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VLSI Extreme Learning Machine: A Design Space
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Abstract—In this paper, we describe a compact low-power, high
performance hardware implementation of the extreme learning
machine (ELM) for machine learning applications. Mismatch in
current mirrors are used to perform the vector-matrix multi -
plication that forms the first stage of this classifier and is the
most computationally intensive. Both regression and classification
(on UCI data sets) are demonstrated and a design space trade-
off between speed, power and accuracy is explored. Our results
indicate that for a wide set of problems,σVT in the range of
15−25mV gives optimal results. An input weight matrix rotation
method to extend the input dimension and hidden layer size
beyond the physical limits imposed by the chip is also described.
This allows us to overcome a major limit imposed on most
hardware machine learners. The chip is implemented in a0.35µm
CMOS process and occupies a die area of around 5 mm× 5
mm. Operating from a 1 V power supply, it achieves an energy
efficiency of 0.47 pJ/MAC at a classification rate of 31.6 kHz.

Index Terms—Extreme Learning Machine, Classifier, Machine
Learning, Low Power, Neural Networks

I. I NTRODUCTION

In general, it is difficult to achieve high accuracy in pure
analog signal processing modules due to several reasons, a
major one being device mismatch [1]. The effect of mismatch
on traditional circuits like differential amplifiers and current
mirrors is well documented [2]. It has also been shown that
for MOS based circuits, the extra power dissipation needed to
overcome effects of mismatch can be an order of magnitude
higher than the limit imposed by thermal noise [1]. With
transistor dimensions reducing over the years, variance in
properties of transistors, notably the threshold voltage,has
kept on increasing making it difficult to rely on conventional
simulations ignoring statistical variations. The problemis
particularly exacerbated for neuromorphic designs [3], where
transistors are typically biased in the sub-threshold region [4]–
[6] of operation (to glean maximal efficiencies in energy per
operation) since device currents are exponentially related to
threshold voltages thus amplifying its variations as well.For
example, it is shown in [7] that an array of5 − bit DACs in
0.35µm CMOS process used as tunable weights only provide
an effective number of bits of1.1 due to mismatch. In general,
there has been an approach to compensate for mismatch either
through floating-gates [8] or by storing calibration coefficients
off-chip in the form of connection probabilities [3]. Digital
calibration can be used to compensate for these effects on-chip
[7] as well. However, they lead to huge area overheads due to
the requirement of extra transistors for calibration and storage
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of digital bits [9]. Sometimes, it is claimed that learning
can compensate for mismatch and has been demonstrated in
specific cases [10], [11]–but the claim needs to be further
quantified using standard datasets since mismatch will exist
in the learning circuits as well.

The ELM algorithm is popular in the machine learning
community due to its fast training speed and has been shown
to produce similar or better performance compared to sup-
port vector machines (SVM) [12]. A closely related method
(termed Neural Engineering Framework) has also been used
to generate large scale models of cognitive systems [13].
ELM based methods have been used classify spike time
based patterns recently [14] and online learning algorithms
for ELM have been proposed [15]. Clearly there is a need
to develop hardware implementations of the same. In this
paper we present a circuit that ‘utilizes’ mismatch to do
effective computation in the first layer of a two layer spiking
neural network implementation of ELM. This approach can be
used in other algorithms like liquid state machine (LSM) or
echo state networks (ESN) (sometimes referred to as reservoir
computing), since they require random projections of the
input as well. We have earlier proposed the idea of using
spiking neurons for implementing ELM [16] and described
the advantages of such an architecture over standard digital
implementations [17]. It should be noted that this method only
exploits spiking neurons for ease of hardware implementation
and does not use any spike based learning rules to perform
the learning of the second stage. The major hardware benefits
are the use of low-power analog circuits for the reservoir and
simple digital circuits for the second stage. We demonstrated
the first VLSI implementation of this principle in [18] where
it was used for decoding motor intentions for implantable
brain-machine interfaces. In this paper, we present a different
chip utilizing the same core circuit as [18] but operating on
10 bit digital inputs instead of spikes. Instead of a specific
application, this paper presents an entire design space trade-
off between speed, power and accuracy. Finally, we present a
method and associated circuits to virtually expand the input
and output dimensions of the chip beyond the physically
implemented128 channels. We show results of applying inputs
from standard machine learning data bases such as [19].

In the next section, we present details of the ELM algo-
rithm and training methods. Section III describes the VLSI
architecture of the chip and details of the sub-circuits. The
trade-offs between noise, speed and energy dissipation of
this architecture are presented in Section IV. An important
limitation of hardware machine learners is limited input and
output dimensions. In Section V, we present a method to
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Fig. 1: The architecture of ELM algorithm.d is the dimension of the
input data andL denotes the number of hidden layer neurons.

virtually expand the dimensions beyond the physical number
of channels on the chip. Measurement results are presented in
Section VI and finally we conclude in the last section.

II. ELM T HEORY

In this section, we will present a brief description of the
ELM algorithm and refer the readers to [12], [20] for details.
As illustrated in Fig. 1, the ELM algorithm is applicable to a
two layer neural feed-forward network with L hidden neurons
having an activation functiong : R → R. Without loss of
generality, we consider a scalar output in this case though
the method can be easily extended to multiple outputs by
considering each output one by one [21]. The output of the
networko is given by:

o =

L∑

i

βiHi =

L∑

i

βig (zi)

=

L∑

i

βig(w
T

i x+ bi),wi,xǫR
d, βi, biǫR,

(1)

whereβ denote the output weights,zi andHi are the input
and output of the i-th hidden layer neuron.wi denotes the
input weight andbi is the bias for the i-th neuron. In general,
a sigmoidal form ofg() is assumed though other functions
have also been used. Compared to traditional back propagation
learning rule that modifies all the weights, the ELM allows
wi andbi to be random numbers drawn from any continuous
distribution while only the output weights,βi needs to be tuned
based on the training dataT . For N samples(xk, tk), the
hidden layer output matrixH is defined as:

H =




g(wT
1
x1 + b1) ... g(wT

L
x1 + bL)

. .... .

. .... .
g(wT

1
xN + b1) ... g(wT

L
xN + bL)


 (2)

The desired output weights,̂β are then the solution of the
following optimization problem:

Minimizeβ :‖ Hβ −T ‖2, (3)

whereβ = [β1..βL] and T = [t1..tN ]. The ELM algorithm
proves that the optimal solution̂β is given by β̂ = H

†
T

where H
† denotes the Moore Penrose generalized inverse

of a matrix [12]. The huge benefit of this method is that
it removes the need for iterative tuning and gives a simple
formula to calculate the weights. The orthogonal projection
method can be efficiently used to findH† as (HT

H)−1
H

T

if H
T
H is non-singular or asHT(HH

T)−1 if HH
T is

nonsingular. Further, using concepts from ridge regression
theory [22], a small constantI/C is often added to the
diagonal ofHT

H or HH
T of the Moore-Penrose generalized

inverse H–the resultant resolution is stabler and tends to
have better generalization performance. The value ofC is
typically optimized as a hyperparameter using cross-validation
techniques.
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Fig. 2: (a) System architecture of the mixed signal integrated cir-
cuit that implements the first stage of ELM; the second stage is
implemented in digital domain. The digital input data is converted to
current by the IGC and then multiplied by random weightswij in the
current mirror array. The current is converted to digital domain by the
combination of a spiking neuron and a counter. (b) Timing diagram
of the ELM system whereRN in is a global reset,Data in, A
andCLK in are SPI control signals to transfer input data to the IC.
NEU EN enables the neuron to produce spikes whileCLK cnt
is used to read out the counter valuesC one by one.
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Fig. 3: Schematic of input generation circuit (IGC) for one channel.
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to createIDAC. The capacitorC ensures sufficient SNR when the
current is mirrored to theL columns. An active current mirror is
enabled to allow fast settling whenIDAC is small.

III. SYSTEM ARCHITECTURE

The architecture of the proposed mixed signal classifier that
exploits analog computing for thed×L random weights of the
input layer is shown in Fig. 2(a). The corresponding timing
diagram is shown in Fig. 2 (b). The input data (Data in) will
be fed to the particular channel in the system serially through a
1 to 128 demultiplexor according to the corresponding address
A < 6 : 0 > through a serial peripheral interface (SPI). The
number of bits (NOB) ofData in for each channel isbin =
10. Input data will be stored in shift registers first for the
configuration of the current-mode digital-to-analog convertor
(DAC) in the input-generation-circuit (IGC). The functionof
IGC is to generate an analog DC current according to the input
data which will be copied to every column using a current
mirror. Multiplied by the random weights generated in the
current mirror array, the current in one column will be summed
according to Kirchoff’s current law (KCL) and flow into a
hidden layer neuron. This current is denoted asIzi for the i-
th neuron in Fig. 2(a) and is analogous to the variablezi in
Fig. 1. Spiking oscillations with different frequency willbe
generated by the neuron according to their own input currents
which is counted by an asynchronous counter forming a row
of the matrix H. Through a column scanner, these hidden
layer outputs can be transferred to the FPGA to first get the
output weightβ during training and later for the second stage
computation of ELM during regular operation. Other timing
and control signals will also be provided by the FPGA as
shown in Fig. 2(b). Next, we describe the operation of each
block.

A. Input Generation Circuit (IGC)

Figure 3 shows the schematic of the input generation circuit
for each dimension of input. The reference block provides a
fixed master biasing currentIref that acts as the reference
current of the current DAC as well as the biasing for the active
current mirror. The input dataData in is applied to configure
a bin = 10 bits MOS based current splitting DAC to generate
a corresponding analog current [23]. The output current of this
DAC is given by:

IDAC =
(
2−1D9 + 2−2D8 + · · ·+ 2−9D1 + 2−10D0

)
Iref .

(4)

IDAC is multiplied with the input weights by current mirroring
operation as described later. A capacitorC = 0.4pF is also
added at the gate of the current mirror array for each row to
improve noise performance and achieve the desired resolution
of 8 bits in the multiplication–this will be discussed in the
later section. In the conventional current mirror, bandwidth
is in proportion to the input current. IfData in is too small,
input currents are also small and hence the settling time of the
current mirror (defined as time taken to settle to within5% of
the final value) might be too large. To solve this problem, an
active current mirror is added to complement the conventional
mirror. SwitchS1 is closed to turn on the active current mirror
if all of the 4 MSBs are zero. This ensures that the capacitor
C is charged by the large bias current and not the small input
currents. When all the bits ofData in are 0, switch S2 is
closed to pullVbias to ground and shut off the current mirrors
in that row. The logical signals to controlS1 andS2 are given
by:

S1 = D6 +D7 +D8 +D9.

S2 = D0 +D1 + · · ·+D8 +D9. (5)

whereDi are the bits ofData in.
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Fig. 4: (a) Schematic of the neuronal oscillator circuit followed by
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Fig. 6: (a) Comparison of neuron spiking frequency between theory
and simulation in SPICE show close match. (b) Simulated neuron
spiking frequency with increasing input current for 3 different VDD.
The curves saturate at higher maximum frequencies for higher VDD.
Note the logarithmic scales for both plots.

B. Neuron

Figure 4(a) details the circuit of the hidden layer neuron
block. It is a current-controlled oscillator structure followed by
an asynchronous counter. This is one of the simplest neuron
circuits described in [24]. This circuit has the issue of large
short-circuit current dissipation in the inverters. However, in
our case we can avoid this problem by operating at very low
power supply voltages (≈ VTN+VTP ) making the short-circuit
current negligible. The neuron is enabled when the control
signal NEU EN is high. The oscillation waveform at the
nodesVmem and Vout are illustrated in Fig. 4(b).Vmem is
charged down by the input currentIz − Ilk till it reaches
the threshold voltage of the inverters. At that point both the
inverters trip making the output switch to ground. Since the

voltage change at the node ofVout is VDD, the voltage change
of Vmem due to the feedback capacitor is given by:

∆Vmem =
Cb

Ca + Cb
V DD. (6)

Also, the reset transistor turns ON chargingVmem up by the
currentIrst + Ilk − Iz. The inverters trip again onceVmem

reaches the threshold and this process continues as long as
NEU EN is high. Both the capacitorsCa and Cb can be
digitally reconfigured as shown in Fig. 4(a). The values of
the capacitors are:Ca1 = 100fF, Ca2 = 200fF, Cb1 = 50fF,
Cb2 = 100fF.

We can derive an equation for the oscillation periodTsp. It
is composed of two parts: the timeT1 for the input currentIz

to discharge the capacitor of nodeVmem and the timeT2 to
reset the capacitor. Hence,Tsp is given by:

Tsp = T1 + T2 = CbV DD

(
1

Iz − Ilk
+

1

Irst − Iz + Ilk

)
.

(7)
AssumingIlk ≈ 0, the relationship between the neuron spiking
frequency and the input currentIz can be easily obtained as:

fsp = g (Iz) =
Iz (Irst − Iz)

IrstCbV DD
. (8)

This quadratic relationship of equation (8) between current
and frequency is plotted in Fig. 5(a). As we can see from Fig.
5(a), if Iz << Irst/2, we have almost a linear relation given
by:

fsp ≈
Iz

CbV DD
= KneuI

z, (9)

Kneu =
1

CbV DD
. (10)

whereKneu = 1

CbVDD denotes a conversion gain from current
to frequency. WhenIz = Irst/2, fsp will reach its maximum
valuefmax. After this point, the spiking frequency will keep
falling down till it reaches zero forIz = Irst. Since the
inflection point of the curve is reached atIz = Irst/2, we refer
to this current value asIflx. The chip has digital control bits
making the capacitors configurable. As shown in Fig. 4(a), an
asynchronous counter counts the total number of spikes from
the neuron during a fixed period of timeTneu (time duration
for which NEU EN is high) and generates the outputH . A
hard nonlinearity in the form of saturation can be implemented
by stopping the counter whenever its count reaches a pre-
defined limit2b. b in this case is the valid MSB of the counter
output which is also configurable from6 to 14. If only the
linear region of the neuron spiking waveform is adopted (this
is also the most energy efficient part as shown later), the final
transfer function of the hidden layer neuron can be represented
by:

H =

{
fspTneu(≈ KneuI

zTneuifI
z < Iflx), if H < 2b

2b. otherwise
(11)

This saturating nonlinearity is shown in Fig. 5(b). This non-
linearity was preferred due to its ease of implementation and
digital control. From Fig. 5(b) we can also note the current at
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which the H saturates is denoted byIzsat. This value depends
on bothTneu andb. Also, [0 Izmax] is used to denote the range
of input currents to the neuron.

Figure 6(a) plots SPICE simulation of the neuron spiking
frequency with the variation of input currentIz on a logarith-
mic scale and compares it with theoretical predictions based on
equation 8. For this simulation,Ca andCb were set to be300fF
and50fF respectively while VDD was kept at1V. As expected,
the spike frequency increases linearly for small values ofIz,
reaches a maxima eventually and then starts reducing for
further increase inIz. Results from a similar simulation but
for three different values of VDD (0.8, 1 and1.2 V) are shown
in Fig. 6(b). Sincefsp is inversely proportional to VDD,fsp
is higher for smallIz with a smaller VDD. However, when
VDD is lower, Irst is smaller and hencefsp attains the peak
value at smaller value ofIz , i.e. Iflx reduces when VDD is
reduced. On the other hand, for higher VDD,fsp saturates at
a larger valuefmax and it is attained for larger value ofIflx.

C. Current Mirror Array

The digital inputData in is mapped to a vector of input
currentI in which are copied to every neuron using a current
mirror. These inputs can also be obtained from a sensor
such as a photo diode. The capacitorC = 0.4pF is kept to
maintain a minimum SNR [25] at the expense of bandwidth.
For low-power operation, we operate the current mirrors in
sub-threshold regime. Minimum sized transistors are employed
in these current mirrors to exploit VLSI mismatch which
is necessary for the generation of random input weights
wi and biasbi of ELM. For example, the contribution of
input iin,i to the total input current of neuronj is given
by iin,iw0e

∆VT,ij/UT whereUT is the thermal voltage,w0

is the nominal current mirror gain while∆VT,ij denotes the
mismatch of the threshold voltage for the transistor copying
the i-th input current to thej-th neuron. This last term is
a random variable with a Gaussian distribution and hence
the weightsw in equation (1) above get mapped to random
variables with alog-normaldistribution in our implementation.
Since in our implementationw0 = 1, we can write:

wij = e
∆VT,ij

UT (12)

Do note that the ELM algorithm only requires random num-
bers from any continuous distribution [21]. Here ,we choose
log-normal distribution due to the intrinsic physics of sub-
threshold mosfets. If biased in above-threshold regime, the
distribution of random numbers would be closer to gaussian.

D. Parameter Choice

To determine the performance of the network, we chose two
representative tasks of regression (d = 1) and classification
(d = 14). For the regression task, the network was given a
set of noisy samples and had to approximate the underlying
function. For classification, six different data sets with widely
varying dimensions and training set sizes were chosen from
the UCI machine learning repository [19]. Here, we show
results for only the ‘brightdata’ case as a representative but

Neuron 

I1 

C

in1 

I2 

in2 

Fig. 8: Simplified circuit diagram of one current mirror for noise
analysis.

the conclusions drawn are valid across the other data sets. It
is a two class problem that includes1000 training data and
1462 testing data. The reasons for choosing these tasks were
that the performance of the software implementation for these
tasks are reported in publications as a typical benchmark [12].

For the following simulations done in MATLAB, we consid-
ered the mismatch in current mirror weights as the dominant
factor. It was assumed to be log-normally distributed with
a standard deviation ofVT , σVT

ranging from5 to 45 mV
(as a reference,σVT

in our fabricated chip is≈ 16 mV).
Equation (11) was used to simulate the neuronal characteristic
and the other parameters were kept at fixed nominal values of
Kneu = 26KHz/nA andTneu = 56µsec. In real applications,
variations exist for other parameters in the neuron transfer
function as well. However, simulation results show that mis-
match in these do not affect the qualitative nature of the results
we present here.

1) Input Mapping: For efficient use of the hardware, we
need to determine how to map the compact setX = [−1
1] to input currents. First, it can be only mapped to a set
in R+ since we have unidirectional current mirrors. Assume
the maximum input current for one dimension isImax, i.e.,
the set is[0 Imax]. Therefore the maximum current going
to the neuronIzmax = d × Imax. From Fig. 5(b), we need
to find out the relationship betweenIzmax and Izsat. Though
theoretically any positive set will work, it might need an
unreasonably large number of neurons to get a satisfactory
performance. To illustrate this point intuitively, consider a case
whereIzmax << Izsat. Then the transfer function of the neuron
is a linear function without any high order components. Also,
if Izmax >> Izsat, the outputs of most neurons will be saturated
to 2b, and will not encode the variations of the input. Both
of these cases will require a large number of hidden layer
neurons so that ‘by chance’ a large enough pool of neurons
are obtained which encode the changes in input. Hence, there
should be a range for the ratio betweenIzmax and Izsat, such
that we can achieve a good performance with a small number
of hidden layer neurons.

To find this desired range, we first fix a value ofIzsat/I
z
max

and evaluate the performance of the network on both tasks with
different numberL of hidden layer neurons. The regression
error reduces initially with largerL but saturates after the
L increases beyond a critical valueLmin. To quantify the
dependence of performance on the ratio ofIzsat/I

z
max , we

now plot in Fig. 7(a) the dependence ofLmin on the ratio
of Izsat/I

z
max , with lower values ofLmin being preferable.
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2
b and input dimensiond. For increasingd, the total current input to a neuronIz keeps on increasing thus increasing oscillation frequency.

Hence, it can support higher dynamic range2
b in the same timeTneu.

We have chosen error of0.08 as the saturation level in this
case. From this figure, the ratio ofIzsat/I

z
max ≈ 0.75 is the

best trade off point between number of hidden neurons and
input dynamic range for all values ofσVT

. For small values
of σVT

, the performance degrades rapidly on both sides of the
optimal value. However, asσVT

increases, the performance
degradation is much less implying the choice ofIzmax is less
critical in highly scaled VLSI.

However, it can also be noted that the performance is best
(leastLmin) for σVT

in the range of15−25mV. This has been
found to be true for a wide range of classification problems as
well. Hence, for deeply scaled CMOS processes with larger
σVT

, minimum sized transistors cannot be used. In those cases,
the transistor size has to be increased (following Pelgrom’s
model [1]) to reduceσVT

within the desired range. However,
the required area will still reduce compared to an older process
with larger transistors since the coefficientAVT

is reducing as
transistor scaling continues [1].

2) Resolution of Output Weight:As mentioned earlier, the
digital circuits will use pre-calculated output weights,β from a
memory and accumulate it based on neuronal spiking patterns.
In order to implement this, we need to know how many bits
are needed to representβ. Less number of bits will degrade

performance of the classifier while more will waste hardware
resources and power. We use the classification example here
with L = 128. Figure 7(b) shows the change of error with
increasing number of bits indicating10 bits resolution is
enough for good accuracy.

3) Counter resolution:Besides the resolution ofβ, we also
analyzed the dependence of performance on the output counter
resolutionb in equation (11). Since we estimate the spiking
frequency by using a counter to count the number of spikes in
a fixed time windowTneu, a small value ofb will introduce
large quantization errors in the estimate of frequency. This
implies that the neurons have to produce more spikes in the
counting window, which would on the other hand induce more
power dissipation. To find a good trade-off forb, we fixed
Izsat/I

z
max ≈ 0.75, L = 128 and resolution ofβ to 10 bits.

Figure 7(c) shows the simulation result for the classification
error with b increasing from1 to 10. b ≈ 6 is found to be
sufficient for classification.

IV. N OISE, SPEED AND ENERGY DISSIPATION

A. Noise

Noise is an important specification to be considered in
circuit design. In this section, we present the operational
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limits set on this architecture due to noise based constraints.
Since the transistors are operating in sub-threshold region, the
contribution of1/f noise is negligible compared to the thermal
noise [25]. For the current mirror circuit as shown in Fig. 8,we
can easily get the input referred thermal noise spectral density
as:

i2in = i2n1 + i2n2 ·
g2m1

g2m2

, (13)

wheregm1 andgm2 are transconductance of input and output
transistors respectively,i2n1 and i2n2 are corresponding tran-
sistor channel noise. Since the transistors are working in the
sub-threshold region, the transconductance is in proportion to
its drain current. Applying the noise model of drain current
of sub-threshold transistors to bei2 = 2qI∆f [26] where
q denotes the electronics charge, we can rewrite the above
equation as:

i2in = 2qI1∆f + 2q∆f ·
I21
I2

(14)

For this single pole system, the noise equivalent bandwidth
∆f = κI1

4CUT
whereκ denotes the inverse of the sub-threshold

slope [26]. AssumingI2/I1 = w0, and substituting the
bandwidth equation above, we get:

i2in =
qκI21
2CUT

(
1 +

1

w0

)
. (15)

Finally, the signal to noise ratio (SNR) can be expressed in
the following equation:

SNR =
I21

i2in
=

2CUTw0

qκ(w0 + 1)
. (16)

Thus, from the equation (16), we can see the SNR can be
controlled by changingC. This reflects a direct trade-off with
bandwidth which is inversely proportional toC. If an 8 bits
SNR is needed in the system, andw0 = 1, it is sufficient
to addC = 0.4pF capacitance in the current mirror for each
input channel. Note that only one such capacitor is needed for
every row.

B. Speed

The conversion time for one classification operationTc

comprises two parts:Tcm andTneu whereTneu is the neuron
operation time andTcm is the current mirror settling time. If
one of them is much larger than the other, we can approximate
Tc ≈ max (Tcm, Tneu). We considerTcm to be4 times of the
inverse of the bandwidth (BW), i.e.Tcm = 4

BW = 4CUT

κIin
where κ = 0.7, UT = 0.025V at room temperature and
C = 0.4pF as derived earlier. If the average input current
is Imax/2, the average current mirror settling time is

Tcm,avg =
8CUt

κImax
. (17)

As discussed earlier in Section III-A, an active current mirror
is utilized to boost the bandwidth for small current values.
SPICE simulation result for this effect shown in Fig. 9(a)
demonstrates a bandwidth increase by around5.84X . We can
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Fig. 10: (a) Variation of energy per classification operation (Ec) with
varying maximum value of input currentIzmax for three different
settings of VDD. (b) The same plot as in (a) but replacingIzmax

with its correspondingTneu from equation (19).

find the range ofTcm by considering maximum and minimum
input currents:

Tcm,max =
4CUt

5.84κImax/2bin

Tcm,min =
4CUt

κImax
(18)

where bin = 10 is the number of bits ofData in and the
factor of 5.84 is due to the active current mirror. Figure
9(b) shows the decrease ofTcm with increasingImax for the
conventional and active current mirror cases.

To find the value ofTneu, we can see from Fig. 5(b) that
we wantH = 2b for Iz = Izsat. Combining this observation
with equation (11), we can derive the following:

Tneu =
2b

KneuIzsat
=

2b

0.75KneuIzmax

=
2b

0.75KneudImax
.

(19)
where we useIzsat/I

z
max = 0.75 (shown earlier in Section

III-D) and Izmax = d× Imax. Now, we can compareTcm and
Tneu to see the dominant term as a function of parameters
b and d. Figure 9(b) shows a comparison betweenTcm =
0.5(Tcm,max + Tcm,min) and Tneu for b = 8 and b = 12.
IncreasingImax reduces the time required for both the neuron
and current mirror.Tcm for the conventional current mirror is
always the dominant factor. However, with the active current
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mirror on Tneu may be larger thanTcm for large values of
b. These plots are done ford = 10; increasingd will have
an effect of reducingTneu sinceIZmax = d× Imax increases.
Hence, to show the trade-offs betweenTcm and Tneu as a
function of b andd, we plot contours in the space of counter
dynamic range2b and input dimensiond whereTcm = Tneu.
To do this, we equate (17) and (19) to get:

8CUt

κIzmax/d
=

2b

KneuIzsat

=⇒ 2b =
6dCUtKneu

κ
(20)

whereIzsat/I
z
max = 0.75 is used. The straight line contours

defined by equation 20 are plotted in Fig. 9(c) for three
different Kneu values corresponding to VDD= 0.8, 1 and
1.2V. For parameter choices on these contour lines,Tc =
Tcm + Tneu = 2Tcm = 2Tneu. If the relation between2b

and d sets the operation regime above any of the contour
lines, Tneu > Tcm while the opposite condition is true if
operation regime is below the contour lines. It can be seen that
for b ≈ 8 − 10 bits and a nominal value of VDD=1V, Tneu

dominatesTcm for the maximum dimension of128 supported
by our chip.

C. Energy

The total power dissipated by the system (Pt) can be split
into two parts: power from analog (Pavdd) and digital (Pvdd)
supplies. The first term (Pavdd) is mainly dissipated by the
voltage reference circuitry, biasing block and the IGCs. Ideally,
this should be a function of input dimension. However, in
the current design only unused active mirrors are turned off
while the current DAC is always ON–this will be rectified
in future designs. The second term (Pvdd) comprises the
power dissipated by the neuron, asynchronous counter and
other digital blocks including decoder and scanner. Of these
terms, the power dissipated by the neuron includes the synaptic
currents as the input and the counter at output and varies
with different parameters such as biasing current. It is the
major energy consumer in the chip when the number of hidden
neurons,L is large. Hence, it is important to understand its
dependence on different parameters. Thus, we can writePvdd

as:
Pvdd = Pneu + Pdig ≈ Pneu = LfspEsp, (21)

whereEsp is the energy dissipation per spike for the neuron.
Esp can be modelled as:

Esp = α1V DD2 +
α2IscV DD

fsp
+

CbI
zV DD2

Irst − Iz + Ilk
, (22)

where Isc is the short-circuit current in the inverter that
depends on the value of VDD and is negligible for small
values of VDD. Here, the first term denotes the switching
power dissipated in the neuron circuit, second term denotes
short circuit power loss in the inverters and the third term
denotes the short-circuit power dissipated on the nodeVmem

in Fig. 4(a). If Iz << Irst and Ilk ≈ 0, equations (21) and
(22) can be combined to give:

Pvdd ≈ Pneu ≈ L
(
α1V DD2fsp + α2IscV DD

)
. (23)
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Fig. 11: The extension from a2 × 3 random projection matrix to
6× 6 by weight reuse technique .

From simulation, when VDD is1V, α1 ≈ 0.2pF andα2Isc ≈
0.03µA.

Using equation (22), we will now proceed to estimate
average energy per conversion operation (Ec) for one neuron
where an input currentIz ∈ [0 Izmax] is converted to a digital
count. Assuming thatIz is distributed uniformly in the range
of 0 to Izmax, i.e. P (Iz) = 1

Iz
max

, Ec can be estimated as:

Ec =

∫ Iz
max

0

Esp (I
z)H (Iz)P (Iz) dIz

=
1

Izmax

∫ Iz
max

0

Esp (I
z)H (Iz) dIz,

(24)

whereH(Iz) is the number of spikes generated inTneu as
defined in equation (11). Note that here we writeEsp(I

z) and
H(Iz) to make the dependence of equations (22) and (11) on
Iz explicit. Using the expression forTneu in equation (19),
equation (24) can be simplified further to get:

Ec =
2b

0.75KneuIzmax
2

∫ Iz
max

0

Esp (I
z) fsp (I

z) dIz . (25)

From equation (25), we can see thatEc depends onIzmax. The
choice ofIzmax is guided by the design constraints. Typically,
we have to either meet a minimum specified speed of operation
or minimize energy of operation without any constraint on
speed. To better explain the trade-offs, we can plotEc while
varying Izmax with b = 10 as illustrated in Fig. 10(a) for
three values of VDD. The same figure is re-plotted in Fig.
10(b) but with the corresponding value ofTneu instead ofIz.
Firstly, note that the plots for smaller VDD span a smaller
range of current sinceIrst is correspondingly smaller (similar
to Fig. 6). For each VDD, the lowest conversion energy is
attained whenIzmax is close toIflx = Irst/2. Intuitively, this
happens becausefsp is higher which leads to lowerTneu and
correspondingly lower energy. Thus it is beneficial to operate
for a short time at a higher spiking frequency than over a
longer time with a small frequency. The optimum currentIz

is less thanIflx since atIz = Iflx, the short-circuit power
dissipation (third term in equation (22)) increases significantly.
From Fig. 10, we can see that lowest energy per conversion is
attainable for lowest VDD as expected since the short circuit
current reduces drastically at lower VDD. However from Fig.
10(b), we can see that the trade-off for keeping a low VDD is
large conversion time. Hence, if conversion time is a critical
specification, we have to choose the minimum VDD that meets
this specification. As can be seen from Fig. 10(b), higher VDD
allows for lowerTneu.
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V. I NPUT DIMENSION AND HIDDEN LAYER EXTENSION

TECHNIQUE

For some applications, dimension of the input data is quite
large (over several thousands) while other applications may
require a large number of hidden layer neurons (also over
several thousands) to achieve the best performance. This poses
a big challenge to neuromorphic analog hardware implementa-
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Fig. 14: Die photo of the prototype chip fabricated in0.35µm CMOS.

tions and have restricted the use of analog classifiers sincethe
dimensions of the chip are fixed once fabricated. For example,
suppose the input-dimension for an application isd and it
requiresL hidden layer neurons. Conventionally, at leastd×L
random weights are needed for the random projection opera-
tion in the first layer of ELM to get the hidden layer matrixH.
However if the maximum input dimension for the hardware is
only k (k < d) and the number of implemented hidden layer
neurons isN (N < L), the hardware can only provide ak×N
random projection matrixW comprising weightswij (i = 1,
2, · · · , k and j = 1, 2,· · · , N). For more efficient use of the
hardware, here we propose a method to reuse the input weights
and hidden layer neurons to effectively expand both input
dimension and number of hidden layer neurons beyond the
number physically fabricated on-chip. Intuitively, each neuron
requiresd random weights and there are a total ofk×N such
random weights on the chip. Hence, as long asd < k × N ,
we can reuse these random weights to satisfy the requirement.
Similarly, each input dimension requiresL random numbers
for the projection–it can be attained by reusing weights as
long asL < k ×N . A simple example of such an increased
dimension of weight matrix is shown in Fig. 11 fork = 2 and
N = 3. This case shows the maximum dimension increase
possible to get a matrix of size(k ×N)× (k ×N) Next, we
elaborate the method used to do this assumingd, L < k×N .

To expand the number of hidden layer neurons, we propose
to do it in ⌈L/N⌉ steps where the number of projections is
increasedN in every step. For the second set ofN neurons,
we need to shift the random matrixW comprisingwij (i =
1, 2,· · · , d and j = 1, 2,· · · , N) to W1,0 comprisingwij (i =
2, 3,· · · , d, 1 and j = 1, 2,· · · , N). Here, the subscript(1, 0)
is used to denote a single circular rotation of the rows of the
matrixW. This notation impliesW = W0,0 = Wk,0. Using
this notation, we can continue to get more random projections
of the input (and thus expand the number of hidden neurons)
by generatingW1,0 to W⌈L/N⌉−1,0. Figure 12(a) shows a
simple circuit that can be added to the input side of the chip
to achieve this function. The corresponding timing diagramof
control signals are shown in Fig. 12(b). Once the input data
is loaded and the first set of hidden layer outputs are obtained
(during theNEU EN signal), theRotation Control signal
is turned high to configure the input registers as a circular
shift-register. This is followed by anotherNEU EN signal
to obtain the second set ofN random projections and this
process continues tillL random projections are obtained.

A similar method can be applied to expand the input
dimension fromk to d. In this case, we take the firstk



10

0 200 400 600 800 1000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

O
ut

pu
t

Data_in

Fig. 16: Regression of underlying sinc function (in blue) based on a
set of noisy samples (in green).

dimensionsx1, x2..xk of a particular input samplex ∈ ℜd

and send it to the chip to get the multiplication for the first
k dimensions with the random matrixW. This generatesL
hidden neuron outputs which can be expanded to a larger
number using the technique described in the last paragraph.
For the nextk dimensions ofx, we shift the random matrix
W comprisingwij (i = 1, 2, · · · , k and j = 1, 2,· · · , N) to
W0,1 comprisingwij (i = 1, 2, · · · , k and j = 2, 3,· · · , N,
1). This implies a circular shift along the columns ofW. The
hidden layer outputs obtained in this step are added to the ones
obtained in the earlier step. This method can be continued for
⌈d/k⌉−1 steps while accumulating the resulting hidden layer
outs every time to get the final output for thed dimensional
inputx. Figure 13(a) shows a simple circuit that can be added
to the previously described chip architecture at the outputto
implement the input dimension expansion technique. Figure
13(b) depicts the corresponding timing diagram. The circuit
in Fig. 13(a) shows a register bank after the neuron output
counters that can accept inputs from these counters or from
other registers in this layer to effect the circular rotation of
columns ofW. There is a second register bank after this
which accumulates the counter outputs over multiple cycles.
After the conversion of firstk dimensions ofx during the first
NEU EN signal, a clock pulse onCLK r andCLK a are
used to shift this output to the accumulator. From the next
cycle, theRotation Control signal is enabled and pulses on
CLK r are used to rotate the columns of the hidden layer.
Another pulse onCLK a is used to accumulate this value in
the second register bank.

TABLE I: Chip Summary

Technology 0.35µm CMOS
Die Size 5 mm× 5 mm

Input Channels 128
Hidden Layer Size 128
Output Data format 14-bit Digital
Input Data format 10-bit Digital

Power supply voltage 1 V

VI. M EASUREMENT RESULTS

A. Characterization

To validate the function of the proposed design, we have
implemented the system in a0.35µm CMOS process. The

ELM chip occupies a die area of5mm × 5mm as shown
in Fig. 14. The current area of the chip is dominated by
the current mirror array since the layout is not optimized.
Each cell in the current mirror array is pitch matched to the
neuron in one direction and the IGC along another making
it mostly empty. The area of the current mirror array can
be reduced tremendously by following the proposal in [29]
limiting the size to the pitch of the IGC. In the next version,
we will reduce the pitch of the IGC by moving to a scaled
process like65nm. The mixed-signal chip implements the
computationally intensive first stage while the second stage
is currently implemented off-chip on a FPGA. In future, the
second stage will also be integrated on the same die. Again,
moving to a scaled process like65nm enables a small layout
for this digital part. The larger statistical variation in ascaled
process does not hurt the performance of the analog part as
shown in Fig. 7. The extra gate leakage in the current mirrors
can be handled by either using thick oxide I/O devices or using
active mirrors. Next, we present some characterization results
to show the functionality of the chip. In all the experiments,
both analog and digital power supplies are shorted together
and is denoted by VDD. Unless stated otherwise, the default
value of VDD= 1V is used in most experiments.

First, we can get the transfer function of the128 neurons
by sweeping the digital inputData in on any one channel
from 0 to 1023. The resultant curves are shown in Fig. 15(a).
It can be seen that there is significant variation between
the transfer curves of the neurons. Next, to characterize the
random variation of the input weight matrix, we send a fixed
value ofData in to each of the input channels one by one
and measure the counter outputsH . For every input channel,
we getL = 128 counter values indicative of the mismatch
in that row. In total, there are128 × 128 such values ofH
for all the input channels. These results are shown as a 3-
dimensional plot in Fig. 15(b) whereH is plotted on the
Z-axis. These same values are normalized by the median
count value to get the effective weight distribution. This
distribution of 128 × 128 values is plotted as a histogram in
Fig. 15(c) displaying a log-normal distribution. This is tobe
expected since∆VTn has a normal distribution as explained in
Section III-C. Further, by fitting a gaussian distribution to the
logarithm of the weight values, we obtainσ∆VTn ≈ 16mV in
this process. Note that the mismatch obtained here also takes
into account mismatch in the neuronal tuning curves since the
count values are obtained at the output of the neuron. Further,
this characterization is consistent across a set of9 chips with
minimum and maximum values ofσ∆VTn being 15.36mV
and16.26mV respectively.

B. Speed and Power

During measurement, we found the chip to be functional
for VDD down to 0.7 V. Thus we can apply the results
of the design space exploration in Section IV to optimize
the system for the best speed and power efficiency. During
measurement, a pico-ammeter (Keithley 6485) is utilized to
measure the average current from the power supply to estimate
the power dissipation. For all the experiments, speed and
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Fig. 15: (a) Measured transfer function of hidden layer neurons when the digital input varying from0 to 1023 with d = 1 andTneu = 10ms.
(b) A surface plot showing the mismatch in weights of the128 × 128 current mirror synapses. The output counter values for different
neurons are plotted forTneu = 10ms whenData in = 100 is set on each input channel one by one. (c) Histogram showingthe log-normal
distribution of the input weights obtained from (b) for the128 × 128 current mirror array.

TABLE II: Measured performance on Binary Classification Datasets from UCI repository

Datasets # Features (d) # Training # Testing
Miss Classification Rate (%)

Software (L = 1000) [12] This work (L = 128)
Diabetes 8 512 256 22.05 22.91

Australian Credit 14 460 230 13.82 12.11
Brightdata 14 1000 1462 0.69 1.26

Adult 123 4781 27780 15.41 15.57

TABLE III: Comparison Table

JSSC 2013 [27] JSSC 2007 [25] IJCNN 2015 [28] ISCAS 2015 [18] This work
Technology 0.13µm 0.5 µm 65 nm 0.35µm 0.35µm
Algorithm SVM SVM ELM ELM ELM

Task Classification Classification Regression Regression Regression
Classification Classification

Design Style Digital Analog Mixed mode Mixed mode Mixed mode
Floating gate

Supply Voltage 0.85 V 4 V 1.2 V 0.6 V (Digital) 1 V
1.2 V (Analog)

Power Dissipation 136.5µW 0.84µW - 0.4 µW 188.8µW
1

Max Input Dimension 400 14 1 128 16384
2

Energy Efficiency 631 pJ/MAC
3

0.8 pJ/MAC - 3.4 pJ/MAC
4

0.47/ 0.54 pJ/MAC
5

Resolution 16 b 4.5 b 13 b 14 b 14 b
Classification Rate 0.5-2 Hz 40 Hz - 50 Hz 31.6 kHz

Throughput 2 MMAC/s 1300 MMAC/s - 0.12 MMAC/s 404.5 MMAC/s
1 This power dissipation is measured based ond = 128 andL = 100.
2 Using input dimension extension technique to expand tod = 128× 128. Note that the circuits for rotating inputs and outputs
for dimension increase are not included on this test chip.
3 Assuming1000 support vectors.
4 Only considering first stage of ELM ford = 40 andL = 60.
5 0.47 pJ/MAC is energy efficiency of current chip implementing first stage of ELM. The total energy per operation for binary
classification is0.54 pJ/MAC usingV DD = 1.5 V for digital multipliers of second stage (see section VI-B for details).

power are measured forData in = 1000 and d = 128
with L = 100 neurons activated. Conversion timesTneu

are estimated for2b = 128. At VDD= 0.7V, the power
dissipation is17.85µW at a maximum conversion speed of
4.5kHz. As can be expected from Fig. 10, there is not much
variation in energy per classification whenIzmax is reduced.
However, this difference is more obvious at a higher VDD
of 1V. In this case, the fastest classification rate for this
system is146.25 kHz corresponding toTneu = 68.5µs when
Iz ≈ Iflx. However, the power dissipation at this speed is
quite high–2.2mW. Hence for a better energy efficiency, we
optimize the classification rate to be around31.6 kHz by
reducingIzmax to reduce the short-circuit power dissipation on

Vmem (as described in Section IV-C). The measured power
dissipation now becomes188.8µW as shown in Table III.
We choose this operating point as a good trade-off between
speed and power efficiency. From this, we can approximate
the coefficientsα1 ≈ 0.3pF andα2Isc ≈ 0.076µA that are
close to simulation values reported in section IV-C. Also, the
analog powerPavdd ≈ 3.4µW . Considering the128 × 100
multiplication-and-accumulation (MAC) operation for thefirst
layer, we can calculate the energy efficiency for this case as
0.47 pJ/MAC. The corresponding throughput for classification
rate of31.6 kHz is 404.5 MMAC/s. Note that the current test
chip does not have the digital multiplier for the second stage.
Hence to estimate total system power, we have simulated a
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14-bit×10-bit array multiplier in the same0.35µm process
(assumingb = 14 and resolution ofβ = 10). For a digital
V DD = 1.5V, the energy per multiply is estimated to be7.1pJ
at a delay of12ns. Using this value, the energy efficiency of
the whole system for binary classification can be found to be
≈ 0.54pJ/MAC.

C. Regression and Classification

In order to verify the performance of the proposed neuro-
morphic ELM system in machine learning applications, we
first show an example of regression (d = 1) where the system
was trained on5000 noisy samples (additive gausian noise
with σ = 0.2) of a targetsinc(x) function and its task was
to approximate the underlying function through regression.
The input data is passed through the chip and hidden layer
activations are obtained. These are next used for training the
output weights. This method takes care of the mismatch in
the neuronal transfer curves (which is also log-normal due to
sub-threshold operation) by lumping it with the current mirror
mismatch and training weights that take this into account. The
measured result of this experiment are shown in Fig. 16 for
L = 128 hidden neurons where the noisy samples are shown
in green and the regressed function is in blue. The error of
0.021 we obtain in this experiment is comparable to the error
of 0.01 obtained in software simulations of ELM [21].

Next, we employ some real-world benchmark binary clas-
sification data sets from the UCI machine learning repository
[19]. The reason for choosing these data sets are that they have
different characteristics in terms of data dimensiond and data
set size in terms of number of samples: small size and low
dimensions (Pima Indians diabetes, Statlog Australian
credit), large size and low dimensions (Star/Galaxy −
Bright), large size and high dimensions (Adult). The details
of the data sets are shown in Table II. During measurements,
the hidden layer matrixH is obtained by applying the training
data to the chip one by one. The second layer weights are
obtained offline using thisH and then downloaded to the
FPGA for testing. The accuracy obtained in measurements
with L = 128 hidden neurons is shown in table II and is
compared with software simulation results taken from [12].
This table shows that the performance of our implemented
hardware ELM is comparable with the software ELM with
the differences possibly due to the larger number of sigmoidal
neurons (as opposed to saturating linear neurons for this chip)
used in [12].

D. Dimension Increase With Weight Reuse Technique

In order to evaluate the performance for the dimension
extension technique, we first applied a very high dimensional
dataset (leukemia) with d = 7129. Sizes for the training and
testing data are38 and34 respectively. During measurement,
we obtain a miss-classification rate of20.59% with L = 128
neurons, which is comparable with the error rate of19.92%
obtained using the software ELM reported in [12]. Next, we
separately prove the concept of artificially increasing number
of hidden layer neurons. The measured errors in table II are
close to optimal and do not reduce much with further increase

TABLE IV: Sinc function regression using normalizedhj

Power supply (V)
Error (%) Error (%)

(Non-normalized) (Normalized)
0.8 0.5924 0.076
1 0.045 0.0629

1.2 0.1538 0.065

in L. Hence, we instead takeL = 16 neurons and use weight
reuse method to expand toL = 128. For the datasetdiabetes,
the error forL = 16 is 27.1%. This reduces to an error of
22.4%, comparable to that in tableII, whenL is increased to
128 by weight reuse. Note that since our chip did not have the
circuits described in Section V to perform on-chip dimension
expansion, we shifted the input data before applying it to the
chip. Also, the output data was shifted in the FPGA before
accumulation.

E. Comparison

Our work is compared with other recently reported hard-
ware machine learners in Table III. Our design is the most
power efficient machine learner reported so far due to the
low power analog multiplications. The energy efficiency of
commercial digital processors are saturating at≈ 100pJ/MAC
[30]. Even custom digital multipliers have energy efficiencies
of 10 − 70pJ/MAC [17], [31], [32]. This explains the higher
energy requirement of [27] in Table III. [25] uses analog
floating-gate based multipliers and can hence achieve low-
power multiplication. However, our approach does not require
high voltages for programming floating-gates and is also
much more compact due to the use of only one transistor
without capacitors in the multiplier cell. [28] also uses random
mismatch (and a systematic offset) in65nm CMOS to perform
the calculations in the first stage of ELM. However, they only
have a single dimensional input and only show regression.
Moreover, they do not report any energy or speed metrics.
Lastly, compared to [18] which also uses the same core circuit
of current mirrors to perform ELM computations for neural
decoding, the current work is more energy efficient due to
the faster operation (as explained in section IV-C). Also, the
current work shows a method of expanding input dimension
to a maximum ofd = 16, 384 while [18] could only support
a maximum ofd = 128.

F. Robustness

It is important to consider how the performance of the
chip varies in the face of variations of power supply voltage
(VDD) and temperature. We use the normalization method
suggested in [18] to increase the robustness of our chip with
respect to common-mode variations in VDD and temperature.
Following, [18], we define the j-th normalized hidden layer
value (hj,norm) as:

hj,norm =
hj∑L

j=1
hj/

∑d
i=1

xi

(26)

To show the effectiveness of normalization, we first consider
its effect on variations in VDD. Figure 17(a) plots measured
values of hidden layer outputhj for five different values of
input dataDin at three different values of VDD (0.8, 1 and
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Fig. 17: Comparison of hidden layer outputs for three different values
of VDD in (a) the conventional case and (b) normalized case. The
normalization results in less variation of output due to change in
VDD.

1.2V). It can be seen that there is a huge variation inhj

(maximum of22.7%). In contrast, when the same values are
normalized (Fig. 17(b)), the variation due to change in VDD
is reduced a lot (maximum of4.2%) while variation due to
change ofDin is still retained. This proves effectiveness of
the normalization method. We have further used the normal-
ized and non-normalized values to perform thesinc function
regression task described in Section VI-C. In this case, the
weights are obtained for a nominal VDD of1V while testing
is performed at all three VDD values. The result is reported in
Table IV. It can be seen that normalization enables the error
to be low for all three values of VDD.

Next, we studied the effect of temperature variations on the
hidden layer outputs. We expect the temperature dependent

weights (e
∆VT
UT ) to be the major contributor to variations

in hidden layer outputshj . To confirm this prediction, we
made a MATLAB model and obtained the variation ofhj

when temperature varied by∆T = ±20◦C about a nominal
value of T0 = 300K. Then we benchmarked this variation
with a SPICE simulation of the same circuit to confirm our
earlier assumption–henceforth, we used the MATLAB model
for simulations. Similar to the earlier case, we found that
applying normalization reduced the maximum variation of
hidden layer outputs from9% to 1.6% over this tempera-
ture range. Next, we trained output weights for classification
problems at the nominal temperatureT0 while the temperature
was again varied over the same range during testing. We plot
the results forhj and hj,norm for two different datasets in
Fig. 18(a) and (b). It can be seen that the error increases
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Fig. 18: Comparison of performance when normalized and non-
normalized hidden layer outputs are used for classificationof (a)
Australian credit and (b) Brightdata sets from the UCI repository.

rapidly when temperature varies on either side ofT0 while
using hj . On the other hand, the error changes much more
slowly when usinghj,norm again confirming the benefit of
normalization. Further, we have observed that retraining the
weights can reduce the error close to the original value for
both hj and hj,norm. Hence, to get good performance over
a wider range of temperature, we can store different weights
for different tmperature ranges. One disadvantage with using
the normalization is that now the second layer has to perform
L divisions on top of theL × C multiplications. But given
the benefits provided, we believe that normalization is still a
favourable choice. We do not have the normalization circuits
included in this test chip but plan to include them in the next
version.

VII. C ONCLUSIONS

We have presented a low-power hardware neuromorphic IC
in 0.35µm CMOS for machine learning applications using
randomized neural networks such as random vector function
link (RVFL), reservoir computing methods or extreme learning
machines (ELM). Our hardware can also be used as a di-
mension reduction mechanism prior to applying unsupervised
algorithms like k-nearest neighbors for clustering if the non-
linear saturation in the neuron is not applied [33], [34]. The
particular algorithm we employed in this work is extreme
learning machine (ELM). The mismatch in silicon spiking
neurons and synapses are used to perform the vector-matrix
multiplication that forms the first stage of this classifier and is
the most computationally intensive. Our results indicate that
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for a wide set of problems,σVT in the range of15 − 25mV
gives optimal results. A design space exploration is performed
to show that minimum energy per operation at a specific VDD
is obtained by operating for a short time at the highest spiking
frequency achievable at that VDD. Linear neurons with a
saturating non-linearity are used due to ease of implemen-
tation. Operating from a1 V power supply, this system can
achieve an optimum energy efficiency of0.47 pJ/MAC with a
corresponding classification rate of31.6 kHz making it one of
the most energy efficient machine learners reported. Though
this hardware can only implement randomized neural networks
which might require a penalty of2 − 3X more number of
hidden nodes compared to networks with full tunability [35]
in many applications, the10− 20X lower energy required by
random coefficient multiplications in our method overcome
this penalty for lowering overall system energy. We also show
a normalization method that enables a more robust operation
of the circuit over changes in power supply and temperature.

In future, we will apply this chip to classify multi-class
image datasets such as MNIST. We will also explore the possi-
bility of using it for dimension reduction prior to unsupervised
clustering.
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