IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

Accuracy Aware Power Management for Many-core
Systems running Error Resilient Applications

Anil Kanduri, Student Member, IEEE, Mohammad-Hashem Haghbayan, Student Member, IEEE,
Amir M. Rahmani, Member, IEEE, Pasi Liljeberg, Member, IEEE, Axel Jantsch, Member, IEEE,
Hannu Tenhunen, Member, IEEE, Nikil Dutt, Fellow, IEEE

Abstract—Power capping techniques based on dynamic voltage
and frequency scaling (DVFS) and power gating (PG) are oriented
towards power actuation, compromising on performance and
energy. Inherent error resilience of emerging application domains
such as Internet-of-Things (IoT) and machine learning provide
opportunities for energy and performance gains. Leveraging
accuracy-performance trade-offs in such applications, we propose
approximation (APPX) as another knob for close-looped power
management, to complement power knobs with performance
and energy gains. We design a power management framework,
APPEND+, that can switch between accurate and approximate
modes of execution subject to system throughput requirements.
APPEND+ considers the sensitivity of the application to error
to make disciplined alteration between levels of approximation
such that performance is maximized while error is minimized.
We implement a power management scheme that uses APPX,
DVES and PG knobs hierarchically. We evaluated our proposed
approach over machine learning and signal processing appli-
cations along with two case studies on IoT - early warning
score system and fall detection. APPEND+ yields 1.9x higher
throughput, improved latency up to 5x, better performance per
energy and dark silicon mitigation compared to state-of-the-art
power management techniques over a set of applications ranging
from high to no error resilience.

Keywords—Approximate Computing, Power Management, Dark
Silicon; Feedback Controller; Runtime Mapping; Internet-of-
Things

I. INTRODUCTION

MERGING domains such as Internet-of-things (IoT),

cyber-physical systems (CPS) and big data applications
are compute intensive and power hungry [1]. Transistor scaling
allows building denser chips that provide higher compute
intensity to meet performance requirements of these appli-
cations. As long as voltage scaling was par with transistor
scaling, power density remained constant. With transistor scal-
ing reaching its physical limit, operating voltage approaches
its threshold and cannot be further scaled down gracefully
with transistor scaling [2]. This leads to rise in power density
and subsequently thermal violation. Performance surges of

Anil Kanduri, Mohammad-Hashem Haghbayan, Pasi Liljeberg, and
Hannu Tenhunen are with University of Turku, 20500 Turku, Finland. Axel
Jantsch is with TU Wien, 1040 Vienna, Austria. Amir M. Rahmani and Nikil
Dutt are with University of California, Irvine, CA 92617 USA.

E-mail: spakan@utu.fi, mohhag@utu.fi, amirrl @uci.edu, pakrli@utu.fi,
axel.jantsch@tuwien.ac.at, hannu@kth.se, dutt@uci.edu

Hannu Tenhunen is also with Royal Institute of Technology (KTH), Kista,
Sweden, 16440.

Amir M. Rahmani is also with TU Wien, 1040 Vienna, Austria.

\9/ APPROXIMATION L,

Figure 1: Power Management Knobs

emerging application domains, smaller chip areas and lim-
ited cooling solutions contribute to high power densities and
frequent thermal violations, potentially damaging the chip’s
functionality. To avoid thermal violations, the chip has to
function within dissipatble (safe) limits of power. This forces
a section of chip to be powered off temporally - this inactive
portion is termed as dark silicon [3]. Dark silicon phenomena
reduces performance, energy efficiency and utilization of on-
chip resources [2].

Power capping techniques are used to restrict power con-
sumption of the chip to a fixed and safer limit, beyond which
thermal violations may occur [4]. Dynamic power capping and
management techniques are triggered in an observe-decide-
act loop for power actuation and dark silicon mitigation
[5]. Typically, these techniques monitor instantaneous power
consumption and temperature accumulation, decide on power
actuation, and act on the decisions through power knobs.
Dynamic voltage and frequency scaling (DVES), power gating
(PG) [6], near threshold computing (NTC) [7] and adaptive
scheduling [8] are widely used knobs for power management.
Combinatorial actuation of different power knobs can honor
thermal and power constraints, however with limited gains
on performance and/or energy efficiency [9]. Figure 1 shows
different power knobs classified in order of their temporal
effect on power actuation and overhead.

On the other hand, approximate computing is emerging as
an alternative for dark silicon mitigation through architectural
and run-time solutions. Approximate computing trades off
accuracy for performance and energy gains, thereby improving
utilization of on-chip resources and attacking the dark silicon
problem. Widely used computer systems application such
as image processing, video streaming, machine learning and
numerical methods are usually tolerant to inaccurate results
due to their nature of computation which can often be iterative
and/or NP-hard. Data acquisition systems like Internet-of-
things (IoT) often deal with real world analog sensory data
that is noisy, where energy is a scarce resource. The front-end

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

Many-core System
Observe |« .
.
Act
] DVFS /NTC
Power knob PCPG .

Decide [

Performance/ | | Approximation|
Energy knob g

Figure 2: The Approximation Knob

sensor nodes of an IoT system are likely to produce volumes
of data that needs to be processed, stored and analyzed in
real-time. Despite the sensor nodes being ultra low power, the
computation requirements of these applications are still high.
Several IoT applications hence rely on a smart gateway for
edge and/or cloud based processing [10]. With several sensor
nodes mapped to a single edge or cloud processor, performance
and power challenges continue to effect IoT applications indi-
rectly. Noticeable fact among several IoT applications is that
they integrate inter-disciplinary computational workloads from
learning, recognition and mining. Approximation leverages
inherent error resilience of such applications to reduce compu-
tational workload and increase energy efficiency, particularly at
the edge and cloud layers that enable complex IoT applications.

In the context of power capping, reactive power knobs such
as DVES and PG are desirable for instantaneous power capping
[11], although these knobs are oblivious to performance and
energy efficiency. DVFS knob would be limited when voltage
approaches its threshold and cannot be scaled down any further
and also suffers with increase in leakage power. Power Gating
(PG) knob addresses the issue of static power and is not
limited as DVFS. However, the reduction in static power comes
at the expense of performance, since only fewer cores are
simultaneously powered up. Both DVFS and PG are triggered
as a reaction to power violations, which might work for
instantaneous power reduction in short-term. Despite power
capping benefits, they do not offer any substantial gains on
performance or energy efficiency. To fill the performance
and energy gap of power knobs, we propose approximation
(APPX) as another knob for power capping and management.
We couple the power knobs DVFS and PG with energy and
performance knob APPX in a hierarchical manner for power
capping, while ensuring performance and energy gains, at
the expense of accuracy. Figure 2 shows the top-level view
of approximation as another knob for power management
along with conventional power knobs. The rationale behind
using APPX knob is that IoT domain has tasks that demand
performance and energy efficiency, while slight inaccuracies
are tolerable. From a hardware standpoint, reduced workload
improves the chip’s overall throughput and resource utilization,
reducing the impact of dark silicon.

In this paper, which is major extension of our recent
work published in [12], we propose an approximation enabled
power management framework APPEND+, that uses DVFS
and PG knobs primarily for power capping and APPX knob for
performance. The key idea of this work is to switch the mode
of execution of an application from accurate to approximate
upon performance requirements. We design a power manager
that makes decisions on actuation of DVFS and PG knobs in

case of power violation and APPX knob in case of throughput
violation. Upon invocation of APPX knob, we switch the
mode of execution of a task from accurate to approximate. In
our previous work, we switch from accurate to approximate
mode of execution among approximable applications, subject
to system requirements [12]. At times, this strategy either over
compensates for performance surges by approximating beyond
the requirement, or falls short of meeting the performance
requirement. We fill this gap using sensitivity metric for each
application at each level of approximation that is used to
make mode switching decisions. We use a set of variable
accuracy implementations of an aprpoximable task, with each
approximate task identified by its sensitivity metric which is
represented as the performance gained per error induced. To
enable selection of suitable candidates for mode switching,
we prune this set to choose a candidate task for replacing
the accurate task that offers maximal performance gain within
minimal error. We present a run-time mapping and mode
switching algorithm for replacing accurate tasks with approxi-
mate tasks from the set of variable accuracy implementations.
Our contributions based on our prior work [12] are as follows.
e Approximation knob for closed loop power and perfor-
mance management
e A classification algorithm for identifying approximable
tasks that maximizes performance by pruning application
space based on sensitivity metric
e A run-time mapping and mode switching technique for
replacing accurate tasks with approximate tasks
e A power management framework APPEND+, that uses
DVEFS, PG and APPX hierarchically for power capping
and throughput improvement
e A case study of IoT applications - fall detection and early
warning score (EWS), to evaluate APPEND+

II. RELATED WORK

Power Capping: Power consumption exceeding the fixed
threshold of thermal design power (TDP) results in power
violation that is hazardous for the chip’s functionality. Adap-
tive power capping techniques monitor the power consumption
and actuate power knobs in a closed loop, in case of power
consumption exceeding TDP. A PID controller based power
management is presented in [13], where knob settings are
actuated for power capping as per normalized gain of PID.
Vega et. al [14] propose a power capping algorithm using
DVES, PCPG and core folding, with all power knobs tightly
coupled. They suggest that combinatorial usage of different
power knobs is effective for system level power capping
decisions. Cochran et al. [15] have used thread packing, i.e.,
allocation of threads per core as a power knob along with
adaptive DVFS. PGCapping was presented in [6] that uses
PCPG and DVES in a hierarchical way for power capping
and life time balancing. Kapadia er al. have used Degree-
of-parallelism (DoP) as a knob for power management and
to improve system reliability [16]. Application mapping i.e.,
spatial alignment of active cores for improving power budget
and thus power capping limit is proposed in [17] and [18].
A multi-objective power capping approach is presented in [5],
[19] which uses combination of DVFS and Per-core Power
Gating (PCPG) based on network and workload characteristics.
Chen et. al [20] have proposed using resource allocation at data

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

2.5 100
g -=-Performance g ||-=Performance
= 3 80
© 9|/~ Energy &) — Energy
= > a0 |
2o
25| iF 40
5 E
Z. " s 20
L 5
o

5 10 15 20
Relative Error (%)

510 20 30 40 50
Workload Approximated

(a) Workload-Performance trade-offs (b) Accuracy-Performance trade-offs
for matrix multiplication

Figure 3: Performance and Energy gains with approximation for k-
means clustering

center level as another knob for power actuation. They use his-
tory based prediction for potential workload to determine CPU
resource allocation. While all the above techniques use TDP
as upper bound, Pagani et. al [4] have proposed an adaptive
way way of setting the upper bound on power consumption,
thermal safe power (TSP), as a function of spatial alignment
of active components. All these techniques focus exclusively
on power capping and combinatorial usage of power knobs,
but do not consider their implications on performance.

Approximation: Ansel ef al. have used variable accuracy
implementations of same algorithm, with language and com-
piler support to choose one among different implementa-
tions for exploring energy-accuracy trade-offs [21]. Baek and
Chilimbi have proposed approximation at software level with
a choice between accurate and approximate versions of blocks
of code using Green compiler [22]. Hoffman e al. [23] have
proposed using energy-accuracy trade-offs in context of power
capping by translating static parameters of an application into
dynamic knobs such as convergence for drop in accuracy.
However, other approximations at algorithmic level such as
logic simplification cannot be translated into dynamic knobs.
Escaping infinite loops and skipping iterations of bottleneck
loops that consume longer execution time was proposed by
Sidiriglou et al. as Loop Perforation [24]. All these techniques
explore ways to compute approximately, keeping quality con-
trol, energy and performance gains in view. However, they do
not use approximation for actuating power consumption in a
closed-loop way.

IoT: In the context of IoT applications, the need for com-
putational capacity at a sensor node level would not suffice.
To meet real time performance requirements, data collected
over sensory nodes is processed at a smart gateway [10]. The
gate way acts an intermediate edge layer between the sensor
front end and the cloud server back end [25]. Typical gate way
can be a multi-core platform, which still faces with power
and energy consumption challenges [26]. Some of the IoT
applications are concerned with actuation mechanism based
on sensory data analysis such as identifying sudden changes
in input data. Such applications present with an opportunity to
relax the accuracy of computation which in turn can be used
to conserve energy and accelerate the performance.

III. THE APPROXIMATION KNOB

An application chosen to run in approximate mode finishes
execution faster than the accurate version, within a lower

T T T T T T
8 pAvg. Wait [jAvg. Run 1 8 pAvg. Wait g Avg. Run)
Time Time Time Time
. 6 B _ 6+ B
o I e
E 4 £
= =
2|
0 = + + D
@ S ShiE h R 9] % % %
[e3 = 0, -
z 5 E£0 E£E9& 2 &3 &2 &3
A -4 A% pT< < < <

(a) Application Service Time for dif- (b) Application Service Time for dif-
ferent Knobs ferent levels of APPX Knob

Figure 4: Performance gains of different knobs for k-means clustering
simulated on 16-core system

energy budget. Figure 3(a) shows normalized performance and
energy gains of an approximate sparse matrix multiplication
over arrays of size 10000 x 10000. The workload approx-
imated is the number of inner most loops that are skipped
to reduce number of computations. With 50% of workload
reduced, performance and energy efficiency doubles. However,
disciplined tuning of approximation is needed to maximize the
performance gain and minimize the error penalty. To exploit
the performance and energy gains, we propose approxima-
tion as another knob for run-time management of computer
systems. The APPX knob is essentially a performance-energy
knob that fits well in a long-term pro-active strategy, in contrast
to the conventional power knobs.

We demonstrate the impact of different power knobs on per-
formance of many-core systems with applications dynamically
entering and leaving the system using k-means clustering as
an example. The performance of the system is determined by
service time of an application, which is the sum of wait time
- the time elapsed between application request and starting of
the execution and run-time - the time consumed in executing
the application on chip [16]. Dynamic workload characteristics
contribute to power violations, forcing actuation of power
knobs. We simulate the application for 4 different power
knobs viz., DVFS, PG, DVFS+PG (referred as MOC) [5],
and DVFS+PCPG+APPX, using the experimental platform,
detailed in Section VII. The APPX knob has k levels of
approximation, where k is a parametrizable entity. In this
case, we chose 4 levels of approximation. For APPX, we
used relaxed convergence on clustering algorithm to generate
variable accuracy versions. We use 10000 random input data
points to be classified into 50 clusters. Figure 3(b) shows the
gain in performance and energy for error induced by relaxing
the convergence from 5%-10%. It is to be noted that relaxed
convergence is not the same as error induced as a result.

The average service time for different knob combinations is
shown in Figure 4(a). In case of using DVFS and PG knobs
[13], per-application run-time increases forcing incoming ap-
plications to wait longer, resulting in high service time. The
combination of DVFS and PG has relatively better service
time using the power management algorithm, as in [5], [19].
With the APPX knob in combination with DVFS and PG,
the service time is the lowest, indicating high performance
and energy gain within the given power budget. The APPX
knob loads applications with relaxed accuracy that have lower
workloads and thus low run-time. Consequently, more re-
sources are available for incoming applications, improving
the wait-time and the overall service time. Figure 4(b) shows

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

application service time of APPX knob over different levels of
approximation. Understandably, the gain in performance with
increasing level of approximation is trivial. Despite effective
power capping and possibility of increasing the number of
simultaneously active cores, performance still suffers with
DVFS and PG when compared to that of APPX. Hence, we
propose a hierarchical management for effective combination
of these knobs to complement each other.

IV. ACCURACY-PERFORMANCE TRADE-OFFS: A CASE
FOR 10T

IoT applications deal with real world sensor data that
is analog and involves noisy components. Performance re-
quirements for IoT systems are usually high while energy
budget is limited [1]. Collection and normalizing the raw data,
classification of data into meaningful clusters, computation
over the data for actuation decisions, filtering the actuation
decisions and communicating them with external world are
major functionalities of an IoT system. Every stage in this
process has a variable tolerance to inaccurate computations,
presenting opportunities for approximation. Leveraging this
fine-grained error resilience, approximation can provide bet-
ter performance-per-energy in IoT systems. We explore the
possibilities of accuracy-performance trade-offs in IoT domain
using two case studies on health monitoring applications viz.,
early warning score (EWS) system and fall detection.

A. EWS Case Study

An Early Warning Score (EWS) system is used in health
care for monitoring vital signs of a patient to proactively alert
required medical support. A method for EWS is proposed in
[27] that uses three types of sensors viz., medical, environmen-
tal and activity. Data collected from the senors is pre-processed
by using a Butterworth filter to remove noise components and
false alarms. Sensory data from different sources is fused to ex-
tract more appropriate details. Every physiological data sensed
is allocated a score based on the range the sample belongs to
and its implication on patient’s health deterioration. The final
score is calculated as a combination of scores of all the individ-
ual sensor nodes’ data. When the final EWS is exceeds a fixed
threshold, a warning signal is transmitted seeking for medical
attention. This system deals with heterogeneous data generated
by different sensors and involves computations on unclassified,
redundant and noisy data. To extract meaningful insights, the
EWS uses data acquisition, filtering, fusion, classification, and
analysis, followed by computation and transmission. Although
this system is mission critical, there are several intermediary
stages where inaccurate computations can be tolerated. For
example, heart rate measured is classified into one of several
ranges of heart rate data and a score is assigned according to
the range it belongs to, but the exact value of heart rate is not
used. Further, medical sensors trace several samples of data
per second on an average, while a median of this data is good
enough to represent all the samples. Relaxing some of these
computations and data points that do not affect final EWS core
can enhance performance of the system within a lower energy
budget.

B. Fall Detection

Another example of [oT application that is data and compute
intensive is fall detection [28]. Fall detection mechanism

.| Mean Square

Vector —‘

Transmitter

— Accelerometer
X
Y
Comparator
Low-Pass

Filter

Figure 5: Fall Detection

identifies whether a person using the wearable detector falls
hazardously on the ground. Specifically, fall detection is used
in the context of patient and elderly people monitoring, to
bring attention and support upon a fall. Typical fall detection
employs camera, gyroscopic or accelerometer sensors for
identifying a fall with respect to inertial position. We use fall
detection based on accelerometer, as proposed in [28]. The
accelerometer data in three dimensions is used to calculate
signal magnitude vector as the square root of sum of squares of
signal component in each axis. This is fed to a low pass filter to
generate discrete signal of positioning. Unusual spikes in the
filtered data when compared to a fixed threshold represents
the possibility of a fall, which is then transmitted to support
system infrastructure for further assistance. The fall detection
mechanism is shown in Figure 5. A major conundrum in fall
detection is in identifying the abnormal spikes in positioning
signal - whether to analyze the accelerometer data tightly
coupled to the sensor or to transmit the data to a cloud
computer. Analyzing the data in a simpler micro-controller
has performance penalties while transmitting filtered data to
a high-end cloud computer consumes more energy. Expensive
floating point computations on high sampled accelerator data
such as multiplications, square root and filtering can be relaxed
to gain performance. We have run the fall detector mechanism
over 3 sample persons for 8 hours of a day. Sensory data
is collected at 100 samples/sec and fall detection is executed
at a gateway between sensor nodes and cloud server. These
test cases show that accelerometer signals generate data that
is usually redundant. Intuitively, approximating the sensory
data would induce only a tolerable error. Further, reducing the
sampling of sensor and filter length by half produced results
that are similar to accurate computations. Approximation can
thus benefit fall detection by relaxing accuracy of data analysis
simultaneously increasing energy efficiency.

V. KNOB ACTUATION SCENARIOS

In our work, we primarily monitor power consumption,
workload intensity, network utilization and intensities, and sen-
sitivity of applications to make knob actuation decisions. The
threshold for power consumption is TDP. Power consumption
exceeding TDP indicates a power violation. Further, we also
set another parameterizable threshold 7T'DP;;, a metric that
indicates possibility of a potential TDP violation, such that
0.66 x TDP < TDP,;, < TDP. We use accumulated wait-
time (AWT) of application requests made for monitoring the
workload. For a set of applications Appy, Apps,..Appy with
wait-times wq, wa, ...wy, AWT is given as:

N
AWT = (3 " w;)/N M
i=1

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

s e o |PG
AWT<AW Tipreshold “:j AWT<AWTiveshoid %3;. AWT>AW Tipveshola Loy
..1pR - T DP - A T IDPo ... App:
Power| i o fplfjsi) Power W fep;;) Power, WL st Pl
Time U Time Time (Cap?a)(-;- 13)
Power>TDP Power>TDP PG Power>TDP, | Z& PPt
L Apps Maps in ts. Curr. s values: S,=s,>S1 PG
Next s values: s;">s;’ Next. s values: 5,°>5,5>s, Next s values: s;'>s,°>s,?
@) (b) (c)
AjAppnrl “ |APPs|APPs| —~| &:m_i - ﬂAppnrl " |APPs|APPa| | - a:"’—g ﬁAppnrl | Apps|Appa| — o a:U,_s
AWT<AW Tinreshold < o AWT>AW Titvesnold %c::" 7 AWT>AW Tirreshala %‘:—' .
--IRR S o £ b ﬁ--me APP: 5 App: =
Power ower| Appx-L1 = - Appx-L1
W, T sh) Apps3 ! L s1Y) Apps Power R) App i
Time t Appx-L1 Time 5 — Appx-L1 Time P 0px-L2
Power>TDP 2, 8% TDP>Power 2, 8% Power>TD6P (AR RACTS)
Curr. s values: sy=s%>s,° % PG Curr. s values: s2>s,%>s,* PG 27 Curr. s values: s2>s,*>s,° | PG 47
Next s values: s,">s,°>s,? Next s values: sz3>512>521(e) Next s values: s,*>s;%>s5°
(d) ()
. . R =
a%. |PG Qo "]
AWT<AW Tipveshoid = < i AWT<AW Tireshoid %N . AWTSAW Tireshaid (Vﬁ P ;;:8 L s11 oo
1 > Al > EAME 9 ¢9 9
B Appx-L1 --10€...... A prﬁ_l — --I08...... (i 'y 5.
O, s Apps Power| (1P1f31X o) APPs Power| S
- 270 Appx-L2 V. fis o %
Time b (v SPI: 3 o) Time 18 AppxLl, Time o QQQ\Q ’
Power<;’DP1 . i LI, S2 Power<TDP (v o, s1d) Power<TDP v—Q [APp11
Curr. s values: S>S1 >S. PG Curr. s values: s2>s,%>s,* —,—_ Curr. s values: su=sip=so>s:’ [(', fu'™, s2)
Next s values: s;">s, >s3 1 Next s values: 511°>528>519>51“)

Next s values: s,°>s,%>s,

(9)

(h)

(i)

Figure 6: Knob Actuation Scenarios. Each scenario shows applications running on a 36-core system along with power consumption and

workload intensities.

The longer an application waits before being serviced, the
higher the workload intensity. A parametrized metric AW T}y,
is set as threshold for workload intensity. The power-objective
is to restrict the power consumption to TDP and throughput-
objective is to restrict the AWT to AW Ty;,. For actuation of
APPX knob, we use sensitivity metric of an application to
choose an application and its corresponding level of approxi-
mation.

Application Sensitivity The performance and energy gains
varies for different applications over different levels of ap-
proximation. This presents a case where approximating one
application might yield more performance gain than that of
others. We identify each application with a sensitivity metric
as performance that could be gained per error induced. The
motivation behind this is to choose an application that results
in higher performance gain for the amount of error induced.

We define an application’s sensitivity metric as:
Perf; — Perf;_1
Error; — Error;_1

@)

Sensitivity =

Perf; and Error; represents performance and error induced
at i*" level of approximation. Sensitivity of an application for
any two given levels of accuracy would be high when the
performance gained by lowering accuracy is high or when the
accuracy loss in performance improvement is lower. Subject
to application characteristics and input data, sensitivity of an
application varies through different levels of approximation.
Sensitivity metric of an application presents a wider pareto-
space of accuracy-performance trade-offs that can be explored
in choosing an application to be approximated and the level

of approximation. Sensitivity metric identifies tasks that will
result in highest performance gain among the set of tasks
currently running, and prioritizes these tasks as candidates for
switching their mode of execution to approximate. This enables
fine-grained control on APPX knob, appropriate choices for
mode switching, performance and energy gain at lower relative
error and limits the possibility of over-compensation with
approximation. Details on sensitivity metric used for evaluation
purpose are detailed in Section VII.

We demonstrate possible scenarios that require knob(s)
actuation under diverse power consumption and workload
intensities. Figure 6 summarizes these scenarios, representing
power consumption, workload intensity and knob actuations
employed over a span of execution. Each scenario (a-i) shows
power consumption with respect to TDP, applications waiting
in the queue, applications that are mapped on the chip with
their respective voltage and frequency levels and application’s
sensitivity. Voltage and frequency levels of each mapped ap-
plication (App1, Appa, ..., App,,) are represented as ((v',f!,s!
), (02, f2, 8?), ..., (W™, f", s™)). The lowest and highest levels
of voltage and frequency are (vp,fr) (var,far) respectively.
The corresponding lowest and highest levels of sensitivities
are represented as 3(1)0 (lowest level is s, as error is 0) and
s . The sensitivity for each application at different levels of
approximation is shown as s}', where n is the application
number and i is the level of approximation. Primary criteria for
knob actuation are TDP violation (i.e., power > TDP) and high
request rate of incoming applications (i.e., AWT > AWT;,).
Scenario (a): Two applications App; (v',f1,}) and App,
(v?,f2,52,) are currently running on the system at their respec-
tive voltage and frequencies in accurate mode of execution.

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

At time instance t1, a power violation (power > TDP) occurs,
while the throughput is under control (AWT < AW T;,). The
power manager employs the DVFS knob over App; and Apps
to lower power consumption within limits of power budget.
Scenario (b): App; and App- are now running at down-scaled
voltage and frequency levels (v',f1,sl)) and (v%,f%,s2) due
to triggering of DVFS knob at ;. At this stage, power
consumption is relatively lower than the previous instance of
t1, yet it is higher than TDP, indicating a power violation.
The power manager now employs PG knob to power gate the
remaining un-occupied cores (power gated cores are shaded).
However, this would potentially violate throughput constraint,
since subsequently arriving applications do not have any free
cores to be mapped onto. The current request rate is lower
than the threshold and throughput violation has not occurred.
Scenario (c¢): Power consumption is below TDP and there is
no power violation. However, with power knob triggering from
the previous instances, application request rate has increased
and there is a throughput violation (AWT > AW'Ty,). At
this stage, the power manager employs the APPX knob to
counter throughput violation. Apps, arrived at ¢3, has a higher
sensitivity than App; and Apps, and hence is mapped in
its approximate version (Appz(v3,f3,s3)). Intuitively, we are
reducing the execution time of Apps so that there are free
cores for potentially incoming applications.

Scenario (d): At time ¢4, the power consumption approaches
T D Py, indicating that the power might reach TDP. To address
a potential power violation, the power manager has to trigger
DVES knob by choosing appropriate applications that will
reflect lowered voltage and frequencies in lower power. Apps
is chosen as candidate for voltage downscaling based on
its network and compute characteristics (App2(v?,f7,52.)).
Scenario (e): At time t4, power is under control, while
throughput violation persists. App; and Apps are running
in their approximate mode at level-1. The power manager
employs APPX knob, with a choice among switching App-
or Apps to their next level i.e., level-2 of approximation, or
App: to level-1 of approximation. The sensitivity metric for
Appy at level-1 si is higher than the other two applications at
level-2 (s3, s3), hence the power manager chooses to switch
Appy to level-1 of approximation (App;(vi,fi,s1)).
Scenario (f): At time t5, power is under control, while request
rate is still high. All the three applications are running in
approximate mode at level-1. The power manager employs
APPX knob, and has to choose among the three applications
for maximum performance gain. The sensitivity metric for
Apps at level-2 of approximation is higher among the three
applications (s3 > s3 > s3), and is thus chosen to switch
the level of approximation further to level-2 (shown in bold)
(Apps (v}, f}.53)).

Scenario (g): At time t5, power consumption is below TDP, so
the power manager employs DVFS knob to upscale the voltage
and frequencies of some cores. Among the three applications,
Apps is chosen for up-scaling, as it benefits the most based
on its network and compute characteristics.

Scenario (h): At time tg, power consumption is below TDP,
and the application request rate is also below its threshold.
The power manager employs DVES knob to upscale voltage
and frequencies of some more cores. Since Apps is previ-
ously up-scaled, App; is now chosen as the candidate that

benefits from up-scaling. Also, since the throughput constraint
is maintained, the power manager invokes APPX knob. Apps,
which has a higher sensitivity is chosen to switch a level up
in accuracy, going into level-1 of approximation from level-2
(App3(v3,f3,s3)). This invocation can be influenced by a user-
defined parameter to up-scale voltage instead of switching up
the level of approximation

Scenario (i): At time ty9, power consumption is well below
TDP, allowing more power to be consumed safely. The power
manager uses DVFS knob to upscale the voltage and frequen-
cies of all active cores to their maximum values. The appli-
cation request is still higher than threshold, despite voltage
up-scaling and hence APPX knob is invoked. This time, Appg
has the highest sensitivity among running applications, hence
it is chosen to switch mode of execution to approximate at

level-1 (Apps(v8,.f5;.5%)).
VI. SYSTEM DESIGN

We design our power management framework for NoC-
based many-core systems that support dynamic mapping of
applications on to the chip at run-time. With unpredictable
sequence and characteristics of applications arrived, power
consumption, utilization, network intensity and throughput of
the chip varies. Our power management framework monitors
per-core power consumption and utilization, network intensity,
incoming application request rate and sensitivities of applica-
tions to error to actuate different knobs accordingly. The top
level view of our system architecture is shown in Figure 7.

A. Application Modeling

We model individual computational blocks of an application
as a task. Each task is identified by its compute intensity,
communication volume with other tasks and power consump-
tion. Applications are modeled as directed graphs, with each
node representing a task running concurrently with other tasks.
Analysis of applications’ power-performance characteristics
and task graph formation is implemented as an off-line func-
tion. Incoming applications are classified as approximable
and non-approximable. Approximable applications have one
or more tasks of the that can be replaced by their approximate
versions. Such applications are modeled as compound task
graphs. Approximate version of a task will intuitively have
lower compute intensity. Compound task graph generation
is shown in Figure 8. We generate compound task graphs
that include multiple versions of tasks that are approximable,
(shown in dotted lines), the approximate tasks are shown in
solid fill.

B. System Architecture

1) Run-time Mapping and Mode Selection: Incoming ap-
plications are queued in the application repository and make
a request to be executed on the chip. The run-time mapping
and mode selection unit (RMSU) responds to the application
request by selecting free cores for the application to be
mapped. Upon core selection, the RMSU maps the application
in a task-per-core manner. In addition, if the application is
approximable, RMSU buffers the approximate tasks from the
compound task graph into the Task Bank. The Task Bank is
implemented as a memory structure that holds pointers to the
addresses of approximable tasks. Task Bank provides easier
access to approximable tasks without a significant overhead.

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

Application Task Bank NoC-based Many-core System
arrlxals Appx Tasks : " J/| Core
E g: = Application /]
c > MRun‘ Time s Mapping y V-Gate
2 Application apping an Appx Mode /
< Request APPX |_> Mode Selection nvokation | PLL
I
< Sensitivity APPX Network Characteristics - VRM
g X Look-up (¥ Level Per-core Utilization Info. h
< § Table Selection PCPG N V-Gate: Voltage
£ DVFS > Gate to app ly
[APPXT \AAN, > power gating
< |A Load] Power PLL: Phase
g)| Analyzer |-> Knob Setting [€ PID < Locked Loop
< PLL and VRM are usedto VRM: Voltage
Power Controller TDP apply DVFS Regulator Module

Figure 7: Power Management Framework

o) 80
Approximation O/ @0 Power
O/i Technique ’ L S~ =7 = Management
.A) = Framework
i.O*%

Application Task
Graph

Compound Task
Graph

Figure 8: Compound Task Graph - Workflow

We use pro-active application mapping MapPro, presented in
[29]. RMSU supports dynamic mapping of several incoming
applications that can run parallely on the chip. Once the
application is mapped, RMSU sends the core allocation infor-
mation to the power controller, to support potential actuation
decisions. Servicing an application depends on availability of
free cores on the chip, which in turn depends on performance
and power consumption of active cores. Number of outstanding
application requests weighed with the time before they get
serviced, AWT (Equation 1), is sent to the power controller
for knob actuation decisions.

2) Power Controller: Power controller is the central man-
ager that monitors power consumption, incoming application
request rate and system metrics for power and performance
knob actuation decisions. Every core on the chip is provided
with power and processor utilization sensors. Processor utiliza-
tion is the ratio of change in performance per change in power,
measured over the previous epoch of voltage scaling. Lower
utilization represents lower performance gain and higher power
gain, making such cores as candidates that benefit more from
voltage downscaling. Each router associated with a core has
buffer utilization and packet injection rate sensors. Buffer
utilization is calculated as moving average of number of entries
made into the network buffer. Packet injection is calculated as
the rate at which packets are injected by the core to the router
connected to it. Higher buffer utilization represents a congested
network and higher packet injection represents wider network-
performance gap, making them relatively suitable for voltage
downscaling. We combine the aforementioned metrics to prune
the application space for selection of candidates that are more
suitable for voltage down/up scaling. Selection of appropri-
ate candidates for employing the DVFS and PG knobs are
elaborated in our previous work [5] [19]. Thus we monitor
power consumption, processor utilization, network congestion
and network intensity at run-time, forming the monitor phase

of the power management framework. Actuation decisions of
the power controller are based on parameters received from
the monitor phase.

We feed the difference between power consumption of the
chip and T'D P to a PID controller. Output of the PID controller
is proportional to the difference between power consumption
and TDP and determines voltage and frequency levels to
be down scaled to avoid power violation. In case of power
consumption being below T'D P, voltage and frequency would
be up-scaled for better power utilization. Knob Setting block
of the power controller receives the new voltage and frequency
levels from the PID controller, along with processor utilization,
buffer utilization and packet injection rate from the monitor
phase. Based on utilization and network parameters, Knob
Setting block decides the cores to which voltage and frequency
levels are to be updated. The PID controller’s output is also
used to decide the number of cores to be power gated. Both
DVES and PG actuations are applied to the chip, as shown in

Figure 7.
Load analyzer compares application request rate,
represented by AWT, and the threshold, AW'Ty,, to

determine throughput violation (AWT > AWTy,). The
Knob Setting uses this information and invokes APPX knob.
Sensitivity metric over different levels of approximation for
all the applications is summarized into a look-up table. Each
application has k (parametrized) levels of approximation
and sensitivities associated with each level. The level of
approximation of an application that is currently running
on the chip determines current sensitivity factor, while the
ones that are preceding and succeeding are the previous and
next sensitivity factors. The look-up table is pruned to find
the application that has the highest sensitivity factor in its
next level of approximation. For example, consider App;
running at level-1 of approximation and apps running at
level-2 of approximation. If APPX is to be invoked, the next
level of approximation for app; is level-2 and for apps is
level-3. So, the sensitivities of app; at level-2 (succeeding
the current level-1) and apps at level-3 (succeeding the
current level-2) are compared to find the application with
highest next sensitivity value. The chosen application and
corresponding level of approximation are forwarded to the
RMSU. The RMSU retrieves the approximable tasks of the
chosen application with the level specified by the APPX
Level Selection from the Task Bank. The accurate task is

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

data12 data23 @ @ datal2 data23 @

~

Wait until current iteration ends Replace task 2 with task2_apx

Figure 9: Mode Switching

then replaced with the approximate task retrieved from the
Task Bank. For evaluation, we currently use four levels of
approximation in increasing order of accuracy-performance
trade-offs. Alternatively, several fine-grained levels of accuracy
trade-offs could be used.

Mode Switching: When the current mode of execution is
accurate, the RMSU originally maps the accurate version of
the task graph. If the application is approximable, the RMSU
buffers approximate version tasks of the application into the
Task Bank. Depending on APPX knob setting, RMSU chooses
the version of task to be included in the application mapping,
while the other versions are buffered. With the invocation
of APPX knob, there are two possible scenarios for mode
switching viz., i) mapping approximate task graphs and ii)
switching mode of execution of applications currently running
by task replacement. In the former case, the RMSU maps every
incoming application in its approximate version by including
the approximable tasks instead of accurate tasks, until the
mode is switched back to accurate. The level of approximation
is specified by the power manager. For applications that are
currently running on the chip, power manager chooses the
application(s) and level of approximation to switch to. Based
on these, RMSU identifies the corresponding approximate
task specified by the power manager from the 7Task Bank
and replaces the accurate task with the approximate task.
We modeled applications for evaluation as data dependent
concurrent tasks that execute periodically. The computational
process repeats until the end of execution with a specified
periodicity. Streaming and signal processing applications are
good examples which execute periodically over incoming
samples of data, where it is possible to relax certain aspects of
computation when new data arrives every period. In a similar
manner, IoT applications work on real world sensory data, pre-
processing, filtering and computation over continuous intervals
in a batch. Precisely, in these applications, the computational
task remains the same while new data arrives after every
interval. When the RMSU has to replace an accurate task
with approximate, it lets the current iteration of accurate task’s
computation to finish execution. It waits until data from the
accurate task is received at its destination end task (if any).
Once the data transfer is completed, the RMSU loads the
approximate task on to the chip, replacing the accurate task.
Figure 9 shows the process of task replacement during mode
switching. The example has three tasks 1, 2 and 3 out of
which task2 is approximable. On invocation of APPX knob,
the switching happens in the following sequence. i) The RMSU
finds the approximate task task2_appx from the Task Bank.
ii) It waits until data from task2 (data23) is received at task3.
iii) task2_appz is loaded by fetching the instruction stream
into the cache (I-cache) iv) After the data is received at task3,
the execution of task2 will now start from new instruction
stream of task2_appx. Depending on size of instruction cache
used, instructions of task2 may require flushing, however this is

Power Manager.
APPX

Level
“ Selection

subject to hardware platform. Since the computational process
of the application is periodic in nature, data is not changed
with mode switching and moving the data or flushing the data
cache (D-cache) is not needed. The state of the application is
hence preserved at the end of the period. It is to be noted that
task migration [30] has an appreciable overhead in moving
both instructions and data, which is a widely used approach
in dynamic power and thermal management. In comparison,
the mode switching overhead is lesser, as it involves insertion
of new instructions alone and does not need any data accesses
(i.e., data roaming). The overhead incurred in mode switching
is elaborated in Section VII.

Mode Switching Vs Dynamic Knobs: Hoffman er al. [23]
have used dynamic knobs that reside in program space to
scale accuracy of applications. However, this restricts accuracy
trade-offs only to applications with possibility of specific
relaxed execution that do not require compile time support.
Approximation techniques that use logic simplification and
minimization with a different implementation need compile
time support, and cannot take advantage of dynamic knobs
approach. Mode switching overcomes this limitation, widening
the scope to several application domains and approximation
techniques. Dynamic knobs can be treated as a best case sub-
set of mode switching.

..

PG DVFS Many-core
>

Controller T Controller System

Figure 10: Hierarchy of Knobs

C. Power Management Algorithm

We employ the DVES and PG knobs synergistically with
APPX in a hierarchical way, as shown in Figure 10. Triggering
and tuning of these knobs together for power capping and
performance maintenance is handled by power management
algorithm, listed in Algorithm 1. We define three epochs e;,
eo and eg for actuation of APPX, PG and DVFS knobs respec-
tively, such that e; > ey > e3. At every epoch e;, application
request rate is monitored. The difference between AW'T and
its threshold is used to choose settings for APPX knob. Settings
for the APPX knob viz., application and level of approximation
are determined by level selection algorithm, listed in Algorithm
2. The extent of throughput violation (AT") determines mode of
incoming applications. If (AT > 1), it reflects a steeper request
rate of applications. Then, the mode is set to in, indicating to
the RMSU that newly incoming applications are to be mapped
in their approximate mode at level-1. If (1 > AT > 0), the mode
is set to run i.e., to switch the execution mode of currently
running applications only. In this case, based on sensitivity
factors of currently running applications, the sensitivity factor
vector for next level of approximation is looked-up from
the sensitivity factor look-up table (SEF'LT). This vector is
sorted to find the application with highest sensitivity among
running applications. The chosen application and level of
approximation is returned to the power manager for invocation
of APPX knob. In case the throughput is not violated (AT < 0),
the approximation level of a chosen application is shifted up, to
a relatively accurate level. The sensitivity factors of preceding
level of approximation of currently running applications are

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

Algorithm 1 Power Management Algorithm

Inputs: P: Instantaneous Power Consumption, AWT": Accumulated
Waiting Time;

Outputs: APPX, PCPG, DVFES, mode: Knob actuations and
Mode switching commands for RMSU;

Constants: T'D P: Safe power budget, AW T;,: AWT Threshold, el,
€2, e3: Knob actuation epochs, SF LT[]: Sensitivity factor look-up
table

Global Variables: SF[][]: Sensitivity factor look up table;
currSF[|, nextSF[|, prevSF[| : Sensitivity factor vectors
of current, next and previous level of approximation of running
applications; coresyn, coresgate, coresprey : Cores - Un-occupied,
power gated and preferable for DVFS.

Variables: Appr: Applications currently running, Appx: Appli-
cations approximable, Appy: Applications running in approximate
mode; SF[][]: Sensitivity factor look up table;

Body:
1: for epoch = el do
2: AT = AWT — AW Tip;

3: (app,level, mode) = apprChoose(AT, currSF);
4: APPX/(app,level, mode);

5. for epoch = e2 do

6: AP=P—-TDP;

7: if AP > 0 then

8: PCPG gate(coresun);

9: else

10: PCPGyn(coresgate);

11: for epoch = e3 do

12: AP =TDP — P;

13: if AP > 0 then

14: DV FSaown(corespref);
15: else

16: DV FSyup(corespret);

looked-up from SF LT These are sorted to find the application
that is least sensitive to error. This application is chosen for
invocation of APPX knob, the application and its level of
approximation are returned to the power manager. APPX knob
is invoked by the power manager by sending the knob settings
received from the level selection algorithm to the RMSU. This
is presented in a listing in Algorithm 3. When the mode is in,
new incoming application’s tasks are buffered into the Task
Bank. The new application is mapped in its approximate mode
at level-1. When the mode is set to run, the task and its level
of approximation specified by the power manager is retrieved
from the Task Bank. Accurate version of this task is replaced
by the approximate task.

Epochs ey and e3 are smaller than e; and are concerning
power violations. Power violations are monitored at epoch es.
If power consumption exceeds TDP, PCPG knob is actuated by
power gating cores that are currently un-occupied on the chip.
Conversely, when power consumption is below TDP, cores
that are previously power-gated are powered up. At epoch
e3, power violations are addressed by DVFS knob. Cores
that benefit relatively higher from DVFS actuation are the
preferable cores. DVFES knob is actuated over these preferable
cores. Similar to the PCPG knob, voltage and frequency levels
of preferable cores are up-scaled when power consumption
is below TDP. The actuation of PCPG and DVFS knobs are

Algorithm 2 Approximation level calculation function
(appxChoose())
Inputs: AT, currSF(SF[]);

Outputs: app: Application chosen for approximation, level: level of
approximation, mode: Mode for incoming applications;

Body:
1: if AT > 0 then
2: if AT > 1 then

3: mode = in;

4: else

5: mode = run;

6: SV[] < nextSF(SFLT[));
7 sort(SV[]);

8: (app,level) = mazx(SV]]);
9: else

10 SV[] ¢« prevSF(SFLT[));
1: sort(SV]]);

12: (app,level) = min(SV]]);
13: return (app, level, mode);

Algorithm 3 Mode Switching Algorithm

Inputs: app: Application chosen for mode switching, level: Level of
approximation, mode : Mode of mapping a new application
Outputs: Map: Mapping configuration of incoming application;
Variable: new App: Incoming application, t°*¢!: Approximable task
and its level of approximation;

Body:
1: if mode = in then
2: if newApp then
3 for t* € newApp do
4 TaskBank.push(t%);
5: switch(t', t);
6: Map(newApp);
7. if mode = run then
8 wait until current iteration of ¢ finishes;
9 switch(TaskBank— app.t'¢*¢!, app.t);

based on our prior work on multi-objective power management
framework [5], [19].
VII. EVALUATION

In this section, we assess the efficiency of our
approximation-enabled power management approaches
APPEND+ and APPEND, with and without considering
sensitivity of application. We compare our approach
against state-of-the-art dynamic power management/capping
techniques PG [13] which is based on PCPG, and MOC [5]
which is based on per-core DVFS and PG.

A. Application Setup

For evaluation purpose, we choose inter-disciplinary error
resilient application domains of machine learning and signal
processing. Further, we selected two applications from IoT do-
main, given the nature of input data and computations involved.
The applications used for evaluation of APPEND+ are pre-
sented in Table I. The chosen machine learning applications are
data-triggered on-line learning techniques that fall under classi-
fication and estimation. They are inter-disciplinary, specifically

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

with IoT based applications, being used in recognition, mining,
synthesis and automation that are performance and energy
demanding. These workloads are based on iterative methods
of computation, meaning that the accuracy of result converges
towards optimal solution with more number of iterations. Since
an accurate solution may not exist and lower convergence
could still offer an acceptable result, they become candidates
for approximation. For evaluation purpose, we choose 4 levels
of approximation, level-1 through level-4. We normalize the
performance and energy gains of approximate tasks from level-
1 to level-4 against their accurate versions. Table I shows the
normalized gain in performance and energy, relative error in-
duced with approximation for different applications and levels
of approximation. The applications tested are error resilient in
general. We chose approximations that result in soft errors,
ensuring there are no critical errors or exceptions. For linear
regression, we use training data of 1 million data samples
and a test it over 1000 samples. We use loop perforation
to skip 5% to 15% of computations on input training data.
The error is calculated as relative to accurate regression. For
k-means clustering and k-nearest neighbors, we use relaxed
convergence. We compromise on number of flips, coverage
of neighbors and training data sets respectively for these
applications. We set the limits of relaxation on convergence
from 3% to 10% for four levels of approximation. For FFT, we
approximate the computation involving exponential functions
with relaxed memoization and storing the twiddle factors in
lower precision. We compute the complex exponential for
one iteration and re-use it for subsequent samples, despite
the inputs to exponential function not being same. For low-
pass filter, we use a Blackman window with 50 coefficients.
We reduce the number of coefficients up to 5 for relaxed
execution. We use sparse vector multiplication because of its
broader usage and application in several other fields. For this
application, we simplify the logic of product calculation that
replaces accumulated multiplications of rows and columns with
a single multiplication of means of a row and column. For
IoT case study on EWS, we reduce the number of samples
of heart rate sensor and compromise data fusion. We run
the accurate and approximate versions on data sets collected
from 3 different subjects. For fall detection, we reduce the
sampling rate of accelerometer, number of filter coefficients
and simplify the logic of magnitude vector computation. We
use real time accelerator data collected from a subject wearing
the fall detector, over different physical activities of walking,
sprinting and resting.

We used the normalized performance gain and relative error
induced upon mode switching for each applications over 4
levels of approximation. We calculated the error sensitivity
as gain in performance per error, as described in Equation
2. Table II shows the sensitivity metrics for the applications
used over different levels of approximation. It should be noted
that normalized gain and sensitivity with increasing level of
approximation are distinct. The sensitivity metric represents
amount of performance gained per amount accuracy lost by
moving a level of approximation further. For example, linear
regression has sensitivity of 10.1 at level-1, while the sensi-
tivity at level-2, 0.09, is much lower than the previous level.
This intuitively means that changing the level of approximation
for this application from level-1 to level-1 either has a lower

performance gain or higher error penalty or both. Similarly,
k-means at level-1 has much higher sensitivity than that of
the other levels. The normalized gain at level-1 for k-means
is 1.23, however the error, 0.01, (see Table 1) is extremely
small, making the sensitivity high. APPEND+ considers the
sensitivity metric of all the applications currently running on
the chip to make decisions on which application and which
level of approximation are to be chosen for APPX knob
actuation. APPEND is obliviuos to the sensitivity metric and
chooses applications in a naive manner and corresponding level
of approximation in a sequentially increasing order.

B. Simulation Environment

Applications are modeled as task graphs, as described in
Section VI. We implement each application such that one
task is allocated one core on interval-core based Sniper sim-
ulator, annexed with McPAT for modeling power [31]. We
used Gainestown architecture that has Nehalem-like processing
elements with 32KB of instruction and data caches. We model
the application into concurrent tasks, preserving data flow
nature. We use loop perforation and relaxed convergence in
case of approximate tasks. We extract execution time, average
power and energy consumption per task. We normalize these
values as compute factor metric for each node in the task
graph, along with amount of data flow as the communication
volume between tasks. The task graph for each application is
thus a directed network of nodes that holds execution time,
communication volume, average static and dynamic power
consumption for accurate and approximate tasks.

The performance and power values extracted from these
simulations provide the relative performance and power gains
of a task when the execution is switched to approximate from
accurate. We use this ratio to model the power and throughput
gains while simulating, so that the APPEND+ framework can
be adaptive for all hardware platforms irrespective of architec-
ture. The Sniper simulator provides processing elements with
other variants of micro-architecture. The relative performance
gains for approximate versions over the accurate versions
may hold good over different hardware platforms, unless the
architecture is highly customized.

We use our in-house cycle accurate simulator implemented
in SystemC to evaluate the proposed power management
framework. We extended Noxim [32] NoC simulator using
its network infrastructure for interconnects. The power char-
acteristics of processing elements (PE) are modeled based
on metrics extracted from McPAT and Lumos [33]. Lumos
is an analytical framework that quantifies power-performance
characteristics with technology node scaling for many-core
systems. We used Lumos for physical scaling parameters,
voltage scaling and TDP metric for different network sizes.
We added the support for dynamic arrival and servicing of
applications through the run-time mapping unit. The mapping
unit receives commands from power controller, implemented
as a software module. The test-bed is a rectangular network
with X-Y routing. The tile(g o) of the mesh acts as the central
manager that is responsible for keeping track of mapping
information. The network size is 12x 12 and the chip area is
138mm?. For the first node selection in the runtime mapping
process, we use MapPro [29] method. For the DVFS purpose,
we use 15 VF levels with voltage in the range of 0.8V-1.2V.

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

Table I: Applications’ Energy-Accuracy Trade-offs

The frequency of the on-chip communication network (e.g.,
routers) is set to the maximum level (similar to [13] and
[5]). The TDP value is set to 90W, calculated based on the
chip’s power density. We also evaluate our approach for power
capping under a variable power budget, thermal safe power
(TSP) [4]. TSP is calculated as a function of simultaneously
active cores, which vary at run-time based on application
arrival and mapping. TSP provides a relatively higher power
budget than the conservative design time estimate of TDP.
We estimate TSP on-line and use it as the upper bound on
power budget for evaluating APPEND+. We implemented the
APPEND+ technique over integrated simulation framework as
summarized above. For real world scenarios, it is possible
to implement the same as an operating system level policy,
provided the hardware platform has power sensors to monitor
power consumption at run-time, appropriate support for per-
core/per-cluster DVES and power gating.

C. Evaluation Metrics and Results

For evaluation purposes, we simulate the system over a
period in which 200 applications are serviced. The evaluation
metrics are: 1) Power Consumption: Power consumption of the
system over the period of execution, honoring TDP by capping
the power, ii) Accumulated Wait-time: Accumulated value of
wait-time of applications before the application request is
serviced, and iii) Throughput: Time consumed to service 200
applications Our pre-requisite goal is to cap the power con-
sumption such that TDP constraint is honored throughout the
period of execution. Figure 13 shows the power consumption
of DVFS, PG, MOC, APPEND and APPEND+, along with
TDP constraint, over the execution time for servicing 200
applications. TDP violation is more frequent with PG and
DVES knobs, while TDP is honored for most of the execution
period with MOC, APPEND and APPEND+. Figure 14 shows
the power consumption of the system with TSP as the upper

Application Norm. Perf. Norm. Energy 9oError
PP Level-1 | Level-2 | Level-3 | Level-4 | Level-1 | Level-2 | Level-3 | Level-4 | Level-1 | Level-2 | Level-3 | Level-4
) Lincar 1.01 1.09 115 1.20 1 1.08 1.15 1.2 0.01 0.05 0.08 0.1
Machine Regression
Learning K-means 1.23 1.54 1.71 1.92 1.22 1.53 1.69 1.89 3.53 12.74 16.34 19.66
K-NN 1.08 T1 .15 1.57 .11 .13 .18 175 .13 21 5.85 288
Sienal FFT 1.01 1.01 1.05 1.07 1.04 1.06 1.08 1.11 2.17 4.14 7.6 13.34
Procissing LPF I 20 334 | 105 12 2.0 35 933 | 1572 | 166 | 1935 | 30.09
Ve;ﬁlraﬂf)‘;h" 107 | 118 | 125 | 168 | 106 | 115 | 12 16 | 853 | 1239 | 182 | 300
IoT EWS 1.11 1.15 1.33 1.49 1.22 1.29 1.37 1.57 10.4 14.5 17.49 27.72
Fall Detection 1.1 1.39 1.7 2.06 1.1 14 1.75 2.33 9.18 11.38 14.1 229
Table II: Application Sensitivity bound on power. Unlike TDP, TSP varies at run-time offering
a flexibility in power capping. DVFS knob violates the TSP
o Sensitivity limit and is not at efficient power capping. PG honors TSP
Application . . .
- Level-1 | Level-2 | Level-3 | Level-4 constraint, however the power consumption always remains
Machine Reglrr::;iron 10.1 0.09 0.13 0.23 lower than (but not closer to) TSP, indicating a lower utilization
Learning K-means 651 028 044 0.64 of available power b}ldget. MOC, APPEND and APPEND+
K-NN 0.07 0.06 0.06 0.43 meet the power capping requirement and have a better power
: FFT 0.01 0.01 0.05 0.07 budget utilization. APPEND and APPEND+ maintain power
Signal LPF 0.6 55 29 | 184 -
Processing | —ysaior Mulfic : : : : consumption closest to TDP when compared to other knob
plication 0.24 1.59 0.31 0.83 combinations, reflecting better utilization of available power
IoT EWS 0.95 0.26 0.58 0.3 budget. This indicates mitigation of dark silicon and can be
Fall Detection | 1.02 0.86 0.72 0.14 attributed to hierarchical usage of power knobs in APPEND+’s

power controller. Moreover, we actuate power knobs - DVFS
and PG by monitoring power consumption over an epoch e;
and trigger the approximation knob pro-actively over epoch e;
with es being five times longer than e;. This eliminates possi-
ble random actuations or oscillations between different modes
of execution. With better utilization, APPEND and APPEND+
are able to service applications faster, reducing the run-time
and consequently wait-time of incoming applications. Figure
15 shows the accumulated wait-time (AWT) for different power
capping actuators over the period of execution. We present
AWT as a function that is directly related to rate of application
requests made. Similar to power capping, APPEND+ has the
best AWT, preceded by APPEND, MOC, PG and DVFS. DVFS
and PG based actuations have higher AWTs already when
the application request rate reaches 3 per second. MOC has
a relatively high AWT when application request rate is 5
per second. However, APPEND and APPEND+ have a near-
zero AWT for as long as 5x more than DVFS and PG and
3x more than that of MOC. This demonstrates the ability
of APPEND and APPEND+ to service applications faster
despite high workloads, when compared to the other knobs.
APPEND+ has AWT greater than zero when the application
request rate reaches 15 per second. Also, AWT accumulation
is more steeper in case of other knobs than that of APPEND
and APPEND+, indicating a substantial rise in their wait-times
with high request rates. The minimal AWT and high service
rates of APPEND and APPEND+ also results in high through-
put and energy efficiency. Normalized gain in throughput for
all knob combinations with TDP as upper bound and TSP as
upper bound are shown in Figure 11 and Figure 12 respectively.
APPEND+, followed by APPEND have the higher throughput,
that is upto 1.9x better than PG and 1.4x better than MOC,
showing a significant gain in performance and energy while
power capping is strictly maintained. Employing APPX knob
allows APPEND+ to minimize execution time of applications

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

Normalized
5[Throughput ‘ 1.81 B
1.53 H
1 |- -
0
PG[12] DVFS MOC[5] APPEND APPEND+

110

Figure 11: Normalized throughput (TDP)

Normalized
Throughput
21 1. 74 .
1.21
1 - -
0
PG[12] DVES MOCI5] APPEND APPEND+

Figure 12: Normalized throughput (TSP)

running on the chip. With applications leaving the system
faster, more resources (cores) become available for incoming
applications and reduces their wait-time. APPEND benefits
from AWT and throughput mutually improving each other. It is
also to be noted that throughput gain of APPEND+ is relatively
higher with TSP than that of TDP. The same trend can be seen
with throughput of all the other knobs too, reflecting better
utilization of power under TSP constraint. The key feature
of APPEND+ is the APPX knob which can be implemented
exclusively in software. This makes the APPEND+ framework
easy to scale and adapt across different hardware platforms. In
the context of IoT applications, APPEND+ can be used both
at the edge and cloud layers which can deliver real-time high
performance at the front-end. The sensitivity look-up table can
be used only to store sensitivity metrics of applications that are
currently running on the chip. This puts a reasonable limit on
size of the look-up table, without affecting scalability.

1) Error and Overhead Analysis: Behavioral patterns of
accurate (Acc) and approximate (Appx) versions of each ap-
plication are shown in Table III. The approximate versions are
at level-4 of approximation, to reflect the maximum overhead
caused and maximum performance gained. The number of
instructions of each applications (Instructions), number of
instructions simulated (Instr. Sim (M) in million), number of
L1-instruction cache accesses (L1-I Accesses (M)) (in mil-
lion), and normalized overhead (in %) are presented in Table
III. These metrics are extracted from individual application
simulations (accurate and approximate) on Sniper. Number
of instructions are slightly higher for approximate tasks due
to conditional branching involved. However, these instructions
eventually result in reduced overall workload and hence im-
prove performance. For each application, we used 1 million
elements in training set in increasing steps of 100000 data
points per period. Number of simulated instructions depend
on training and test data sets used, and are variable in case
of different sizes of data used. With loop perforation and
relaxed convergence, input data elements are skipped, resulting
in fewer instructions required to be simulated. Switching
execution from accurate to approximate version incurs some
overhead due to monitoring and triggering the approximate
version. For every approximate task, the switching of exe-
cution mode involves a conditional branching instruction(s).
The overhead incurred during this transformation included in

97 e APPEND+ ——TDP (a)
2 92 | S — =
g 70
S 50 : ‘ ‘ ‘ ‘
0 50 i 150 200 250
Time (s)
guo{ oo APPEND ——TDP (b)
< 90 — -
g 70
) ‘ ‘ ‘ ‘ ‘
e 0 50 100 150 200 250
Time (s)
110 7 e MOC [5] ——TDP ()
$ 2 —— = == v
5 70
g 50 f f f f {
o 0 50 100 150 200 250
Time (s)
,\1;8 |~ -;:--DVFS ——TDP (d)
2 AR B N
5 70
g 50 ‘ ‘ ‘ . ‘
a 0 50 100 150 200 250
Time (s)
110 1 eeeeee I
e ‘ R PG [12] TDP ()
E 70 \ /\"" \ ".1 I /’ Loms v ‘\.",\‘\/I‘\\,’ﬁ‘\.‘,‘\\‘\"’-\\l’“
g s0 : : : : :
a 0 50 0. 150 200 250
Time (s)

Figure 13: Instantaneous Power Consumption of different knobs on
144-core system. Power is capped at TDP.

the approximate task’s compute factor. For the applications
we used, the normalized overhead penalty incurred in mode
switching ranged between 0.3% up to 1.2%. This overhead is
negligible when compared to the workload reduced by approx-
imation and thus levies no significant performance penalty. In
terms of power overhead, the Task Bank and sensitivity look
up tables used in APPEND+ framework are simple memory
structures with fewer access during execution of an application.
The power consumption of these components is insignificant
compared to the total system power. Loading an approximate
task involves moving new instruction stream to the instruction
cache, with a possibility of increase in the number of DRAM
accesses. However, this depends on the number of application
instructions and the size of L1-instruction cache. For instance,
a larger application coupled with smaller L1-instruction cache
presents a worst case scenario that would force the system
to evict accurate task and fetch the approximate task from
main memory. Although, in our testbed, we used L1-I cache of
32KB and all the applications have instructions up to as many
as 1500. The worst case penalty in terms of communication for
switching from accurate version of a task to the approximate
version can be calculated as follows:

$12€app

penalty = X (Pp+(nxrp)+MCL+DRAML) (3)

Siz€pkt
where sizeqy, and sizepy, are application and packet sizes,
Pr, is packetizing latency i.e., time consumed to packetize
data, access the network interface and inject packets into the
network, n is the number of hops from a core to nearest
memory controller, r; is router channel latency, MCy and
DRAM], are access latencies of memory controller and off-
chip memory. We demonstrate the theoretical worst case
overhead penalty of mode switching for a video encoding

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

B APPEND+ ——TSP (a)
B150 L g eyt IR
g 130 -
S110
0 50 100 150 200 250
Time (s)
B APPEND ——TSP (b)
S 150
2
g
0 50 100 150 200 250
Time (s)
1704 T MOC [5] — TSP (C)
5150 WWWWM
5 130
2 110 | ‘
o 0 50 100 . 150 200 250
Time (s) |
LA I — DVFS, — TSP)
S 150 Lem=ag . —— -
2 Ny Ny VA ey o
5 130
2 110
o 0 50 100 150 200 250
Time (s)
o e PG [12] ——TSP @)

100 150 200 250
Time (s)

Figure 14: Instantaneous Power Consumption of different knobs on
a 144-core system. Power is capped at TSP calculated at run-time

—=-PG [13] —=—MOC [5] ——DVEFS

—— APPEN APPEND+
5 T T T / T
40 f e
E ;’8 / _
< y:
10 y .
0 : ‘ I A
1 5 10 15 20

Application Arrival Rate (#apps/sec)

Figure 15: Accumulated waiting time
application run on Intel SCC as an example. The example
application was used by Holmbacka et al. to demonstrate
overhead for task migration [34]. The experimental many-core
platform Intel SCC has the off-chip memory, core and network
frequencies of 400MHz, 533MHz and 800MHz respectively.
The worst case mode switching penalty on SCC for the
video encoding application of size 6KB using the formula
in Equation 3 is 1.5ms. For the same application, penalty in
task migration is 10.6ms, 7x more than the mode switching
overhead, to move both instructions of 6KB and data of 16KB.
Task migration overhead can still be higher when more data
is to be moved, while mode switching needs no movement
of data. It should be noted that these values are subjective to
the platform on which they are executed, while the relative
difference in overheads between mode switching and task
migration might hold good.

VIII. CONCLUSIONS

In this work, we proposed approximation as another knob
for power capping and management in many-core systems.

Table III: Applications - Behavior and Overhead

Instr. LI-I
A Instr. Sim (M) Accesses (M) | Overhead
PP Acc | Appx | Acc | Appx | Acc | Appx | % (Norm.)
Reamear 1105 | 1150 | 93 | 75 | 9 7 12
egression
K-Means 1018 | 1021 449 102 57 14 0.3
K-NN 1457 | 1513 140 105 37 24.7 0.3
FFT 1147 | 1159 | 251.4 249 37 36 0.8
LPF 721 721 197 18 19.9 19 0.1
Vector Multi- 1275 1 979 [330 | 227 [203 | 198 0.5
plication
EWS 1017 | 1032 66.1 4.1 4.3 4.1 0.3
Fall Detection | 795 801 419 | 20.05 | 34 2.23 0.1

Our rationale is to leverage inherent error resilience of IoT,
machine learning and signal processing domains to satisfy their
performance requirements. We developed power managing
schemes that actuates APPX knob based on application’s
sensitivity to error such that performance gain is maximized
within minimal error. We develop power managing schemes
to combine DVFS and PG knobs with APPX knob to meet
system requirements in power capping, performance and en-
ergy efficiency. We presented a power management framework,
APPEND+, that monitors chip’s power and performance re-
quirements at run-time and triggers different knob actuations
accordingly. We evaluated APPEND+ against other state-of-
the-art power management techniques, over machine learning,
signal processing and IoT applications. APPEND+ improves
performance and energy efficiency with the APPX knob and
sensitivity aware actuation of the APPX knob, while power
capping is maintained with combination of APPX, DVFS and
PG knobs.

ACKNOWLEDGEMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Curie grant agreement No 705617.

REFERENCES

[1] A. Wolgang et al., “More than Moore,” in ITRS, 2010, 2010.

[2]1 A. Rahmani et al., The Dark Side of Silicon, 1st ed.
Switzerland, 2016.

[3] H. Esmaeilzadeh et al., “Dark silicon and the end of multicore scaling,”
in ISCA, 2011.

[4] S. Pagani et al., “TSP: Thermal Safe Power: Efficient Power Budgeting
for many-core systems in dark silicon era,” in CODES+ISSS, 2014.

Springer,

[5] A. Rahmani et al., “Dynamic power management for many-core plat-
forms in the dark silicon era: A multi-objective control approach,” in
ISLPED, 2015.

[6] K. Ma and X. Wang, “PGCapping: Exploiting power gating for power
capping and core lifetime balancing in CMPs,” in PACT, 2012.

[71 L. Wang and K. Skadron, “Implications of the power wall: Dim cores
and reconfigurable logic,” in IEEE Micro, 2013.

[8] N. Kapadia and S. Pasricha, “Varsha: Variation and reliability-aware
application scheduling with adaptive parallelism in the dark-silicon era,”
in DATE, 2015.

[9] T. Komoda et al., “Power capping of CPU-GPU heterogeneous systems
through coordinating DVFS and task mapping,” in /CCD, 2013.

[10] A. M. Rahmani et al., “Smart e-health gateway: Bringing intelligence
to internet-of-things based ubiquitous healthcare systems,” in Proc. of
CCNC, 2015.

IEEE TRANSACTIONS ON VLSI, VOL. XX, NO. X, DECEMBER 2016

[11]
[12]
[13]
[14]
[15]

[16]

[17]
(18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]

[29]

(30]
[31]
(32]

[33]

(34]

H. Chen et al., “Dynamic server power capping for enabling data center
participation in power markets,” in ICCAD, 2013.

A. Kanduri et al., “Approximation knob: Power capping meets energy
efficiency,” in ICCAD, 2016.

M.-H. Haghbayan et al., “Dark Silicon Aware Power Management for
Manycore Systems under Dynamic Workloads,” in /CCD, 2014.

A. Vega et al., “Crank it up or dial it down: Coordinated multiprocessor
frequency and folding control,” in MICRO, 2013.

R. Cochran et al., “Pack & cap: adaptive dvfs and thread packing under
power caps,” in MICRO, 2011.

N. Kapadia et al., “VARSHA: Variation and Reliability-aware Applica-
tion Scheduling with Adaptive Parallelism in the Dark-silicon Era,” in
DATE, 2015.

A. Kanduri et al., “Dark silicon aware runtime mapping for many-core
systems: A patterning approach,” in /CCD, 2015.

M. Shafique et al., “Dark Silicon As a Challenge for Hardware/Software
Co-design,” in CODES+ISSS, 2014.

A. Rahmani et al., “Reliability-aware runtime power management for
many-core systems in dark silicon era,” in /EEE Transactions on Very
Large Scale Integration Systems, 2016.

H. Chen et al., “Dynamic server power capping for enabling data center
participation in power markets,” in /CCAD, 2013.

J. Ansel et al., “PetaBricks: a language and compiler for algorithmic
choice,” ACM SIGPLAN Notices, 2009.

W. Baek et al., “Green : A Framework for Supporting Energy-Conscious
Programming using Controlled Approximation,” in PLDI, 2010.

H. Hoffmann er al., “Dynamic knobs for responsive power-aware
computing,” ACM SIGPLAN Notices, 2012.

S. Sidiroglou et al., “Managing performance vs. accuracy trade-offs
with loop perforation,” in FSE, 2011.

T. N. Gia et al., “Fog computing in healthcare internet of things: A
case study on ecg feature extraction,” in Proc. of CIT, 2015.

C. Tan et al., “Locus: low-power customizable many-core architecture
for wearables,” in Proc. of CASES, 2016.

A. Anzanpour et al., “Internet of Things Enabled In-Home Health
Monitoring System Using Early Warning Score,” in MobiHealth, 2015.

A. Odunmbaku et al., “Elderly Monitoring System with Sleep and Fall
Detector,” in HealthyloT, 2015.

M. Haghbayan et al., “MapPro: Proactive Runtime Mapping for Dy-
namic Workloads by Quantifying Ripple Effect of Applications on
NoCs,” in NOCS, 2015.

T. Muthukaruppan et al., “Hierarchical power management for asym-
metric multi-core in dark silicon era,” in DAC, 2013.

E. Trevor et al., “Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulations,” in SC, 2011.

Fazzino et al, “Noxim: Network-on-chip simulator,” URL:
http://sourceforge.net/projects/noxim, 2008.

L. Wang and K. Skadron, “Dark vs. dim silicon and near-threshold
computing extended results,” Univ. of Virginia, Dept of Comp.Sci
Technical Report, vol. 1, 2012.

S. Holmbacka et al., “A task migration mechanism for distributed many-
core operating systems,” Journal of Supercomputing, vol. 68(3).

Anil Kanduri received B.Tech degree in Electronics
and Communications from JNTU Kakinada, India
and M.Sc (Tech) in Embedded Computing from
University of Turku, Finland. He is a PhD student
at the department of Information Technology in
University of Turku, since 2014. His interests are
in high performance and energy efficient computer
architectures, approximate computing and run-time
management.

Mohammad-Hashem Haghbayan received the BA
degree in computer engineering from Ferdowsi Uni-
versity of Mashhad and the MS degree in computer
architecture from University of Tehran, Iran. Since
2014 he is PhD student in University of Turku, Fin-
land. His research interests include high-performance
energy-efficient architectures, power management
techniques, and online/offline testing. He has several
years of experience working in industry as well as
developing research tools before starting his PhD.

Amir M. Rahmani received his MSc degree from
University of Tehran, Iran, in 2009 and Ph.D. degree
from Department of Information Technology, Uni-
versity of Turku, Finland, in 2012. He also received
his MBA jointly from Turku School of Economics
and European Institute of Innovation & Technology
(EIT) ICT Labs, in 2014. He is currently Marie
Curie Global Fellow at University of California
Irvine (USA) and TU Wien (Austria). He is also
an adjunct professor (Docent) in embedded parallel
and distributed computing at the University of Turku,

Finland. He is the author of more than 120 peer-reviewed publications.

Pasi Liljeberg received the MSc and PhD degrees in
electronics and information technology from the Uni-
versity of Turku, Turku, Finland, in 1999 and 2005,
respectively. He is an adjunct professor in embedded
computing architectures at the University of Turku,
Embedded Computer Systems laboratory. His current
research interests include parallel and distributed sys-
tems, Internet-of-Things, e-Health, embedded com-
puting architecture, fog computing, fault tolerant
and energy aware system design, 3D multiprocessor
system architectures, dynamic power management,

cyber-physical systems, and reconfigurable system design.

Axel Jantsch received the Dipl.-Ing. and Dr.Tech.
degrees from the Technische Universitit Wien, Vi-
enna, Austria, in 1988 and 1992, respectively. From
1997 to 2002, he was an Associate Professor with
the KTH Royal Institute of Technology, Stockholm,
Sweden, where he was also a Full Professor of
Electronic Systems Design from 2002 to 2014. Since
2014, he has been a Professor with the Institute of
Computer Technology, TU Wien. He has authored
over 300 articles and one book in the areas of
VLSI design and synthesis, HW/SW codesign and

cosynthesis, networks-on-chip, and self-awareness in cyber-physical systems.

Hannu Tenhunen received the diplomas from the
Helsinki University of Technology, Finland, 1982,
and the PhD degree from Cornell University, NY,
1986. In 1985, he joined the Signal Processing
Laboratory, Tampere University of Technology, Fin-
land, as an associate professor and later served as
a professor and department director. Since 1992, ha
has been a professor at the KTH Royal Institute of
Technology, Sweden, where he also served as a dean.
His current research interests are VLSI architectures
and systems, especially network-on-chip systems.

Nikil Dutt received the Ph.D. degree in computer
science from the University of Illinois at Urbana-
Champaign, Urbana, in 1989. He is currently a
Chancellor’s Professor of computer science with the
Department of Electrical Engineering and Computer
Science, University of California, Irvine. His current
research interests include embedded systems, elec-
tronic design automation, computer architecture, sys-
tems software, formal methods, and brain-inspired
computing. Dr. Dutt is an ACM Distinguished Sci-
entist and an IFIP Silver Core Awardee.

