

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/TVLSI.2015.2493041

http://hdl.handle.net/10251/66106

Institute of Electrical and Electronics Engineers (IEEE)

Lacruz, JO.; García Herrero, FM.; Canet Subiela, MJ.; Valls Coquillat, J. (2016). High-
Performance NB-LDPC Decoder With Reduction of Message Exchange. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems. 24(5):1950-1961.
doi:10.1109/TVLSI.2015.2493041.

1

High-performance NB-LDPC decoder with

reduction of message exchange

Jesús O. Lacruz, Francisco Garcı́a-Herrero, Marı́a José Canet, Javier Valls

Member, IEEE

Abstract

This paper presents a novel algorithm based on Trellis Min-Max for decoding NB-LDPC codes. This

decoder reduces the number of messages exchanged between check node and variable node processors,

which decreases the storage resources and the wiring congestion and, thus, increases the throughput of

the decoder. Our Frame Error Rate (FER) performance simulations show that the proposed algorithm

has a negligible performance loss for high-rate codes with GF(16) and GF(32), and a performance loss

smaller than 0.07dB for high-rate codes over GF(64). Additionally, a layered decoder architecture is

presented and implemented on a 90nm CMOS process for the following high-rate NB-LDPC codes:

(2304, 2048) over GF(16), (837, 726) over GF(32) and (1536, 1344) over GF(64). In all cases the

achieved throughput is higher than 1Gbps.

Index Terms

NB-LDPC, Layered Schedule, Check node processing, High Speed, high rate, VLSI design

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes have been adopted by numerous communication

standards such as DVB-S2 [1], IEEE 802.16e [2] and IEEE 802.11n [3], among others. Good

error rate performance, low complexity decoders and high-rate decoding are some of the advan-

tages of implementing LDPC codes over other error correction schemes.

J. Lacruz is with the Electrical Engineering Department, Universidad de Los Andes, Mérida, 5101, Venezuela. (e-mail:

jlacruz@ula.ve)

F. Garcı́a, M. Canet and J. Valls are with the Instituto de Telecomunicaciones y Aplicaciones Multimedia, at Universitat

Politècnica de València, 46730 Gandia, Spain (e-mail: fragarh2@epsg.upv.es, macasu,jvalls@eln.upv.es).

February 13, 2016 DRAFT

2

Binary LDPC codes suffer from error correction degradation for short/medium codeword

lengths. On the other hand, an effect called error floor appears with high signal-to-noise ratios

(SNR). This effect limits the error correction performance, so some additional processing is

required to avoid it. Non-Binary LDPC (NB-LDPC) codes, defined over Galois Fields GF(q = 2p)

with p > 1, were first investigated by Davey and MacKay [4] as an extension of binary LDPC

codes, where p = 1. These codes emerge as an alternative to their binary counterparts to

overcome the weaknesses shown by binary LDPC codes. Additionally, they improve the burst

error correction capability, especially with high order Galois fields, and offer the possibility

to be used in conjunction with high-order modulation schemes (16QAM, 64QAM, 256QAM),

reducing the complexity in both the encoder and the decoder [5, 6]. Unfortunately, NB-LDPC

codes have some drawbacks: i) high complexity of their check-node (CN); ii) large amount of

area spent on storage elements (RAM memories and registers); and iii) routing congestion that

limits the overall decoding throughput. From their appearance till now, many efforts have been

put into mitigating these problems.

The first algorithm proposed to decode NB-LDPC codes was the Q-ary Sum-of-Product

Algorithm (QSPA) [4], which was developed as a generalization of the Sum-of-Product Algorithm

(SPA) for binary LDPC codes. Further improvements such as FFT-SPA[7], log-SPA and max-

log-SPA[8], were proposed to reduce the complexity of the CN processing equations without

introducing any performance loss. More recently, a trellis based implementation for QPSA (T-

Max-log-QSPA) [9] was proposed, offering a solution that increases the throughput with respect

to previous solutions based on QPSA. Its main drawback is that the required area is prohibitive

for real applications in communications and storage systems. Extended Min-Sum (EMS) [10] and

Min-Max [11] algorithms were presented as approximations of the QSPA [4], so that they reduce

considerably the CN complexity, which only requires additions and/or comparisons. Additionally,

EMS and Min-Max algorithms utilize forward-backward (FB) metrics to derive the CN output

messages. These metrics involve serial computations which limit the throughput of the derived

hardware architectures [11, 12].

Trellis Extended Min-Sum (T-EMS) algorithm was proposed [13, 14] with the aim of enabling

parallel processing of the messages in the CN. The input messages are organized in a trellis

structure, while the output messages are generated in parallel by means of an extra column

included in the trellis. Trellis Min-Max (T-MM) algorithm in [15] adapts the idea of T-EMS

to Min-Max algorithm. One Minimum Only TMM (OMO-TMM) [16] is an approximation of

February 13, 2016 DRAFT

3

T-MM that reduces the complexity of the CN by obtaining only one minimum and estimating

the second one. All these algorithms [13–16] exchange q×dc reliability values between CN and

VN processors. This amount of exchanged messages is large enough to cause wiring congestion

and this limits the maximum throughput, especially for high-rate NB-LDPC codes and high

order Galois fields. Additionally, in decoder architectures with layered schedule, the CN output

messages are stored to be used in the next iteration. So, the required memory, which is the main

part of the area in NB-LDPC decoder architectures [15–17], is too high.

Other proposals from literature [9, 18–22] exchange a minor number of messages between

CN and VN and vice versa. This fact, reduces the wiring congestion and the required memory

resources, but implies the use of some kind of algorithm to generate the non-exhanged messages.

Moreover, these approaches introduce a non-negligible performance loss that depends on the

Galois Field order and the size of the reduced set.

In this paper we propose the modified T-MM algorithm (mT-MM) that reduces the number of

check-to-variable messages taking advantage of the replicated information in the output messages

from the CN in T-MM algorithm. The original idea comes from [23], where we proposed a

method to compress the messages between CN and VN for NB-LDPC message-passing decoders.

As the messages are not modified, this method does not introduce any performance loss. In [24]

we particularise the proposal in [23] to T-MM algorithm, and we detail a hardware architecture

for the CN processor and for a decoder with layered schedule. In this paper we extend the work

in [24], and present a modification of the T-MM algorithm that allow us to reduce even more

the number of exchanged messages. The CN output messages are split in two arrays: one that

compresses the extrinsic information and another which represents the intrinsic one. Based on

statistical analysis we found that reducing the size of the intrinsic information from q to only two

elements introduces a negligible performance loss for high-rate LDPC codes over GF(16) and

GF(32) and a performance loss smaller than 0.07dB for high-rate NB-LDPC codes over GF(64),

compared to T-MM algorithm [15]. Additionally, we present a high-throughput architecture for

the entire decoder (with layered scheduled), which includes the mT-MM algorithm in the CN

processor, and compare our implementation results for 90nm CMOS technology with other state-

of-the-art decoder architectures.

The rest of the paper is organized as follows: Section II includes the basis of NB-LDPC codes

and T-MM algorithm. The proposed modified Trellis Min-Max algorithm (mT-MM) is presented

in Section III. Section IV includes the hardware implementation of the mT-MM algorithm and

February 13, 2016 DRAFT

4

its inclusion in a full decoder. Comparison with other proposals from literature are also devised.

Finally, conclusions are presented in Section V.

II. TRELLIS MIN-MAX DECODING ALGORITHM

NB-LDPC codes are linear block codes defined by a sparse parity-check matrix H with M

rows and N columns, where each non-zero element hm,n belongs to a Galois field GF(q = 2p).

A bipartite graph is commonly used to represent in a graphical way NB-LDPC codes. In this

graph, the nodes called variable nodes (VN) represent the N columns of H and the nodes called

check nodes represent the M rows of H. For the sake of simplicity, in this paper we consider

regular NB-LDPC codes where the number of VN (CN) connected to a CN (VN) is constant

and equal to dc (dv). Despite this, the approach presented in this paper is perfectly applicable to

irregular NB-LDPC codes including the appropriate control signals to avoid possible memory

access conflicts. In the same way, N (m) (M(n)) denote the set of VN (CN) connected to a

CN m (VN n), therefore, the cardinality of the set corresponds to dc (dv). Qmn(a) and Rmn(a)

denote the exchanged messages from VN to CN and from CN to VN for each symbol a ∈
GF(q), respectively.

Let c = c1, c2, · · · , cN be the transmitted codeword over a binary input AWGN channel and

y = y1, y2, · · · , yN the received symbol sequence, with y = c + e, being e the error vector

introduced by the noisy communication channel. Ln(a) corresponds to the a priori information

from the communication channel obtained by means of the log-likelihood ratio (LLR) as Ln(a) =

log[P (cn = zn|yn)/P (cn = a|yn)]. All the LLR values are non-negative, and the hard-decision

symbol zn is the GF symbol associated to the highest reliability. Qn(a) is the a posteriori

information which is updated as the message passing decoding algorithm progresses.

The CN operations solve the parity check equations, based on the messages from the VN

(Qmn(a)), and updates the reliability values for each GF symbol a. In this paper we propose

an algorithm for the CN to do these tasks (described in Section III), which is based on Trellis

Min-Max (T-MM) algorithm [15]. T-MM algorithm offers a good trade-off between coding gain

and decoding complexity compared to other proposals from literature.

The basic steps to implement the CN processor of the T-MM algorithm [15] are presented in

Algorithm 1. Step 1 involves normal-to-delta domain transformation using the input messages

and the hard decision symbols. This transformation ensures that the reliabilities corresponding

to the hard-decision symbols zn are related to the GF symbols α−∞, simplifying the rest of the

February 13, 2016 DRAFT

5

steps in T-MM algorithm. Step 2 obtains the syndrome β by adding all hard-decision symbols.

Step 3 calculates the first and second most reliable messages (minimum values), m1(a) and

m2(a), by means of the function ψ, which also extracts the position of m1(a), m1col(a). Step

4 computes the extra column of the trellis, ∆Q(a), which collects the reliability of the most

reliable path for each GF symbol a.

Algorithm 1: T-MM Algorithm [15]

Input: Qmn , zn = arg mina∈GF(q)Qmn(a) ∀ n ∈ N (m)

for j = 1→ dc do

1 ∆Qmnj
(ηj = a+ znj

) = Qmnj
(a)

end

2 β =
∑dc

j=1 znj
∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = ψ{∆Qmni
(a)
∣∣∣
dc

i=1
}

4 ∆Q(a) = minη′k(a)∈conf∗(1,2)

{
maxk=1,2 (m1(η′k(a)))

}

for j = 1→ dc do

5 if m1(η′1(a)) 6= ∆Qmnj
(a) and m1(η′2(a)) 6= ∆Qmnj

(a) then
∆Rmnj

(a) = ∆Q(a)

else if η′1(a) = η′2(a) then
∆Rmnj

(a) = m2(a)

else
∆Rmnj

(a) = m1(a)

end

6 Rmnj
(a+ β + znj

) = λ ·∆Rmnj
(a), a ∈ GF(q)

end

Output: Rmn

conf ∗(nr, nc) [15] is the configuration set which selects the possible paths conformed by the

nr symbols with higher reliability value. From all the possible paths, the ones that deviate at

most nc times from the hard-decision are selected. From this reduced set of possible paths,

the one chosen for the corresponding ∆Q(a) value is the one that ensures the highest reliability

(minimum value). In this paper we consider the case where nr = 1 and nc = 2. So, only the most

February 13, 2016 DRAFT

6

reliable messages are considered (First minimum set m1(a)) and only one and two deviations

paths are taken into account.

Finally, the CN output messages are generated in two steps. First (Step 5 in Algorithm 1),

each row of ∆Rm,n(a) is filled with the corresponding ∆Q(a) reliability, except for the columns

that correspond to the stage in the trellis where deviations from the hard-decision path are

made. In cases where only one deviation is made, the empty column is filled with the reliability

of the second most reliable symbol m2(a). In those cases where two deviations are made,

empty columns are filled with the m1(a) reliability. Second (Step 6), conversion from delta to

normal domain is required for the CN output messages, where β is used to correct the tentative

hard-decision symbols. Additionally, a scaling factor λ is used to improve the performance and

convergence rate of T-MM algorithm.

III. MODIFIED TRELLIS MIN-MAX ALGORITHM

This section is organised as follows: in Section III-A we reformulate T-MM algorithm to

introduce some variables required to explain how replicated information is reduced and that

are used in the definition of the proposed modified T-MM algorithm. Section III-B extends the

explanation of the algorithm proposed in [24] taking as a reference the algorithm reformulated

in Section III-A and also includes an analogy with binary LDPC decoders. Finally, Section III-C

defines the new algorithm (modified T-MM, mT-MM), which is based on an statistical analysis,

and gives FER performance results for high-rate NB-LDPC codes over GF(16), GF(32) and

GF(64).

A. Reformulation of Trellis Min-Max Algorithm

In this section we reformulate the Trellis Min-Max Algorithm (Algorithm 1) as a first step to

define our proposal. As can be seen in Algorithm 2, steps 4 and 5 are the ones reformulated.

The function ψ′ in Step 4 obtains which path in the trellis was used to obtain ∆Q(a), that

is, the most reliable path. Considering that a maximum of two deviations is evaluated, the

function returns the two GF symbols that define this path, η∗1(a) and η∗2(a). If the path used

to obtain ∆Q(a) has only one deviation from the hard-decision path, the function ψ′ equals

η∗2(a) to η∗1(a). On the other hand, Step 5 calculates ∆Rmn(a), which is equalled to ∆Q(a), the

first minimum of ∆Qmn(m1(a)) or its second minimum (m2(a)), depending on the deviation

information (η∗1(a) and η∗2(a)). For a symbol a, if the most reliable path does not deviate at

February 13, 2016 DRAFT

7

Algorithm 2: Reformulated Trellis Min-Max Algorithm
Input: Qmn

zn = arg mina∈GF(q)Qmn(a) ∀ n ∈ N (m)

1 ∆Qmn(a+ zn) = Qmn(a)

2 β =
∑dc

j=1 znj
∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = ψ{∆Qmni
(a)
∣∣∣
dc

i=1
}

4 ∆Q(a) = minη′k(a)∈ conf∗(1,2)
{

max (m1(η′k(a)))
}

[η∗1(a), η∗2(a)] = ψ′(minη′k(a)∈ conf∗(1,2)
{

max (m1(η′k(a)))
}

)

for j = 1→ dc do

5 if m1col(η
∗
1(a)) 6= j and m1col(η

∗
2(a)) 6= j then

∆Rm,nj
(a) = ∆Q(a)

else if m1col(η
∗
1(a)) = m1col(η

∗
2(a)) then

∆Rmnj
(a) = m2(a)

else
∆Rmnj

(a) = m1(a)

end

6 Rmnj
(a+ β + znj

) = λ ·∆Rmnj
(a), a ∈ GF(q)

end

Output: Rmn

column j (m1col(η
∗
1(a)) 6= j and m1col(η

∗
2(a)) 6= j) the extra column information ∆Q(a) is

assigned to the output ∆Rmn(a). On the other hand, two different updates can be performed

at the columns where deviations from the most reliable path are made: (i) if this path has only

one deviation, the second minimum m2(a) is assigned to ∆Rm,n(a); (ii) if this path has two

deviations, m1(a) is assigned to the output.

Fig. 1 includes an example of trellis with GF(4) and dc = 5. It shows the CN input messages

before (Qmn(a)) and after (∆Qmn(a)) delta domain transformation. The hard-decision symbols

are z = {α1, α0, 0, α0, 0}. After the normal-to-delta domain transformation, the reliabilities

∆Qmn(a) in the first row of the trellis are equal to 0. The minimum value per row (per GF

February 13, 2016 DRAFT

8

symbol a) of ∆Qmn(a) is enclosed by a dotted box, so, the most reliable path for a GF symbol

a must include only these boxes. In Fig. 1 the most reliable path for the symbol α2 is shown in

red color (α2 = α0 +α1) . This path is most reliable (reliability equal to the maximum between

5 and 10) than the path that makes only one deviation (reliability equal to 17), so ∆Q(α2) = 10.

In a similar way, the most reliable paths for the symbols α0 and α1 are built, but in these

cases, with only one deviation from the hard decision path (∆Q(α0) = 5 and ∆Q(α1) = 10).

For symbol α2, the new variables defined in Algorithm 2 are η∗1(α2) = α0 and η∗2(α2) = α1.

Thus, m1col(η
∗
1(α2)) = 1, m1col(η

∗
2(α2)) = 2, ∆Rmn1(α

2) = ∆Rmn2(α
2) = m1(α2) = 17 and

∆Rmn3(α
2) = ∆Rmn4(α

2) = ∆Rmn5(α
2) = ∆Q(α2) = 10.

Fig. 1. Example of CN input messages in normal domain (upper size). Messages in delta domain and organized in trellis way

including the extra column ∆Q(a) (bottom size). Example for GF(4) and dc = 5.

B. Reduction of replicated information in check-to-variable exchanged messages

For a better understanding of our proposal, an analogy with binary LDPC decoders is es-

tablished. In [25] a decoder architecture for binary LDPCs is proposed. In this architecture the

messages are compressed in a similar way to which we propose here for the non-binary case.

Instead of sending an individual message to each neighbour VN, a CN sends the same message

February 13, 2016 DRAFT

9

to all its connected VNs, which includes the first minimum, the second minimum, the position

of the first minimum and the sign (that depends on the syndrome value). In this way, the routing

congestion is reduced.

In the non-binary case, the T-MM algorithm behaves in a similar way. Step 5 in Algorithm 2

generates the CN output messages in delta domain. For each GF symbol a:

∆Rmn(a) = ∆Q(a) ∀ n ∈ N (m) \ {m1col(η
∗
1(a)),m1col(η

∗
2(a))} (1)

In (1), m1col(η
∗
1(a)) and m1col(η

∗
2(a)) are the positions of the symbols that ensure the highest

reliability of ∆Q(a) (Step 4 of Algorithm 2). Let us consider the case where the highest reliability

path in ∆Q(a) was built performing only one deviation from the hard-decision path. In this

particular case, the exclusion set is reduced to only one position and η∗1(a) = η∗2(a). Therefore,

∆Q(a) is equal to m2(a) and (1) can be rewritten as (2), which corresponds to the generalization

of the CN output message of binary Min-Sum LDPC decoders to the non-binary ones.

∆Rmn(a) =





m1(a) ∀ n ∈ N (m) \ {m1col(a)}

m2(a) ∀ n ∈ {m1col(a)}
(2)

Although (2) is a particular case of (1) in T-MM algorithm, it is useful to remark that ∆Q(a)

plays the role of the intrinsic information from the binary Min-Sum. For the extrinsic messages

we define a set E(a) (3) which includes the m1(a) or m2(a) reliabilities depending on the

number of deviations (1 or 2) from the hard-decision path.

E(a) =





m2(a) if m1col(η
∗
1(a)) = m1col(η

∗
2(a))

m1(a) otherwise
(3)

Exchanging the sets E(a) and ∆Q(a) instead of Rmn(a) from the CN to the VN, the cardinality

of the messages is reduced from q × dc to 2× (q − 1).

Following with the analogy with binary Min-Sum-based LDPC decoders, the extrinsic infor-

mation related to the syndrome (sign values) is also sent to the VN processor. In the non-binary

case, these extrinsic syndromes are obtained as z∗n = zn +β ∀ n ∈ N (m). This increments the

amount of information sent to the VN in dc p-bits values.

Finally, to reconstruct the q × dc messages at the VN processor it is necessary to send the

positions where deviations were made to obtain the ∆Q(a) values. These positions are included

in a set P (a) which contains 2× (q − 1) dlog dce-bits elements.

February 13, 2016 DRAFT

10

In terms of bits, the total among of information exchanged from CN to VN is 2× (q − 1)×
(w + dlog dce) + dc × p bits, where w is the number of bits used to represent the reliability of

messages in the decoder. This information has been detailed in Table I for each set exchanged

from CN to VN. In this way, the information sent is only reorganized (not modified), so we do

not have any performance loss with respect to T-MM.

TABLE I

NUMBER OF BITS EXCHANGED FROM CN TO VN PROCESSOR AFTER REDUCTION OF THE REPLICATED INFORMATION

Set Number of bits

∆Q(a) (q − 1)× w

E(a) (q − 1)× w

z∗n dc × p

P (a) 2× (q − 1)× dlog dce

Total 2× (q− 1)× (w+ dlog dce) + dc× p

C. Modified Trellis Min-Max algorithm

In this section we propose a new definition of the CN output messages (based on Section

III-B) that allow us to reduce the exchanged messages from CN to VN even more. This new

definition keeps only a minimum amount of values from ∆Q(a) (the most reliable ones) and

obtains the rest using an approximation function.

First, a statistical analysis for the set ∆Q(a), a ∈ GF(q) was done in order to find its mean

value. Using a software model for a NB-LDPC decoder based on T-MM algorithm, we obtained

∆Q(a) for all the M rows of H when decoding 106 noisy sequences (for Eb/N0 = 4.3dB).

Then, we ordered each set ∆Q(a) from lower to higher value and obtained the mean value of

the ordered sets ∆Q(a) (∆Q(a)). The results of the analysis are presented in Fig. 2. We used

the (837,726) NB-LDPC code over GF(32), with degree distribution dc = 27, dv = 4 built using

the methods presented in [26]. Besides, we replicated the analysis for NB-LDPC codes with

different degree distributions and Galois Field orders and we obtained the same conclusions.

As can be seen in Fig. 2, there is a big increase of mean value from one ∆Q(a) index to

the next for the first indexes, however, this increase is lower for the rest of indexes. Based on

this observation, we propose to keep only the first minimum, ∆Qm1, and the second minimum,

February 13, 2016 DRAFT

11

∆Qm2, from the set ∆Q(a) ∀ a ∈ GF(q) \ α−∞. Storing only a limited set of values from

∆Q(a), the exchanged information between CN and VN is reduced.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

from the set ∆Q(a) ∀ a ∈ GF(q) \ α−∞. Storing only a
limited set of values from ∆Q(a), the exchanged information
between CN and VN is reduced.

0 5 10 15 20 25 30
0

5

10

Ordered ∆Q index

M
ea

n
V

al
ue

∆Q(a)

∆Q∗(a)

Fig. 2. Mean values for each reliability in the ordered set ∆Q(a). The code
used is the (837,726) NB-LDPC code over GF(32).

At the VN processor, we propose to approximate the rest
q − 3 ∆Q(a) values using (4), where am1 and am2 are the
GF symbols corresponding to ∆Qm1 and ∆Qm2, respectively.
As the second most reliable value, ∆Qm2, is updated at
each iteration, the distance between it and the values ∆Q(a)
approximated using (4) is kept. So, it is expected that the
fixed scaling factor γ is greater than one, to ensure that the
reliabilities of the approximated values of ∆Q(a) will not be
lower than ∆Qm2.

∆Q(a) = γ ×∆Qm2 ∀ a ∈ GF(q) \ {α−∞, am1, am2}
(4)

The value of the scaling factor γ from (4) is obtained as
follows. First, we calculate the mean value of the entire set
∆Q∗(a) = ∆Q(a) ∀ a ∈ GF(q) \{α−∞, am1, am2}, named
as ∆Q∗(a) in Fig. 2. Then, we obtain the initial value of
γ dividing ∆Q∗(a) by the mean value of ∆Qm2 (∆Qm2).
In Fig. 2, ∆Q∗(a) = 7.097 and ∆Qm2 is ∆Qm2 = 3.697,
thus the initial value for γ is 1.9198. Finally, we adjust the
initial value chosen for γ by means of frame error-rate (FER)
simulations, optimized for Eb/N0 = 4.3dB.

Taking into account the modifications presented above and
the definitions made in III-B, Algorithm 3 describes the modi-
fied Trellis Min-Max (m-TMM) decoding algorithm. Function
ψ
′′

is a modified version of the ψ function from Algorithm
1 which also extracts the position (GF symbol) of the second
minimum.

We include in Table II the number of bits exchanged
between CN and VN for our proposal and for other works from
literature. The rightmost column includes numerical results for
the (837,726) NB-LDPC code over GF(32) [26] with degree
distribution (dc = 27, dv = 4). We consider the same number
of quantization bits for all proposals (w = 6 bits) and we
set nm = 16 and nv = 5 according to [19, 21, 22, 27] as
they propose for their codes. The work from [15] exchanges
a full set of messages which turns into a higher number
of bits at the CN output. As can be seen, proposals from
[19, 22, 27] eliminate the q-dependence, exchanging only a
fraction nm < q of the reliabilities. This proposals maintain a
strong dependence on the CN degree dc, which penalizes for
high-rate NB-LDPC codes. The work from [21] reduces even
more the fraction of output messages at the CN compared to
previous proposals from literature, being nv < nm < q. This

Algorithm 3: Modified Trellis Min-Max Algorithm
Input: Qmn

zn = arg mina∈GF(q)Qmn(a) ∀ n ∈ N (m)

1 ∆Qmn(a+ zn) = Qmn(a)

2 β =
∑dc
j=1 znj

∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = ψ{∆Qm,ni
(a)
∣∣∣
dc

i=1
}

4 ∆Q(a) = minη′k(a)∈ conf∗(1,2)

{
max (m1(η′k(a)))

}

[η∗1(a), η∗2(a)] =
ψ′(minη′k(a)∈ conf∗(1,2)

{
max (m1(η′k(a)))

}
)

5 [∆Qm1, am1,∆Qm2, am2] = ψ′′{∆Q(a)
∣∣∣
αq−2

a=α0
}

6 E(a) =

{
m2(a) if m1col(η

∗
1(a)) = m1col(η

∗
2(a))

m1(a) otherwise

7 z∗n = zn + β ∀ n ∈ N (m)

Output:





∆Qm1, am1,∆Qm2, am2

E(a)
z∗n
P (a) = { m1col(η

∗
1(a)),m1col(η

∗
2(a)) }

TABLE II
COMPARISON BETWEEN MULTIPLE PROPOSALS FROM LITERATURE TO
REDUCE THE NUMBER OF MESSAGES EXCHANGED FROM CN TO VN

Proposal Number of bits

(q = 2p =
32, dc = 27,
w = 6,
nm = 16,
nv = 5)

[15] q × dc × w 5184 bits
[19, 22, 27] nm × dc × w 2592 bits

[21] nv × dc × w 810 bits
[23] 2×(q−1)×(w+dlog dce)+dc×p 817 bits

This work 2× (q − 1)× dlog dce+ (q +
1)× w + (dc + 2)× p 653 bits

reduction is offered at the cost of some error-correction degra-
dation and the need of including real-multipliers at the VN for
the message approximation. The work from [23] exchanges a
fixed number of sets and the size of each set depends of q
and dc without introducing any performance loss compared to
[15]. Finally, we propose in this work a cardinality reduction
of the set ∆Q(a) to only two elements, reducing the total
among of bits exchanged to the VN compared to the others
proposals from Table II as can be seen in the example from
its rightmost column for the high-rate NB-LDPC code over
GF(32).

In terms of complexity, the CN processor of Algorithm 3
has less computational load than the one of 2 because it does
not compute q×dc output messages. So, the number of wires
between CN and VN is also reduced.

Fig. 3 and Fig. 4 compare the amount of bits exchanged
from CN to VN in a conventional implementation of T-MM

Fig. 2. Mean values for each reliability in the ordered set ∆Q(a). The code used is the (837,726) NB-LDPC code over GF(32).

At the VN processor, we propose to approximate the rest q − 3 ∆Q(a) values using (4),

where am1 and am2 are the GF symbols corresponding to ∆Qm1 and ∆Qm2, respectively. As

the second most reliable value, ∆Qm2, is updated at each iteration, the distance between it and

the values ∆Q(a) approximated using (4) is kept. So, it is expected that the fixed scaling factor

γ is greater than one, to ensure that the reliabilities of the approximated values of ∆Q(a) will

not be lower than ∆Qm2.

∆Q(a) = γ ×∆Qm2 ∀ a ∈ GF(q) \ {α−∞, am1, am2} (4)

The value of the scaling factor γ from (4) is obtained as follows. First, we calculate the mean

value of the entire set ∆Q∗(a) = ∆Q(a) ∀ a ∈ GF(q) \ {α−∞, am1, am2}, named as ∆Q∗(a)

in Fig. 2. Then, we obtain the initial value of γ dividing ∆Q∗(a) by the mean value of ∆Qm2

(∆Qm2). In Fig. 2, ∆Q∗(a) = 7.097 and ∆Qm2 is ∆Qm2 = 3.697, thus the initial value for γ

is 1.9198. Finally, we adjust the initial value chosen for γ by means of frame error-rate (FER)

simulations, optimized for Eb/N0 = 4.3dB.

Taking into account the modifications presented above and the definitions made in III-B,

Algorithm 3 describes the modified Trellis Min-Max (m-TMM) decoding algorithm. Function

ψ
′′ is a modified version of the ψ function from Algorithm 1 which also extracts the position

(GF symbol) of the second minimum.

We include in Table II the number of bits exchanged between CN and VN for our proposal

and for other works from literature. The rightmost column includes numerical results for the

(837,726) NB-LDPC code over GF(32) [26] with degree distribution (dc = 27, dv = 4). We

February 13, 2016 DRAFT

12

Algorithm 3: Modified Trellis Min-Max Algorithm
Input: Qmn

zn = arg mina∈GF(q)Qmn(a) ∀ n ∈ N (m)

1 ∆Qmn(a+ zn) = Qmn(a)

2 β =
∑dc

j=1 znj
∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = ψ{∆Qm,ni
(a)
∣∣∣
dc

i=1
}

4 ∆Q(a) = minη′k(a)∈ conf∗(1,2)
{

max (m1(η′k(a)))
}

[η∗1(a), η∗2(a)] = ψ′(minη′k(a)∈ conf∗(1,2)
{

max (m1(η′k(a)))
}

)

5 [∆Qm1, am1,∆Qm2, am2] = ψ′′{∆Q(a)
∣∣∣
αq−2

a=α0
}

6 E(a) =





m2(a) if m1col(η
∗
1(a)) = m1col(η

∗
2(a))

m1(a) otherwise

7 z∗n = zn + β ∀ n ∈ N (m)

Output:





∆Qm1, am1,∆Qm2, am2

E(a)

z∗n

P (a) = { m1col(η
∗
1(a)),m1col(η

∗
2(a)) }

consider the same number of quantization bits for all proposals (w = 6 bits) and we set nm = 16

and nv = 5 according to [19, 21, 22, 27] as they propose for their codes. The work from [15]

exchanges a full set of messages which turns into a higher number of bits at the CN output. As

can be seen, proposals from [19, 22, 27] eliminate the q-dependence, exchanging only a fraction

nm < q of the reliabilities. This proposals maintain a strong dependence on the CN degree

dc, which penalizes for high-rate NB-LDPC codes. The work from [21] reduces even more the

fraction of output messages at the CN compared to previous proposals from literature, being

nv < nm < q. This reduction is offered at the cost of some error-correction degradation and the

need of including real-multipliers at the VN for the message approximation. The work from [23]

exchanges a fixed number of sets and the size of each set depends of q and dc without introducing

February 13, 2016 DRAFT

13

TABLE II

COMPARISON BETWEEN MULTIPLE PROPOSALS FROM LITERATURE TO REDUCE THE NUMBER OF MESSAGES EXCHANGED

FROM CN TO VN

Proposal Number of bits
(q = 2p = 32, dc = 27, w = 6,

nm = 16, nv = 5)

[15] q × dc × w 5184 bits

[19, 22, 27] nm × dc × w 2592 bits

[21] nv × dc × w 810 bits

[23] 2× (q − 1)× (w + dlog dce) + dc × p 817 bits

This work 2×(q−1)×dlog dce+(q+1)×w+(dc+2)×p 653 bits

any performance loss compared to [15]. Finally, we propose in this work a cardinality reduction

of the set ∆Q(a) to only two elements, reducing the total among of bits exchanged to the VN

compared to the others proposals from Table II as can be seen in the example from its rightmost

column for the high-rate NB-LDPC code over GF(32).

In terms of complexity, the CN processor of Algorithm 3 has less computational load than the

one of 2 because it does not compute q× dc output messages. So, the number of wires between

CN and VN is also reduced.

Fig. 3 and Fig. 4 compare the amount of bits exchanged from CN to VN in a conventional

implementation of T-MM with our proposal, varying the field order (p) or the CN degree (dc),

respectively. In all cases, the proposed approach outperforms conventional T-MM in terms of

exchanged bits. The differences are considerably higher when the field order and/or the check

node degree is increased. This has a great impact on the area of a decoder that uses a layered

schedule, as will be seen in Section IV.

Fig. 5 shows the FER performance of the proposed modified Trellis Min-Max (mT-MM)

decoding algorithm (floating-point and fixed-point versions (6 bits)) for the (837,726) NB-LDPC

code over GF(32), with 15 iterations and γ = 2.0 (approximated to be hardware-friendly value).

It also includes the performance of the floating-point T-MM algorithm [15] with 15 iterations

for performance comparison purposes. As can be seen, our proposed algorithm introduces a

negligible performance loss of 0.01dB with respect to T-MM (floating-point versions).

Fig. 5 also shows the FER performance of other algorithms from the literature (SMSA [12],

February 13, 2016 DRAFT

14

p

bits

2 3 4 5 6 7 8
0

2000

4000

6000

Fig. 3. Number of bits exchanged from CN to VN varying the GF order. Dashed lines corresponds to T-MM and solid lines

to mT-MM. Circle mark corresponds to dc = 36 and Triangle mark to dc = 8. w = 6.

dc

bits

4 8 12 16 20 24 28 32 36
0

1000

2000

3000

Fig. 4. Number of bits exchanged from CN to VN varying the CN degree. Dashed lines corresponds to T-MM and solid lines

to mT-MM. Circle mark corresponds to q = 64 and Triangle mark to q = 16. w = 6.

T-Max-log-QSPA [9], RMM [17] and OMO-TMM [16]) that will be used in Section IV-C to

compare their implementation results under the same performance. The number of iterations of

each algorithm is adjusted to obtain a performance similar to [17] with 15 iterations, that is, a

FER approximately equal to 10−6 for Eb/N0 = 4.55dB.

Fig. 6 and Fig. 7 show FER performance results for the (2304,2048) NB-LDPC code over

GF(16) (dc = 36, dv = 4) and the (1536,1344) NB-LDPC code over GF(64) (dc = 24, dv =

3), respectively. Both NB-LDPC codes are constructed based on the methods from [26]. The

algorithms analysed are T-MM and mT-MM. The results show that mT-MM has a performance

loss of 0.05dB for the code in Fig. 6 and 0.07dB for the code in Fig. 7 with respect to T-MM.

Thus, the proposed mT-MM algorithm achieves good FER performance results for several GF

orders and different degree distributions.

Table III summarises the parameters needed to adjust the initial value for the scaling value γ

(∆Q∗(a) and ∆Qm2), as well as the hardware-friendly value of γ (γHF) chosen to generate the

February 13, 2016 DRAFT

15IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 6

p

bits

2 3 4 5 6 7 8
0

2000

4000

6000

Fig. 3. Number of bits exchanged from CN to VN varying the GF order.
Dashed lines corresponds to T-MM and solid lines to mT-MM. Circle mark
corresponds to dc = 36 and Triangle mark to dc = 8. w = 6.

dc

bits

4 8 12 16 20 24 28 32 36
0

1000

2000

3000

Fig. 4. Number of bits exchanged from CN to VN varying the CN degree.
Dashed lines corresponds to T-MM and solid lines to mT-MM. Circle mark
corresponds to q = 64 and Triangle mark to q = 16. w = 6.

with our proposal, varying the field order (p) or the CN
degree (dc), respectively. In all cases, the proposed approach
outperforms conventional T-MM in terms of exchanged bits.
The differences are considerably higher when the field order
and/or the check node degree is increased. This has a great
impact on the area of a decoder that uses a layered schedule,
as will be seen in Section IV.

Fig. 5 shows the FER performance of the proposed modified
Trellis Min-Max (mT-MM) decoding algorithm (floating-point
and fixed-point versions (6 bits)) for the (837,726) NB-
LDPC code over GF(32), with 15 iterations and γ = 2.0
(approximated to be hardware-friendly value). It also includes
the performance of the floating-point T-MM algorithm [15]
with 15 iterations for performance comparison purposes. As
can be seen, our proposed algorithm introduces a negligible
performance loss of 0.01dB with respect to T-MM (floating-
point versions).

Fig. 5 also shows the FER performance of other algorithms
from the literature (SMSA [12], T-Max-log-QSPA [9], RMM
[17] and OMO-TMM [16]) that will be used in Section
IV-C to compare their implementation results under the same
performance. The number of iterations of each algorithm is
adjusted to obtain a performance similar to [17] with 15
iterations, that is, a FER approximately equal to 10−6 for
Eb/N0 = 4.55dB.

Fig. 6 and Fig. 7 show FER performance results for the
(2304,2048) NB-LDPC code over GF(16) (dc = 36, dv = 4)
and the (1536,1344) NB-LDPC code over GF(64) (dc =
24, dv = 3), respectively. Both NB-LDPC codes are con-
structed based on the methods from [26]. The algorithms

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No(dB)

F
E

R

T-MM [15] (15 it-fp)
T-MM [15] (9 it-6b)
RMM [17] (15it-5b)
mT-MM (15 it-fp), γ = 2.0

mT-MM (15 it-6b), γ = 2.0

mT-MM (8 it-6b), γ = 2.0

T-Max-Log-QSPA [9] (5 it-7b)
SMSA [12] (15 it-5b)
OMO T-MM [16] (8 it-6b)

Fig. 5. Frame-error-rate simulation for the (837,726) NB-LDPC code over
GF(32), BPSK modulated and assuming AWGN channel

4 4.2 4.4 4.6 4.8 5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/No(dB)

F
E

R

T-MM (15 it-fp)
mT-MM (15 it-fp), γ = 2.0

mT-MM (15 it-6b), γ = 2.0

mT-MM (10 it-6b), γ = 2.0

Fig. 6. Frame-error-rate simulation for the (2304,2048) NB-LDPC code over
GF(16), BPSK modulated and assuming AWGN channel

analysed are T-MM and mT-MM. The results show that mT-
MM has a performance loss of 0.05dB for the code in Fig. 6
and 0.07dB for the code in Fig. 7 with respect to T-MM.
Thus, the proposed mT-MM algorithm achieves good FER
performance results for several GF orders and different degree
distributions.

Table III summarises the parameters needed to adjust the
initial value for the scaling value γ (∆Q∗(a) and ∆Qm2),
as well as the hardware-friendly value of γ (γHF) chosen to
generate the FER curves from Fig. 5, Fig. 6 and Fig. 7.

IV. NB-LDPC DECODER IMPLEMENTATION

In this section we describe the architecture designed to
implement the proposed mT-MM Algorithm (Section III-C).

Fig. 5. Frame-error-rate simulation for the (837,726) NB-LDPC code over GF(32), BPSK modulated and assuming AWGN

channel

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 6

p

bits

2 3 4 5 6 7 8
0

2000

4000

6000

Fig. 3. Number of bits exchanged from CN to VN varying the GF order.
Dashed lines corresponds to T-MM and solid lines to mT-MM. Circle mark
corresponds to dc = 36 and Triangle mark to dc = 8. w = 6.

dc

bits

4 8 12 16 20 24 28 32 36
0

1000

2000

3000

Fig. 4. Number of bits exchanged from CN to VN varying the CN degree.
Dashed lines corresponds to T-MM and solid lines to mT-MM. Circle mark
corresponds to q = 64 and Triangle mark to q = 16. w = 6.

with our proposal, varying the field order (p) or the CN
degree (dc), respectively. In all cases, the proposed approach
outperforms conventional T-MM in terms of exchanged bits.
The differences are considerably higher when the field order
and/or the check node degree is increased. This has a great
impact on the area of a decoder that uses a layered schedule,
as will be seen in Section IV.

Fig. 5 shows the FER performance of the proposed modified
Trellis Min-Max (mT-MM) decoding algorithm (floating-point
and fixed-point versions (6 bits)) for the (837,726) NB-
LDPC code over GF(32), with 15 iterations and γ = 2.0
(approximated to be hardware-friendly value). It also includes
the performance of the floating-point T-MM algorithm [15]
with 15 iterations for performance comparison purposes. As
can be seen, our proposed algorithm introduces a negligible
performance loss of 0.01dB with respect to T-MM (floating-
point versions).

Fig. 5 also shows the FER performance of other algorithms
from the literature (SMSA [12], T-Max-log-QSPA [9], RMM
[17] and OMO-TMM [16]) that will be used in Section
IV-C to compare their implementation results under the same
performance. The number of iterations of each algorithm is
adjusted to obtain a performance similar to [17] with 15
iterations, that is, a FER approximately equal to 10−6 for
Eb/N0 = 4.55dB.

Fig. 6 and Fig. 7 show FER performance results for the
(2304,2048) NB-LDPC code over GF(16) (dc = 36, dv = 4)
and the (1536,1344) NB-LDPC code over GF(64) (dc =
24, dv = 3), respectively. Both NB-LDPC codes are con-
structed based on the methods from [26]. The algorithms

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No(dB)

F
E

R

T-MM [15] (15 it-fp)
T-MM [15] (9 it-6b)
RMM [17] (15it-5b)
mT-MM (15 it-fp), γ = 2.0

mT-MM (15 it-6b), γ = 2.0

mT-MM (8 it-6b), γ = 2.0

T-Max-Log-QSPA [9] (5 it-7b)
SMSA [12] (15 it-5b)
OMO T-MM [16] (8 it-6b)

Fig. 5. Frame-error-rate simulation for the (837,726) NB-LDPC code over
GF(32), BPSK modulated and assuming AWGN channel

4 4.2 4.4 4.6 4.8 5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/No(dB)

F
E

R

T-MM (15 it-fp)
mT-MM (15 it-fp), γ = 2.0

mT-MM (15 it-6b), γ = 2.0

mT-MM (10 it-6b), γ = 2.0

Fig. 6. Frame-error-rate simulation for the (2304,2048) NB-LDPC code over
GF(16), BPSK modulated and assuming AWGN channel

analysed are T-MM and mT-MM. The results show that mT-
MM has a performance loss of 0.05dB for the code in Fig. 6
and 0.07dB for the code in Fig. 7 with respect to T-MM.
Thus, the proposed mT-MM algorithm achieves good FER
performance results for several GF orders and different degree
distributions.

Table III summarises the parameters needed to adjust the
initial value for the scaling value γ (∆Q∗(a) and ∆Qm2),
as well as the hardware-friendly value of γ (γHF) chosen to
generate the FER curves from Fig. 5, Fig. 6 and Fig. 7.

IV. NB-LDPC DECODER IMPLEMENTATION

In this section we describe the architecture designed to
implement the proposed mT-MM Algorithm (Section III-C).

Fig. 6. Frame-error-rate simulation for the (2304,2048) NB-LDPC code over GF(16), BPSK modulated and assuming AWGN

channel

February 13, 2016 DRAFT

16
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 7

3.8 4 4.2 4.4 4.6 4.8
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No(dB)

F
E

R

T-MM (15 it-fp)
mT-MM (15 it-fp), γ = 2.5

mT-MM (15 it-6b), γ = 2.5

mT-MM (8 it-6b), γ = 2.5

Fig. 7. Frame-error-rate simulation for the (1536,1344) NB-LDPC code over
GF(64), BPSK modulated and assuming AWGN channel

TABLE III
EXPERIMENTAL RESULTS TO SELECT THE APPROPRIATE SCALING VALUE

γ , OPTIMIZED FOR Eb/N0 = 4.3dB

NB-LDPC code ∆Q∗(a) ∆Qm2 γ γHF

(2304,2048) GF(16) 6.259 3.0612 2.0446 2

(837,726) GF(32) 7.097 3.697 1.9198 2

(1536,1344) GF(64) 8.392 3.084 2.7211 2.5

Additionally, we include the top level design of a NB-LDPC
decoder which uses a layered schedule. The proposed decoder
is designed for quasi-cyclic NB-LDPC codes over GF(q)
constructed applying the methods in [26], where H is formed
by QC x QC circulant sub-matrices. These sub-matrices can
be composed of zero elements or a cyclic shifted identity
matrix with non-zero elements from GF(q). In this way, the
number of rows and columns in H is M = QC × dv and
N = QC × dc, respectively.

A. CN architecture for mT-MM algorithm

Parallel processing is adopted in the CN processor, so its
latency is kept low and this increases the overall throughput,
as will be seen in next section. The main characteristic of the
proposed mT-MM Algorithm is to move part of the complexity
of the CN processor to the VN processor. In this way,
the number of exchanged messages between them and also
the storage resources of the decoder are reduced. Therefore,
the CN architecture presented in this section requires less
functional blocks than a conventional implementation of T-
MM algorithm [15].

Next, the hardware required to perform Algorithm 3 is
detailed. Fig. 9 shows the block diagram for the top-level CN
architecture, where each block corresponds to a step in the
mT-MM algorithm.

Step 1, that is, Normal-to-Delta domain transformation is
made by means of dc permutation networks which follow the

structure introduced in [28]. Each one requires q×log(q) w-bit
MUXES. CN syndrome (Step 2) is obtained using GF-adders
in a tree structure ((dc − 1)× p XOR gates).

Function ψ (Step 3) is implemented using a tree-based two
minimum finder [29], modified to also extract the position of
the first minimum [14]. In total q − 1 two-minimum finders
with dc inputs are required. Each one is implemented with
2× dc w-bit comparators and 3× dc w-bit MUXES.

The extra column values, ∆Q(a), and the correspond-
ing path information (Step 4) are generated using only the
most reliable values m1(a) and their corresponding positions
m1col(a). A maximum of two deviations from the hard
decision path is considered, so, the most reliable path for each
value in the set ∆Q(a) is chosen among a maximum of q/2
possible paths (for example, the possible paths for the GF
symbol α0 and GF(8) are α0, α1 α3, α2 α6, α4 α5). Since the
possible paths are different for each value of ∆Q(a) (for each
GF symbol), a custom wired network is required for each one
of the q−1 processors used to generate all ∆Q(a) values. As
an example, the processor for the GF symbol α0 and GF(8) is
presented in Fig. 8. The SAT block from Fig. 8 excludes paths
deviating more than once in the same stage of trellis. That is,
when it detects more than one m1(a) in the same path coming
from the same column of the trellis, it assigns the maximum
value (minimum reliability) to the one-minimum finder input.

Fig. 8. Extra-Column processor. Example for GF(8) and symbol α0

Step 5 is implemented as a single two minimum finder
with q − 1 inputs as shown in Fig. 8. It selects the first and
second minimum values of the set ∆Q(a) (∆Qm1 and ∆Qm2,
respectively) and their position (GF symbol), am1 and am2.
It receives as inputs the outputs of the q − 1 extra-column
processors to extract the two most reliable (minimum) values.

The computation of the set E(a) (Step 6) requires (q − 1)
dlog(dc)e-bit comparators and (q − 1) w-bit MUXES. With
this hardware we distinguish paths with one (E(a) = m2(a))
and two deviations (E(a) = m1(a)) from the hard-decision
path, for each GF(q) symbol.

Finally, the calculation of the extrinsic syndromes (Step 7),
z∗n, requires dc XOR gates.

As can be seen in Fig. 9, some blocks do not depend
on others, so they can be processed in parallel to the rest
of blocks. This is the case of the CN syndrome calculation
(Step 2), β, and the extrinsic syndromes calculation (Step 7),

Fig. 7. Frame-error-rate simulation for the (1536,1344) NB-LDPC code over GF(64), BPSK modulated and assuming AWGN

channel

FER curves from Fig. 5, Fig. 6 and Fig. 7.

TABLE III

EXPERIMENTAL RESULTS TO SELECT THE APPROPRIATE SCALING VALUE γ , OPTIMIZED FOR Eb/N0 = 4.3dB

NB-LDPC code ∆Q∗(a) ∆Qm2 γ γHF

(2304,2048)

GF(16)
6.259 3.0612 2.0446 2

(837,726) GF(32) 7.097 3.697 1.9198 2

(1536,1344)

GF(64)
8.392 3.084 2.7211 2.5

IV. NB-LDPC DECODER IMPLEMENTATION

In this section we describe the architecture designed to implement the proposed mT-MM

Algorithm (Section III-C). Additionally, we include the top level design of a NB-LDPC decoder

which uses a layered schedule. The proposed decoder is designed for quasi-cyclic NB-LDPC

February 13, 2016 DRAFT

17

codes over GF(q) constructed applying the methods in [26], where H is formed by QC x QC

circulant sub-matrices. These sub-matrices can be composed of zero elements or a cyclic shifted

identity matrix with non-zero elements from GF(q). In this way, the number of rows and columns

in H is M = QC × dv and N = QC × dc, respectively.

A. CN architecture for mT-MM algorithm

Parallel processing is adopted in the CN processor, so its latency is kept low and this increases

the overall throughput, as will be seen in next section. The main characteristic of the proposed

mT-MM Algorithm is to move part of the complexity of the CN processor to the VN processor.

In this way, the number of exchanged messages between them and also the storage resources of

the decoder are reduced. Therefore, the CN architecture presented in this section requires less

functional blocks than a conventional implementation of T-MM algorithm [15].

Next, the hardware required to perform Algorithm 3 is detailed. Fig. 9 shows the block

diagram for the top-level CN architecture, where each block corresponds to a step in the mT-

MM algorithm.

Step 1, that is, Normal-to-Delta domain transformation is made by means of dc permutation

networks which follow the structure introduced in [28]. Each one requires q × log(q) w-bit

MUXES. CN syndrome (Step 2) is obtained using GF-adders in a tree structure ((dc − 1) × p
XOR gates).

Function ψ (Step 3) is implemented using a tree-based two minimum finder [29], modified to

also extract the position of the first minimum [14]. In total q − 1 two-minimum finders with dc

inputs are required. Each one is implemented with 2 × dc w-bit comparators and 3 × dc w-bit

MUXES.

The extra column values, ∆Q(a), and the corresponding path information (Step 4) are gen-

erated using only the most reliable values m1(a) and their corresponding positions m1col(a).

A maximum of two deviations from the hard decision path is considered, so, the most reliable

path for each value in the set ∆Q(a) is chosen among a maximum of q/2 possible paths (for

example, the possible paths for the GF symbol α0 and GF(8) are α0, α1 α3, α2 α6, α4 α5). Since

the possible paths are different for each value of ∆Q(a) (for each GF symbol), a custom wired

network is required for each one of the q− 1 processors used to generate all ∆Q(a) values. As

an example, the processor for the GF symbol α0 and GF(8) is presented in Fig. 8. The SAT

block from Fig. 8 excludes paths deviating more than once in the same stage of trellis. That is,

February 13, 2016 DRAFT

18

when it detects more than one m1(a) in the same path coming from the same column of the

trellis, it assigns the maximum value (minimum reliability) to the one-minimum finder input.

Fig. 8. Extra-Column processor. Example for GF(8) and symbol α0

Step 5 is implemented as a single two minimum finder with q−1 inputs as shown in Fig. 8. It

selects the first and second minimum values of the set ∆Q(a) (∆Qm1 and ∆Qm2, respectively)

and their position (GF symbol), am1 and am2. It receives as inputs the outputs of the q − 1

extra-column processors to extract the two most reliable (minimum) values.

The computation of the set E(a) (Step 6) requires (q − 1) dlog(dc)e-bit comparators and

(q − 1) w-bit MUXES. With this hardware we distinguish paths with one (E(a) = m2(a)) and

two deviations (E(a) = m1(a)) from the hard-decision path, for each GF(q) symbol.

Finally, the calculation of the extrinsic syndromes (Step 7), z∗n, requires dc XOR gates.

As can be seen in Fig. 9, some blocks do not depend on others, so they can be processed

in parallel to the rest of blocks. This is the case of the CN syndrome calculation (Step 2), β,

and the extrinsic syndromes calculation (Step 7), z∗n. Additionally, the E(a) calculation (Step 6)

and the two-minimum finder (Step 5) can be processed at the same time. This reduces the total

latency of the CN architecture.

As it will be explained in Section IV-B, the VN processor uses z∗n, E(a), P (a), ∆Qm1, ∆Qm2,

am1 and am2 to build Rmn in Algorithm 2. So, the total among of information exchanged from

CN to VN is (q− 1)× (w+ 2×dlog dce) + dc× p+ 2× p+ 2×w bits, where w is the number

of bits used to represent the reliability of messages in the decoder.

February 13, 2016 DRAFT

19

Fig. 9. Proposed check-node block diagram

B. Top-level decoder architecture

In this Section we explain how the CN architecture for the mT-MM algorithm from Section

IV-A is included in a complete decoder with horizontal layered schedule. This schedule improves

the convergence of the decoding algorithm in comparison with the flooding one. In this way,

the number of iterations is reduced and hence the throughput is improved. On the other hand,

the area of the resulting decoder is considerably lower than the one required by a fully parallel

implementation.

In Algorithm 4 the layered schedule for the proposed decoder is presented, where mT-MM

is the CN processor which implements Algorithm 3, and DN is the decompression network

from Algorithm 5. The VN processor uses the DN blocks, which generate Rmn by using the

information given by the mT-MM CN processor.

Algorithm 5 details the operations required to reconstruct Rmn, that is, the entire set of q×dc
messages that goes from CN to VN processors. The decompression network (DN) has as input

the reduced set of messages coming from the CN.

The complete block diagram for the proposed decoder is presented in Fig. 10. As can be seen,

there is only one check node processor and one VN processor, which processes one row of H

per clock cycle. Layered schedule requires to store the CN output messages from one iteration to

be used in the next one. This is done by means of a shift register with M stages (SR in Fig. 10).

The implementation of a conventional CN processor with q× dc output messages would require

q×dc×w×M registers. Our proposal only requires M×[(q−1)×(w+2×dlog dce)+dc×p+2×w]

registers to store the messages from the last iteration. This reduces the storage elements following

the behaviour presented in Fig. 3 and Fig. 4 when the field order or the CN degree is varied.

February 13, 2016 DRAFT

20

Algorithm 4: Layered Schedule for the Proposed Decoder

Input: Ln(a) = log[P (cn=zn|yn)
P (cn=a|yn)]

Inicialization:
Q

(0)
n (a) = Ln(a), t = 1, ∆Qm1 = 0, am1 = 0, ∆Qm2 = 0, am2 = 0, E(a) = 0, z∗n = 0,

P (a) = 0

Main Loop:

while t ≤MaxIter do

for l = 1 to M do

1 R
(t−1)
mn (a) = DN{∆Qm1, am1,∆Qm2, am2, E(a), z∗n, P (a)}

2 Q′mn(a) = Q
(t−1)
n (hmna)−R(t−1)

mn (a)

3 Qmn(a) = Q′mn(a)−min
{
Q′mn(a)

}

4 zn = arg min(Q′mn(a))

5





∆Qm1,∆Qm2

am1, am2

E(a), P (a), z∗n





= mT-MM
{
Qmn(a), zn

}

6 R
(t)
mn(a) = DN{∆Qm1, am1,∆Qm2, am2, E(a), z∗n, P (a)}

7 Q
(t)
n (h−1mna) = R

(t)
mn(a) +Qmn(a)

end

8 t = t+ 1

end
Output: c̃n = arg min (Qn(a))

The blocks P and P−1 in Fig. 10 perform direct and inverse permutation of messages from

VN to CN and vice versa, respectively. The permutation is done based on the hm,n non-zero

values of H.

The “VN mem” block is the memory required to store the messages in the VN processor during

the decoding process. The depth of the required memories fits with the size of the circulant sub-

matrices (QC) which form H [26]. On the other hand, the block “LLR mem” stores the channel

February 13, 2016 DRAFT

21

Algorithm 5: Proposed Decompression Operations
for j = 1→ dc do

if P1(a) 6= j and P2(a) 6= j then

if a = am1 then

Out(a+ z∗j) = ∆Qm1

else if a = am2 then

Out(a+ z∗j) = ∆Qm2

else

Out(a+ z∗j) = γ ×∆Qm2

else

Out(a+ z∗j) = E(a)

Rmnj(a+ z∗j) = λ×Out(a+ z∗j)

end for

Fig. 10. Top-level proposed decoder architecture

information. This information is loaded in “VN mem” at the beginning of each new decoding

frame.

Fig. 11 shows the implementation of a decompression network (DN) for GF(4). A total of

dc decompression networks are required to generate all q × dc Rmn values. Note that two

decompression networks are included in the VN processor. However, the area required in our

February 13, 2016 DRAFT

22

proposal, which duplicates the logic required to implement DN, is much lower than the one of

a conventional implementation of T-MM algorithm with layered schedule ([15], [16]).

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Fig. 11. Proposed Decompression Network. Example for GF(4)

To illustrate the decoder operation, in Fig. 12 a timing diagram is presented. It includes the

input and output of the VN processor memory (VN MEM), the CN processor output (CN output)

and the VN processor output (VN output). There are dv ×QC = M rows in H to be processed

in each iteration, that is, M layers which require M clock cycles (one layer per clock cycle). On

the other hand, we included seg pipeline stages in the CN to improve timing. After processing

QC layers (the size of a circulant matrix), the pipeline must be emptied before processing the

following QC layers, which requires seg clock cycles. So, block n in Fig. 12 includes the

processing of layers from QC × (n − 1) + 1 to n × QC, plus seg clock cycles due to the

pipeline.

The decoding process starts loading the channel information Ln(a) = Q
(0)
n corresponding to

the first QC rows on the VN memory (QC × dc × q reliabilities). Then, iteration 1 starts with

February 13, 2016 DRAFT

23

the processing of block1: Q(0)
n is read from VN MEM and, at the same time, the VN processor

starts; after seg clock cycles the CN processor obtains its outputs and Q(1)
n is saved in VN MEM.

Then, this process is replicated for blocks from 2 to dv. The same operations are repeated till the

maximum number of decoding iterations (MaxIter) is reached. At this point, the tentative hard

decoding starts to obtain the symbols c̃n and store them in the corresponding memory (Code

mem in Fig. 10). Some control signals avoid that the permutation block P and the substractor

in Fig. 10) modify Q(MaxIter)
n during this process. Finally, the new QC × dc× q LLR values are

stored in VN MEM while c̃n is obtained, and a new decoding process starts.

The throughput (Thrput) of the decoder can be obtained applying (5), where the dv× (QC+

seg) = M + seg × dv clock cycles required per iteration and the QC clock cycles required for

initialization and output codeword estimation are included.

Thrput =
fclk[MHz] ·N · p

MaxIter · (M + dv · seg) +QC

[
Mb

s

]
(5)

Fig. 12. Decoder timing

C. Decoder implementation results and comparisons

The decoder architecture explained in Section IV-B was implemented on a 90nm CMOS

process with nine metal layers and operating conditions 1.2V and 25oC. VHDL was used for

hardware description and Cadence tools were used for synthesis and implementation.

Table IV shows the implementation results for two high-rate NB-LDPC codes whose perfor-

mance are analysed in Section III-C: (2304,2048) NB-LDPC code over GF(16) (dc = 36, dv = 4)

and (1536,1344) NB-LDPC code over GF(64) (dc = 24, dv = 3). Our purpose is to show the

efficiency of our proposal over different GF(q) order and different degree distribution. The size

February 13, 2016 DRAFT

24

of the circulant sub-matrices for both codes is QC = 64. The number of iterations in Table

IV is adjusted to reach a FER approximately equal to 10−6 for Eb/N0 = 4.55dB (see Fig. 6

and Fig. 7). Although both codes have equal number of bits per codeword (9216) and similar

rate, an increase by four in the GF(q) order does not have the same impact on the number of

gates of the decoder (the GF(64) NB-LDPC code has 2.85 times the number of gates of the one

for the GF(16) NB-LDPC code). Additionally, the GF(64) NB-LDPC code has stronger burst

error correction capability. On the other hand, our proposal reach a throughput over 1Gbps and

1.3Gbps for GF(16) and GF(64), respectively.

TABLE IV

IMPLEMENTATION RESULTS FOR THE PROPOSED MT-MM ALGORITHM. 90NM CMOS PROCESS

NB-LDPC code (2304,2048), GF(16) (1536,1344), GF(64)

(dc, dv) / (rate) (36,4) / (0.889) (24,3) / (0.875)

Report Post-layout Synthesis

Quantization (w) 6 bits 6 bits

Gate Count (NAND) 1.42M 4.05M

fclk (MHz) 380 300

Iterations 10 8

Throughput (Mbps) 1047 1345

Area (mm2) 11.65 -

Table V compares the implementation of our proposal with other state-of-the-art proposals

from literature for the (837,726) NB-LDPC code over GF(32). For each reference, the number

of iterations is selected to achieve approximately the same performance (see Fig. 5) and all of

them use layered schedule on their implemented decoders. For the proposals that do not use a

CMOS 90nm process, the throughput showed in Table V is scaled to this technology using the

equations in [30]. On the other hand, our place-and-routed results have a core occupation of

70%.

In terms of gate count, our proposal, which applies parallel processing in the CN, outperforms

the other decoders from Table V except for [17]. The decoder from [17] requires 23% less gates

than our approach thanks to the serial processing used in their design. This fact introduces an

important reduction in the area but increases considerably the latency of the design, as can be

February 13, 2016 DRAFT

25

TABLE V

COMPARISON OF THE PROPOSED NB-LDPC LAYERED DECODER WITH OTHER WORKS FROM LITERATURE, FOR THE

NB-LDPC CODE (837,726) OVER GF(32)

Algorithm
SMSA

[12]

T-Max-log-

QSPA

[9]

RMM [17]
T-MM

[15]

OMO-TMM

[16]

mT-MM

[This

Proposal]

Report Synthesis Post-layout Synthesis
Post-

layout
Post-layout Post-layout

Technology 180 nm 90 nm 180 nm 90 nm 90 nm 90 nm

Quantization (w) 5 bits 7 bits 5 bits 6 bits 6 bits 6 bits

Gate Count

(NAND)
1.29M 8.51M 871K 3.28M 1.79M 1.17M

fclk (MHz) 200 250 200 238 250 345

Iterations 15 5 15 9 8 8

Latency (clock

cycles)
12995 4460 12675 1507 1279 1343

Throughput

(Mbps) 90 nm
149 223 154 660 818 1080

Efficiency 90 nm

(Mbps/M-gates)
115.51 26.2 176.81 201.22 456.98 923.07

Area (mm2) - 46.18 - 14.75 16.10 8.97

seen in Table V.

In terms of throughput, our proposal achieves the highest throughput among the solutions from

literature listed in Table V. This is due to the reduced set of exchanged messages between CN

and VN, which reduces the wiring congestion. Our approach outperforms solutions from [15]

and [16],which are the ones with higher throughput in Table V, by 48% and 20 %, respectively.

Regarding efficiency, which is obtained as throughput divided by gate count, our proposal

clearly outperforms the rest of decoders: its efficiency is 93.85% higher than the most efficient

decoder in Table V [16].

The post-layout area required by the proposed decoder is smaller than any other solution from

literature for similar CMOS technology and code parameters. The reduction in area is about

65% compared to [15], which was the solution with lower area until now.

February 13, 2016 DRAFT

26

To quantify the reduction in the wire length when mT-MM algorithm is applied, we compare

the post-layout results of the decoder from [15] with the proposed approach where the same

process is considered for both implementations. The total wire length is 75.4 cm for [15] and

58.2 cm for the proposed decoder which corresponds to a reduction of 23%.

To sum up, the proposed decoder based on the novel mT-MM algorithm offers important

advantages compared to the state-of-the-art in both area and throughput. On the other hand,

it is important to remark that the proposed mT-MM algorithm does not introduce significant

performance loss for Galois field orders lower or equal to GF(32) and involves a non-negligible

performance loss of about 0.07dB for GF(64), which is compensated with a great area saving

and a throughput over 1.3Gbps, as can be seen in Table IV.

V. CONCLUSIONS

The modified Trellis Min-Max algorithm (mT-MM) is proposed in this paper. This algorithm

reduces considerably the number of exchanged messages between check-node and variable-node

processor in NB-LDPC decoders. In terms of performance, the proposed algorithm introduces a

negligible performance loss compared to the original T-MM algorithm for high-rate codes over

GF(16) and GF(32). Regarding implementation results, our approach has significant advantages

in terms of area and speed compared to proposals that exchange the complete set of messages

between check-node and variable-node processors, especially for codes with high order fields and

high check-node degree. To show these advantages we implemented several layered decoders

with the mT-MM algorithm for different fields and degree distributions, outperforming in all

cases others proposals from literature in terms of area and throughput.

ACKNOWLEDGMENT

This work was supported in part by the Spanish Ministerio de Ciencia e Innovación under

Grant TEC2011-27916, in part by the Generalitat Valenciana under Grant GV/2014/011 and in

part by the Spanish Ministerio de Ciencia e Innovación under Grant TEC2012-38558-C02-02.

REFERENCES

[1] Digital Video Broadcasting (DVB), “Second generation framing structure, channel coding and modulation systems for

Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2),” Ago 2009.

[2] LDPC coding for OFDMA PHY. 802.16REVe Sponsor Ballot Recirculation Comment. IEEE C802.16e-04/141r2, 2004.

February 13, 2016 DRAFT

27

[3] Joint Proposal: High Throughput Extension to the 802.11 Standard: PHY. IEEE P802.11 Wireless LANs. IEEE 802.11-

05/1102r4, 2006.

[4] M. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE Communications Letters, vol. 2, no. 6,

pp. 165–167, 1998.

[5] J. Fu, M. Arabaci, I. Djordjevic, Y. Zhang, L. Xu, and T. Wang, “First experimental demonstration of nonbinary LDPC-

coded modulation suitable for high-speed optical communications,” in Optical Fiber Communication Conference and

Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, March 2011, pp. 1–3.

[6] M. Arabaci, I. Djordjevic, L. Xu, and T. Wang, “Nonbinary LDPC-Coded Modulation for High-Speed Optical Fiber

Communication Without Bandwidth Expansion,” Photonics Journal, IEEE, vol. 4, no. 3, pp. 728–734, June 2012.

[7] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q),” in Proceedings 2003 IEEE Information

Theory Workshop, 2003, pp. 70–73.

[8] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of LDPC codes over GF(q),” in 2004 IEEE

International Conference on Communications, vol. 2, 2004, pp. 772–776 Vol.2.

[9] Y.-L. Ueng, K.-H. Liao, H.-C. Chou, and C.-J. Yang, “A High-Throughput Trellis-Based Layered Decoding Architecture

for Non-Binary LDPC Codes Using Max-Log-QSPA,” IEEE Transactions on Signal Processing, vol. 61, no. 11, pp.

2940–2951, 2013.

[10] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary LDPC Codes Over GF(q),” IEEE Transactions on

Communications, vol. 55, no. 4, pp. 633–643, 2007.

[11] V. Savin, “Min-Max decoding for non binary LDPC codes,” in IEEE International Symposium on Information Theory,

2008, pp. 960–964.

[12] X. Chen and C.-L. Wang, “High-Throughput Efficient Non-Binary LDPC Decoder Based on the Simplified Min-Sum

Algorithm,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 11, pp. 2784 –2794, nov. 2012.

[13] E. Li, D. Declercq, and K. Gunnam, “Trellis-Based Extended Min-Sum Algorithm for Non-Binary LDPC Codes and its

Hardware Structure,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 2600–2611, 2013.

[14] E. Li, F. Garcia-Herrero, D. Declercq, K. Gunnam, J. Lacruz, and J. Valls, “Low latency T-EMS decoder for non-binary

LDPC codes,” in Signals, Systems and Computers, 2013 Asilomar Conference on, Nov 2013, pp. 831–835.

[15] J. Lacruz, F. Garcia-Herrero, D. Declercq, and J. Valls, “Simplified Trellis Min-Max Decoder Architecture for Nonbinary

Low-Density Parity-Check Codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. PP, no. 99,

pp. 1–1, 2014.

[16] J. Lacruz, F. Garcia-Herrero, J. Valls, and D. Declercq, “One Minimum Only Trellis Decoder for Non-Binary Low-Density

Parity-Check Codes,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 177–184, Jan 2015.

[17] F. Cai and X. Zhang, “Relaxed Min-Max Decoder Architectures for Nonbinary Low-Density Parity-Check Codes,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 11, pp. 2010–2023, Nov 2013.

[18] X. Zhang and F. Cai, “Efficient Partial-Parallel Decoder Architecture for Quasi-Cyclic Nonbinary LDPC Codes,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 2, pp. 402–414, Feb 2011.

[19] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-complexity decoding for non-binary LDPC codes in

high order fields,” IEEE Transactions on Communications, vol. 58, no. 5, pp. 1365–1375, May 2010.

[20] A. Voicila, F. Verdier, D. Declercq, M. Fossorier, and P. Urard, “Architecture of a low-complexity non-binary LDPC

decoder for high order fields,” in International Symposium on Communications and Information Technologies, 2007. ISCIT

’07., Oct 2007, pp. 1201–1206.

[21] J. Lin and Z. Yan, “An Efficient Fully Parallel Decoder Architecture for Nonbinary LDPC Codes,” Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 22, no. 12, pp. 2649–2660, Dec 2014.

February 13, 2016 DRAFT

28

[22] Y. Park, Y. Tao, and Z. Zhang, “A Fully Parallel Nonbinary LDPC Decoder With Fine-Grained Dynamic Clock Gating,”

IEEE Journal of Solid-State Circuits, vol. PP, no. 99, pp. 1–12, 2014.

[23] J. Lacruz, F. Garcia-Herrero, and J. Valls, “Reduction of Complexity for Nonbinary LDPC Decoders With Compressed

Messages,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. PP, no. 99, pp. 1–1, 2014.

[24] J. Lacruz, F. Garcia-Herrero, M. Canet, and J. Valls, “A 630 Mbps Non-Binary LDPC Decoder for FPGA,” in IEEE

International Symposium on Circuits and Systems (ISCAS), 2015, 2015, pp. 1–1.

[25] J. Sha, Z. Wang, M. Gao, and L. Li, “Multi-gb/s ldpc code design and implementation,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 17, no. 2, pp. 262–268, Feb 2009.

[26] B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu, “Construction of non-binary quasi-cyclic LDPC codes

by arrays and array dispersions,” IEEE Transactions on Communications, vol. 57, no. 6, pp. 1652–1662, 2009.

[27] X. Zhang and F. Cai, “Reduced-Complexity Decoder Architecture for Non-Binary LDPC Codes,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 19, no. 7, pp. 1229–1238, July 2011.

[28] J. Lin, J. Sha, Z. Wang, and L. Li, “Efficient Decoder Design for Nonbinary Quasicyclic LDPC Codes,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 57, no. 5, pp. 1071–1082, 2010.

[29] C.-L. Wey, M.-D. Shieh, and S.-Y. Lin, “Algorithms of Finding the First Two Minimum Values and Their Hardware

Implementation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 11, pp. 3430–3437, 2008.

[30] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits: a design perspective. Pearson Education, 2003,

761 pp.

February 13, 2016 DRAFT

