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Abstract

Non-binary LDPC codes outperform its binary counterparts in different scenarios. However, they

require a considerable increase in complexity, especially in the check-node processor, for high-order

Galois fields higher than GF(16). To overcome this drawback, we propose an approximation for the

Trellis Min-Max algorithm which allows us to reduce the number of exchanged messages between

check node and variable node compared to previous proposals from literature. On the other hand, we

reduce the complexity in the check-node processor, keeping the parallel computation of messages. We

implemented a layered scheduled decoder, based on this algorithm, in a 90nm CMOS technology for the

(837,723) NB-LDPC code over GF(32) and the (1536,1344) over GF(64), achieving an area saving of

16% and 36% for the check-node and 10% and 12% for the whole decoder, respectively. The throughput

is 1.07 Gbps and 1.26 Gbps, which outperforms the state-of-the-art of high-rate decoders with high GF

order from literature.
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I. INTRODUCTION

Non-binary Low-Density Parity-Check (NB-LDPC) codes are a promising kind of linear block

codes defined over Galois Fields GF (q = 2p) with p > 1. NB-LDPC codes have numerous advan-

tages over its binary counterparts, including better error correction performance for short/medium

codeword length, higher burst error correction capability and improved performance in the error-

floor region.

The main disadvantage of NB-LDPC codes is the high complexity of the decoding algorithms

and derived hardware architectures, which limit their application in real scenarios where high

throughput and reduced silicon area are important requirements.

Davey and MacKay [1] rediscovered LDPC codes defined over Galois Fields GF(q = 2p) with

p > 1 with the introduction of the Q-ary Sum-of-Product Algorithm (QSPA) as an extension of

the binary LDPC decoding based on belief propagation. Since then, several advances have been

made to reduce the complexity of the decoders.

Improvements based on QSPA, such as Fast Fourier Transform SPA (FFT-SPA) [2], log-

SPA and max-log-SPA [3], reduce the computational load of the parity-check equations without

introducing any performance loss. The recently proposed Trellis Max-Log-QPSA [4] algorithm

improves considerably both area and decoding throughput compared to previous solutions based

on QPSA, making use of a path construction scheme to generate the output message in the

check-node (CN) processor. These solutions offer the highest coding gain for high-rate NB-

LDPC codes, but at the same time, include costly processing that limits their application in real

communication and storage systems.

Extended Min-Sum (EMS) [5] and Min-Max [6] algorithms were proposed with the aim

of reducing the complexity offered by solutions based on QPSA. In these algorithms, the CN

equations are simplified by making approximations to involve only additions and comparisons in

their parity-check equations. Since both algorithms make use of forward-backward (FB) metrics

in the CN processor, the maximum throughput is bounded due to serial computations. The number

of exchanged messages between CN and Variable Node (VN) for both algorithms is nm × dc,

where nm is a fraction of q total reliabilities, being nm � q and dc the CN degree. Therefore,

the number of messages between nodes is lower than previous solutions from literature.

To avoid the use of FB metrics, Trellis Extended Min-Sum (T-EMS) algorithm [7, 8] was

proposed. The input messages are organized in a trellis, including an extra column on it, to
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enable the generation of CN output messages in parallel. On the other hand, Trellis Min-

Max (T-MM) algorithm [9] improves both algorithm and architecture compared to T-EMS from

[7, 8]. One Minimum Only TMM (OMO-TMM) [10] is an approximation of T-MM that reduces

the complexity of the CN by obtaining only one minimum and estimating the second one.

Both, T-EMS and T-MM, do not introduce any performance loss compared to EMS and Min-

Max algorithms, respectively. Moreover, the derived hardware architectures improve in area and

speed with respect to other proposals from literature based on algorithms from [5, 6]. The main

drawbacks of T-EMS, T-MM and OMO-TMM are: i) the high number of exchanged messages

between CN and VN (q × dc reliabilities), which impacts in the wiring congestion, limiting

the maximum throughput achievable; ii) the high amount of storage elements required in the

hardware implementations of these algorithms, which supposes the major part of the decoder’s

area.

To overcome the drawbacks of T-EMS and T-MM, the proposal in [11] introduces a technique

of message compression that reduces the wiring congestion between CN and VN and the storage

elements used in the derived architectures. The messages at the output of the CN are reduced to

four elementary sets which include the intrinsic and extrinsic information, the path coordinates

and the hard-decision symbols. The information exchanged between processors is reduced from

q×dc reliabilities to 4× (q−1)+dc messages without introducing any performance loss. A step

further was taken in [12], where the mT-MM algorithm was proposed. This algorithm reduces

the cardinality of the intrinsic information to only two elements, and the rest q − 2 values are

approximated by a constant value. The information exchanged between processors is reduced to

3× (q − 1) + dc messages but at the cost of some performance loss.

In this paper we take as starting point the solution from [11] to propose a novel algorithm

which reduces the messages that include the intrinsic information and the path coordinates from

(q−1) values to only L messages each one, being L < nm � q. This improvement allows us to

pass from the number of messages exchanged in [11] to only (q − 1) + 3× L+ dc, saving area

in the decoder thanks to the reduction of the memory requirements. This reduction of messages

introduces a performance loss in the coding gain that can be controlled by means of the parameter

L. In a second step, we introduce a novel method to generate the L most reliable values of the

intrinsic set, reducing considerably the CN complexity compared to previous solutions from

literature [8, 9, 11]. The low size of this set allows us to propose a simplified network that

calculates the L most reliable values for the intrinsic information. These values are sent to the
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VN. The proposed network greatly reduces the area required by the extra column processor from

[8, 9, 11], which is the bottleneck of the implemented CN processors. Our proposal allows the

design of high-rate NB-LDPC decoders over GF(32) and GF(64) without prohibitive areas. For

the code (1536,1344) NB-LDPC code over GF(64) the area saving in the CN is about 36% and

15% considering the overall decoder compared to solutions from [11], with a performance loss

of 0.1dB . In terms of throughput, the increase is about 17.5% compared to the design from [11].

For the (837,726) NB-LDPC code over GF(32) the area saving in the CN is about 16% and 10%

for the overall decoder, introducing a performance loss of 0.08dB and a gaining in throughput

of 10% compared to [11]. In both cases, we implemented a layered scheduled decoder because

the aim of the paper is to obtain high-throughput decoders for codes with large Galois Field.

For other efficient decoders not focused in high throughput we refer to [13].

The rest of the paper is organized as follows: Section II includes the basis on NB-LDPC

codes and T-MM algorithm implemented using compressed messages. Section III includes the

proposed approximation to reduce the CN output messages for T-MM algorithm and describes

a novel way to obtain the most reliable intrinsic information without analyzing the entire trellis.

Section IV includes the hardware implementation for the proposed check node architecture.

The implementation of a layered scheduled decoder and comparison with other proposals from

literature are devised in Section V. Finally, conclusions are presented in Section VI.

II. T-MM DECODING ALGORITHM WITH COMPRESSED MESSAGES

A sparse parity-check matrix H defines a NB-LDPC code, where each non-zero element hm,n

belongs to a Galois field GF (q = 2p). Another common way to characterize NB-LDPC codes is

by means of a Tanner graph [14], where two kinds of nodes are differentiated representing all N

columns (variable nodes, VN) and M rows (check nodes, CN) of H. N (m) denotes the set of

VNs connected to a CN m and M(n) denotes the set of CNs connected to a VN n, therefore,

the cardinality of the sets corresponds to dc and dv, respectively.

Let’s consider a message m ∈ GF (q)K which is coded to c = m×G, where G is the

generator matrix that satisfies G ·HT = 0, being 0 the zero matrix of size K × M . Using

Binary Phase Shift Keying (BPSK) signalling, the codeword c is transmitted over a binary input

Additive White Gaussian Noise (AWGN) channel. The received sequence is y = c + e, where

e is the error vector introduced by the noisy communication channel.
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Algorithm 1: Layered schedule

Inicialization:

Q
(0)
n (a) = Ln(a), R(0)

m,n(a) = 0, t = 1

Main Loop:

while t ≤ Iter do

for l = 1 to M do

1 Qm,n(a) = Q
(t−1)
n (hm,na)−R(t−1)

m,n (a)

2 R
(t)
m,n(a) = φ (Qm,n(a))

3 Q
(t)
n (h−1m,na) = R

(t)
m,n(a) +Qm,n(a)

end

4 c̃n = arg min
(
Q

(t)
n (a)

)
5 if c̃×HT = 0 then break

else t = t+ 1

end
Output: c̃ = [c̃1, c̃2, . . . , c̃N ]

NB-LDPC codes are decoded applying iterative algorithms where messages that represent

reliability values are passed from VN to CN and vice versa. Basically, two types of scheduling

are used: i) Flooding, where first all CN are processed and then all VN are updated based on

the CN output messages and the channel information; ii) Layered, where one CN is processed

and then all connected VN are updated, so, the process is repeated until all CN are processed.

In this paper we consider layered schedule since it offers a better trade-off between complexity

and decoding speed and for its higher convergence compared to the flooding schedule [15].

Algorithm 1 includes the basic steps involved in the layered schedule of NB-LDPC decoding.

The initialization step requires to extract the a priori information from the communication

channel to compute the log-likelihood ratio (LLR). This is obtained by means of Ln(a) =

log[P (cn = zn|yn)/P (cn = a|yn)]. Additionally, a normalization is made to ensure that all the

LLR values are non-negative, L′n(a) = |Ln(a) − Ln(zn)|, being zn the hard-decision symbols

associated to the highest reliability. LLRs are loaded in the VN which is represented by the set

Qn(a). This set corresponds to the a posteriori information which is updated as the decoding
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algorithm progresses, as can be seen in Step 3 of Algorithm 1.

Messages from VN to CN are denoted as Qm,n(a) and are calculated using the VN information

Qn(a) and the CN to VN messages Rm,n(a) (Step 1, Algorithm 1). CN output messages Rm,n(a)

are calculated using function φ. This function varies depending on the algorithm applied for the

decoding. If the tentative codeword c̃, calculated in Step 4, satisfies the parity-check equation,

then the decoding process stops outputting c̃ as a valid codeword, or else the process is repeated

until the maximum number of iterations (Iter) is reached.

Trellis Min-Max (T-MM) algorithm [9] was proposed as a new implementation of Min-Max

from [6] that allows the parallel processing of messages in the CN and reduces the complexity.

Applying a message compression technique [16], the basic steps of T-MM in the CN and the

number of exchanged messages are further reduced without introducing any performance loss

compared to the original T-MM algorithm.

In the compressed version of the T-MM algorithm, instead of sending q×dc Rm,n(a) messages

to the VN processor, the information in the CN is organized in four elementary sets called I(a),

E(a), P (a) and z∗n.

I(a) is the set related to the intrinsic information sent to the VN processor. This set is calculated

applying (1) to the most reliable CN input messages in delta domain [7], m1(η(a)).

I(a) = min
η(a)∈ conf∗(1,2)

{
max (m1(η(a)))

}
(1)

conf ∗(nr, nc) [9] is the configuration set which selects the possible paths conformed by the nr

symbols with higher reliability value. From all the possible paths, the configuration set only

selects the ones that deviate at most nc times from the hard-decision path1. From this reduced

set of possible paths, the one selected from the corresponding I(a) value is the one that ensures

the highest reliability (minimum value). In this paper we consider the case where nr = 1 and

nc = 2. So, only the most reliable messages are considered (first minimum set m1(a)) and only

one and two deviation paths are taken into account.

The set E(a) is related to the extrinsic information. It is composed of m1(a) or m2(a) (second

minimum set) messages depending on the number of deviations of the path used to form I(a)

1The hard-decision path is the one formed only by messages corresponding to the symbol α−∞, which in delta domain

corresponds to the reliability of zn
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according to (2).

E(a) =

 m2(a) if I(a)→ one deviation

m1(a) otherwise
(2)

The set P (a), with nc×(q−1) values, is used to keep track of the column where deviations take

place, when the values of the set I(a) are generated. This information is used in two situations:

first, to select the proper values for the set E(a) depending on the deviation information when

the set I(a) is computed; second, it is used at the VN to generate the q× dc reliabilities as will

be seen next.

Finally, the hard-decision symbols defined as zn = arg mina∈GF (q)Qmn(a) and the syndrome

β =
∑dc

1 zn are used to generate the hard-decision symbols z∗n = zn + β required for delta-to-

normal domain transformation.

At the VN processor a decompression of messages is made to generate the Rm,n(a) values

used to obtain the a posteriori information Qn(a) [9]. The decompression operations are made

following (3).

Rm,n(a+ z∗n) =

 I(a) if P (a, 1) 6= n and P (a, 2) 6= n

E(a) otherwise
(3)

III. T-MM ALGORITHM WITH REDUCED SET OF MESSAGES

In this Section we introduce a novel method to reduce the number of messages exchanged

between CN and VN compared to the proposal from [11]. First, we define the reduced set of

compressed messages that are sent from CN to VN and an approximation to obtain the rest of

values in the VN. Second, the performance of the method is analyzed. Third, a technique to

generate the most reliable values of the set I(a) without building a complete trellis structure is

presented.

A. Reduction of the CN-to-VN messages

The sets I(a) and P (a) are required to generate the messages Rm,n(a) at the VN processor,

as can be seen in (3). Reducing the cardinality of I(a), the one of P (a) is also reduced.

Our proposal is to keep the L most reliable values of I(a) and the corresponding ones of P (a)

and E(a), being L < (q − 1). Consider the set I∗(a′) = {I∗(a′1), I∗(a′2), . . . , I∗(a′L)}, as the

L most reliable values from the set I(a) and a′ = {a′1, a′2, . . . , a′L} are their corresponding GF
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symbols. On the other hand, consider the sets E∗(a′) = E(a) ∀ a ∈ a′ and P ∗(a′) = P (a) ∀ a ∈

a′.

Defining the complementary set a′′ ∈ a \ a′, we propose to set E∗(a′′) = m1(a′′). So, the

cardinality of the set E∗(a) is kept in q− 1. Table I includes the number of bits of each one of

the sets exchanged from CN to VN processors compared to the proposal from [11], where w is

the number of bits used to quantize the reliabilities.

TABLE I

NUMBER OF BITS REQUIRED TO BE EXCHANGED FROM CN TO VN PROCESSOR

Number of bits

T-MM [11] Proposed

I(a)/I∗(a) (q − 1)× w L× w

E(a)/E∗(a) (q − 1)× w (q − 1)× w

z∗n dc × p dc × p

P (a)/P ∗(a)
2× (q − 1)×

dlog dce
2× L× dlog dce

As an example consider the (837,726) NB-LDPC code over GF(32) (dc = 27, dv = 4) and the

(1536,1344) NB-LDPC code over GF(64) (dc = 24, dv = 3) built using the methods from [17].

For the first code the number of bits at the CN output is 817 bits using w = 6 bits with the

method from [11], while for our proposal the number of bits is only 385, so there is a reduction

of 53%. For the second code, the method from [11] outputs 1530 bits, while our proposal only

exchanges 586 bits, which corresponds to a reduction of 62% in the number of bits. The L value

was set to four in these examples.

Since the cardinality of the sets I∗(a) and P ∗(a) has been reduced compared to I(a) and

P (a), respectively, it is no longer possible to generate the messages Rm,n(a) using (3) at the

VN.

For the symbols a′ is possible to construct L× dc values for R∗m,n(a′) using (4). It is easy to

see that R∗m,n(a′) = Rm,n(a) ∀ a ∈ a′.
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R∗m,n(a′ + z∗n) =


I∗(a′) if P ∗(a′, 1) 6= n

and P ∗(a′, 2) 6= n

E∗(a′) otherwise

(4)

For the complementary set of symbols a′′, it is necessary to propose a function that approxi-

mates the reliabilities of the messages Rm,n(a′′) due to the cardinality reduction of the sets I(a)

and P (a). Therefore, we introduce a novel way to obtain the messages Rm,n corresponding to

the symbols a′′. This uses an approximation function based on an offset and a scaled version of

the set E∗(a′′) as expressed in (5).

R∗m,n(a′′ + z∗n) = γ1 × E∗(a′′) + γ2 × I∗(a′L) (5)

Even considering that the scaling factors γ1 and γ2 are constant values, the offset I∗(a′L) and

the set m1(a′′) depend on the specific CN input messages at each iteration. This fact introduces

a self-adjusted term for the approximated values of Rm,n(a′′).

B. Performance Analysis

To show the behaviour of the set R∗m,n(a) compared to Rm,n(a) in an implementation of T-

MM algorithm [9], we computed histograms for the sets R∗m,n(a) and Rm,n(a). We tested several

NB-LDPC codes over different Galois field and degree distribution, for various Eb/No values

and taking 106 repetitions for each configuration. We achieved similar results in all cases.

In Fig. 1 we present the results for the (837,726) NB-LDPC code over GF(32) [17]. Eb/No

was set to 4.3dB, γ1 = γ2 = 0.5 in (5) and L = 4 for this example. In this figure, the x-axis

includes the arranged reliabilities for the sets R∗m,n(a) and Rm,n(a), where index 0 corresponds

to the symbol with the highest reliability and indexes 1 to 4 are related to the reliabilities filled

with (4) considering L = 4. As can be seen, for indexes 1 to 4 the values for the set R∗m,n(a′)

are equal to the ones for the set Rm,n(a) for the same indexes, since (4) corresponds to (3) for

a ∈ a′. For indexes 5 to 31, we observe that the approximation introduced in (5) underestimates

the mean values of R∗m,n(a′′) compared to the ones from Rm,n(a). Even so, the tendency of the

reliability values is similar. The γ1 and γ2 values were adjusted by means of Bit Error Rate

(BER) simulations, considering hardware-friendly values for the sake of simplicity of hardware

implementations.
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Fig. 1. Mean values for each reliability in the set ∆Q(a). The values were arranged in the x axis. The code under test is the

(837,726) NB-LDPC code over GF(32).

In order to test our proposal and reduce the number of exchanged messages between CN and

VN, we performed BER simulations to compare it to the conventional T-MM algorithm. The

code under test was the (837,726) NB-LDPC code over GF(32) [17]. It can be seen in Fig. 2

that an increment of the parameter L (more exchanged messages from CN to VN) is translated

into a BER performance closer to the conventional implementation of T-MM algorithm. It is

observed an improvement of almost 0.2dB in the coding gain increasing L from L = 2 to L = 4,

0.05dB from L = 4 to L = 6 and almost negligible when passing from L = 6 to L = 8. We also

include in Fig. 2 the BER performance for L = 4 and 8 decoding iterations for the quantized

model (6 bits) to ease comparisons with other proposals in Section V.

The same analysis was made for the (1536,1344) NB-LDPC code over GF(64) varying the L

parameter. The BER performance is presented in Fig. 3. It can be seen that the performance losses

are greater than the ones from Fig. 2 for small L values, comparing both to the conventional

T-MM algorithm [9]. This is due to the percentage of reliabilities approximated using (5), which

is 87.5% for the GF(32) code and 93.75% for the GF(64) code, considering L = 4 for both

cases. It will be seen in Section IV that the performance loss of 0.1dB for L = 4 introduced

with our approach is compensated with an important reduction in the complexity of the check

node.

C. Generation of the set I∗(a′)

In Section III-A a method to reduce the number of messages sent from CN to VN was

presented. It was shown that modifying the parameter L, the performance loss compared to
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L = 6, γ1 = γ2 = 0.5

L = 8, γ1 = γ2 = 0.5

L = 4, γ1 = 0.375, γ2 = 1.0

Fig. 2. Bit Error Rate performance for our proposal varying the L parameter compared to T-MM algorithm. The code under

test is the (837,726) NB-LDPC code over GF(32). 15 decoding iterations and floating point model are considered in all cases

except for the last curve where 8 iteration and 6 bits are employed.

T-MM algorithm [9] can be tuned. On the other hand, a method to approximate the discarded

messages of the set I(a) was introduced using (5). The maximum performance loss is set to

0.1dB, so we fix L = 4 in the rest of the paper. In this way, the performance loss is 0.08dB for

the (837,726) NB-LDPC code over GF(32) and 0.1dB for the (1536,1344) NB-LDPC code over

GF(64).

From the analysis made in Section III-A, it is easy to see that even reducing considerably

the number of exchanged messages from CN to VN, the CN has to calculate the entire set I(a)

using (1) and the set P (a) before selecting the L most reliable values from them. In this paper

we propose a method to obtain the L most reliable values without using (1) nor introducing

any approximation. Our method takes advantage of the min-max operator involved in (1). The

min-max operator is used to obtain the reliability value among the reliabilities selected by the

configuration set, for each symbol a. Examining how the min-max operator behaves to obtain

the L most reliable symbols, it is possible to extract some rules to avoid the implementation
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Fig. 3. Bit Error Rate performance for our proposal with different values of L compared to T-MM algorithm. The test code is

the (1536,1344) NB-LDPC code over GF(64). 15 decoding iterations and floating point model are considered for both algorithms

of a complete trellis structure. In Fig. 4 an example for the set ∆Qm,n(a) (GF(8), dc = 4) is

presented, where the most reliable messages per row are marked with a dashed square. The

rightmost column includes the set I(a) formed by combination of the m1(a) values following

(1). This example will be used to explain the method to obtain the set I∗(a′), composed of the

L = 4 most reliable values of the set I(a).

First, consider the absolute minimum, m11, among all the m1(a) reliabilities, in the example

from Fig. 4 m11 = 1. m11 will appear on the set I(a) only in one-deviation paths, because in the

two-deviation cases, m11 will be discarded by the max operator when all the possible paths for

each symbol a are analysed. On the other hand, there is only one “one-deviation” path for each

symbol a, so, in the example of Fig. 4, for the symbol α3, the one-deviation path corresponds

to m11. In fact, this path is the most reliable among all the possible ones for α3. Then, instead

of analysing all the possible paths to obtain the most reliable value of the set I(a) (I∗(a′1)), we

only have to assign the value I∗(a′1) = m11 and retain the value of the corresponding symbol

a′1 = am11 = α3.

A similar analysis can be done to find the second most reliable value of the set I(a). This
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Fig. 4. Example of the sets ∆Qm,n(a) and I(a) for GF(8) and dc = 4

value can be obtained assigning the second minimum of m1(a) (m12 = 2 in the example from

Fig. 4), so, I∗(a′2) = m12 and a′2 = am12 = α0. Note that there can be a two-deviation path

that gives the same reliability value as m12, this is the combination of m11 and m12 if they

belong to different columns (m11col 6= m12col). In this case, the reliability of this two-deviation

path corresponds to m12 due to the max operation involved in (1).

The selection of the third most reliable value of I(a) (I∗(a′3)) requires a comparison between

multiple candidates, which includes the one-deviation path formed with m13 and the two-

deviation path made with the combination of m11 and m12. The two-deviation path will be

selected for I∗(a′3) (I∗(a′3) = m12 and a′3 = am11 + am12) unless m11 and m12 belong to the

same column of ∆Qm,n(a). In that case, the reliability selected is m13 (I∗(a′3) = m13 and

a′3 = am13). In the example from Fig. 4, since m11 = 1 and m12 = 2 belong to the same column

of the trellis (n = 1), m12 can not be used for I∗(a′3). Instead of this, the selected reliability is

I∗(a′3) = m13 = 3 and a′3 = am13 = α4.

For I∗(a′4), we consider the candidates listed in Table II with the priority given in its leftmost

column. The conditions to select a reliability are listed in the rightmost column of Table II.

Basically, the conditions ensure that a value will not be selected if another one with higher

reliability has been used for a symbol a′i ∀ i ∈ 1, 2, . . . , L and, on the other hand, for the

two-deviation cases, no more than one deviation is made on each stage of the trellis [7, 9].

Following with the example in Fig. 4 and the priority and conditions listed in Table II for

the possible candidates for I∗(a′4), the highest priority candidate (OD, m13) must be discarded
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TABLE II

POSSIBLE CANDIDATES FOR THE I∗(a′4) RELIABILITY

Priority
Involved

Reliabilities
I(a′4)

One (OD) /

Two (TD)

deviation path

Condition to be selected

1o m13 m13 OD
Not been used for I∗(a′3)

and am11 + am12 6= am13

2o m13 , m11 m13 TD
am13 + am11 6= am12 and

m13col 6= m11col

3o m13 , m12 m13 TD
am13 + am12 6= am11 and

m13col 6= m12col

4o m14 m14 OD -

since it was used for the I∗(a′3) reliability. Next, we select the one with the second priority

since it meets the conditions from Table II. Thus, I∗(a′4) = m13 and the corresponding symbol

a′4 = am11 + am13 = α6.

The conditions derived to obtain the L most reliable values of the set I(a) can be mapped

directly in a hardware structure, avoiding a complete analysis of the trellis. The CN architecture

is presented in next section.

The proposed CN decoding algorithm is summarized in Algorithm 2. Step 1 corresponds to the

delta-domain transformation [18] of the CN input messages, Qm,n(a), using the tentative hard-

decision symbols zn. The syndrome β is calculated adding, in the GF domain, all zn symbols

(Step 2). Step 3 finds the two-minimum among the dc input messages in delta-domain for each

symbol a. The position of the first minimum, m1col(a), is also retained. A L-min finder for the

set m1(a) is included in Step 4. Function ψ selects the L values for the set I∗, as detailed in

this section. Step 6 includes the conditions to select the values of the set E(a), as explained in

Section II.

IV. CHECK NODE ARCHITECTURE

In this section we present the architecture for the CN processor based on the proposed method.

It includes a network to calculate, in an efficient way, the L = 4 most reliable messages of the

set I(a), using the conditions explained in Section III-C.
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Algorithm 2: Proposed check-node decoding algorithm
Input: Qmn

zn = arg mina∈GF(q)Qmn(a) ∀ n ∈ N (m)

1 ∆Qmn(a+ zn) = Qmn(a)

2 β =
∑dc

j=1 znj
∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = 2-min{∆Qm,ni
(a)
∣∣∣dc
i=1
}

4 [m1∗,m1∗col, a
′] = L-min{m1(a)}

5
[
I∗, I∗path, I

∗
sym

]
= ψ{m1∗,m1∗col, a

′}

6 E(a) =

 m2(a) if I(a)→ one deviation

m1(a) otherwise

Output:


I∗, I∗path, I

∗
sym

E(a)

z∗n = zn + β ∀ n ∈ N (m)

The top-level block diagram for the proposed CN is detailed in Fig. 5. The CN input messages

are Qm,n, which come from the VN processor, and the tentative hard decision symbols z. Both

input messages are used to compute the Normal-to-Delta domain transformation (N→∆ block

in Fig. 5). dc transformation networks are needed in the CN, each one requires q× log(q) w-bit

MUX following the approach proposed in [19], where w is the number of bits for the data-path.

z is also used to obtain the syndrome β adding all dc tentative hard-decision symbols. This

operation requires w× (dc−1) XOR gates. β is used to generate the new hard-decision symbols

z∗, which are sent to the VN to generate the R∗m,n messages using (4). z∗ symbols are generated

using GF(q) adders which require dc × w XOR gates to implement them.

Two-minimum finders obtain the two most reliable messages for each GF(q) symbol over

the delta-domain values (∆Qm,n). The search of α−∞ is excluded, since it corresponds to the

hard-decision symbols, with the highest reliability (zero-value). So, in the CN processor there

are q− 1 two-minimum finders where the position of the first minimum values is also extracted

to obtain the set I∗(a′), as explained in Section III-C. Implementation is done by means of

February 13, 2016 DRAFT



16

Fig. 5. Proposed check-node block diagram

tree-based two-minimum finders, following the approach from [20]. Each finder has dc inputs,

implemented with 2× dc w-bit comparators and 3× dc w-bit MUXES.

A L-min finder is used to obtain the L most reliable values of the set m1(a), m1(a′) (m1∗ in

Fig. 5), outputted from the 2-min finder. We propose to use a parallel sorting approach for the

implementation with the aim of improving speed at the CN processor. The proposed architecture

is presented in Fig. 6, where an example for four inputs is included. It is based on a two stage

circuit: first (Fig. 6.a), we compute comparisons between all the combination of input pairs

(Xi, Xj) ∀ i 6= j and, then, we add the output of the comparators for each one of the inputs.

The main idea is to count the number of times that an input Xi is lower than the other N − 1

inputs, being VXi
the number of times and N the number of inputs of the network. The greater

the VXi
value, the lower Xi is. So, the second stage (Fig. 6) is responsible to find the value VXi

corresponding to the minimum that we are looking for. For example, the m11 value corresponds

to the one with VXi
= N − 1, since it is lower than the rest of inputs. So, m12 corresponds to

VXi
= N − 2 and so on for the rest of m1j values which corresponds to VXi

= N − j.

The proposed CN architecture requires a structure as the one in Fig. 6.a operating with q− 1

inputs. Since we particularize the CN for the case where L = 4, we require four selection

networks from Fig. 6.b, one for each m1j value.

The implementation of the structure from Fig. 6.a requires (q−1) × ( q−2
2

) w-bit comparators.
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(a)

(b)

Fig. 6. (a) First stage of the proposed L-min finder. (b) Circuit to extract the j-th minimum value. Example for four inputs.

The number of adders is summarized in Table III for different field orders.

Four structures as the one in Fig. 6.b, considering L = 4, need 4× (q − 1)× p XNOR gates,

4 × (q − 1) × (w + 2 × p + dlog dce) AND gates, assuming that the symbols a′ and columns

m1col(a
′) from the L most reliable m1(a) values must be retained to be used in the calculation

of the I∗(a′), as can be seen in the block diagram from Fig. 5. Finally, 4×q× (w+p+dlog dce)

OR gates complete the logic elements required in the implementation of the circuit.

The solution from Fig. 6 to the L-min finder offers a high-speed structure that does not

compromise the latency of the overall CN processor.
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TABLE III

ADDERS REQUIRED TO IMPLEMENT THE CIRCUIT FROM FIG 6.A

Field size (q) # ADD bits

256
128

64
32

16
8

4
q × q/2 1 bit

q × q/4 2 bit

q × q/8 3 bit

q × q/16 4 bit

q × q/32 5 bit

q × q/64 6 bit

q × q/128 7 bit

q × q/256 8 bit

The set I∗(a′) is generated using the circuit presented in Fig. 7 which is a direct implementation

of the method explained in Section III-C. It uses the outputs of the L-min finder as inputs to

obtain the sets I∗(a′), I∗(a′)path and I∗(a′)sym.

As can be seen in Fig. 7, the generation of the set I∗(a′) requires few hardware resources

which can be easily summarized in 15× p+ 3×w+ 17×dlog dce+ 6 equivalent NAND gates.

For the (837,726) NB-LDPC code over GF(32) this corresponds to 184 NAND gates and 216

NAND gates for the (1536,1344) NB-LDPC code over GF(64). The increase of the field order

does not increment significantly the number of required gates compared to the structure that

generates the extra column ∆Q(a) in the proposal from [9], which is unsuitable for fields higher

than GF(32).

The reliabilities of the set E∗(a) are generated using the circuit from Fig. 8. The portion of

the circuit rounded by dashed lines is repeated for each GF symbol. The generation of the set

E∗(a) requires (q − 1)× (23× w + 6× p) + 3× dlog dce equivalent NAND gates. To compare

our proposed CN architecture with a conventional implementation of T-MM algorithm [11], we

synthesized the design using Cadence Register Transfer Level (RTL) compiler for the (837,726)

NB-LDPC code over GF(32) and the (1536,1344) NB-LDPC code over GF(64). It can be seen

in Table IV that the area saving is almost doubled for the GF(64) NB-LDPC code compared to
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Fig. 7. Circuit to generate the set I∗(a′)

the GF(32) case. This is due to the reduction of complexity in the I∗(a) generation that is the

bottleneck in the CN implementation from [11].

TABLE IV

SYNTHESIS RESULTS FOR THE PROPOSED CN ARCHITECTURE

Equivalent NAND gates
Saving

[11] Proposed

(837,726) NB-LDPC

code over GF(32)
154806 133273 16.16 %

(1536,1344) NB-LDPC

code over GF(64)
423144 309938 36.52%
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Fig. 8. Circuit to generate the set E∗(a′)

V. TOP-LEVEL DECODER ARCHITECTURE AND COMPLEXITY COMPARISON

In this section we include the proposed CN architecture in a layered decoder with a similar

structure to [16].

The decompression network generates the set R∗m,n(a) and implements (4) and (5) using the

structures presented in Fig. 9. The circuit from Fig. 9.a generates a (q − 1)-length set I∗(a)

from the reduced set I∗(a′). Once the set I∗(a) is obtained, the circuit from Fig. 9.b is used to

generate the set R∗m,n(a) performing the Normal-to-Delta domain transformation from the sets

I∗(a), E∗(a) and the new hard-decision symbols z∗n.

The decoder requires 2× (q−1) circuits as the one from the left-side in Fig. 9, each one uses

[27 × log dc + 14 × w + 6 × p] equivalent NAND gates. On the other hand, it requires 2 × dc
circuits as the one presented on the right-side of Fig. 9 using q × ((p + 1) + 2 × log dc + 1)

equivalent NAND gates each one of them.

One of the main benefits of reducing the number of messages exchanged from CN to VN is

that the number of registers required to store the CN output messages from one iteration to the

February 13, 2016 DRAFT



21

(a)

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

(b)

Fig. 9. Proposed decompression network circuits. (a) Circuit to generate the set I∗(a). (b) Circuit to generate the set R∗m,n(a),

an example with GF(4)

next one are greatly reduced compared to conventional implementations of T-MM algorithm [9],

which store M × q × dc × w information bits. Our proposal only requires M × [(q − 1)× w +

4× (w + 2× log dc + p) + dc × p] registers.

A. Decoder implementation results and comparisons

The complete decoder architecture based on the CN architecture explained in Section IV was

implemented on a 90nm CMOS process with nine metal layers and operating conditions 1.2V

and 25oC. VHDL was used for the description of the hardware and Cadence tools were used for

synthesis and implementation of the proposed approach. To show the efficiency of our proposal

for high-rate NB-LDPC codes over high-order fields, we present results for the (1536,1344) NB-

LDPC code over GF(64). In order to simplify comparisons with other proposals from literature,

we include results for the (837,726) NB-LDPC code over GF(32). Both QC-codes have been

constructed using the methods from [17]. The throughput is obtained as:

Throughput =
fclk ×N × p

iter × (M + dv × seg) + qQC
,

where qQC is the size of the circulant sub-matrices which conform H and seg corresponds to

the pipeline stages used in the design. For the both codes we choose seg = 16 to achieve a

balance between throughput and area.

February 13, 2016 DRAFT



22

TABLE V

IMPLEMENTATION RESULTS FOR THE (1536,1344) NB-LDPC CODE OVER (GF(64) IN A 90NM CMOS PROCESS.

T-MM [9]
T-MM

CNBMP[11]

OMO-TMM

[10]

mT-MM

[12]

[This work]

L = 4

[This work]

L = 5

Report Synthesis Synthesis Synthesis Synthesis Post-layout Post-layout

Quantization (w) 6 bits 6 bits 6 bits 6 bits 6 bits 6 bits

Gate Count

(NAND)
4.88M 3.34M 4.63M 4.05M 2.97M 2.99M

fclk (MHz)

Synthesis
250 300 250 300 351 351

fclk (MHz)

Post-layout
192 231 192 231 271 265

Iterations 8 8 8 8 8 8

Throughput

(Mbps)

Post-layout

874 1049 874 1049 1259 1231

Efficiency

(Mbps/ Million

NAND)

179 314 189 259 424 412

Area(mm2) - - - - 28.90 29.09

To the best authors’ knowledge, we present the first post-layout results for a high-rate NB-

LDPC code over GF(64). As fas as the authors’ knowledge, the best high-throughput decoder

implementation for GF(64) is presented in [21]. It includes a chip implementation for a full-

parallel decoder based on the (160,80) NB-LDPC code over GF(64) with degree distribution

(dc = 4, dv = 2) using a 65nm CMOS process. The reported gate count is 2.78M reaching a

throughput of 1221Mbps (881Mbps for 90nm). A direct comparison is not possible because this

is not a high-rate code (the rate is only 0.5) and our code has a rate of 0.875, furthermore, it

is about 10 times shorter than the one we use (960 bits per codeword compared to 9216 bits in

our code).

In order to compare our decoder with previous proposals implementing the same code, we

synthesized the designs from [9–12] for the GF(64) code. We could not obtain post-layout results

due to the high gate count of the designs.The results are summarized in Table V, where we also
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show the implementation results of our decoder for L = 4 and L = 5. The implementation for

L = 5 was done by the extrapolation of the architecture for L = 4. Comparing the implementation

for L = 4 and L = 5, the increment in area and the reduction of throughput are both about

1%. On the other hand, there is a coding gain of 0.02dB with this increment in L. Comparing

our decoder for L = 4 with the others proposals in Table V, it can be seen that the highest

reduction in the gate account is about 61% compared to the work from [9], and the lowest

is 12% compared to the proposal from [11]. In order to make fair comparisons in terms of

throughput, it is important to remark that the clock frequency (fclk) usually reduces its value

after placing and routing the design. For example, our proposal achieves fclk = 351 MHz after

synthesis and this value is lowered to 271 MHz after the place and route stage, which corresponds

to a reduction of 23%. Thus, the post- synthesis throughput of the other works is reduced in the

same percentage and showed in Table V. Considering these values, our work would outperform

them between 30.6% and 16.6%, thanks to the reduction of complexity in the CN processor

and the minimization of messages exchanged between CN and VN, which mitigates the routing

congestion.

In terms of efficiency measured as the ratio between throughput (Mbps) and number (million)

of equivalent NAND gates, our approach outperforms the one from [9] in almost 2.4 times.

Compared to the design from [11], our proposal outperforms it in 35%.

Table VI compares the implementation results of the proposed decoder (L = 4) with other

state-of-the-art proposals for the (837,726) NB-LDPC code over GF(32). The number of iterations

in all the proposals listed in Table VI was adjusted to achieve similar performance at Eb/No = 4.4

dB. As can be seen, our proposal outperforms most of the other approaches in both area and

throughput. In terms of gate count, despite he fact that [23] requires 21% less gates, our work

achieves a throughput which is almost seven times higher due to the parallel processing used

in the CN. Compared to the proposal from [12], our approach has similar throughput and

outperforms it almost 6% in area, thanks to the reduction of complexity in the CN with the

hardware structures presented in Section. IV.

In terms of efficiency, our approach is five times most efficient that the proposals from [9, 23]

and almost 9 times higher than the decoder from [22]. Compared to the design from [12], our

novel proposals offers 8.6% higher efficiency.
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TABLE VI

COMPARISON OF THE PROPOSED NB-LDPC LAYERED DECODER WITH OTHER WORKS FROM LITERATURE, FOR THE

(837,726) NB-LDPC CODE WITH GF(32)

Algorithm

Simplify-

MS

[22]

Trellis

Max-log

QSPA [4]

RMM

[23]

T-MM

[9]

T-MM

CNBMP

[11]

OMO-

TMM

[10]

mT-MM

[12]

[This

Proposal]

Report Synthesis
Post-

layout
Synthesis

Post-

layout

Post-

layout

Post-

layout

Post-

layout

Post-

layout

Technology 180 nm 90 nm 180 nm 90 nm 90 nm 90 nm 90 nm 90 nm

Quantization

(w)
5 bits 7 bits 5 bits 6 bits 6 bits 6 bits 6 bits 6 bits

Gate Count

(NAND)
1.29M 8.51M 871K 3.28M 1.25M 1.79M 1.13M 1.06M

fclk (MHz) 200 250 200 238 300 250 345 393

Iterations 15 5 15 9 8 8 8 8

FER @

Eb/No = 4.4

dB

2× 10−4 5× 10−5 9×10−5 9× 10−5 1×10−4 9×10−5 1×10−4 1× 10−4

Throughput

(Mbps)
64 223 66 660 981 818 1080 1071

Throughput

(Mbps) 90

nm

149 223 154 660 981 818 1080 1071

Efficiency

(Mbps /

Million

NAND gates)

115.5 26.2 176.8 201.2 784.8 457 923 1010.4

Area (mm2) - 46.18 - 14.75 10.6 16.1 8.97 9.80

VI. CONCLUSIONS

In this paper we introduce an approximation for the T-MM algorithm to reduce the complexity

of the CN architecture, which was the bottleneck in previous solutions from literature. This

reduction allow us to offer post-layout results for high-rate NB-LDPC codes over GF(64) without
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prohibitive areas and higher throughput than the existing proposals, at the expense of some

performance loss.
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