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Abstract—In this paper, we describe a compact low-power, high of digital bits [9]. Sometimes, it is claimed that learning
performance hardware implementation of the extreme learnmdg  can compensate for mismatch and has been demonstrated in
machine (ELM) for machine learning applications. Mismatch in specific cases [10]/ [11]-but the claim needs to be further

current mirrors are used to perform the vector-matrix multi - tified usi tandard datasets si . tch wilk exi
plication that forms the first stage of this classifier and is he quantned using standard datasets since mismatch wilt exis

most computationally intensive. Both regression and clagfcation N the learning circuits as well.
(on UCI data sets) are demonstrated and a design space trade- The ELM algorithm is popular in the machine learning
off between speed, power and accuracy is explored. Our redsl community due to its fast training speed and has been shown
indicate that for a wide set of problems, oV in the range of 4 nroquce similar or better performance compared to sup-
15—25mV gives optimal results. An input weight matrix rotation . T
method to extend the input dimension and hidden layer size port vector machlne_s (S\,/M" [12]. A closely related method
beyond the physical limits imposed by the chip is also desdved. (termed Neural Engineering Framework) has also been used
This allows us to overcome a major limit imposed on most to generate large scale models of cognitive systems [13].
hardware machine learners. The chip is implemented in ®.35um  ELM based methods have been used classify spike time
CMOS process and occupies a die area of around 5 mmx 5 pageq patterns recently 14] and online learning algorithm
mm Operatlng fromalV power sgpply, it achieves an energy f ELM h b - i T151. CI lv th . d
efficiency of 0.47 pJ/MAC at a classification rate of 31.6 kHz. or ave been proposed.| ] early there IS a nee
to develop hardware implementations of the same. In this
paper we present a circuit that ‘utilizes’ mismatch to do
effective computation in the first layer of a two layer spikin
neural network implementation of ELM. This approach can be
used in other algorithms like liquid state machine (LSM) or
In general, it is difficult to achieve high accuracy in purecho state networks (ESN) (sometimes referred to as rd@servo
analog signal processing modules due to several reasongomputing), since they require random projections of the
major one being device mismatch [1]. The effect of mismatéhput as well. We have earlier proposed the idea of using
on traditional circuits like differential amplifiers and reent  spiking neurons for implementing ELM_[16] and described
mirrors is well documented [2]. It has also been shown th#ife advantages of such an architecture over standard Idigita
for MOS based circuits, the extra power dissipation neededitnplementations[17]. It should be noted that this metholg on
overcome effects of mismatch can be an order of magnitudeploits spiking neurons for ease of hardware implemenntati
higher than the limit imposed by thermal noise [1]. Wittand does not use any spike based learning rules to perform
transistor dimensions reducing over the years, variance tie learning of the second stage. The major hardware benefits
properties of transistors, notably the threshold voltaugs are the use of low-power analog circuits for the reservoi an
kept on increasing making it difficult to rely on conventibnasimple digital circuits for the second stage. We demorestrat
simulations ignoring statistical variations. The probldésn the first VLSI implementation of this principle in_[18] where
particularly exacerbated for neuromorphic designs [3]eseh it was used for decoding motor intentions for implantable
transistors are typically biased in the sub-thresholdoe{d]- brain-machine interfaces. In this paper, we present ardifte
[6] of operation (to glean maximal efficiencies in energy pethip utilizing the same core circuit as_[18] but operating on
operation) since device currents are exponentially rélabe 10 bit digital inputs instead of spikes. Instead of a specific
threshold voltages thus amplifying its variations as wetlr application, this paper presents an entire design spade-tra
example, it is shown in_[7] that an array df— bit DACs in  off between speed, power and accuracy. Finally, we present a
0.35um CMOS process used as tunable weights only provideethod and associated circuits to virtually expand the tinpu
an effective number of bits df.1 due to mismatch. In general,and output dimensions of the chip beyond the physically
there has been an approach to compensate for mismatch eililiglemented 28 channels. We show results of applying inputs
through floating-gates$ [8] or by storing calibration coeéiits from standard machine learning data bases such as [19].
off-chip in the form of connection probabilities][3]. Digit In the next section, we present details of the ELM algo-
calibration can be used to compensate for these effectsipn-aithm and training methods. Sectignllll describes the VLSI
[7] as well. However, they lead to huge area overheads duedighitecture of the chip and details of the sub-circuitse Th
the requirement of extra transistors for calibration amdegje trade-offs between noise, speed and energy dissipation of
_ _ o this architecture are presented in Secfiod IV. An important
The authors are with the School of Electrical and Electrdiigineering, . .. .. . T .
Nanyang Technological University, Singapore. (email: ody@e.ntu.edu.sg, limitation of hardware machine learners is limited inputian
arindam.basu@ntu.edu.sg) output dimensions. In Sectidn] V, we present a method to
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where H' denotes the Moore Penrose generalized inverse
HiB1+H,B,+...+H B, of a matrix [12]. The huge benefit of this method is that
it removes the need for iterative tuning and gives a simple
formula to calculate the weights. The orthogonal projectio
method can be efficiently used to fifd" as (HTH) *HT
if HTH is non-singular or adT(HHT)-! if HHT is
nonsingular. Further, using concepts from ridge regressio
theory [22], a small constanf/C is often added to the
diagonal ofHTH or HHT of the Moore-Penrose generalized
inverse H—the resultant resolution is stabler and tends to
have better generalization performance. The valueCofs
typically optimized as a hyperparameter using cross-a#itic
techniques.

Fig. 1: The architecture of ELM algorithna. is the dimension of the
input data andl denotes the number of hidden layer neurons.

virtually expand the dimensions beyond the physical numbe rFPGA
of channels on the chip. Measurement results are presented i Timing & Control ELM Second Stage
Section V] and finally we conclude in the last section. TS
— Column Scanner |
1. ELM THEORY Digital Input CLK ol T TH, Th,
In this section, we will present a brief description of the ELM HE .
; p - 21| |rieme] CNT41 | | CNT, CNT,
ELM algorithm and refer the readers to [12], [20] for details 2|3 | N N
As illustrated in Fig[lL, the ELM algorithm is applicable to a = 24 N%
two layer neural feed-forward network with L hidden neurons Reference r, , £l
having an actlvatlon_ functiog : R — R. _Wlth_out loss of A L A2
generality, we consider a scalar output in this case though (3| 'ec Your I | _|{
the method can be easily extended to multiple outputs by X i i =
considering each output one by onel[21]. The output of thg < = I_r
networko is given by: o 213 rec Yoz %i S .4{
L L g gl H Current Mirror?
0= Z BiH; = Z Big (21) “‘cl)' : Array .
i Z é- = biasd
: S\ = =y S =4
= Zﬂig(WiTX—i_bi)vwi7X€Rd75i7bi€R7 < = =
i (@)
. _ a
where 5 denote the output weights; and H; are the input i ]|
and output of the i-th hidden layer neurow; denotes the coce ML TR MR A

input weight and; is the bias for the i-th neuron. In general,
a sigmoidal form ofg() is assumed though other functions
have also been used. Compared to traditional back projpagati

A<50>:X A X A X X A
Data_in :X Data; | Data: Y X oata

learning rule that modifies all the weights, the ELM allows Rt I
w; andb; to be random numbers drawn from any continuous e
distribution while only the output weights; needs to be tuned cuKont nn
based on the training datd. For N samples(xy,t), the ceraos Y
hidden layer output matrix is defined as: (b)
g(wixi+b) .. g(wixi+br) Fig. 2: (a) System architecture of the mixed signal intesgtatir-
. . cuit that implements the first stage of ELM; the second stage i
H= ) ) (2)  implemented in digital domain. The digital input data is vened to
T T current by the IGC and then multiplied by random weigits in the
gwixn +b1) ... g(wpxn +br) current mirror array. The current is converted to digitaingdn by the
. . > . combination of a spiking neuron and a counter. (b) Timingydian
The d.ESIred.Ol.Jtpu.t weights] ?re then the solution of the of the ELM system whereRN_in is a global resetData_in, A
following optimization problem: andC LK _in are SPI control signals to transfer input data to the IC.
. NFEU_EN enables the neuron to produce spikes widl& K _cnt
. 2
Minimizes :|| H3 — T ||°, ®3) is used to read out the counter valu8sone by one.

where8 = [$;..6.] and T = [tlxtN]. The ELM algorithm
proves that the optimal solutiog is given by 5 = HIT



Ipac is multiplied with the input weights by current mirroring
operation as described later. A capacit@r= 0.4pF is also
added at the gate of the current mirror array for each row to
improve noise performance and achieve the desired resoluti
of 8 bits in the multiplication—this will be discussed in the
later section. In the conventional current mirror, bandtvid
is in proportion to the input current. ata_in is too small,
input currents are also small and hence the settling timbeof t
current mirror (defined as time taken to settle to with% of

the final value) might be too large. To solve this problem, an
active current mirror is added to complement the conveation
Fig. 3: Schematic of input generation circuit (IGC) for orfeannel. Mirror. SwitchS1 is closed to turn on the active current mirror
A reference current is split according to thé bits of input data if all of the 4 MSBs are zero. This ensures that the capacitor
to create/pac. The capacitorC' ensures sufficient SNR when the( is charged by the large bias current and not the small input
current is mirrored to thq: columns. Ap active current mirror is ~rrents. When all the bits abata_in are 0, switch S2 is
enabled to allow fast settling whefp ac- is small. closed to pullV,;,s to ground and shut off the current mirrors

[

10b MOS
Ladder
Current DAC

Ipac

I1l. SYSTEM ARCHITECTURE in that row. The logical signals to contrSil andS2 are given
The architecture of the proposed mixed signal classifier tHY:
exploits analog computing for théx L random weights of the S1 = D¢ + D7 + Ds + Ds.

input layer is shown in Fig.J2(a). The corresponding timing
diagram is shown in Fid]2 (b). The input dadta_in) will S2=Do+ D1+ + Ds+ Dy. ®)
be fed to the particular channel in the system serially thhoat where D; are the bits ofData_in.

1 to 128 demultiplexor according to the corresponding address
A < 6 : 0 > through a serial peripheral interface (SPI). The
number of bits (NOB) ofData_in for each channel i$;,, =

10. Input data will be stored in shift registers first for the
configuration of the current-mode digital-to-analog catme
(DAC) in the input-generation-circuit (IGC). The functiarf
IGC is to generate an analog DC current according to the input—C
data which will be copied to every column using a current
mirror. Multiplied by the random weights generated in the

NEU_EN

Es

current mirror array, the current in one column will be surdme Counter
according to Kirchoff’s current law (KCL) and flow into a

hidden layer neuron. This current is denoted/ador the i- Y

th neuron in Fig[R(a) and is analogous to the variahlén

Fig. . Spiking oscillations with different frequency witle I*

generated by the neuron according to their own input cusrent
which is counted by an asynchronous counter forming a row
of the matrix H. Through a column scanner, these hidden
layer outputs can be transferred to the FPGA to first get the
output weights during training and later for the second stage
computation of ELM during regular operation. Other timing
and control signals will also be provided by the FPGA as
shown in Fig[2(b). Next, we describe the operation of each
block.

A Vout

A. Input Generation Circuit (IGC)

Figure[3 shows the schematic of the input generation circuit
for each dimension of input. The reference block provides a
fixed master biasing currert..; that acts as the reference
current of the current DAC as well as the biasing for the activ (b)
current mirror. The input dat®ata_in is applied to configure Fig. 4: (a) Schematic of the neuronal oscillator circuitdoled by
ab;, = 10 bits MOS based current splitting DAC to generaten asynchronous counter. The neuron is enabled when ceigral

DAC is given by: have the following valuesC,; = 100fF, C,2 = 200fF, C1 = 50fF,

Cp2 = 100fF. (b) Oscillation waveforms at different nodes of the
Ipac = (27'Dg+272Dg+ -+ +279Dy + 271Dy I,.;.  Neuron circuit.
4




voltage change at the node df,,; is VDD, the voltage change

faxfF——---—~ RN of Vinem due to the feedback capacitor is given by:

pAl \ Cy

N AVmem =V

K Ca+Cy

! \ Also, the reset transistor turns ON chargiVig.,, up by the

T Iy I % % o I, * currentl.o + I;, — I?. The inverters trip again once,,c,,

@ ®) reaches the threshold and this process continues as long as
NEU_EN is high. Both the capacitor§’, and C; can be

Fig. 5: (a) Neuron spiking frequency initially increasesttwihe digitally reconfigured as shown in Figl 4(a). The values of

increase of the input curredt till I* = Iy;,. It then reduces and the capacitors are®,; = 100fF, C,o = 200fF, Cyy = 50fF
becomes zero finally whelf = I,..;. (b) The transfer function (solid Cha = 100fF ' ' '

line) of the neuron with inpuf® and outputd can be saturated at . . I
a pre-defined value d® by stopping the counter. We can derive an equation for the oscillation periag. It
is composed of two parts: the timig for the input current’®

to discharge the capacitor of nodg,.,, and the timeT;, to
reset the capacitor. Hencg;,, is given by:

DD. (6)

- - Simulation Resul
—— Theory Predictior

1 1
T,, =T, Ts =C, VDD .
p= =0 (Iz—flk +Im—1z+1m)

Assumingl; = 0, the relationship between the neuron spiking
frequency and the input curreft can be easily obtained as:

I7 (I — I?)

4 . . . fS = Iz = " 8
1%0’9 10° 107 10° 10° =9 I,:CyV DD ®
e This guadratic relationship of equatio] (8) between curren
(a) and frequency is plotted in Fif. 5[a). As we can see from Fig.
10° : ‘ ‘ B}, if I* << I,5/2, we have almost a linear relation given
—e-VDD=12V by
—+-VDD=1V y: e
10}|——VvDD =038V N ———— = KyeuI”® 9
Tsv CyWDD ’ ©)
iﬁ 10°; 1
_— Kpew = ————. 10
CWwWVDD (10)
10°F . .
whereK ¢, = ﬁ denotes a conversion gain from current
j to frequency. Whed?® = I, /2, fs, will reach its maximum

10° 10° 107 10° 10° value f,,..- After this point, the spiking frequency will keep
I (A) falling down till it reaches zero fol* = I,.5. Since the
(b) inflection point of the curve is reached &t = I..5;/2, we refer

Fig. 6: (a) Comparison of neuron spiking frequency betwémory (O this current value asg,,. The chip has digital control bits
and simulation in SPICE show close match. (b) Simulated areurmaking the capacitors configurable. As shown in Elg. 4(a), an
spiking frequency with increasing input current for 3 diiet VDD. asynchronous counter counts the total number of spikes from
The curves saturate at higher maximum frequencies for hNgB®.  the neuron during a fixed period of tin,.,, (time duration
Note the logarithmic scales for both plots. for which NEU_EN is high) and generates the outpiit A
B. Neuron hard nonlinearity in the form of saturation can be implerednt
by stopping the counter whenever its count reaches a pre-

Figure[4(a) details the circuit of the hidden layer neuroglefined limit2°. b in this case is the valid MSB of the counter
block. Itis a current-controlled oscillator structureléwed by output which is also configurable froh to 14. If only the
an asynchronous counter. This is one of the simplest neulpiear region of the neuron spiking waveform is adopteds(thi
circuits described inL[24]. This circuit has the issue ofj&r is also the most energy efficient part as shown later), thé fina

short-circuit current dissipation in the inverters. Ho@evn transfer function of the hidden layer neuron can be reptesen
our case we can avoid this problem by operating at very layy:

power supply voltages{ Vrn+Vrp) making the short-circuit .

current negligible. The neuron is enabled when the control, _ {J“‘saneu(’fz Kneu*ToeuifI* < Ipi), if H <2
signal NEU_EN is high. The oscillation waveform at the 20, otherwise
nodesV,e,, and V,,; are illustrated in Figld4(b)V,nem is (12)
charged down by the input curredt — I, till it reaches This saturating nonlinearity is shown in F[g. §(b). This non
the threshold voltage of the inverters. At that point botl thinearity was preferred due to its ease of implementaticsh an
inverters trip making the output switch to ground. Since thdigital control. From Fig[ 5(h) we can also note the currént a



which the H saturates is denoted by,. This value depends Neuron
on bothT,,., andb. Also, [0 I%,,..] is used to denote the range 1
of input currents to the neuron.

Figure[6(a) plots SPICE simulation of the neuron spiking I I,
frequency with the variation of input currefit on a logarith- .
in2

In1

mic scale and compares it with theoretical predictions thase I_

equatiori 8. For this simulatiod;, andC}, were set to b&800fF | |

and50fF respectively while VDD was kept a. As expected, I C

the spike frequency increases linearly for small valueg<of = = =

reaches a maxima eventually and then starts reducing fg§. 8: Simplified circuit diagram of one current mirror fopise
further increase in?. Results from a similar simulation butanalysis.

for three different values of VDD((8, 1 and1.2 V) are shown
in Fig.[B(b). Sincef,, is inversely proportional to VDD{;,
is higher for small7* with a smaller VDD. However, when
VDD is lower, I, is smaller and hencg,, attains the peak
value at smaller value of?, i.e. I, reduces when VDD is
reduced. On the other hand, for higher VDR, saturates at
a larger valuef,,,.,, and it is attained for larger value df;,.

the conclusions drawn are valid across the other data gets. |
is a two class problem that includé800 training data and
1462 testing data. The reasons for choosing these tasks were
that the performance of the software implementation fos¢he
tasks are reported in publications as a typical benchmak [1

For the following simulations done in MATLAB, we consid-
ered the mismatch in current mirror weights as the dominant
factor. It was assumed to be log-normally distributed with
C. Current Mirror Array a standard deviation of, oy, ranging from5 to 45 mv

The digital inputData_in is mapped to a vector of input(as a referencegy,. in our fabricated chip isc 16 mV).
currentl;,, which are copied to every neuron using a currefitquation[(1]l) was used to simulate the neuronal charatiteris
mirror. These inputs can also be obtained from a sensdtd the other parameters were kept at fixed nominal values of
such as a photo diode. The capaci@r= 0.4pF is kept to Kpnew = 26KHz/nA andT,,.,, = 56usec. In real applications,
maintain a minimum SNR[25] at the expense of bandwidthariations exist for other parameters in the neuron transfe
For low-power operation, we operate the current mirrors fianction as well. However, simulation results show that-mis
sub-threshold regime. Minimum sized transistors are eygalo match in these do not affect the qualitative nature of theltes
in these current mirrors to exploit VLS| mismatch whictwe present here.

is necessary for the generation of random input weights1) Input Mapping: For efficient use of the hardware, we
w; and biasb; of ELM. For example, the contribution of need to determine how to map the compact Xet= [—1
input i;,; to the total input current of neurop is given 1] to input currents. First, it can be only mapped to a set
by iin swoetVTii/Ur where Ur is the thermal voltagewo in R+ since we have unidirectional current mirrors. Assume
is the nominal current mirror gain Whi|QVT7ij denotes the the maximum input current for one dimensionlis,., i.e.,
mismatch of the threshold voltage for the transistor copyinhe set iS[0 Ipnez]. Therefore the maximum current going
the i-th input current to thej-th neuron. This last term is to the neuroni? = = d X I,,4.. From Fig.[5(0), we need

max

a random variable with a Gaussian distribution and henge find out the relationship betweeff . and IZ,,. Though

the weightsw in equation [[) above get mapped to randomheoretically any positive set will work, it might need an

variables with dog-normaldistribution in our implementation. unreasonably large number of neurons to get a satisfactory

Since in our implementatiomn, = 1, we can write: performance. To illustrate this point intuitively, consica case
Avp iy wherel?, .. << IZ . Then the transfer function of the neuron

wij =e T (12) is a linear function without any high order components. Also

. - ;
Do note that the ELM algorithm only requires random nunﬂ Ié’};w >d> Is_ﬁt’ thte OUtpgtst(;]f most_ rl_euronsfvglslll b_e sa:ugﬂi:j
bers from any continuous distribution [21]. Here ,we chooéo% » ahd will not encode the variations ot the Input. Bo

log-normal distribution due to the intrinsic physics of sub these cases will require a large number of hidden layer

threshold mosfets. If biased in above-threshold regime, tHeurobrls_sodthart]_ k;]y char:jcetha Iar:ge eno_ug_h pcioIHof neutrﬁns
distribution of random numbers would be closer to gaussia re obtained which encode the changes in input. Hence, there
should be a range for the ratio betwegf,,. and IZ,,, such

sat?

_ that we can achieve a good performance with a small number
D. Parameter Choice of hidden layer neurons.

To determine the performance of the network, we chose twoTo find this desired range, we first fix a valuedf, /I7,,..
representative tasks of regressiah=€ 1) and classification and evaluate the performance of the network on both tasks wit
(d = 14). For the regression task, the network was given different numberL of hidden layer neurons. The regression
set of noisy samples and had to approximate the underlyiagor reduces initially with larged, but saturates after the
function. For classification, six different data sets witld@ly L increases beyond a critical value,,;,. To quantify the
varying dimensions and training set sizes were chosen fratapendence of performance on the ratiol¢f,/I%,.. , we
the UCI machine learning repository [19]. Here, we showow plot in Fig.[T(a) the dependence 6f,;, on the ratio
results for only the ‘brightdata’ case as a representative tof IZ,/17 with lower values ofL,,;, being preferable.

axr
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Fig. 7: Design Space Exploration:(a) Variations OfL.;,», with IZ,,/17,.. show that the optimal value of this ratio4s0.75. (b) Variations
of classification accuracy with the resolution of output gieis showing 10 bits is sufficient for accurate classification. (c) Variagoof
classification accuracy with the number of bits of countetpotuH demonstrating that ~ 6 is enough for optimal performance. Each of
the curves are averaged oV trials.
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Fig. 9: Trade-offs in speed:(a) Using active current mirror for small input currents dasost the bandwidth b$.84X. (b) Variation of
neuron counting timeT(,...) and current mirror settling timelt,,,) reduce as maximum input current per dimensidn.() is increased.
Further,T,..., increases exponentially with increasetin(c) Contours wheré,,, is equal toT,... in the space of counter dynamic range
2% and input dimensiorl. For increasing, the total current input to a neurdif keeps on increasing thus increasing oscillation frequency
Hence, it can support higher dynamic raritfein the same timel},c.,.

We have chosen error @f.08 as the saturation level in this performance of the classifier while more will waste hardware
case. From this figure, the ratio @f,,/I7,,. ~ 0.75 is the resources and power. We use the classification example here
best trade off point between number of hidden neurons awith . = 128. Figure[T(b) shows the change of error with
input dynamic range for all values afy,.. For small values increasing number of bits indicating0 bits resolution is

of oy,., the performance degrades rapidly on both sides of teaough for good accuracy.

optimal value. However, asy, increases, the performance 3) Counter resolutionBesides the resolution ¢f, we also
degradation is much less implying the choicelgf, .. is less analyzed the dependence of performance on the output gounte
critical in highly scaled VLSI. resolutiond in equation [(Ill). Since we estimate the spiking

However, it can also be noted that the performance is bé&quency by using a counter to count the number of spikes in
(leastL,,;,) for oy,. in the range ofl 5 —25mV. This has been a fixed time windowT,.,, a small value o®b will introduce
found to be true for a wide range of classification problems é&ge quantization errors in the estimate of frequencysThi
well. Hence, for deeply scaled CMOS processes with larg@iplies that the neurons have to produce more spikes in the
ov,, minimum sized transistors cannot be used. In those case®yinting window, which would on the other hand induce more
the transistor size has to be increased (following Pelgsonpower dissipation. To find a good trade-off foy we fixed
model [1]) to reducery,. within the desired range. However I,/ 1}, =~ 0.75, L = 128 and resolution of3 to 10 bits.
the required area will still reduce compared to an older gsec Figure[7(c) shows the simulation result for the classifarati
with larger transistors since the coefficiety. is reducing as error with b increasing froml to 10. b ~ 6 is found to be
transistor scaling continues| [1]. sufficient for classification.

2) Resolution of Output WeightAs mentioned earlier, the
digital circuits will use pre-calculated output weightsfrom a }
memory and accumulate it based on neuronal spiking patterfis Noise
In order to implement this, we need to know how many bits Noise is an important specification to be considered in
are needed to represefit Less number of bits will degradecircuit design. In this section, we present the operational

IV. NOISE, SPEED AND ENERGY DISSIPATION



limits set on this architecture due to noise based cons$iain 1d

Since the transistors are operating in sub-threshold megihe —4—1.2V VDD
contribution ofl/ f noise is negligible compared to the thermal 4 :é:g x xgg
noise [25]. For the current mirror circuit as shown in [Egw@,
can easily get the input referred thermal noise spectraitien & 10
. o
as. - 92 I"
Fin = o F i 2l1’ 13 :\‘\'\‘\o\._._._._o
Im2
whereg,,; andg,, are transconductance of input and output 104
transistors respectively2, andi2, are corresponding tran- ‘ ‘
sistor channel noise. Since the transistors are workindpén t 10° 107 10°
sub-threshold region, the transconductance is in prapott )
its drain current. Applying the noise model of drain current (a)
of sub-threshold transistors to hé = 2¢qIAf [26] where ,
g denotes the electronics charge, we can rewrite the above 10 ‘
equation as: —+—1.2VVDD
o P ——1.0V VDD
it = 200 AL +20Af - (14) —v-08VVDD
—~ 3
For this single pole system, the noise equivalent bandwidth 30 107
L

Af = 43} wherex denotes the inverse of the sub-threshold
T

slope [26]. Assuminglz/I; = wg, and substituting the ) M
bandwidth equation above, we get:

10°} S
-  qrl} ( 1 )

2 = 15
tin = 5CU (13)

10" 10°
(s)

wo
Finally, the signal to noise ratio (SNR) can be expressed in "g”
the following equation: (0)
Fig. 10: (a) Variation of energy per classification openmati#.) with
varying maximum value of input current’,,, for three different
settings of VDD. (b) The same plot as in (a) but replacifg, ..
with its corresponding... from equation [(19).

Thus, from the equatlorii:(]LG), we can see the SNR can f8d the range o
controlled by changing’. This reflects a direct trade-off with

bandwidth which is inversely proportional t@. If an 8 bits

2
SNR = i M_ (16)
2 qr(wo +1)

.., by considering maximum and minimum
input currents:

SNR is needed in the system, ang = 1, it is sufficient T - 4CU;

to addC = 0.4pF capacitance in the current mirror for each AL 5 84K T g | 20

input channel. Note that only one such capacitor is needed fo 4CU,

every row. Tem,min = 7 (18)

whereb;,, = 10 is the number of bits ofData_in and the
B. Speed factor of 5.84 is due to the active current mirror. Figure
[Q(b) shows the decrease Bf,, with increasingl,,., for the
conventional and active current mirror cases.
To find the value off},.,, we can see from Fid.] 5(b) that
want H = 2% for I = IZ ,. Combining this observation

sat"

with equation[(IlL), we can derive the following:

The conversion time for one classification operatifGn
comprises two partst,,,, andT;,., whereT,., is the neuron
operation time and—,, is the current mirror settling time. If
one of them is much larger than the other, we can approxim
T, = max (Tem, Thew). We considefl,,,, to be4 times of the
inverse of the bandwidth (BW), i.€l,,, = 5t = Uz ob ob ob

/1]7',71, _
075K neudlmas
(19)

= = Tneu = =
where x = 0.7, UT = 0.025V at room tempe_rature and Knewlzy  0.75Knenlz
C = 0.4pF as derived earlier. If the average input current

is Imaz /2, the average current mirror settling time is where we usel?,, /1%, = 0.75 (shown earlier in Section
80U, M-D) and 17, = d x .I,,m. Now, we can co_mpar@“cm and
Tem,avg = (17) T, to see the dominant term as a function of parameters

HImam

b and d. Figure[9(b) shows a comparison betwegn, =

As discussed earlier in Sectibn TFA, an active currentronit 0.5(T ¢ maz + Tem,min) @Nd The, for b = 8 and b = 12.

is utilized to boost the bandwidth for small current valuedncreasingl,, .. reduces the time required for both the neuron
SPICE simulation result for this effect shown in FIg. 9(aand current mirrorZ,,, for the conventional current mirror is
demonstrates a bandwidth increase by arousdX. We can always the dominant factor. However, with the active curren



mirror on T,,., may be larger thaf,,, for large values of W, | W, |W | W, (W, |w,,
b. These plots are done fat = 10; increasingd will have w, |w,|w,|w,|w,|w,
an effect of reducin sincel?,, =dx I, increases.
qneu mas ey W11 W12 W13 W12 W13 W‘H W22 W23 W21

Henge, to show the trade-offs betw_efmn and T,,., as a —
function of b andd, we plot contours in the space of counter Wor|Waa | Was Won| Woa| W | Wia| Wi | Wiy
dynamic range® and input dimensiod whereT.,, = Ty W, w,, | W, | W, W, (w,,
To do this, we equaté (17) and {19) to get:

q ) ) g W23 W21 W22 W11 W12 W13

seu, _ 2 Fig. 11: The extension from a x 3 rand jecti trix t
[{Ifnam/d = Kneu_[z 1g. . e exiension from X random projectuon matrix to

sat 6 x 6 by weight reuse technique .
_ 6dCU K ey,

KR

= 2 (20)  From simulation, when VDD i4V, a; ~ 0.2pF andasl,. ~
. 0.03A.
where [?

i/ Iae = 0.75 is used. The straight line contours Usi tion [(22 il d t timat
defined by equatiof_20 are plotted in Fig. 9(c) for three sing. equation ), we will now proceed to estimate

different K., values corresponding to VDD 0.8, 1 and 3\,\;]66?69gne%erggcz?:eﬁfverg'?? Opféaégggéfgég?fgz?rﬁ;
1.2V. For parameter choices on these contour lings,= P €l ) 9

T + Toew = 2T, = 2Thew. If the relation betweer2b

count. Assuming that® is distributed uniformly in the range
= 2y 1 - .
and d sets the operation regime above any of the conto%O 0 Iz, 1.6 P(I7) = TE E. can be estimated as:

lines, Thew > Tem While the opposite condition is true if e

operation regime is below the contour lines. It can be sean th E.= / e B, (I7) H (I7) P (I7) dI*

for b ~ 8 — 10 bits and a nominal value of VDD, T}, 0 (24)
dominatesTl,,, for the maximum dimension af28 supported 1

by our chip. D /O Egp, (I7) H (I7) dI”,

max

where H(I#) is the number of spikes generateddi.., as
defined in equatiori (11). Note that here we widtg,(/*) and

. The total power dissipated by the system)((_:a!n be split H(I?) to make the dependence of equatidng (22) (11) on
into two parts: power from analog.qq) and digital Cuaa) 1= explicit. Using the expression foF,.. in equation [(ID),

supplies. The first termFK,,q4) is mainly dissipated by the equation[[Z4) can be simplified further to get:
voltage reference circuitry, biasing block and the IGCealty,

this should be a function of input dimension. However, in ob oz
the current design only unused active mirrors are turned off Le = W/O
while the current DAC is always ON-this will be rectified e

in future designs. The second tern®,{;) comprises the From equation(25), we can see tliatdepends or; .. The
power dissipated by the neuron, asynchronous counter #fpice of7, .. is guided by the design constraints. Typically,
other digital blocks including decoder and scanner. Of ghewe have to either meet a minimum specified speed of operation
terms, the power dissipated by the neuron includes the signa@’ minimize energy of operation without any constraint on
currents as the input and the counter at output and varfi¥ed. To better explain the trade-offs, we can glotwhile

with different parameters such as biasing current. It is tivarying 7, with b = 10 as illustrated in Fig[_10(a) for
major energy consumer in the chip when the number of hidd#iiee values of VDD. The same figure is re-plotted in Fig.
neurons,L is large. Hence, it is important to understand if€0(b) but with the corresponding value Bf.., instead of7~.

dependence on different parameters. Thus, we can Wjig Firstly, note that the plots for smaller VDD span a smaller
as: range of current sincé.; is correspondingly smaller (similar
Pyad = Prew + Piig = Prew = LfspEsp, (21) to Fig.[6). For each VDD, the lowest conversion energy is
) S ) attained wherf?, . is close toly;, = I, /2. Intuitively, this
where E,, is the energy dissipation per spike for the neurmp1ap|0ens becausg, is higher which leads to loweF,,.., and
Ep can be modelled as: correspondingly lower energy. Thus it is beneficial to opera
asl, VDD CyI*V DD? for a short time at a higher spiking frequency than over a
fop Ia — 17 + I (22) !onger time with a small frequency. The optimym .curréﬁt
where . is the short-circuit current in the inverter that> less thanly;, since atl” = Iy, the short-circuit power
: - ElSSlpanon (third term in equatioh (22)) increases sigaifily.
depends on the value of VDD and is negligible for sma] . L
values of VDD. Here, the first term denotes the switching o Fig 1D, we can see that lowest ENergy per conversion 1S
' tainable for lowest VDD as expected since the short dircui

power dissipated in the neuron circuit, second term denotes X )
o ) . . current reduces drastically at lower VDD. However from Fig.
short circuit power loss in the inverters and the third ter

denotes the short-circuit power dissipated on the nddsg,, ﬁ(b)’ we can see that the trade-off for keeping a low VDD is

N . large conversion time. Hence, if conversion time is a altic

z ~ [(Z 1
in Fig. [(a). If I << Irst "?‘”d_flk ~ 0, equations[(21) and specification, we have to choose the minimum VDD that meets
(22) can be combined to give:

this specification. As can be seen from Figl 10(b), higher VDD
Pyga = Prey = L (01 VDD?fy, + a2l,,VDD) . (23) allows for lowerT ...

C. Energy

Eop, (I7) fsp (I7)dI*. (25)

Ey = a1 VDD? +
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Fig. 12: (a) Schematic of peripheral circuit for hidden laye
extension by shifting the input data stored in the registerd

(b) its timing diagram.
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Fig. 13: (a) Schematic of circuit for input dimension exiens

by shifting and summing the output counter values and (b) its

timing diagram.

V. INPUT DIMENSION AND HIDDEN LAYER EXTENSION
TECHNIQUE

For some applications, dimension of the input data is qui'ﬁ!}1
large (over several thousands) while other applicationg m
require a large number of hidden layer neurons (also oP

¥ .
' Neuron + CNT

e,

Current Mirror Array

ww g

O
o
+
x
-
=
)
(a)

5 mm

Fig. 14: Die photo of the prototype chip fabricatedi35ym CMOS.

tions and have restricted the use of analog classifiers fiirece
dimensions of the chip are fixed once fabricated. For example
suppose the input-dimension for an applicationdisand it
requiresL hidden layer neurons. Conventionally, at leastL
random weights are needed for the random projection opera-
tion in the first layer of ELM to get the hidden layer matkik
However if the maximum input dimension for the hardware is
only £ (k < d) and the number of implemented hidden layer
neurons isN (N < L), the hardware can only providekax N
random projection matrid comprising weightsw;;(i = 1,
2,---,kandj=1, 2, -, N). For more efficient use of the
hardware, here we propose a method to reuse the input weights
and hidden layer neurons to effectively expand both input
dimension and number of hidden layer neurons beyond the
number physically fabricated on-chip. Intuitively, eacunon
requiresd random weights and there are a totalkof N such
random weights on the chip. Hence, as longdas k& x N,

we can reuse these random weights to satisfy the requirement
Similarly, each input dimension requirdsrandom numbers

for the projection—it can be attained by reusing weights as
long asL < k x N. A simple example of such an increased
dimension of weight matrix is shown in Fig.]11 for= 2 and

N = 3. This case shows the maximum dimension increase
possible to get a matrix of sizg x N) x (k x N) Next, we
elaborate the method used to do this assumding < k& x N.

To expand the number of hidden layer neurons, we propose
to do it in [L/N] steps where the number of projections is
increasedV in every step. For the second set &fneurons,
we need to shift the random matr®W comprisingw;; (i =
1,2;,--,dandj=1, 2, -, N) to Wy o comprisinguw;; (i =
2,3;--,d,1andj=1, 2;--, N). Here, the subscriptl, 0)
is used to denote a single circular rotation of the rows of the
matrix W. This notation implieSW = W ¢ = Wy ¢. Using
this notation, we can continue to get more random projestion
of the input (and thus expand the number of hidden neurons)
by generatingW; o to Wy, /n7-1,0- Figure[12(a) shows a
simple circuit that can be added to the input side of the chip
to achieve this function. The corresponding timing diagm
control signals are shown in Fig.]12(b). Once the input data
is loaded and the first set of hidden layer outputs are oldaine
(during theN EU_EN signal), theRotation_Control signal
is turned high to configure the input registers as a circular
ift-register. This is followed by anothé¥ EU_EN signal
obtain the second set af random projections and this
cess continues till. random projections are obtained.

several thousands) to achieve the best performance. Teéspo A similar method can be applied to expand the input
a big challenge to neuromorphic analog hardware implementimension fromk to d. In this case, we take the firgt
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12 ‘ ‘ ‘ ‘ ‘ ELM chip occupies a die area dfmm x 5mm as shown

in Fig. [I4. The current area of the chip is dominated by
the current mirror array since the layout is not optimized.
Each cell in the current mirror array is pitch matched to the
neuron in one direction and the IGC along another making
it mostly empty. The area of the current mirror array can
be reduced tremendously by following the proposallin| [29]
limiting the size to the pitch of the IGC. In the next version,

we will reduce the pitch of the IGC by moving to a scaled
process like65nm. The mixed-signal chip implements the

computationally intensive first stage while the second estag

Output

& 200 400 500 800 1000 is currently implemented off-chip on a FPGA. In future, the
Data_in second stage will also be integrated on the same die. Again,
Fig. 16: Regression of underlying sinc function (in blueyé@ on a moving to a scaled process likdnm enables a small layout
set of noisy samples (in green). for this digital part. The larger statistical variation irsealed

dimensionsz1, z0..x;, of a particular input sample € ®¢ Process does not hurt the performance of the analog part as
and send it to the chip to get the multiplication for the first"OWn in Figly. The extra gate leakage in the current mirrors
k dimensions with the random matri®. This generated, & be handled by either using thick oxide 1/0O devices orgisin

hidden neuron outputs which can be expanded to a lar ive mirrors. Next, we present some characterizationltses
number using the technique described in the last paragra show the functionality of the chip. In all the experiments

For the nextk dimensions ofr, we shift the random matrix ) )
W comprisingw;; (i=1,2,---, kandj=1, 2, N) to and is denoted by VDD. Unless stated otherwise, the default

W1 comprisingw;; (i=1,2,---, kandj=2, 3,--, N value of VDD= 1V is used in most experiments.
, 1] ’ ’ ’ ’ 1 1 ’

1). This implies a circular shift along the columnsf. The  First, we can get the transfer function of thes neurons
hidden layer outputs obtained in this step are added to tas offY SWeeping the digital inpubata_in on any one channel
obtained in the earlier step. This method can be continued f6°M 0 to 1023. The resultant curves are shown in Figl 15().
[d/k] —1 steps while accumulating the resulting hidden Iayé? can be seen that there is significant variation be_tween
outs every time to get the final output for tdedimensional the transfer. curves of the neurons. Next,_ to characterle.e th
input z. FigurelIB(a) shows a simple circuit that can be adgé&gndom variation of the input we|ght matrix, we send a fixed
to the previously described chip architecture at the output V@lue of Data_in to each of the input channels one by one
implement the input dimension expansion technique. Figu@@d measure the counter outpiifs For every input channel,
[3(b) depicts the corresponding timing diagram. The circdi’ get L = 128 counter values indicative of the mismatch
in Fig. [I3(a) shows a register bank after the neuron outgltthat row. In total, there are28 x 128 such values offf
counters that can accept inputs from these counters or fréph @ll the input channels. These results are shown as a 3-
other registers in this layer to effect the circular rotatipf dimensional plot in FigL 15(b) wheré/ is plotted on the
columns of W. There is a second register bank after thié-axis. These same values are normalized by the median
which accumulates the counter outputs over multiple cycléPunt value to get the effective weight distribution. This
After the conversion of first dimensions of: during the first distribution of 128 x 128 values is plotted as a histogram in
NEU_EN signal, a clock pulse o6 LK_r andCLK_a are Fig. [15(c) Q|splay|ng a log-normal Fﬂs_tnbgtmn. This is e .
used to shift this output to the accumulator. From the neXkPected sincéVr, has a normal distribution as explained in
cycle, theRotation_Control signal is enabled and pulses onpectiortll-G. Further, by fitting a gaussian distributiantbe
CLK_r are used to rotate the columns of the hidden laydpgarithm of the weight values, we obtai\Vr,, ~ 16mV in

Another pulse orCLK _a is used to accumulate this value irthis process. Note that the mismatch obtained here alss take
the second register bank. into account mismatch in the neuronal tuning curves sinee th

count values are obtained at the output of the neuron. Rurthe

oth analog and digital power supplies are shorted together

TABLE I: Chip Summary this characterization is consistent across a set clfiips with
Technology 0.35 s CMOS minimum and maximum values afAVr, being 15.36mV
Die Size 5mmx 5 mm and 16.26mV respectively.
Input Channels 128
Hidden Layer Size 128
Output Data format 14-bit Digital B. Speed and Power
Input Data format 10-bit Digital
Power supply voltage 1V During measurement, we found the chip to be functional

for VDD down to 0.7 V. Thus we can apply the results
of the design space exploration in Section IV to optimize
o the system for the best speed and power efficiency. During
A. Characterization measurement, a pico-ammeter (Keithley 6485) is utilized to
To validate the function of the proposed design, we haweeasure the average current from the power supply to estimat
implemented the system in @35um CMOS process. The the power dissipation. For all the experiments, speed and

VI. MEASUREMENTRESULTS
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Fig. 15: (a) Measured transfer function of hidden layer nasrwhen the digital input varying frofto 1023 with d = 1 and T}, = 10ms.
(b) A surface plot showing the mismatch in weights of tH& x 128 current mirror synapses. The output counter values foedifft
neurons are plotted fdf,.., = 10ms whenData_in = 100 is set on each input channel one by one. (c) Histogram shothimd¢pg-normal
distribution of the input weights obtained from (b) for th28 x 128 current mirror array.
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TABLE II: Measured performance on Binary Classification &sts from UCI repository

- e 5
Datasets # Featuresd) | # Training | # Testing Sofware LM:ISi 0((:)|0a)sfiﬂ2(jatlo$hl|?sa\t§o$|</o )(L =128)
Diabetes 8 512 256 22.05 22.91

Australian Credit 14 460 230 13.82 12.11

Brightdata 14 1000 1462 0.69 1.26
Adult 123 4781 27780 15.41 15.57

TABLE Ill: Comparison Table

JSSC 2013[[27]] JSSC 2007/[25]] IJCNN 20151[28] | ISCAS 2015[[18] This work
Technology 0.13um 0.5 um 65 nm 0.35um 0.35um
Algorithm SVM SVM ELM ELM ELM
Task Classification Classification Regression Regression Regression
Classification Classification
Design Style Digital Analog Mixed mode Mixed mode Mixed mode
Floating gate
Supply Voltage 0.85V 4V 12V 0.6 V (Digital) 1V
1.2 V (Analog)
Power Dissipation 136.5uW 0.84 uW - 0.4 uW 188.8 uwl
Max Input Dimension 400 14 1 128 16384
Energy Efficiency 631 pJIMAC 0.8 pJIMAC - 3.4 pJIMAC | 0.47/ 0.54 pIIMAC
Resolution 16 b 45b 13 b 14 b 14 b
Classification Rate 0.5-2 Hz 40 Hz - 50 Hz 31.6 kHz
Throughput 2 MMAC/s 1300 MMAC/s - 0.12 MMAC/s 404.5 MMAC/s

I This power dissipation is measured baseddos 128 and L = 100.

2 Using input dimension extension technique to expand e 128 x 128. Note that the circuits for rotating inputs and outputs
for dimension increase are not included on this test chip.

3 Assuming1000 support vectors.

4 Only considering first stage of ELM faf = 40 and L = 60.

5 0.47 pJIMAC is energy efficiency of current chip implementing tfissage of ELM. The total energy per operation for binary
classification is0.54 pJ/MAC usingV DD = 1.5 V for digital multipliers of second stage (see secfion VI fletails).

power are measured foPata_in = 1000 and d = 128 V.., (as described in Sectidn TV+C). The measured power
with L = 100 neurons activated. Conversion tim&%., dissipation now become$88.8uW as shown in TabléTll.
are estimated foR® = 128. At VDD= 0.7V, the power We choose this operating point as a good trade-off between
dissipation is17.85uW at a maximum conversion speed ofpeed and power efficiency. From this, we can approximate
4.5kHz. As can be expected from Fig.]10, there is not mudhe coefficientso; ~ 0.3pF and azl,. ~ 0.076A that are
variation in energy per classification whéf,,, is reduced. close to simulation values reported in secfion IV-C. Aldw t
However, this difference is more obvious at a higher VDRnalog powerP,,qq ~ 3.4uWW. Considering thel28 x 100

of 1V. In this case, the fastest classification rate for thiswltiplication-and-accumulation (MAC) operation for tfiest
system is146.25 kHz corresponding td,.,, = 68.5uS when layer, we can calculate the energy efficiency for this case as
I* ~ It,,. However, the power dissipation at this speed 47 pJ/MAC. The corresponding throughput for classification
quite high2.2mW. Hence for a better energy efficiency, weaate of31.6 kHz is 404.5 MMAC/s. Note that the current test
optimize the classification rate to be arouBd.6 kHz by chip does not have the digital multiplier for the second stag
reducingl?,, . to reduce the short-circuit power dissipation odence to estimate total system power, we have simulated a
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14-bitx 10-bit array multiplier in the sam#.35:m process TABLE IV: Sinc function regression using normalizég

(assumingb = 14 and resolution ofs = 10). For a digital Power supply (V) Error (%) Error (%)
VDD = 1.5V, the energy per multiply is estimated to BepJ . (Nong‘gggi“zed) (No(r)nz;'ged)
at a delay ofl2ns. Using this value, the energy efficiency of T 0.045 0.0629
the whole system for binary classification can be found to be 12 0.1538 0.065

~ 0.54pJ/IMAC. in L. Hence, we instead takk = 16 neurons and use weight

) - reuse method to expand fo= 128. For the datasetiabetes,

C. Regression and Classification the error forL, = 16 is 27.1%. This reduces to an error of
In order to verify the performance of the proposed neur@2.4%, comparable to that in talpléll, wheh is increased to
morphic ELM system in machine learning applications, w&28 by weight reuse. Note that since our chip did not have the
first show an example of regressiah=€ 1) where the system circuits described in SectidnlV to perform on-chip dimensio
was trained orb000 noisy samples (additive gausian noisexpansion, we shifted the input data before applying it ® th
with o = 0.2) of a targetsinc(x) function and its task was chip. Also, the output data was shifted in the FPGA before
to approximate the underlying function through regressioaccumulation.

The input data is passed through the chip and hidden layer
activations are obtained. These are next used for traitiag Comparison

output weights. This method takes care of the mismatch in , )
the neuronal transfer curves (which is also log-normal due t Our work is compared with other recently reported hard-

sub-threshold operation) by lumping it with the currentnoir Ware machine learners in Tatlellll. Our design is the most

mismatch and training weights that take this into accouhe TPOWer efficient machine learner reported so far due to the
measured result of this experiment are shown in Eig. 16 fi¥ Power analog multiplications. The energy efficiency of
L = 128 hidden neurons where the noisy samples are Shofjﬂmmermal digital processors are saturatingzat00pJ/MAC

in green and the regressed function is in blue. The error 3fO]' Even custom digital multipliers have energy efficisc

0.021 we obtain in this experiment is comparable to the err&f 10 — 70pJ{MAC [17], L:,)’]']’ ,-32]' This exp!ams the higher
of 0.01 obtained in software simulations of ELM [21]. energy requirement of [_‘27_] in Table IlIL[25] uses analog
Next, we employ some real-world benchmark binary claf0ating-gate based multipliers and can hence achieve low-
sification data sets from the UCI machine learning rep(xaitop_o"ver multiplication. However_, our approach does not el
[19]. The reason for choosing these data sets are that tivey hgigh voltages for programming floating-gates and is "?"50
different characteristics in terms of data dimensiband data much more compact due to the use of only one transistor

set size in terms of number of samples: small size and |thhout capacitors in the multiplier c_el\. [28] also useadam
dimensions Pima Indians diabetes, Statlog Australian mismatch (and a systematic offsefdnm CMOS to perform

credit), large size and low dimensionsStar/Galazy — the calculations in the first stage of ELM. However, they only

Bright), large size and high dimensionddult). The details have a single dimensional input and only show regressi_on.
of the data sets are shown in Tablk II. During measuremeHYé?reover' they do not rep_ort any energy or speed mancs..
the hidden layer matriH is obtained by applying the training Lastly, compared ta [18] which also uses the same core tircui
data to the chip one by one. The second layer weights Sfcurrent mirrors to perform ELM computations for neural

obtained offline using thidl and then downloaded to thedec0ding. the current work is more energy efficient due to
FPGA for testing. The accuracy obtained in measuremefii§ faster operation (as explained in secfion 1V-C). Altm, t

with L — 128 hidden neurons is shown in tadld Il and jcurrent work shows a method of expanding input dimension

compared with software simulation results taken fram [12{C & Maximum ofd = 16, 384 while [18] could only support

This table shows that the performance of our implement&égMaximum ofd = 128.
hardware ELM is comparable with the software ELM with
the differences possibly due to the larger number of sigaioid=. Robustness

neurons (as opposed to saturating linear neurons for thgg ch |; g important to consider how the performance of the
used in[12]. chip varies in the face of variations of power supply voltage

(vDD) and temperature. We use the normalization method
D. Dimension Increase With Weight Reuse Technique suggested in[[18] to increase the robustness of our chip with

In order to evaluate the performance for the dimensidgSPect to common-mode variations in VDD and temperature.
extension technique, we first applied a very high dimensiorfzellowing, [18], we define the j-th normalized hidden layer
dataset leukemia) with d = 7129. Sizes for the training and Value (j.norm) as:
testing data ar88 and 34 respectively. During measurement, h;
we obtain a miss-classification rate 2§.59% with L = 128 hjmorm = = h /S
neurons, which is comparable with the error rate18f92% 2ea i) Yima i
obtained using the software ELM reported in[12]. Next, w&o show the effectiveness of normalization, we first conside
separately prove the concept of artificially increasing ham its effect on variations in VDD. Figure_17(a) plots measured
of hidden layer neurons. The measured errors in table Il aralues of hidden layer output; for five different values of
close to optimal and do not reduce much with further increasgut dataD;, at three different values of VDDO(, 1 and

(26)
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Fig. 17: Comparison of hidden layer outputs for three déffvalues Fig. 18: Comparison of performance when normalized and non-
of VDD in (a) the conventional case and (b) normalized cas® Tnormalized hidden layer outputs are used for classificatibia)

Q/cl)jrgalization results in less variation of output due tong®in Australian credit and (b) Brightdata sets from the UCI réfoog.

] _ .. rapidly when temperature varies on either side7gfwhile
1.2V). It can be seen that there is a huge variationhin sing’s;. On the other hand, the error changes much more
(maxmum 0f2_2.7%). In contras'_[, when the same vall_Jes argowly when USiNGh; norm again confirming the benefit of
normalized (FigLIl7(b)), the variation due to change in VDRormajization. Further, we have observed that retrainirey t
is reduced a lot (maximum of.2%) while variation due to yeights can reduce the error close to the original value for
change ofD;,, is still retained. This proves effectiveness of i h; and hj norm. Hence, to get good performance over

the normalization method. We have further used the normgl-wider range of temperature, we can store different weights

ized and non-normalized values to perform #iec function ¢ gifferent tmperature ranges. One disadvantage withgusi
regression task described in Sectlon VI-C. In this case, thg normalization is that now the second layer has to perform

yveights are obtained for a nominal VDD ¥/ Whi!e testing L divisions on top of thel, x C' multiplications. But given
is performed at all three VDD values. The result is reported {he penefits provided, we believe that normalization i atil

Table[]M. It can be seen that normalization enables the erigg, rable choice. We do not have the normalization ciscuit

to be low for all three values of VDD. o included in this test chip but plan to include them in the next
Next, we studied the effect of temperature variations on th@sion.

hidden layer outputs. We expect the temperature dependent

weights @%) to be the major contributor to variations
in hidden layer outputs:;. To confirm this prediction, we
made a MATLAB model and obtained the variation bf We have presented a low-power hardware neuromorphic IC
when temperature varied b7 = +20°C about a nominal in 0.35um CMOS for machine learning applications using
value of Ty = 300K. Then we benchmarked this variationrandomized neural networks such as random vector function
with a SPICE simulation of the same circuit to confirm oulink (RVFL), reservoir computing methods or extreme leagni
earlier assumption—henceforth, we used the MATLAB modatachines (ELM). Our hardware can also be used as a di-
for simulations. Similar to the earlier case, we found thahension reduction mechanism prior to applying unsupegvise
applying normalization reduced the maximum variation daflgorithms like k-nearest neighbors for clustering if thenn
hidden layer outputs fron9% to 1.6% over this tempera- linear saturation in the neuron is not applied![33]./[34]€Th
ture range. Next, we trained output weights for classifigati particular algorithm we employed in this work is extreme
problems at the nominal temperatdfigwhile the temperature learning machine (ELM). The mismatch in silicon spiking
was again varied over the same range during testing. We ph@urons and synapses are used to perform the vector-matrix
the results forh; and h; ,.-m for two different datasets in multiplication that forms the first stage of this classifiedas

Fig. [18(a) and (b). It can be seen that the error increagshe most computationally intensive. Our results indicéiat t

VII. CONCLUSIONS



for a wide set of problemsrVr in the range ofl5 — 25mV
gives optimal results. A design space exploration is peréat
to show that minimum energy per operation at a specific VD[pg
is obtained by operating for a short time at the highest agiki
frequency achievable at that VDD. Linear neurons with a
saturating non-linearity are used due to ease of impleméln7—]
tation. Operating from & V power supply, this system can
achieve an optimum energy efficiency @fl7 pJ/MAC with a
corresponding classification rate ®f.6 kHz making it one of
the most energy efficient machine learners reported. Though
this hardware can only implement randomized neural netsvoﬁég%
which might require a penalty o — 3X more number of
hidden nodes compared to networks with full tunability|[35p1]
in many applications, the0 — 20X lower energy required by
o S . 22]

random coefficient multiplications in our method overcom[e
this penalty for lowering overall system energy. We alsonsho
a normalization method that enables a more robust operatié#
of the circuit over changes in power supply and temperature.

In future, we will apply this chip to classify multi-class[24]
image datasets such as MNIST. We will also explore the pos i5—
bility of using it for dimension reduction prior to unsupé&sd
clustering.

[15]

(18]

[26]
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