higher value the execution time would be limited 

by the memory accesses. In the design based on two UCs and 

one lane, the inclusion of a CSR only increases the area, but 

does not give any additional advantage in terms of speed. 

However, the use of two UCs is interesting, since it reduces 

the time by 25.8% and only increases the area by 10%. For 

two lanes, the fastest solution is achieved including two UCs 

and a CSR. The CSR increases the area about 8.4%, with 

regard to the design based on two UCs, but also it reduces the 

time by 22.9%. Likewise, when N=4 the addition of a second 

control unit does not reduce the resolution time. However, it is 

observed as when the CSR is added, the increase of area is 

about 9%, but a significant improvement is obtained in the 

execution time (48.9%). As it will be shown in next section, 

the optimal solution is obtained including only one lane and 

two UCs. This will be the structure employed in the 

experimental results, since such implementation is able to 

process frames in real-time using the minimum area and 

providing the maximum throughput.  

IV. EXPERIMENTAL RESULTS 

In order to experimentally prove the advantages of our 

proposal, a XC3S2000 Spartan 3 FPGA has been selected for 

its implementation. The system includes a MicroBlaze 

microprocessor that executes by software the whole speaker 

verification algorithm. The VFPU, designed from scratch in 

VHDL, is connected to the microprocessor through the system 

bus and solves any vector floating-point computation. Square 

root and division are operations whose design is based on a 

radix-2 restoring algorithm. The logarithm and exponential 

functions are developed following a CORDIC algorithm. The 

rest of operations are implemented by combinational circuits. 

The clock frequency used to obtain the experimental results 

is 40 MHz. Program and data are located in a 2MB SRAM 

external memory. This memory is connected to both the 

microprocessor and the VFPU, which have direct access to 

read and write data. Moreover, other peripherals such as 

timers, UARTs, input-output ports, etc., are also implemented 

as part of the embedded system.   

Table IV shows the resources of the FPGA required for the 

implementation of the whole system and the maximum clock 

frequency reported by the synthesis tool.  

A. Recognition results 

Fig. 8 shows the DET (Detection Error Tradeoff) curve 

obtained for the BANCA public database for different trials 

that combine gender, female (F) or male (M), and 

environmental conditions (controlled (C), adverse (A) and 

degraded (D)) under which the utterances have been acquired. 

This curve represents the False Match Rate (FMR, erroneous 

classification of a genuine user as impostor) versus the False 

Non-Match Rate (FNMR, erroneous classification of an 

impostor user as genuine). 

The Equal Error Rate (ERR) is defined as the point of the 

DET curve where FMR and FNMR are equal. This parameter 

is usually accepted as a measure of quality of a biometric 

algorithm. As expected, the best ERR (7%) is given for the 

database with utterances acquired under controlled conditions. 

In contrast, the worst results, which correspond to utterances 

TABLE IV 

AREA AND MAXIMUM CLOCK FREQUENCY FMAX. PERCENTAGE (%) AGAINST 

TOTAL NUMBER OF RESOURCES IN THE FPGA  

Subsystem 

LUT 

(Lookup 

table) 

FF 

(Flip-

Flops) 

CLB 

Slices 

MULT 

18x18 

Fmax 

(MHz) 

Microblaze + 

FPU  

3,051 

(7%) 

1,799 

(4%) 

1,683 

(8%) 

7 

(17%) 

92.2 

VFPU 10,611 

(25%) 

7,522 

(18%) 

7,649 

(37%) 

20 

(50%) 

42.7 

Rest of 

 peripherals 

2,076 

(6%) 

1,090 

(2%) 

1,452 

(7%) 

0 

(0%) 

45.4 

Embedded 

System 

15,738 

(38%) 

10,441 

(25%) 

10,784 

(52%) 

27 

(67%) 

42.4 
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Fig. 8. DET curves for BANCA database (ρ=-0.44, γ=0.4). 
 

TABLE III 

NORMALIZED AREA, TIME AND THROUGHPUT REGARDING THE SIMPLEST 

SOLUTION (N=1, 1 UC AND WITHOUT INCLUDING CSR). THE FREQUENCY IS 40 

MHZ. 

F=26 

Q=3636 
System AREA TIME 

THROUGHPUT 

(MFLOP/MHZ) 

N=1 1 UC 1 1 (10.20 ms) 0.71 (71%) 

2 UC 1.10 0.74 (7.57 ms) 0.96 (96%) 

2 UC + CSR 1.18 0.74 (7.57 ms) 0.96 (96%) 

N=2 1 UC 1.80 0.50 (5.10 ms) 1.43 (71%) 

2 UC 1.90 0.48 (4.83 ms) 1.51 (75%) 

2 UC + CSR 2.06 0.37 (3.78 ms) 1.92 (96%) 

N=4 1 UC 3.40 0.47 (4.78 ms) 1.51 (38%) 

2 UC 3.50 0.47 (4.78 ms) 1.51 (38%) 

2 UC + CSR 3.82 0.24 (2.41 ms) 3.01 (75%) 
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obtained in adverse and degraded conditions, present a ERR 

ranged between 15% and 17%, respectively.  

B. Speed Processing 

In order to compare the performance of the proposed VFPU 

in terms of speed, the speaker verification algorithm was 

executed on two additional systems: an ARM Cortex-A8 

microprocessor clocked at 720 MHz and the MicroBlaze 

microprocessor configured with its own FPU designed by 

Xilinx. The results for ARM are given for two different 

implementations. In the first one, a standard compilation was 

performed over a code based on Single Instruction Single Data 

(SISD) operations. In the second one, the code was rewritten 

including NEON instructions, which were programmed by 

means of intrinsics to increase performance by using 

vectorization [29]. The latter implementation is usually faster, 

since NEON performs Single Instruction Multiple Data 

(SIMD) processing on several floating-point lanes. Such 

dedicated instructions are used to load (store) vector data 

between the registers and the external memory. Note that with 

these four implementations, it is easy to compare the 

performance obtained by non-vectorized (µBlaze+FPU and 

ARM-SISD) versus vectorized implementations 

(µBlaze+VFPU and ARM-SIMD).   

Table V shows the execution time for such four 

implementations including the feature extraction and matching 

stages. The table also presents the specific execution time for 

each function described in Table I. Such results are also 

presented in clock cycles, so that they can be particularized for 

the operating frequency of a faster FPGA featured with a 

higher degree of speed.  

As mentioned earlier, a complete frame processing should 

be carried out in less than 10 ms (frame advance). Only the 

embedded system designed with the VFPU (9.1 ms) and the 

ARM-SIMD execution using NEON instructions (5.71 ms) are 

capable of executing the whole speaker verification algorithm 

in time. However, it is important to point out that ARM 

achieves this result using a clock frequency 18 times higher 

than the proposed VFPU. Therefore, if both systems use the 

same frequency, our proposal would be about 11.29 times 

faster than the ARM-SIMD execution. Furthermore, it is 

noteworthy that the NEON architecture consists of four lanes, 

unlike the actual VFPU implementation that is performed 

including only one lane. If the VFPU was built with 2 lanes, 

applying (9) the frame matching stage would be processed in 

4.83 ms with a clock of 40 MHz, which is faster than the 

ARM-SIMD implementation that takes 5.55 ms (fifth column 

of Table V).   

When configuring MicroBlaze with the scalar FPU supplied 

by Xilinx, the execution time is approximately 140 ms, which 

compared with our proposal leads to an average acceleration 

(fourth column of Table V) of x15.4. The acceleration 

provided for each stage of the feature extraction and matching 

stage is different. As shown in the example of section III.B, 

such acceleration mainly depends on the degree of compliance 

of the following five factors: 

a) Use of exponential or logarithm functions. These 

operations are solved by a specific block included in the 

VFPU, which provides a faster resolution when compared 

with the standard math library.  

b) Use of function level pipelining techniques for solving in 

parallel several operations. This technique can be applied 

since the VFPU is designed with two control units. 

c) Balance between the number of vectorizable and non-

vectorizable computations involved in a specific code.  

d) Loop unrolling to process groups of up to four operations 

at the same time.  

e) Usually, the configuration time of the VFPU is 

considered negligible when compared with the computational 

time. However, when short-vectors are processed this 

TABLE V 

DEGREE OF COMPLIANCE FOR: A) USE OF EXP. OR LOG. FUNCTIONS, B) FUNCTION LEVEL PIPELINING, C) VECTORIZABLE CODE, D) LOOP UNROLLING AND E) 

NEGLIGIBLE CONFIGURATION TIME.  

EXECUTION TIME, IN TERMS OF NUMBER OF CLOCK CYCLES TCLK AND ms, FOR EACH STAGE OF THE SPEAKER VERIFICATION ALGORITHM. 

Stage 

Degree of 

compliance for a), 

b), c), d) and e): 

L=low, M=medium, 

H=high 

µBlaze  + 
VFPU 

(40 MHz) 

µBlaze  + 
FPU of Xilinx 

(40 MHz) 

Acceleration 

µBlaze+VFPU 

vs 
µBlaze+FPU 

ARM-SIMD 

(NEON) 

Cortex A8 
(720 MHz) 

ARM-SISD 
Cortex A8 

(720 MHz) 

Acceleration 

ARM-SIMD 

vs 
ARM-SISD 

(1) Average value, normalization, 

energy and emphasis  

L, L, H, H, M 1,454·TCLK 
(36.35 µs) 

9,570·TCLK 

(239.25 µs) 

6.58 2,967·TCLK 
(4.12 µs) 

14,248·TCLK 

(19.79 µs) 

4.80 

(2) Filtering by Hamming window L, L, H, H, M 1,382·TCLK 

(34.55 µs) 

10,386·TCLK 

(259.65 µs) 

7.52 2,512·TCLK 
(3.49 µs) 

13,665·TCLK 

(18.98 µs) 

5.44 

(3) Zero padding and FFT L, L, M, H, M 36,562·TCLK 

(914.05 µs) 

142,898·TCLK 

(3,572.45 µs) 

3.91 79,453·TCLK 

(110.35 µs) 

171,403·TCLK 

(238.06 µs) 

2.16 

(4) Filter Channels 

(Mel filters) 

L, M, M, H, M 10,641·TCLK 

(266.03 µs) 

52,769·TCLK 

(1,319.23 µs) 

4.96 11,821·TCLK 
(16.42 µs) 

21,952·TCLK 

(30.49 µs) 

1.86 

(5) Logarithm and absolute value H, H, H, H, H 895·TCLK 

(22.38 µs) 

18,283·TCLK 

(457.08 µs) 

20.43 12.791·TCLK 
(17.77 µs) 

13,622·TCLK 

(18.92 µs) 

1.06 

(6) Discrete cosine transform L, L, H, H, M 1,079·TCLK 

(26.98 µs) 

9,666·TCLK 

(241.65 µs) 

8.96 3,538·TCLK 
(4.91 µs) 

17,632·TCLK 

(24.49 µs) 

4.98 

(7) Delta coefficients L, L, H, L, L 510·TCLK 

(12.75 µs) 

1,020·TCLK 

(25.50 µs) 

2.0 1,776·TCLK 
(2.47 µs) 

2,219·TCLK 

(3.08 µs) 

1.25 

Frame Extraction 

(1)+(2)+(3)+(4)+(5)+(6)+(7) 

 52,523·TCLK 

(1.31 ms) 

244,592·TCLK 

(6.11 ms) 

4.66 114,858·TCLK 

(159.53 µs) 

254,741·TCLK 

(353.81 µs) 

2.22 

Frame Matching H, H, H, H, H 311,594·TCLK 

(7.79 ms) 

5,375,773·TCLK 

(134.39 ms) 

17.25 3,994,088·TCLK 

(5.55 ms) 

7,137,820·TCLK 

(9.91 ms) 

1.79 

Processing of a complete frame  3.64·105·TCLK 

(9.10 ms) 

56.20·105·TCLK 

(140.51 ms) 

15.44 41.09·105·TCLK 

(5.71 ms) 

73.93·105·TCLK 

(10.27 ms) 

1.80 
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simplification could be false. In such cases, the code is hardly 

accelerated because configuration and computation time have 

similar values.  

Table V shows the degree of compliance (low, medium or 

high) of these five factors for each stage involved in the whole 

algorithm. Note that those stages with higher degrees of 

compliance provide higher acceleration factors. For instance, 

the frame matching and the logarithm stage are accelerated by 

x17.25 and x22.43, respectively, since they meet all factors 

mentioned before. In contrast, the stage devoted to calculate 

the delta coefficients is only accelerated by x2, since although 

its code is vectorizable, the configuration time of the VFPU is 

not negligible, pipelining techniques cannot be applied and 

exponential functions are not utilized. In general, stages 

included in the frame extraction step provide lower 

accelerations, since they only meet some of the five factors 

described previously.  

In [18], the authors presented a custom-hardware 

implementation of a speaker verification system. Extrapolating 

their results for a frequency of 40 MHz, a frame would be 

processed in 5.8 ms. Other similar proposals are presented in 

[30] and [31] leading to different results. However, if they are 

compared with the VFPU implementation there are some 

drawbacks that should be pointed out: 

• The hardware design presented in [18] is based on fixed-

point arithmetic. Authors achieved high accurate results using 

a variable word length, whose dimension is adjusted to obtain 

similar results as those produced in floating-point arithmetic. 

Thus, any change in the feature vector (adding for example the 

second derivative of the MFCC coefficients), or in the number 

of bits used in the codification of the input samples, involves 

redesigning the overall system. Due to the flexibility of our 

implementation any of these changes only require a simple 

modification that should be performed on the software 

program. Such flexibility in not offered by any of the custom-

hardware designs presented in [18], [30] or [31]. Additionally, 

the design described in [18] is performed using specific tools 

(Xilinx Core Generator) that are only valid for a particular 

FPGA vendor. In contrast, as mentioned before, the 

architecture of the VFPU is generic, so that it can easily be 

implemented in any FPGA.  

• Inherently, floating-point computations have associated a 

large dynamic range, which is especially important when 

processing extremely large data sets or data sets where the 

range may be unpredictable. This characteristic is very suited 

when dealing with intensive computations such as the kernel 

function used by the SVM classifier. 

• The software code is usually written using float-type 

variables, since by default many functions (logarithm, 

exponential, trigonometric, square root etc.) are defined and 

implemented in floating-point arithmetic. Thus, such 

arithmetic could be coded directly into hardware operations 

represented in this format. However, fixed-point arithmetic 

requires an additional effort, since the original program should 

be transformed. Further, when performing operations in fixed-

point arithmetic there is a risk of producing an overflow, 

underflow or round-off error. Particularly, this could happen if 

the database or the size of the input samples change. 

Moreover, expression (8) is quite consistent with the results 

shown in Table V. Note that since γ≠-1 and Pj≠1, then NUC2 is 

equal to 16 (eight new multiplications are added). This 

theoretical expression, calculated with a particular frequency 

of fCLK=40MHz, leads to an execution time of about 7.75 ms, 

which represents an approximated error of 0.5% against the 

real value of 7.79 ms. Such error is mainly due to the 

communication delays produced by the configuration time of 

the VFPU.  

V. CONCLUSION 

This paper presented the design and implementation on 

FPGA of a complete biometric algorithm for speaker 

verification. The feature extraction stage is based on the 

calculation of the Mel-Frequency Cepstrum Coefficients, 

whereas the classification is performed by means of a SVM 

model. The paper also describes a generic architecture of 

VFPU that solves all the vector floating-point computations 

involved in the algorithm. Additionally, the architecture 

provides a high flexibility, which allows quickly adapting the 

parameters of the algorithm to different conditions related 

with the acquisition of samples or the particular features of a 

group of users. Its design includes two control units that 

maximize the throughput and allow the entire algorithm to be 

solved in real time. The performance of the VFPU was 

compared with two systems of similar features: the FPU 

provided by Xilinx and the ARM Cortex A8 microprocessor. 

Experimental results show as each frame is processed by the 

VFPU in 3.64·10
5 

clock cycles, which represents an 

acceleration factor of x11.2 and x15.4 when compared with 

systems based on an ARM-NEON microprocessor and the 

FPU of Xilinx, respectively.  
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