

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

https://doi.org/10.1109/TVLSI.2017.2700519

http://hdl.handle.net/10251/101795

Institute of Electrical and Electronics Engineers

1

A fast and low-complexity operator for the
computation of the arctangent of a complex

number

Vicente Torres1, Javier Valls2

1,2Departamento de Ingenieria Electronica, Universitat Politecnica de Valencia, Valencia, Spain

Abstract

The computation of the arctangent of a complex number, i.e. the atan2 function,
is frequently needed in hardware systems that could profit from an optimized operator.
In the present work we present a novel method to compute the atan2 function and
a hardware architecture for its implementation. The method is based on a First Stage
that performs a coarse approximation of the atan2 function and a Second Stage that
improves the output accuracy by means of a look-up table. We present results for fixed-
point implementations in an FPGA device, all of them guaranteeing last-bit-accuracy,
which provide an advantage in latency, speed and use of resources, when compared with
well-established fixed-point options.

I. INTRODUCTION

THE computation of the arctangent function atan2(a, b) (see Fig. 1), i.e. obtaining
the angle of a complex number c=b+ja, has been the subject of extensive study

because this computation is required in many applications.
In hardware approximations for the atan2(a, b) there is often a trade-off between

the use of resources and the computation speed and/or latency. For example, the fastest
option for the computation of any function may always be the direct implementation with
a look-up-table (LUT), but, since the atan2(a, b) is a function of two input variables, in
such a case, if the precision of the input data increases by one bit, the amount of memory
needed increases by a factor of four. On the other hand, iterative algorithms such as the
COordinated Rotation DIgital Computer (CORDIC) can be implemented with a minimal
use of resources [1], but at the cost of a low processing speed. If more parallelism is

0
0.5

1 0
0.5

1
0

0.1

b a

a
ta
n
2
(a
,b
)

2
π

Fig. 1. 3D plot of atan2(a, b)/2π for the first octant.

2

fr(a, b)
a

b
+ atan2(a,b)

error LUT

fr

-

First Stage Second Stage

1
Fig. 2. Simplified scheme of the proposed approximation for atan2(a, b)/2π

introduced in the implementation, much higher throughputs can be achieved, but the use
of resources and the computational delay are increased.

Smaller LUTs can be achieved by using the recip-mult-atan method (RMAM) [2], [3]:
first, z=a/b is calculated computing 1/b with a LUT (avoiding thus the large LUT needed
for a two-variable function) and multiplying the result by a, and finally, the one-variable
function atan(z) is computed using another LUT.

Another option is to use high-order algebraic polynomials, like Chebyshev polynomials
or Taylor series [1]. These methods offer good precision, but since the arctangent is highly
non-linear they lead to long polynomials and intensive computations. In other cases,
approximations based on rational functions are used [4], [5], [6], as they may provide
good enough results with a few elementary operations. As a general rule, in this kind of
approximations the division operation is the main contributor to their computational cost,
but in addition to that division they usually require one or more multiplication operations.

The architecture we propose is essentially a two-stage method, as shown in Fig. 2. The
First Stage uses a low-complexity coarse approximation for the two-input atan2(a, b)/2π.
The Second Stage improves the accuracy by means of a small LUT that stores precom-
puted error values, as a function of the output of the First Stage. This table does not
depend on the two inputs a and b of the atan2 operator and is, therefore, comparatively
much smaller. As will be shown, the resulting operator is small and can compute the
arctangent faster than other popular options, for the same output accuracy.

The organization of this paper is as follows: in Section II we present the algorithm
used for the atan2 approximation. Section III details the error analysis. The proposed
hardware architecture and relevant implementation details are discussed in Section IV.
In Section V we present implementation results in an FPGA and we compare our results
with those from other atan2 operators that use the same normalization.

II. THE APPROXIMATION FOR THE ATAN2 FUNCTION

A. First Stage: coarse approximation of atan2(a,b)/2π

The proposed approximation of atan2(a, b)/2π of a complex number c=b+ja= |c| ejθ
is performed in two stages. The First Stage computes a coarse approximation for atan2(a, b)/2π
using a first-order Lagrange interpolation (see [7]). In the range [−π/4, π/4] this approx-
imation is:

atan2(a, b)

2π
=

atan(a/b)

2π
≈ a

8b
. (1)

3

.....
0
.

π
2

.
π

.
3π
2

.
2π

.0 .

0.5

.

1

.

angle of c=b+ja (rad)

.Fi
rs

t
St

ag
e’

s
at

an
2(
a

,b
)/

2π

Fig. 3. Coarse approximation for atan2(a, b) computed with eq. 2–5.

Using basic trigonometrical identities (see [8]), this approximation can be extended to
the full [0, 2π) range:

atan2(a, b)/2π = 0/4 + atan(a/b)/2π ≈

≈
(
0 +

a

2b

)
/4 if θ ∈

[
7π

4
,
π

4

)
, (2)

atan2(a, b)/2π = 1/4− atan(b/a)/2π ≈

≈
(
1− b

2a

)
/4 if θ ∈

[
π

4
,
3π

4

)
, (3)

atan2(a, b)/2π = 2/4 + atan(a/b)/2π ≈

≈
(
2 +

a

2b

)
/4 if θ ∈

[
3π

4
,
5π

4

)
, (4)

atan2(a, b)/2π = 3/4− atan(b/a)/2π ≈

≈
(
3− b

2a

)
/4 if θ ∈

[
5π

4
,
7π

4

)
. (5)

According to eq. 2–5, atan2(a, b)/2π is approximated as (offset+fr)/4, where offset is
0, 1, 2 or 3 and fr is either a/2b or −b/2a, depending of the angle range. In Table I we
summarize the values of offset and fr for the 4 different angle ranges used in Eq. 2–5.
As it is made explicit in Table I, the angle range can be identified from the signs of a+b
and a−b. This coarse approximation is shown for the full [0, 2π) angle range in Fig. 3.

TABLE I
fr AND offset FOR THE FOUR POSSIBLE QUADRANTS

θ range a+b > 0 a−b > 0 offset fr

[7π/4, π/4) 1 0 0 a/2b

[π/4, 3π/4) 1 1 1 −b/2a

[3π/4, 5π/4) 0 1 2 a/2b

[5π/4, 7π/4) 0 0 3 −b/2a

4

... ..
0

.
π
2

.
π

.
3π
2

.
2π

.−4 .
−2

.

0

.

2

.

4

.

a)

.

angle of c=b+ja (rad)

.at
an

2(
a

,b
)

er
ro

r
(d

eg
re

es
)

... ..
0

.
0.2

.
0.4

.0 .

2

.

4

.

b)

.

|fr|

.|ϵ
s
1
(f

r
)|

(d
eg

re
es

)

Fig. 4. a) Error in the approximation of the arctangent in degrees after the First Stage and b) contents of the
error LUT used in the Second Stage.

First
Stage

Second
Stage

fr

offset
a

b
+ >>2 + atan2(a,b)

2π

fr=
a
2b or −b

2a

error
LUT

offset ∈ {0, 1, 2, 3}

1Fig. 5. Basic blocks for the proposed approximation for atan2(a, b)/2π.

B. Second Stage: error reduction step for the First Stage

The First Stage described in Section II-A approximates atan2(a, b), normalized to the
range [0, 1), as follows:

atan2(a, b)/2π ≈ (offset + fr)/4 mod 1. (6)

The error in that approximation is shown in Fig. 4a as a function of the angle of the
complex number c=b+ja. If this error function were stored in a LUT it would require
a large amount of storage resources, since atan2(a, b) is a two-variable function, and
the LUT would have to be addressed by both variables. However, this error can be
transformed into a new error function that only depends on fr, the coarse approximation
calculated in the First Stage. This can be easily seen if, without loss of generality, we
express this error for the first octant:

ϵs1(fr) = ((offset + fr)/4 mod 1)− atan2(a, b)/2π

= ((offset + fr)/4 mod 1)− atan(2fr)/2π. (7)

a | · | 1

0

1

0

b | · |

+ sgn ==

− sgn offset

sel

sel

sgn

sgn

sign(fr)

1
x × >>1

error
LUT

+−
(-)

|fr|

>>2

+−
(-)

atan2(a,b)
2π

a/s

a/s

s(0, (w 1))

s(0, (w 1))

u(1, (w 1))

u(1, (w 1))

u(1, (w 2))

u(1, (w 1))

u(0, (w+1))
u(1, w) u(7, (w+3))

u(1, w)

u(1,0)

scalin
g

2
s

2 (w 1)

u((w 1), (w 1))

a

b 1/x

1/2 1/4

LUT

α

h()

m fr a

d

1

a) b)

x

y

|a|2s

|b|2s

|a|

|b|

1
Fig. 6. a) Implementation scheme for the proposed approximation for the atan2(a, b)/2π function. b)
Simplified model for error analysis.

5

Therefore, in our proposal we add a Second Stage that improves the accuracy of the
First Stage using a tabulated version of |ϵs1(fr)| addressed by |fr|. The contents of that
LUT is shown in Fig. 4b. Since this error is periodic, only 1/8 of the values need to
be stored. The schematic diagram of the whole system is shown in Fig. 5, which is
analogous to the Kmetz/Maenner method of improving Mitchell’s method [9].

III. ERROR ANALYSIS

Since implementation results strongly depend on the target accuracy, to ensure a fair
comparison of our results with those from other authors, all the implementation results
we give in the present work guarantee the same accuracy objective: for the computation
of atan2(a, b)/2π, where a and b are signed values represented with w bits, the output
has also w bits with last-bit accuracy (LBA): the absolute value of the difference between
the output and the atan2 computed with infinite accuracy is lower than the weight of
the least significant bit of the output. Since we normalize the output to the [0, 1) range,
corresponding to [0, 2π) rad, LBA means that the absolute value of the error is lower
than 2−w.

Fig. 6b shows the scheme used to analyze the error. According to this figure, the total
error is:

ϵtotal = α− atan2(a, b)/2π = α− h(fr a)+

+ h(fr a)− atan2(a, b)/2π = ϵh + ϵc, (8)

where α is the actual output (with errors) of the operator, h() is the ideal function
performed by the blocks inside of the dashed box of Fig. 6b and ϵh and ϵc are the
contributions to the total error from the operators in h() and from the errors at the input
of h(), respectively:

ϵh ≡ α− h(fr a), (9)
ϵc ≡ h(fr a)− atan2(a, b)/2π = h(fr a)− h(fr). (10)

h′(fr) can be approximated around fr, in order to obtain a bound for ϵc:

h′(fr) ≈
h(fr + ϵf)− h(fr)

ϵf
=

ϵc
ϵf

, (11)

where ϵf≡fr a−fr. From eq. 11 we get ϵc≈h′(fr)ϵf . We obtained empirically that 0.32
is the maximum value for |h′(fr)|, which we round to 1/3 to account for higher order
error terms, so:

|ϵc| ≤ |ϵf |/3. (12)

On the other hand, the error in m, the output of the multiplier, can be expressed as:

ϵm = m− a/b = m− ad+ ad− a/b =

= m− ad+ a(d− 1/b) = ϵmult + aϵrecip. (13)

where ϵmult≡m−ad and ϵrecip≡d−1/b are the errors introduced by the multiplier and
by the reciprocal table, respectively. Since |a|<1 and ϵf=ϵm/2,

|ϵf | < (|ϵmult|+ |ϵrecip|) /2. (14)

6

TABLE II
PROPOSED atan2(a, b)/2π IMPLEMENTATION RESULTS

w=8 bits w=12 bits w=12 bits w=16 bits
LUTs+reg BS+DSP cyc@f LUTs+reg BS+DSP cyc@f LUTs+reg BS+DSP cyc@f LUTs+reg BS+DSP cyc@f
127+0 0+0 1@138 387+0 0+0 1@93 414+93 0+0 5@239 891+0 0+0 1@65
93+0 0+1 1@119 243+0 0+1 1@89 237+41 0+1 5@235 697+0 0+1 1@69

101+0 0+1 1@135 362+42 0+0 2@160 384+95 1+0 5@254 896+54 0+0 2@121
132+24 0+0 2@230 243+16 0+1 2@157 214+49 1+1 5@238 685+20 0+1 2@131
91+12 0+1 2@203 360+27 1+0 2@106 430+150 0+0 7@261 893+81 0+0 3@173

131+38 0+0 3@341 187+16 1+1 2@106 227+103 0+1 7@385 537+70 1+1 3@146
87+29 0+1 3@268 371+64 0+0 3@212 396+112 1+0 7@251 261+45 2+1 4@228

132+57 0+0 4@361 234+64 0+1 3@195 214+86 1+1 7@327 261+78 2+1 5@250
91+41 0+1 4@277 371+44 1+0 3@155 234+118 0+1 8@440 240+92 2+1 7@273
91+57 0+1 5@356 198+20 1+1 3@185 216+86 1+1 8@350 250+128 2+1 8@312
89+93 0+1 7@369 361+84 0+0 4@251 230+147 0+1 9@549 244+174 2+1 10@367
91+90 0+1 8@589 234+45 0+1 4@209 215+113 1+1 9@421 267+185 2+1 12@399

388+70 1+0 4@247 216+139 1+1 10@511 244+262 2+1 13@504
204+20 1+1 4@217 216+154 1+1 11@561 285+295 2+1 14@556

And the total error is bounded by:

|ϵtotal| < |ϵh|+ (|ϵmult|+ |ϵrecip|) /6. (15)

The output α is rounded to w bits, adding an error whose absolute value could be as big
as 2−(w+1). Since LBA means that the total error is lower than 2−w, in the worst case
it should be satisfied:

|ϵtotal| < 2−(w+1). (16)

IV. HARDWARE ARCHITECTURE

Fig. 6a shows the scheme of the proposed hardware architecture. It works with the
absolute values of the inputs a and b and their signs are used later in the scheme. The
“sel” signal selects the operands for the division operation according to the signs of a+b
and a−b, as detailed in Table I. The division required for the computation of |fr| is
implemented with a table that stores 1/x and a multiplier that completes the division. A
scaling stage is added in order to reduce the size of the reciprocal table. The most relevant
implementation details are commented upon in the following subsections. Specifically,
we give details for three accuracies: w={8, 12, 16} bits.

A. Datapath dimensioning

Fig. 6a shows the binary formats used in different buses of the system, where s(q, t)
and u(q, t) denote signed and unsigned fixed-point formats, respectively. 2q is the weight
of the most significant bit (MSB) and 2t is the weight of the least significant bit (LSB).

If we consider a simple case where the only errors present in both LUTs are from
the rounding of the stored values, the worst case errors would be ϵrecip≤2−(w+2)/6,
ϵh=2−(w+4) and ϵmult=0. Note that truncating the output of the multiplier doesn’t
introduce an additional error unless the truncated bits are used in the following processing
steps. It can be easily checked that under these simplified conditions, eq. 16 is satisfied
even for the upper bound defined by eq. 15. In a more realistic scenario, LBA can still
be achieved with smaller LUTs that either don’t use all the available bits as their address

7

word or that are implemented as bipartite tables [10]. Although in these cases the tables
introduce bigger errors (as explained below), LBA could still be achieved, since eq. 15–
16 represent an upper bound that could not be reached. For this reason, we performed
exhaustive tests for different LUT sizes looking for optimized implementations. Fig. 7 is
an example of the error pattern obtained in one of the w=12 operators.

B. Range reduction

Obtaining |fr| requires the computation of y/x (see Fig. 6a), which involves the
computation using a LUT of 1/x. Since 1/x can be extremely large for small values
of x, a scaling operation is performed on |a| and |b|. This block detects the leading-zeros
in both |a| and |b|, scaling both by the same factor (2s) so the MSB of x, the biggest
one of both outputs, is always 1. Details of this block are found in [2], [3]. Thanks to
this block x is always in the [0.5, 1) range and the biggest possible value of 1/x is 2.

C. Computation of the reciprocal

For the computation of 1/x two different strategies, both table-based, are used: direct
tabulation for the w=8 bit operator and bipartite tables for w={12, 16} bits. In both cases
all the bits from the input word are used. Therefore, for the direct tabulation the only errors
are those created by rounding the words stored in the table, and for the bipartite tables
the maximum absolute value of the error can be estimated from the second derivative of
the stored funcion and also from the rounding errors [11]. The value stored in the first
address of this table should be 2, but 2−2−n+1 is stored for a table with n-bit words, so
the MSB of all the stored words is the same and, therefore, it doesn’t need to be stored.

The size of this table is 64×6 for w=8, 128×14+128×7 for w=12 and 1k×18+512×8
for w=16 bits.

D. The error LUT

The error LUT stores the values for |ϵs1(fr)|. Since only the absolute value is stored,
the proper sign is applied later taking advantage of an adder-subtractor. As is the case
for the 1/x table, two different strategies are used: direct tabulation for the w={8, 12}
bit operators and bipartite tables for w=16. Irrespectively of the option selected, not all
the available input bits are used to address the table and this fact introduces an additional
error term related to the first derivative of the stored function [12]. Since the address
input of the table is created truncating the input word, this table is always filled using
values halfway in the segments [12].

The size of this table is 64×5 for w=8, 256×9 for w=12 and 512×13+512×7 for
w=16.

.....
0
.

2
.

4
.

6
.

8
.

10
.

12
.

14
.

16
.

·106

.1 .

2

.

3

.

·10−4

..

2−12

.

a,b combination

.

|e
rr

or
|

Fig. 7. Absolute error for one of our w=12 atan2(a, b)/2π operators

8

TABLE III
CORDIC atan2(a, b)/2π IMPLEMENTATION RESULTS

w=8 bits w=12 bits w=16 bits
LUTs+reg cyc@f LUTs+reg cyc@f LUTs+reg cyc@f
197+0 1@109 471+0 1@68 794+0 1@46
199+43 2@190 471+66 2@127 801+86 2@91
203+65 3@286 471+111 3@174 803+152 3@117
209+98 4@355 475+158 4@217 803+209 4@163
210+225 9@537 473+243 6@302 799+443 8@333

501+512 13@482 836+919 17@567

TABLE IV
RECIP-MULT-ATAN DEG-1 FROM FLOPOCO IMPLEMENTATION RESULTS

w=8 bits w=16 bits
LUTs+reg BS+DSP cyc@f LUTs+reg BS+DSP cyc@f
209+0 0+0 1@79 1042+0 0+0 1@51
155+0 0+1 1@77 755+0 0+1 1@51
216+9 0+0 2@86 1064+36 0+0 2@73
156+9 0+1 2@84 794+36 0+1 2@77
202+41 0+0 3@182 1007+81 0+0 3@108
143+25 0+1 3@171 745+49 0+1 3@130
204+54 0+0 4@196 729+79 0+1 4@130

E. The multiplier

The size of this multiplier is 6×7, 15×11 and 19×15 for w={8, 12, 16} bits, respec-
tively. Although the natural implementation option for w={12, 16} bit operators is to
use a DSP48 block, for comparison purposes we implemented logic-only versions of
the required multipliers. Those multipliers were truncated by computing only the most
significant bits of the product and an offset value was added to round the output and
compensate for the truncation. We did not explore the possibility of using an internal
pipeline in those multipliers.

F. The final rounding

To achieve LBA, i.e an absolute error smaller than 2−w for the selected output format,
the output value has necessarily to be rounded. In the worst case the absolute value of the
rounding error is 2−w−1, and this error added to the combination of all the other error
terms should be lower than 2−w to guarantee our accuracy goal. In order to avoid the
use of a final rounding step, half LSB (2−w−1) is added to the offset value (see Fig. 6a)
and the output of the atan2 operator is simply truncated to w fractional bits.

V. IMPLEMENTATION RESULTS

Our proposal was modelled using VHDL language and was implemented for w={8, 12, 16}
bits in a Kintex7 xc7k325tffg900-2 FPGA device from Xilinx. Table II summarizes
the implementation results. As can be seen, we report results for the case when only
inputs and output are registered (1 cycle) and also for several degrees of pipelining.
It should be noted that when embedded dual-port RAMs, called Block-Select RAMs
(BSRAM), are used in the designs, the lowest latency that can be achieved by the
operator depends on the amount of BSRAMs, since they are synchronous memories that

9

add at least one latency cycle. We also report results for different implementation options
for the required tables and multipliers. When those operators are not implemented with
embedded BSRAM/DSP48 blocks, they are implemented with the LUTs available in the
target device. Abbreviations used in Tables II–IV are: LUTs: 6-input look-up-tables, reg:
pipelining registers, BS: Block Select RAM, DSP: DSP48, cyc: total latency in clock
cycles, f: maximum clock frequency (MHz).

Next, we analyze the best implementation results from other authors. Gutierrez et
al. [2], [13] reported implementation results for LUT-based approximations with 12-bit
inputs, but their results are not comparable with ours, since their achieved accuracy is
only around 10 bits. Dinechin and Istoan [3] have recently reported the implementation
results for different last-bit-accurate fixed-point atan2(a, b) options, including the method
proposed in [2]. Their results suggest that CORDIC should be the main reference for
performance comparisons.

For comparison purposes we implemented in the same device an atan2 operator based
on an unrolled CORDIC architecture designed to guarantee LBA. It was optimized by
using the minimum amount of guard bits, by stopping updating the xi path in the last
stages, and also by progressively cutting down the width of the yi path (see [3]). The
initial zi value used was set to half output LSB (2−w−1 for the same normalization
criterion as in our proposal) with the purpose that a truncation of the output performs
a rounding operation. Table III shows the implementation results. When comparing the
computational speed from our operator (see Table II) with that of CORDIC’s, as a general
conclusion, our proposal can run faster than CORDIC for the same latency. For all the
three input widths we reach the fastest clock frequency supported by the FPGA device
with smaller latency than CORDIC.

Although the use of resources can not be easily compared with CORDIC’s because
our proposal requires a different kind of resources (BSRAM and DSP48 blocks), we also
implemented only-logic versions of our operator so that comparisons could be made. The
results show that our w={8, 12} bit only-logic implementations need fewer LUTs and
registers than CORDIC. For example, for w=8 bits and 2 cycles of latency our proposal
is 21% faster while requiring 33% and 44% fewer LUTs and registers, respectively.

We have also implemented in our target device the RMAM degree 1 from [5], using
the FloPoCo framework provided by the authors. Their RMAM operators also produce
a normalized output. The results are shown in Table IV. It should be noted that when
we tested the operators provided by the FloPoCo tool (using its exhaustive TestBench)
for w = {8, 9, 10, 11} bits, they were not 100% LBA-compliant, but only above 99.9%.
These results confirm [5]’s conclusion that CORDIC is generally faster while using fewer
resources than RMAM. When Tables II and IV are compared, it is seen that our proposal
outperforms RMAM both in resources and speed. This result is as expected, since our
error LUT stores values that are smaller and have a lower first derivative than the values
stored in the RMAM. A lower first derivative means that the same error caused by
truncating the addressing word can be achieved with fewer stored words.

VI. CONCLUSIONS

In this article we propose a novel method and a hardware architecture to approximate
the arctangent of a complex number. We report implementation results in an FPGA
device for 8, 12 and 16 bits of accuracy. Thanks to its simplicity, the proposed method

10

has demonstrated a reduced use of resources and also good speed when compared with
other approximations of akin accuracies. This operator may have practical application
for systems that require either a simple approximation with minimum use of resources
or improved latency and speed.

ACKNOWLEDGMENTS

This work is funded by the Spanish Ministerio de Economı́a y Competitividad and
FEDER under the grant TEC2015-70858-C2-2-R.

REFERENCES

[1] J.-M. Muller, Elementary functions: algorithms and implementation. Cambridge, MA, USA; Berlin,
Germany; Basel, Switzerland: Birkhäuser, 1997.

[2] R. Gutierrez and J. Valls, “Low-power FPGA-implementation of atan(y/x) using look-up table methods
for communication applications,” Journal of Signal Processing Systems, vol. 56, no. 1, pp. 25–33, 2009.

[3] F. de Dinechin and M. Istoan, “Hardware implementations of fixed-point atan2,” in 22nd Symposium on
Computer Arithmetic, 2015, pp. 34–40.

[4] R. G. Lyons, “Another contender in the arctangent race,” IEEE Signal Processing Magazine, vol. 21,
no. 1, pp. 109–110, January 2004.

[5] R. I. S. Rajan, S. Wang and A. Joyal, “Efficient approximations for the arctangent function,” IEEE Signal
Processing Magazine, vol. 23, no. 3, pp. 108 – 111, May 2006.

[6] C. J. X. Girones and D. Puig, “Full quadrant approximations for the arctangent function,” IEEE Signal
Processing Magazine, vol. 30, no. 1, pp. 130–135, January 2013.

[7] J. M. Shima, “FM demodulation using a digital radio and digital signal processing,” Master’s thesis,
University of Florida, Gainesville, 1995.

[8] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 10th ed. New York: Dover, 1964.

[9] M. Arnold, T. Bailey, and J. Cowles, “Error analysis of the kmetz/maenner algorithm,” Journal of VLSI
signal processing systems for signal, image and video technology, vol. 33, no. 1, pp. 37–53, 2003.
[Online]. Available: http://dx.doi.org/10.1023/A:1021189701352

[10] D. D. Sarma and D. W. Matula, “Faithful bipartite rom reciprocal tables,” in Computer Arithmetic, 1995.,
Proceedings of the 12th Symposium on, Jul 1995, pp. 17–28.

[11] M. J. Schulte and J. E. Stine, “Symmetric bipartite tables for accurate function approximation,” in
Computer Arithmetic, 1997. Proceedings., 13th IEEE Symposium on, Jul 1997, pp. 175–183.

[12] M. J. Schulte and J. E. Stine, “Approximating elementary functions with symmetric bipartite tables,” IEEE
Transactions on Computers, vol. 48, no. 842–847, 1999.

[13] R. Gutierrez, V. Torres, and J. Valls, “Fpga-implementation of atan(y/x) based on logarithmic transfor-
mation and lut-based techniques,” J. Syst. Archit., vol. 56, no. 11, pp. 588–596, Nov. 2010.

