
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract— This paper presents the implementation on FPGA

of an speaker verification system. The algorithm is executed by

software over an embedded system that includes a MicroBlaze

microprocessor connected to a Vector Floating-Point Unit

(VFPU). The VFPU is designed to speed up the resolution of any

vector floating-point operation involved in the verification

algorithm, whereas the microprocessor manages the control of

the process and executes the rest of operations. With a clock

frequency of 40 MHz, the system is capable of executing in real-

time the complete algorithm, processing a voice frame in 9.1 ms.

The same verification process was carried out over two different

systems: an ARM Cortex A8 microprocessor and configuring

MicroBlaze with the scalar Floating-Point Unit provided by

Xilinx. Experimental results show that when comparing our

proposal against both systems, the number of clock cycles is

reduced by a factor of x11.2 and x15.4, respectively. The main

advantage provided by the VPFU is its flexibility, which allows

quickly adapting the software to the potential changes produced

in both the system and the user requirements. The algorithm was

tested over a public database, which contains utterances of

different users acquired under different environmental

conditions, providing good recognition rates.

Index Terms—Biometrics, field programmable gate arrays,

hardware-software co-design, speaker recognition, system-on-

chip.

I. INTRODUCTION

PEAKER verification is one of the most widespread

technologies used today in biometrics. This modality is

supported by a solid signal processing theory developed for

decades, and is based on robust algorithms that provide high

recognition rates [1]. Moreover, the low price of microphones

Enrique Cantó-Navarro is with the Department of Electronic Engineering,

Electrical and Automatics, Universitat Rovira i Virgili, Tarragona, Spain

(corresponding author phone: 34-977558522; fax: 34-977559605; email:

enrique.canto@urv.cat).

Mariano López-García and Rafael Ramos-Lara are with the Department of

Electronic Engineering, Universitat Politècnica de Catalunya, 08800 Vilanova

i la Geltrú, Spain (email: mariano.lopez@upc.edu and rafa.ramos@upc.edu).

Raul Sánchez-Reíllo is with the Department of Electronic Technology,

University Carlos III of Madrid, 28911 Spain (e-mail: rsreillo@ing.uc3m.es).

 This work was supported by the Ministerio de Economía y Competitividad

in the framework of the Programa Nacional de Proyectos de Investigación

Fundamental, project TEC2012-38329-C02-02.

is a significant advantage against other types of biometrics

requiring more expensive capture devices. Such a feature is

fundamental for the rapid expansion of this technology in the

low-cost consumer market. Nowadays, some smartphones

already include applications that allow authorized users to

unlock their phone by reproducing a passphrase, which replace

the traditional methods based on key or PIN numbers. In

addition, commercial transactions, or remote personal

verification by phone, are also applications of speaker

verification that could be currently used by a large segment of

the population [1], [2].

 Most speaker verification systems adopt an architecture that

consists of two differentiated phases: enrolment and

classification. During the enrolment phase, the system is

trained with several utterances provided by a specific user.

Utterances are processed in order to obtain a set of features

that represent the specific physical structure of the individual’s

vocal tract. Although there are many approaches for extracting

these features, the Mel-Frequency Cepstrum Coefficients

(MFCC) have been the most widely used in speaker

verification, as well as in speech recognition [3]-[5]. These

coefficients have the ability to faithfully represent the

distinguishing features of a signal of voice belonging to a

particular user. In addition, they show a robust behaviour

against background noise, providing high recognition accuracy

even in text-independent scenarios. Finally, based on these

coefficients, a model for each user is generated. In the

classification phase, the user, whose identity should be

verified, pronounces a new utterance. This utterance is

processed and its feature vector, based on the MFCC

coefficients, is extracted and compared against the model

previously stored during the enrolment phase. The comparison

returns a result, which is used to accept or deny the identity

claimed by the user.

 The classification phase, also known as the matching

process, is based on algorithms capable of distinguishing the

extracted features of any individual from the genuine user.

Algorithms based on generative models, such as Hidden

Markov Models or Gaussian Mixture Models, have

traditionally been applied to speaker verification [6], [7]. The

success of these statistical methods depends on the proper

estimation of their parameters, which are calculated by

Flexible Biometric Online Speaker Verification

System Implemented on FPGA Using Vector

Floating Point Units

Enrique Cantó-Navarro, Mariano López-García, Rafael Ramos-Lara, and Raúl Sánchez-Reíllo,

Member, IEEE

S

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

maximizing the likelihood of the data for a particular model.

Such estimation provides good convergence properties,

although it does not guarantee finding the global maximum

[8], [9]. In contrast, Support Vector Machine (SVM) is a

discriminative approach that is intended to estimate a decision

surface directly, rather than modeling a probability

distribution function [10]. Several versions of this algorithm,

which use different kernels, have already been employed in

speaker verification, providing outstanding matching results

[11].

On other hand, due to the large number of computationally

demanding operations performed during the verification

process, the computational cost of these algorithms is usually

high. Additionally, the platform in which the system is

implemented, should be able to manage an important amount

of data in real time. These issues are especially important in

text-independent scenarios, where the verification process is

achieved by pronouncing utterances of several seconds in

length. Microprocessors of moderate economic cost have been

proposed as a compromise solution for the implementation of

biometric systems. The flexibility of a software

implementation allows the rapid development of applications

using fixed hardware architectures. However, the complexity

of some algorithms leads to only high-performance

microprocessors, included in personal computers, being

appropriated for their processing in real time, at the expense of

increasing the price and power consumption of the whole

system. Hardware architectures based on Field Programmable

Gate Arrays (FPGAs) are another alternative for implementing

these algorithms. At a reasonably low-cost, these devices

allow designing high-speed architectures useful for

implementing biometric algorithms [12], [13]. There are also

some publications addressing the implementation of speaker

or speech recognition systems on FPGAs. Most of these

publications proposed the implementation of only one stage,

feature extraction or classification, for accelerating the total

execution time [14]-[17]. Recently, the work of Ramos et al.

[18], presented a more advanced implementation of a

complete speaker verification system on an FPGA. Authors

pointed out that their implementation was able to carry out the

feature extraction and classification stages in a shorter time

than the frame length (real-time processing). However, this

performance was achieved at the expense of designing the

system according to a specific sample frequency, a particular

codification rate and transforming the original floating-point

operations to a fixed-point format. Note that, any change

introduced in any of the previous parameters involves

redesigning the entire system.

These drawbacks can be partially overcome by adding a

Floating-Point Unit (FPU) as part of the FPGA design.

However, most of the proposed FPUs only include basic

arithmetic operations (mul, add, sub and div) and are unable to

process biometric algorithms in real time [19], [20]. An

additional disadvantage, within the framework of biometrics,

is that these math coprocessors only admit scalar numbers as

input operands. Many functions used in speaker verification

perform computations whose input operands are vectors of

variable length. Although the FPU is able to resolve these

computations, the time needed for their calculation could be

significantly accelerated if a Vector Floating-Point Unit

(VFPU) is used [21], [22]. When operating with vectors, the

VFPU increases the throughput by reducing both the number

of CPU fetches and the number of memory accesses.

This paper presents the implementation of a whole MFCC-

SVM speaker verification system on an FPGA. The system

consists of the Xilinx MicroBlaze general-purpose 32-bit

microprocessor, and a VFPU that calculates any vector

operation defined in floating-point format. The architecture of

the VFPU is generic, so that it can be easily adapted to other

soft-core microprocessors or FPGA families. Compared with a

custom-hardware implementation, the main feature of the

VFPU is its flexibility, which provides the possibility of easily

introducing modifications in the algorithm or adding new

processing stages. Besides, in the particular case of a speaker

verification system, such flexibility allows designing the

VFPU independently of the number of bits used for the

codification of the input samples or the number of coefficients

included in the feature vector. Furthermore, in applications in

which samples of voice are affected by environmental

conditions (background noise, distortion, etc.), or users have a

remarkable common characteristic in their voice (due to age,

prosodic features, etc.), changes in the parameters can be

quickly introduced for adapting the system to such particular

characteristics in order to improve the recognition rates. For

instance, in [23] authors proposed a training process that

includes simulated noisy data that provides an improvement

higher than 23% compared with a classic training method. In

[24], it is shown as due to the effect of aging, the recognition

rates can be degraded by approximately 20% every 1-2 years.

Finally, in [25] it is demonstrated as recognition performance

based on cepstral features is improved by adding higher-level

information, including prosodic and lexical features, which

allows the equal error rate to be reduced by up to 19%.

The paper is organized as follows. Section II describes the

basic theory about the algorithm presented based on MFCC

and SVM. Section III presents the internal structure of the

VFPU and the floating-point operations being implemented.

Section IV shows the experimental results, and finally Section

V shows the conclusions.

II. ONLINE SPEAKER VERIFICATION ALGORITHM

The architecture of the proposed speaker verification system

is well-documented, so it will be briefly reviewed here [18].

Specifically, the block feature extraction is based on the

MFCC coefficients, whereas the SVM algorithm is the basis

for designing the block creation model and classification.

A. MFCC-based feature extraction

The MFCC are the essential elements used for obtaining the

feature vector xm. During the feature extraction, the speech

signal is segmented into frames of 25 ms in length. The frame

m is the basic unit from which the feature vector is obtained.

Any frame is overlapped by 15 ms with its previous one, being

10 ms the frame advance.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

Usually, the optimal number of parameters that form the

feature vector is 26. The first one, C0(m), is the Napierian

logarithm of the energy localized in a temporal window; the

following twelve, C1(m),…,C12(m), are directly based on the

Mel-frequency Cepstrum Coefficients, which represent the

spectral envelope of the signal of voice [3]-[5]; and the last

thirteen are known as differential or delta coefficients and are

denoted as ∆C0(m),…, ∆C12(m). Such delta coefficients

represent the variation of the MFCC between adjacent frames.

Table I summarizes the complete sequence of functions and

operations involved in the calculation of the feature vector.

Functions are listed in sequential order regarding their

execution (the final parameters are outlined in bold). Note that

the first parameter is directly obtained in step 3. The MFCC

coefficients are calculated in step 10, after applying several

functions over the original frame m. Finally, delta coefficients

are obtained in step 11 with a delay of 2 frames. As can be

seen, to compute these delta coefficients it is necessary to

calculate before the MFCC of previous frames m-2, m-1, and

subsequent frames m+1 and m+2, respectively.

B. Model creation

The aim of the training stage is to create a model for each

user, which contains the main characteristics that represent the

user’s voice. The data employed to build such a model include

several feature vectors of this user (genuine), as well as other

feature vectors belonging to different people (impostors). The

model is obtained off-line, using a training algorithm that runs

in a desktop computer, and in this particular case, employing

the public database BANCA [26]. Since the classification

stage is implemented by an SVM algorithm, the model

consists of a set of Q support vectors yj(i) (i=0..25, j=0..Q-1)

and their associated parameters (ρ, γ, Pj). Note that the size of

yj(i) (26 elements) coincides with the number of parameters

that form the feature vector xm. LIBSVM or Torch are specific

libraries suitable to perform the training process of classifiers

based on SVM models [27], [28]. The training algorithm is

executed several times, changing the number of feature

vectors, and adjusting a characteristic threshold called ρ. The

purpose is to find the optimal number Q of support vectors

yj(i) that lead to the best classification results. In this particular

case, we found that such optimal number Q is 3,636. Each of

these support vectors yj(i) has an associated constant Pj

(Lagrange coefficient) provided as a result of the training

algorithm, along with an additional parameter γ common to all

support vectors. The optimal values obtained for γ and ρ are

0.4 and -0.44, respectively. Besides, the total number of

feature vectors used in this off-line training process is 8,000,

including genuine and impostor users Thus, the model λ for a

specific user can be described as:

() 0..25i and 1-..Q0j ,P),i(y, jj === ργλ (1)

C. SVM-based classification

The aim of the SVM classifier is to figure out whether the

feature vector matches or not the user’s model. Such a

comparison returns a binary result, which assigns 1 when the

match is positive, and 0 when is negative. Note that this

comparison is performed for each frame m.

SVM maps the input data into a higher dimension feature

space, in which a hyperplane, that separates and maximizes

the margin between classes, is found. Such a transformation,

from an initial space to another of a higher dimension, is

achieved by means of a function kernel. One of the most

common kernels used in identification is the radial basis

function. This function, adapted to the context of speaker

verification, is represented by the following expression:

()
∑
−

=

−− ∑
⋅= =

1

0

)()(·
25

0

2

)(
Q

j

iyix

j
i

jm

ePm
γ

α (2)

being xm(i) the feature vector of frame m described by:





≤≤

≤≤
=

25i13 ,

12i0),(
)(

13(m)∆C

mC
ix

i-

i
m (3)

The calculation of expression (2) is, by far, the most time-

consuming process that involves the most intensive

computations. The result α(m), along with the threshold

parameter ρ obtained during the training stage, is employed for

determining the assignation value β(m):



 ≤

=
match) (negative otherwise

match) (positive (m) if
m

,0

,1
)(

ρα
β (4)

Finally, after analyzing all the frames in the utterance, if the

TABLE I

FUNCTIONS USED TO CALCULATE THE FEATURE VECTOR ASSOCIATED

WITH FRAME m USING A NUMBER OF SAMPLES V=200.

Description Mathematical Expression

1.- Average value ∑
−

=

=
1V

0n
m (n)x

V

1
S

2.- Signal

Normalization
1-n0 ,S-(n)x(n)x mm V≤≤=

3.- Energy () 







= ∑

−

=

1V

0n

2

mo (n)xln (m)C

4.- Pre-emphasis filter 0.97a 1,-Vn0 1),-(nxa-(n)xy(n) mm =≤≤⋅=

5- Filtering with

Hamming window







≤≤







 ⋅⋅
⋅−

=

=

otherwise 0,

1-Vn0 if ,
1-V

nπ2
cos0.460.54

w(n)

 :being y(n)·w(n),z(n)

6.- Zero padding




≤≤

≤≤
=

255nV if 0,

1-Vn0 if z(n),
x(n)

7.- Fast Fourier

Transform (FFT)
256)(L 1-Lk0 ,ex(n)X(k)

1L

0n

L

nkπ2
j-

=≤≤⋅= ∑
−

=

⋅⋅⋅
⋅

8.- Bank of Mel filters








+⋅=

≤≤⋅=

700

f
1log2595Mel(f)

26k1 Mel(f),X(k)S(k)

10

9.- Napierian

logarithm of the

absolute value

26k1 ,S(k)lnf(k) ≤≤=

10.- Discrete cosine

transform

()

12n1 and 26K being

 ,
K

π
·0.5kn· f(k)·cos·

K

2
(m)C

K

1k
n

≤≤=









−= ∑

=

11.- Delta coefficients 2M and 12n0 ,

t

t)(mCt

(m)∆C
M

Mt

2

M

Mt
n

n =≤≤

+⋅

=

∑

∑

−=

−=

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

TABLE II

LATENCY AND THROUGHPUT FOR OPERATIONS PERFORMED BY THE FPU

Operation Latency Throughput

Addition, subtraction, int. to

float, multiplication

4·TCLK 1 MFLOP/MHz

(1·TCLK)

Division, square root 33·TCLK 38.5 kFLOP/MHz

(26·TCLK)

Absolute value, negation 1·TCLK 1 MFLOP/MHz

(1·TCLK)

Exponential, logarithm 37·TCLK 34.5 kFLOP/MHz

(29·TCLK)

percentage (denoted as Matching) of feature vectors belonging

to the user’s model overcomes a threshold, the identity

claimed by the user is confirmed as genuine (T refers to the

total number of frames):

100

)(
1 ⋅=

∑
=

T

m

Matching

T

m

β

 (5)

III. VECTOR FLOATING-POINT UNIT ARCHITECTURE

A. VFPU description

Fig. 1 and Fig. 2 show the internal architecture of the VFPU

presented in this paper. Its main features can be summarized

as follows:

1) The VFPU executes computations on vectors of arbitrary

size using operands of single precision (32-bit) defined by the

standard IEEE-754. Using this format the total compatibility

between the data shared by the microprocessor and the VFPU

is ensured. Although a design based on half-precision (16-bit)

would consume lower hardware resources, in such case a

block for data conversion should be included to guarantee the

compatibility between both formats, which may introduce for

some stages a penalty on the execution time. Furthermore,

using half-precision the computations performed in some

stages may lead to produce underflow (overflow) errors,

which should be conveniently managed to avoid their potential

effect on the recognition process.

2) Computations can be performed with vectors stored in

external memory, scalar numbers provided by the

microprocessor, or any combination of them. Likewise, the

result of any computation can be placed on an external

memory, or read by the microprocessor.

3) The internal architecture of the VFPU is designed to

optimize vector computations based on the execution of a set

of basic floating-point operations. In this way, these

computations can be performed avoiding unnecessary accesses

to external memory, which are used to store temporary results.

The data-path, described in Fig. 1, basically consists of four

blocks. The Bus Interface connects the VFPU to the

microprocessor through the system bus. This Interface is in

charge of managing the writing in registers S0 to S7 of both

scalar operands and memory addresses, in which the vectors

are located. The Memory FIFO reads these vectors directly

from external RAM, and writes in the same memory the

resulting vector obtained after finishing a set of operations.

The Register File contains 16 registers of 32-bits (R0 to R15),

which store the result provided by the FPU. These registers

can be used as new operands in subsequent operations. The

FPU is designed in order to perform the operations described

in Table II. As Fig. 2 shows, its internal design includes a

specific block capable of performing the exponential function,

which is the basis of the kernel employed by the SVM

classifier. The addition of this block, as part of the VFPU, is

necessary to solve the algorithm in real-time, since the SVM is

the most time-consuming process. Furthermore, the table also

presents the throughput and the latency (in clock cycles, TCLK)

for each operation. As the FPU is internally segmented into

several stages, the number of results per second available at its

output depends on the type of operations launched by the

control unit. For instance, although the latency of an

exponential function is 37·TCLK, when such an operation is

consecutively executed more than once the second and

subsequent results are obtained in 29·TCLK (throughput of 34.5

kFLOP/MHz). The rest of the operations behave in a similar

way, so that as indicated in Table II, the maximum throughput

provided by the VFPU is 1 MFLOP/MHz.

The de-normalization block (Denorm) turns the IEEE-754

format into a fixed point more suited to carry out any

operation. Once the process of calculation is finished, the

normalization (Norm) and rounding (Round) blocks perform

the opposite operation providing the result in the original

format.

B. Architecture for maximum speed processing

The design of the VFPU should be performed in order to

ensure the capacity of the system to work in real time, so that

the feature extraction and matching processing of frame m

should be performed before a new frame (m+1) is ready to be

Pipeline

FPU

UC1

System

BUS

External

Memory

Controller M
U
X

M
U
X

M
em

o
ry

F
IF
O

B
us

In
te
rf
ac
e

V0

V1

V7

S0

S1

R0

R1

R15

R
eg

is
te
r

F
ile

a

b

S7

M
U
X

UC2

Control

Arbiter

D Q

D Q

c

Denorm

a/b

sqrt(a)

float(a)

abs(a)

neg(a)

a+b

a-b

a*bDenorm

Denorm

a

b

D QNorm Round

D Q

D Q

exp(a)

log(a)

D Q

D Q

D Q

D Q

D QFIFO

FIFO

Denorm

M
U
X

M
U
X

29 TCLK
3 TCLK

3 TCLK

2 TCLK

1 TCLK 26 TCLK

c

Fig. 1. Datapath description for the VFPU. Fig. 2. FPU internal architecture.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

processed (in our particular case this time is 10 ms, which is

the frame advance). The aim of this section is to highlight the

computational features of the architecture proposed in section

III.A. For that purpose, a simple example based on the

processing function represented in (6) is chosen:

()
∑
=

−∑
= =

3635

0j

)i(y)i(x
25

0i

2
jm

e)m(α (6)

Note that this function is very similar to the kernel used by

the SVM classifier shown in (2), but setting γ and Pj at -1 and

1, respectively, and fixing the number of support vectors to

3,636. It should be pointed out that, as it is described in

section II.B, the actual values used in the experimental results

for γ, ρ and Pj are different and are obtained by applying the

training algorithm. For the sake of simplicity, let us suppose

that initially the resolution of (6) is performed using only one

control unit (UC). The program that should be executed is

represented in Fig. 3.

Clearly, in such a program two loops can be identified: the

external loop, indexed by j and related to the number of

support vectors; and the internal loop managed by index i,

whose upper limit is determined by the size of the feature

vector. Note that such a code is highly vectorizable, that is,

elements of the input (output) vectors xm(i) and yj(i) are read

(written) in sequential order and the same sequence of

operations is repeated over all the elements of a vector. As it

will be shown in section IV, this property is very important to

achieve high acceleration factors by the VFPU. Thus, the

microprocessor manages the execution process and solves the

non-vectorizable code, whereas the VFPU is in charge of

performing all the vectorizable operations involved in (6). Fig.

4 shows as such operations are launched sequentially,

according to their particular latency represented in Table II.

This simple structure works properly, but it has two important

drawbacks:

• The UC only launches a new operation if both the input

operands and the block used for implementing the operation

are available. As a consequence, additions, subtractions and

multiplications employed to calculate the exponent of (6) take

4·TCLK. This time is far from the maximum throughput

achievable by these operations (1 MFLOP/MHz).

• Note that once the exponential function is launched, the

processing of a new exponent could be started (the exponential

result is not required for its evaluation). However, since

operations are executed sequentially, the UC must wait until

the result of the exponential is accumulated in register R12.

The efficiency of this structure can be readily improved by

introducing some modifications in the software program

oriented to mitigate the first drawback. The idea, shown in

Fig. 5, is very simple and allows the throughput to be

maximized when calculating the exponent value. Now, the

outer loop is partially unrolled to compute groups of four

support vectors at the same time. For instance, in the example

of Fig. 5, the VFPU operates with support vectors (j+i)

(i∈ [0:3], being j=4·k and k∈ [0:908]). Thus, the UC would

launch four times the same operation in four consecutive clock

cycles; one for each of the four support vectors processed in

parallel. As Fig. 4 shows, and taking into account latencies

presented in Table II, using the initial pseudocode any support

vector can be processed in 353·TCLK. However, as indicated in

Fig. 5, when introducing the proposed software modification,

four support vectors can be processed in 440·TCLK, which is

equivalent to processing each one in only 110·TCLK. Note that

the second and subsequent exponentials are calculated in

29·TCLK, according to the throughput of this operation.

On the other hand, the speed of the memory controller,

along with the amount of data to be read, may limit the

performance of the VFPU. The memory controller has been

designed to read new data in 1·TCLK. Since vectors xm(i) and

yj(i) have 26 elements in each one, the exponent evaluation

involves reading 208 data ([26·xm(i) + 26·yj(i)]·4 support

vectors). The execution time needed to process (6) is not only

affected by the memory bandwidth, but also by the

improvement obtained when processing groups of four support

clk

4 TCLK 4 TCLK

R0=R0*R0 R4=R4+R0

4 TCLK

R0=R0*R0 R4=R4+R0

4 TCLK 4 TCLK 4 TCLK

R4
R12=R12+R8R8=e

4 TCLK 4 TCLK37 TCLK

(4·3·26)=312 TCLK 41 TCLK

353 TCLK

subtraction(j) multiplicat.(j) addition(j) exponential(j) addition(j)subtraction(j) multiplicat.(j) addition(j)

R0=x(0)-
y(j)(0)

R0=x(25)-
y(j)(25)

Fig. 4. Operations and results for a VFPU that includes only one control unit.

while (T<Num_Frames) {

R12=0;

for (j=0; j<3636; j=j+1) {

VFPU_UC {

R4=0;

Loop (i=0; i<26: i++) {

R0���� xm(i) – yj (i); // xm(i) – yj (i);

R0���� R0 · R0; // [xm(i) – yj (i)]2

R4���� R4 + R0; // Σ[xm(i) – yj (i)]2

}

R8���� exp j (R4); // exp {Σ[xm(i) – yj (i)]2}

R12���� R12+R8; // Σ exp {Σ[xm(i) – yj (i)]2}

}

}

} Code executed by the VFPU

Fig. 3. Code executed by the VFPU for solving expression (6).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

vectors in parallel. Then, taking into account these

considerations, this time could be approximated by the

following expression:

()[]
4

4493636
·440,208max·

4

3636 CLK
CLKINITUC

T
TNT

⋅⋅
=+= (7)

where max(a,b) is a function that returns the maximum value.

NINIT represents the initial latency (not included in Fig. 4 and

Fig. 5) necessary for the initialization of the UC (5·TCLK) and

those registers (4·TCLK) that work as accumulators

(NINIT=9·TCLK).

The second drawback, related to the wait-states cycles

introduced by the UC, could be eliminated including two

control units (UC1 and UC2) and using pipeline techniques at

function level. Using this new structure, the UC1 controls the

calculation of the exponent, whereas the UC2 manages the

evaluation of the exponential. Since both control units try to

access the FPU, an arbiter is needed to manage the

permissions (see Fig. 1). Fig. 6 shows as the control units

launch operations following a specific sequence, so that during

the calculation of the jth exponent, the exponential of the

previous one (j-1)th, is also processed in parallel. Using only

one control unit (Fig. 4), the exponent and exponential

function (including the accumulation) are solved in 312·TCLK

and 41·TCLK, respectively. However, if both operations are

launched in parallel, the execution time is mainly dominated

by the calculation of the exponent, which is the longer

operation. In addition, if this hardware structure is combined

by programming the VFPU in such a way that groups of four

support vectors are processed at the same time (loop

unrolling), the resulting throughput is substantially increased.

This improvement is represented in Fig. 7, which shows as

operations are launched in a specific order by the control units

and their impact on execution time. This design of the VFPU

has some interesting features:

• Note that the operations (subtraction, multiplication and

addition) launched by the UC1 are executed in pipeline

(throughput 1 MFLOP/MHz), so that their execution time is

equal to the number of operations managed by such a control

unit (NUC1=312·TCLK).

• The operations launched by UC2 interrupt the pipeline

created by UC1, since UC2 takes the control of the bus arbiter

and stops the operations controlled by UC1. The delay

introduced by this interruption adds an additional execution

time, which is equal to the number of operations managed by

UC2 (NUC2=8·TCLK).

• As Fig. 2 shows, the normalization and rounding blocks

are shared by all operations except by abs(a) and neg(a).

Thus, when a new result is available at the output of the

exponential, the UC1 is forced to delay 1·TCLK the launching

of a new operation. This clock cycle is the time needed by the

block Norm of Fig. 2 to normalize any value. Therefore, the

clk

4 TCLK 4 TCLK

Op_UC1 subtraction (j) multiplicat.(j)

Result R0=R0*R0

addition(j)

R4=R4+R0

4 TCLK

R0=R0*R0 R4=R4+R0

exponential(j-1) addition(j-1)

4 TCLK 4 TCLK 4 TCLK

R4 R12=R12+R8R8=e

37 TCLK

312 TCLK

Op_UC2

subtraction (j) multiplicat.(j) addition(j)

4 TCLK

R4=R4+R0

R0=x(0)-y(0) R0=R0*R0

(UC1) (UC1) (UC1)

(UC1) (UC1)

(UC2) (UC2)

(UC1)(UC1) (UC1) (UC1)

subtraction (j) multiplicat.(j)

4 TCLK 4 TCLK

24 TCLK 2 TCLK

R0=x(0)-
y(j)(0)

R0=x(25)-
y(j)(25)

Fig. 6. Operations and results for a VFPU with 2 control units (here, the technique of using groups of four support vectors is not employed).

clk

Operation

Result

4 TCLK 4 TCLK

subtraction(j) multiplicat.(j) exponential(j)

312+37+4=353 TCLK

exponential(j+1)

R0=R0*R0 R4 R12=R12+R8R8=e

R1=R1*R1 R5
R13=R13+R9

R2=x(0)-
y(j+2)(0) R2=R2*R2 R6 R14=R14+R10

R3=x(0)-
y(j+3)(0) R3=R3*R3 R7 R15=R15+R11

R9=e

R10=e

R11=e

29 TCLK

440 TCLK

addition(j)

addition(j+1)

29TCLK 29 TCLK

subtraction(j+1) multiplicat.(j+1)

subtraction(j+2) multiplicat.(j+2)

subtraction(j+3) multiplicat.(j+3)

exponential(j+2)

exponential(j+3)

addition(j+2)

addition(j+3)

4 TCLK

R5=R5+R1

R6=R6+R2

R7=R7+R3

R0=x(0)-
y(j)(0)

R1=x(0)-
y(j+1)(0)

Fig. 5. Increasing the thoughput by software. Groups of four support vectors are managed by the VFPU (only one control unit).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

delay added to the execution time is equal to 4·TCLK, which is

the number of exponential functions managed by UC2.

In order to obtain a general expression, let Q and F be the

number of support vectors and the size of a feature vector,

respectively, and let NINIT be the initial configuration delay

defined previously. The time needed to solve (6) using a

VFPU with two control units and resolving groups of four

support vectors in parallel could be approximated by:

[]

[] CLKINIT

CLKUCUCINITUC

TFFN
Q

TNNFN
Q

T

·)3·3,·2·max(4·
4

·)4,·2·4max(
4

212

++

=+++=

 (8)

Note that like expression (7), this execution time T2UC does

not depend on the speed of the memory controller, since the

addition of NUC1=(4·3·F) plus NUC2=(4·2) is higher than 4·2·F

(the number of cycles devoted to read data from external

memory). Analyzing expression (8) and substituting F and Q

by 26 and 3636, respectively, it is easy to conclude that the

total number of clock cycles needed to calculate (6) is

302,697·TCLK. Consequently, the average throughput provided

when processing these computations is about 0.96

MFLOP/MHz, very close to the maximum theoretical value of

1 MFLOP/MHz provided by the VFPU.

A simple way of increasing the computational capability of

the VFPU is augmenting the number of lanes that form the

architecture. Lanes are implemented by creating N identical

copies of the FPU included in Fig. 1. Thus, from a theoretical

point of view, the execution time is reduced by N, since the

system is able to process in parallel N groups of four support

vectors yj(i). However, this reduction is also achieved at the

expense of increasing the total area by N. Additionally, the

more lanes are included, the more important is the

computational capability of the VFPU, but also the more

significant are the limitations introduced by the memory

controller. If the system includes N lanes related to N identical

FPU, expression (8) is modified as follows:

CLKINIT

CLKUCUCINITNLanes

TFFNN
N

Q

TNNFNN
N

Q
T

)]·3·3,·2··max(4[
4

·)]4,·2·4·max([
4

21

++
⋅

=

+++
⋅

=

(9)

Note that time reduction is not proportional to the number

of lanes N. In fact, depending on both, the size of the feature

vector F and the number of lanes N, this time TNLanes could be

limited by either the amount of memory accesses (N·4·2·F) or

by the number of cycles needed by both control units

4·(3·F+3) to solve the operations. Thus, the addition of new

lanes does not always provide the expected benefits in terms

of computational capability.

However, in situations in which the memory access is the

most restrictive term in (9), there are some modifications that

can be added in the design of the VFPU. Usually, these

modifications involve a trade-off between resource utilization

and performance. For instance, the vector xm(i), which is

identical for all support vectors yj(i) (j=0..3665), could be read

only once in order to save memory accesses. Such a vector

could be initially stored in an internal circular shift register

(CSR) and used when required by the operations involved in

(6). Thus, when including a CSR as part of the VFPU,

expression (9) would be modified as follows:

[]

CLKINIT

CLKINITINIT
CSR
NLanes

TFFNN
N

Q

TFFNN
N

Q
FNT

)]·33,··max(4[
4

·)]3·3,··max(4[
4

++
⋅

≅









++
⋅

++=

 (10)

where (NINT+F) represents the time needed to read xm(i), which

could be neglected when compared with the rest of terms of

(10). Unlike expression (9), when N=2 the execution time is

now limited by the number of operations launched by both

control units, rather than by the memory accesses. After

performing some preliminary designs, we realized that when

clk

4 TCLK 4 TCLK

Op_UC1

subtraction (j) multiplicat.(j)

Result

addition(j)

4 TCLK

(26·12+8+4) TCLK

4 TCLK25 TCLK 4 TCLK
29 TCLK

subtraction(j+1) multiplicat.(j+1) addition(j+1)

subtraction(j+2) multiplicat.(j+2) addition(j+2)

subtraction(j+3) multiplicat.(j+3)

Op_UC2

S M

exponential(j-4) addition(j-4)

exponential(j-3)

exponential(j-2)

exponential(j-1)

addition(j-3)

addition(j-2)

addition(j-1)

subtraction (j)

subtraction(j+1)

subtraction(j+2)

subtraction(j+3)

addition(j)

addition(j+1)

addition(j+2)

addition(j+3)

29 TCLK 29 TCLK

E AS S S M M M AAAA

UC1 UC1 UC1 UC1 UC1UC1 UC2 UC2UC1UC1 UC1 UC1UC1 UC1 UC1 UC1UC1

AA

S = subtractrion, M = multiplication, A = addition, E = exponential

E A

UC2 UC2UC1UC1

AA E A

UC2 UC2UC1UC1

M AA E A

UC2 UC2UC1UC1

M AA

UC1 UC1

Delay cycle introduced

by the exponetial result

addition(j+3)

A

Fig. 7. Operations and results using 2 control units. Groups of four support vectors are processed at the same time.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

including the CSR the area is increased about 0.1·N. Table III

shows the trade-off between area and performance for

different values of N and using one or two control units (1 UC

or 2 UCs). Results are normalized regarding the simplest

design, which is based on one lane and one UC (first row of

table III). Note that the maximum value tested for N is four,

since with a higher value the execution time would be limited

by the memory accesses. In the design based on two UCs and

one lane, the inclusion of a CSR only increases the area, but

does not give any additional advantage in terms of speed.

However, the use of two UCs is interesting, since it reduces

the time by 25.8% and only increases the area by 10%. For

two lanes, the fastest solution is achieved including two UCs

and a CSR. The CSR increases the area about 8.4%, with

regard to the design based on two UCs, but also it reduces the

time by 22.9%. Likewise, when N=4 the addition of a second

control unit does not reduce the resolution time. However, it is

observed as when the CSR is added, the increase of area is

about 9%, but a significant improvement is obtained in the

execution time (48.9%). As it will be shown in next section,

the optimal solution is obtained including only one lane and

two UCs. This will be the structure employed in the

experimental results, since such implementation is able to

process frames in real-time using the minimum area and

providing the maximum throughput.

IV. EXPERIMENTAL RESULTS

In order to experimentally prove the advantages of our

proposal, a XC3S2000 Spartan 3 FPGA has been selected for

its implementation. The system includes a MicroBlaze

microprocessor that executes by software the whole speaker

verification algorithm. The VFPU, designed from scratch in

VHDL, is connected to the microprocessor through the system

bus and solves any vector floating-point computation. Square

root and division are operations whose design is based on a

radix-2 restoring algorithm. The logarithm and exponential

functions are developed following a CORDIC algorithm. The

rest of operations are implemented by combinational circuits.

The clock frequency used to obtain the experimental results

is 40 MHz. Program and data are located in a 2MB SRAM

external memory. This memory is connected to both the

microprocessor and the VFPU, which have direct access to

read and write data. Moreover, other peripherals such as

timers, UARTs, input-output ports, etc., are also implemented

as part of the embedded system.

Table IV shows the resources of the FPGA required for the

implementation of the whole system and the maximum clock

frequency reported by the synthesis tool.

A. Recognition results

Fig. 8 shows the DET (Detection Error Tradeoff) curve

obtained for the BANCA public database for different trials

that combine gender, female (F) or male (M), and

environmental conditions (controlled (C), adverse (A) and

degraded (D)) under which the utterances have been acquired.

This curve represents the False Match Rate (FMR, erroneous

classification of a genuine user as impostor) versus the False

Non-Match Rate (FNMR, erroneous classification of an

impostor user as genuine).

The Equal Error Rate (ERR) is defined as the point of the

DET curve where FMR and FNMR are equal. This parameter

is usually accepted as a measure of quality of a biometric

algorithm. As expected, the best ERR (7%) is given for the

database with utterances acquired under controlled conditions.

In contrast, the worst results, which correspond to utterances

TABLE IV

AREA AND MAXIMUM CLOCK FREQUENCY FMAX. PERCENTAGE (%) AGAINST

TOTAL NUMBER OF RESOURCES IN THE FPGA

Subsystem

LUT

(Lookup

table)

FF

(Flip-

Flops)

CLB

Slices

MULT

18x18

Fmax

(MHz)

Microblaze +

FPU

3,051

(7%)

1,799

(4%)

1,683

(8%)

7

(17%)

92.2

VFPU 10,611

(25%)

7,522

(18%)

7,649

(37%)

20

(50%)

42.7

Rest of

 peripherals

2,076

(6%)

1,090

(2%)

1,452

(7%)

0

(0%)

45.4

Embedded

System

15,738

(38%)

10,441

(25%)

10,784

(52%)

27

(67%)

42.4

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Match Rate (%)

F
al

se
 N

o
n
-M

at
c
h
 R

at
e
 (

%
)

DET curve

Banca FA

Banca FC

Banca FD

Banca MA

Banca MC

Banca MD

Fig. 8. DET curves for BANCA database (ρ=-0.44, γ=0.4).

TABLE III

NORMALIZED AREA, TIME AND THROUGHPUT REGARDING THE SIMPLEST

SOLUTION (N=1, 1 UC AND WITHOUT INCLUDING CSR). THE FREQUENCY IS 40

MHZ.

F=26

Q=3636
System AREA TIME

THROUGHPUT

(MFLOP/MHZ)

N=1 1 UC 1 1 (10.20 ms) 0.71 (71%)

2 UC 1.10 0.74 (7.57 ms) 0.96 (96%)

2 UC + CSR 1.18 0.74 (7.57 ms) 0.96 (96%)

N=2 1 UC 1.80 0.50 (5.10 ms) 1.43 (71%)

2 UC 1.90 0.48 (4.83 ms) 1.51 (75%)

2 UC + CSR 2.06 0.37 (3.78 ms) 1.92 (96%)

N=4 1 UC 3.40 0.47 (4.78 ms) 1.51 (38%)

2 UC 3.50 0.47 (4.78 ms) 1.51 (38%)

2 UC + CSR 3.82 0.24 (2.41 ms) 3.01 (75%)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 9

obtained in adverse and degraded conditions, present a ERR

ranged between 15% and 17%, respectively.

B. Speed Processing

In order to compare the performance of the proposed VFPU

in terms of speed, the speaker verification algorithm was

executed on two additional systems: an ARM Cortex-A8

microprocessor clocked at 720 MHz and the MicroBlaze

microprocessor configured with its own FPU designed by

Xilinx. The results for ARM are given for two different

implementations. In the first one, a standard compilation was

performed over a code based on Single Instruction Single Data

(SISD) operations. In the second one, the code was rewritten

including NEON instructions, which were programmed by

means of intrinsics to increase performance by using

vectorization [29]. The latter implementation is usually faster,

since NEON performs Single Instruction Multiple Data

(SIMD) processing on several floating-point lanes. Such

dedicated instructions are used to load (store) vector data

between the registers and the external memory. Note that with

these four implementations, it is easy to compare the

performance obtained by non-vectorized (µBlaze+FPU and

ARM-SISD) versus vectorized implementations

(µBlaze+VFPU and ARM-SIMD).

Table V shows the execution time for such four

implementations including the feature extraction and matching

stages. The table also presents the specific execution time for

each function described in Table I. Such results are also

presented in clock cycles, so that they can be particularized for

the operating frequency of a faster FPGA featured with a

higher degree of speed.

As mentioned earlier, a complete frame processing should

be carried out in less than 10 ms (frame advance). Only the

embedded system designed with the VFPU (9.1 ms) and the

ARM-SIMD execution using NEON instructions (5.71 ms) are

capable of executing the whole speaker verification algorithm

in time. However, it is important to point out that ARM

achieves this result using a clock frequency 18 times higher

than the proposed VFPU. Therefore, if both systems use the

same frequency, our proposal would be about 11.29 times

faster than the ARM-SIMD execution. Furthermore, it is

noteworthy that the NEON architecture consists of four lanes,

unlike the actual VFPU implementation that is performed

including only one lane. If the VFPU was built with 2 lanes,

applying (9) the frame matching stage would be processed in

4.83 ms with a clock of 40 MHz, which is faster than the

ARM-SIMD implementation that takes 5.55 ms (fifth column

of Table V).

When configuring MicroBlaze with the scalar FPU supplied

by Xilinx, the execution time is approximately 140 ms, which

compared with our proposal leads to an average acceleration

(fourth column of Table V) of x15.4. The acceleration

provided for each stage of the feature extraction and matching

stage is different. As shown in the example of section III.B,

such acceleration mainly depends on the degree of compliance

of the following five factors:

a) Use of exponential or logarithm functions. These

operations are solved by a specific block included in the

VFPU, which provides a faster resolution when compared

with the standard math library.

b) Use of function level pipelining techniques for solving in

parallel several operations. This technique can be applied

since the VFPU is designed with two control units.

c) Balance between the number of vectorizable and non-

vectorizable computations involved in a specific code.

d) Loop unrolling to process groups of up to four operations

at the same time.

e) Usually, the configuration time of the VFPU is

considered negligible when compared with the computational

time. However, when short-vectors are processed this

TABLE V

DEGREE OF COMPLIANCE FOR: A) USE OF EXP. OR LOG. FUNCTIONS, B) FUNCTION LEVEL PIPELINING, C) VECTORIZABLE CODE, D) LOOP UNROLLING AND E)

NEGLIGIBLE CONFIGURATION TIME.

EXECUTION TIME, IN TERMS OF NUMBER OF CLOCK CYCLES TCLK AND ms, FOR EACH STAGE OF THE SPEAKER VERIFICATION ALGORITHM.

Stage

Degree of

compliance for a),

b), c), d) and e):

L=low, M=medium,

H=high

µBlaze +
VFPU

(40 MHz)

µBlaze +
FPU of Xilinx

(40 MHz)

Acceleration

µBlaze+VFPU

vs
µBlaze+FPU

ARM-SIMD

(NEON)

Cortex A8
(720 MHz)

ARM-SISD
Cortex A8

(720 MHz)

Acceleration

ARM-SIMD

vs
ARM-SISD

(1) Average value, normalization,

energy and emphasis

L, L, H, H, M 1,454·TCLK
(36.35 µs)

9,570·TCLK

(239.25 µs)

6.58 2,967·TCLK
(4.12 µs)

14,248·TCLK

(19.79 µs)

4.80

(2) Filtering by Hamming window L, L, H, H, M 1,382·TCLK

(34.55 µs)

10,386·TCLK

(259.65 µs)

7.52 2,512·TCLK
(3.49 µs)

13,665·TCLK

(18.98 µs)

5.44

(3) Zero padding and FFT L, L, M, H, M 36,562·TCLK

(914.05 µs)

142,898·TCLK

(3,572.45 µs)

3.91 79,453·TCLK

(110.35 µs)

171,403·TCLK

(238.06 µs)

2.16

(4) Filter Channels

(Mel filters)

L, M, M, H, M 10,641·TCLK

(266.03 µs)

52,769·TCLK

(1,319.23 µs)

4.96 11,821·TCLK
(16.42 µs)

21,952·TCLK

(30.49 µs)

1.86

(5) Logarithm and absolute value H, H, H, H, H 895·TCLK

(22.38 µs)

18,283·TCLK

(457.08 µs)

20.43 12.791·TCLK
(17.77 µs)

13,622·TCLK

(18.92 µs)

1.06

(6) Discrete cosine transform L, L, H, H, M 1,079·TCLK

(26.98 µs)

9,666·TCLK

(241.65 µs)

8.96 3,538·TCLK
(4.91 µs)

17,632·TCLK

(24.49 µs)

4.98

(7) Delta coefficients L, L, H, L, L 510·TCLK

(12.75 µs)

1,020·TCLK

(25.50 µs)

2.0 1,776·TCLK
(2.47 µs)

2,219·TCLK

(3.08 µs)

1.25

Frame Extraction

(1)+(2)+(3)+(4)+(5)+(6)+(7)

 52,523·TCLK

(1.31 ms)

244,592·TCLK

(6.11 ms)

4.66 114,858·TCLK

(159.53 µs)

254,741·TCLK

(353.81 µs)

2.22

Frame Matching H, H, H, H, H 311,594·TCLK

(7.79 ms)

5,375,773·TCLK

(134.39 ms)

17.25 3,994,088·TCLK

(5.55 ms)

7,137,820·TCLK

(9.91 ms)

1.79

Processing of a complete frame 3.64·105·TCLK

(9.10 ms)

56.20·105·TCLK

(140.51 ms)

15.44 41.09·105·TCLK

(5.71 ms)

73.93·105·TCLK

(10.27 ms)

1.80

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 10

simplification could be false. In such cases, the code is hardly

accelerated because configuration and computation time have

similar values.

Table V shows the degree of compliance (low, medium or

high) of these five factors for each stage involved in the whole

algorithm. Note that those stages with higher degrees of

compliance provide higher acceleration factors. For instance,

the frame matching and the logarithm stage are accelerated by

x17.25 and x22.43, respectively, since they meet all factors

mentioned before. In contrast, the stage devoted to calculate

the delta coefficients is only accelerated by x2, since although

its code is vectorizable, the configuration time of the VFPU is

not negligible, pipelining techniques cannot be applied and

exponential functions are not utilized. In general, stages

included in the frame extraction step provide lower

accelerations, since they only meet some of the five factors

described previously.

In [18], the authors presented a custom-hardware

implementation of a speaker verification system. Extrapolating

their results for a frequency of 40 MHz, a frame would be

processed in 5.8 ms. Other similar proposals are presented in

[30] and [31] leading to different results. However, if they are

compared with the VFPU implementation there are some

drawbacks that should be pointed out:

• The hardware design presented in [18] is based on fixed-

point arithmetic. Authors achieved high accurate results using

a variable word length, whose dimension is adjusted to obtain

similar results as those produced in floating-point arithmetic.

Thus, any change in the feature vector (adding for example the

second derivative of the MFCC coefficients), or in the number

of bits used in the codification of the input samples, involves

redesigning the overall system. Due to the flexibility of our

implementation any of these changes only require a simple

modification that should be performed on the software

program. Such flexibility in not offered by any of the custom-

hardware designs presented in [18], [30] or [31]. Additionally,

the design described in [18] is performed using specific tools

(Xilinx Core Generator) that are only valid for a particular

FPGA vendor. In contrast, as mentioned before, the

architecture of the VFPU is generic, so that it can easily be

implemented in any FPGA.

• Inherently, floating-point computations have associated a

large dynamic range, which is especially important when

processing extremely large data sets or data sets where the

range may be unpredictable. This characteristic is very suited

when dealing with intensive computations such as the kernel

function used by the SVM classifier.

• The software code is usually written using float-type

variables, since by default many functions (logarithm,

exponential, trigonometric, square root etc.) are defined and

implemented in floating-point arithmetic. Thus, such

arithmetic could be coded directly into hardware operations

represented in this format. However, fixed-point arithmetic

requires an additional effort, since the original program should

be transformed. Further, when performing operations in fixed-

point arithmetic there is a risk of producing an overflow,

underflow or round-off error. Particularly, this could happen if

the database or the size of the input samples change.

Moreover, expression (8) is quite consistent with the results

shown in Table V. Note that since γ≠-1 and Pj≠1, then NUC2 is

equal to 16 (eight new multiplications are added). This

theoretical expression, calculated with a particular frequency

of fCLK=40MHz, leads to an execution time of about 7.75 ms,

which represents an approximated error of 0.5% against the

real value of 7.79 ms. Such error is mainly due to the

communication delays produced by the configuration time of

the VFPU.

V. CONCLUSION

This paper presented the design and implementation on

FPGA of a complete biometric algorithm for speaker

verification. The feature extraction stage is based on the

calculation of the Mel-Frequency Cepstrum Coefficients,

whereas the classification is performed by means of a SVM

model. The paper also describes a generic architecture of

VFPU that solves all the vector floating-point computations

involved in the algorithm. Additionally, the architecture

provides a high flexibility, which allows quickly adapting the

parameters of the algorithm to different conditions related

with the acquisition of samples or the particular features of a

group of users. Its design includes two control units that

maximize the throughput and allow the entire algorithm to be

solved in real time. The performance of the VFPU was

compared with two systems of similar features: the FPU

provided by Xilinx and the ARM Cortex A8 microprocessor.

Experimental results show as each frame is processed by the

VFPU in 3.64·10
5

clock cycles, which represents an

acceleration factor of x11.2 and x15.4 when compared with

systems based on an ARM-NEON microprocessor and the

FPU of Xilinx, respectively.

REFERENCES

[1] J.P. Campbell Jr, “Speaker recognition: A tutorial,” Proceedings of the

IEEE, vol. 85, no. 9, pp. 1437–1462, 1997.

[2] D.A. Reynolds, “An overview of automatic speaker recognition

technology,” IEEE International Conference in Acoustics, Speech, and

Signal Processing (ICASSP), vol. 4, pp. 4072-4075, 2002.

[3] Steven B. Davis and Paul Mermelstein, “Comparison of parametric
representations for monosyllabic word recognition in continuously

spoken sentences,” IEEE Transactions on Acoustics Speech, and Signal

Processing, vol. ASSP-28, No 4, August 1980.
[4] Jia Lei and Xu Bo, “Including detailed information feature in MFCC for

large vocabulary continuous speech recognition,” IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP ’02).
Vol. 1, pp. I805-I808, 2002.

[5] Childers, D. G., Skinner, D. P.: The Cepstrum: A Guide to Processing.

Proceedings of the IEEE, Vol. 65, no. 10, pp. 1428-1443, October 1977.
[6] Munteanu, D.-P.; Toma, S.-A. “Automatic speaker verification

experiments using HMM,” 8th International Conference on

Communications (COMM), pp. 107-110, 2010.
[7] Reynolds, D.A.; Rose, R.C., “Robust text-independent speaker

identification using Gaussian mixture speaker models,” IEEE

Transactions on Speech and Audio Processing, Vol. 3, Issue: 1, pp. 72-3,
1995.

[8] A. Ganapathiraju, J. E. Hamker, and J. Picone, “Applications of support

vector machines to speech recognition,” IEEE Transactions on Signal
Processing, vol. 52, no. 8, pp. 2348-2355, Aug. 2004.

[9] Vincent Wan and Steve Renals, “Speaker Verification Using Sequence

Discriminant Support Vector Machines,” IEEE Transactions on Speech
and Audio Processing, Vol. 13, Issue: 2, pp. 203 – 210, March 2005.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 11

[10] Burges, C.J.C., “A Tutorial on Support Vector Machines for Pattern

Recognition,” Kluwer Academic Publishers, Data Mining and
Knowledge Discovery, vol. 2, pp. 121-167, 1998.

[11] Wan, V., Campbell W. M., “Support Vector Machines for Speaker

Verification and Identification,” Proceedings of the 2000 IEEE Signal
Processing Society Workshop Neural Networks for Signal Processing X.

vol.2, pp. 775-784, 2000.

[12] F. Fons, M. Fons and E. Cantó, "Fingerprint Image Processing
Acceleration Through Run-Time Reconfiguration Hardware", IEEE

Transactions on Circuits and Systems II, Vol. 57, Issue 12, December

2010.
[13] M. López, J. Daugman and E. Cantó, "Hardware-Software Co-design of

an iris recognition algorithm", IET Information and Security, Vol. 5,

Issue 1, pp. 60-68, April 2011.
[14] Choi, W-Y., Ahn, D., Burn Pan, S., Chung, K., Chung, Y., Chung, S-H.

“SVM-Based Speaker Verification System for Match-on-Card and its

Hardware Implementation”, ETRI Journal, vol. 28, no. 3, pp. 320-328,
June 2006.

[15] Manikandan, J.; Venkataramani, B.; Avanthi, V., “FPGA

Implementation of Support Vector Machine Based Isolated Digit
Recognition System,” 22nd International Conference on VLSI Design,

pp. 347-352, 2009.

[16] Ngoc-Vinh Vu; Whittington, J.; Hua Ye; Devlin, J., “Implementation of
the MFCC front-end for low-cost speech recognition systems,” IEEE

International Symposium on Circuits and Systems (ISCAS), pp. 2334-

2337, 2010.
[17] Phaklen EhKan, Timothy Allen, and Steven F. Quigley, “FPGA

Implementation for GMM-Based Speaker Identification,” International
Journal of Reconfigurable Computing, Vol. 2011, 2011.

[18] R. Ramos-Lara, M. López-García, E. Cantó-Navarro and L. Puente-

Rodriguez, “Real-Time speaker verification system implemented on
reconfigurable hardware,” Journal of Signal Processing Systems, vol.

71, no. 2, pp. 89-103, May 2013.

[19] P. Karlström, A. Ehliar & D. Liu, “High-performance, low-latency field-
programmable gate array-based floating-point adder and multiplier units

in a Virtex 4,” IET Comput. Digit. Tech., 2008, Vol. 2, nº 4, pp. 305-

313, Jul. 2008.
[20] Y. Chong & S. Parameswaran, "Configurable Multimode Embedded

Floating-Point Units for FPGAs," IEEE Transactions on Very Large
Scale Integration Systems, vol.19, no.11, pp.2033-2044, Nov. 2011.

[21] S. Chen, R. Venkatesan & P. Gillard, “Implementation of Vector

Floating-Point Processing Unit on FPGAs for High Performance

Computing,” Canadian Conference on Electrical and Computer
Engineering (CCECE), pp. 881-886, May 2008.

[22] J. Kathiara & M. Leeser, "An Autonomous Vector/Scalar Floating Point

Coprocessor for FPGAs," IEEE 19th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp.33-

36, May 2011.

[23] Ming Ji, T. J. Hazen, J. R. Glass and D. A. Reynolds, “Robust Speaker
Recognition in Noisy Conditions,” IEEE Transactions on Audio, Speech

and Language Processing, Vol. 15, Issue 5, pp. 1711-1723, 2007.

[24] Yuri Matveev, “The Problem of Voice Template Aging in Speaker
Recognition Systems,” Speech and Computer, Lecture Notes in

Computer Science, Vol. 8113, pp. 345-353, 2013.

[25] L. Ferrer, E. Shriberg, S. Kajarekar and K Sonmez, “Parameterization of
Prosodic Feature Distributions for SVM Modeling in Speaker

Recognition,” International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. IV-233 – IV-236, 2007.
[26] Samy Bengio, Frederic Bimbot, Miroslav Hamouz, Johnny Mariethoz,

Jiri Matas, Kieron Messer, Fabienne Poree, Belen Ruiz - The BANCA

Database and Evaluation Protocol, Lecture Notes in Computer Science
Volume: 2688, Publisher: Springer, Pages: 625-638, 2003

[27] http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[28] http://www.torch.ch/introduction.php
[29] ARM public limited company, “Introducing Neon, Development

article”, 2009. http://infocenter.arm.com/help/index.jsp

[30] J. Manikandan, B. Venkataramani and V. Avanthi, “FPGA

implementation of Support Vector Machine based on Insolated Digit

Recognition System,” 22nd International Conference on VLSI Design,
pp. 347-352, 2009.

[31] Mohit Shah, Lifeng Miao, Chaitali Chakrabarti, and Andreas Spanias,

“A speech emotion recognition framework based on latent dirichlet
allocation: algorithm and FPGA implementation,” IEEE international

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.

2553-2557, 2013.

