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Abstract—A method for sampling Fourier sparse signals for 

efficient implementation of Analog to Information Convertors 

(AIC) is proposed. The solution reconstructs Nyquist rate high 

resolution signal from Nyquist rate low resolution and sub-Nyquist 

rate high resolution samples.  For implementation an architecture 

based on customized reconfigurable successive approximation 

register (SAR) ADC is proposed, simulated, and demonstrated. The 

power consumption with a 90nm CMOS process is less than 26μW 

with 1Msample/s rate in reconfigurable 3/10-bit mode.  The 

number of FLOPS needed for signal recovery is less than 2% 

required by the orthogonal matching pursuit algorithm.  The 

functionality of the solution has been verified with an experimental 

system.  
 

Index Terms—analog-digital conversion; analog-digital 

integrated circuits. 

I. INTRODUCTION 

nalog to Digital Convertors (ADC) are a bottleneck of high 

frequency electronic design for communication sensing 

systems. This is due to the high power consumption and design 

complexity of ADCs [1]. Even in many low sampling rate 

applications, e.g., battery powered Internet-of-Things (IoT) and 

mobile devices, it is important to minimize power consumption. 

On the other hand, there are applications, such as cognitive radio 

and radar [2-5], where the input signal is generally sparse in 

Fourier domain, meaning that, the occupied share of the total 

bandwidth is small [5].  

Recently, Compressive Sensing (CS) has made it possible to 

leverage the sparsity structure of signals into reduced signal 

sampling rates [6-10]. The CS theory states that sparse signals 

can be acquired with much less measurements than the length of 

the signal, and the signal can be recovered from this incomplete 

set of observations [8]. Based on outcomes of the CS theory, 

Analog to Information Convertors (AIC) have been proposed as 

an alternative for conventional ADCs to efficiently obtain sparse 

signals with fewer number of quantized samples. In general, the 

AICs are composed of two sections: analog front-end and digital 

back-end. The analog section takes CS based non-adaptive 

measurements, while the digital back-end reconstructs the 

original signal from the measurements [9, 10].  

The reported power consumptions of implemented AICs are 

much smaller than for equivalent ADCs. For example, the 

analog front-end of  the AIC in [11] consumes 506.4mW, 

including the RF front-end,  for Effective Instantaneous Band 
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Width (EIBW) of 2GHz with 54dB dynamic range. A 

comparable ADC based solution is estimated to dissipate 6W 

[11, 12]. However, the digital back-end can still be power 

hungry. For example, in [13] and [14], 202mW and 24mW 

power dissipations are reported for recovery rates of only 

11.1Msample/s and 400Ksample/s, respectively. In [13] the 

estimated power consumption for a 40Gsample/s recovery 

system is over 110W, with estimated  chip area of 

80mm×80mm. Clearly, the reconstruction algorithms demand 

lots  of digital resources and power for real-time 

implementations [9], while energy efficiency is vital for 

mutually communicating battery powered devices. In some 

works, for instance [15], to circumvent the computationally 

costly complete CS recovery, the features of interest of a signal 

are extracted directly from compressed data. 

In this contribution, a new sparse signal acquisition scheme is 

considered that utilizes interplay between sub-Nyquist rate high 

resolution and Nyquist rate low resolution sampling. We 

demonstrate the general approach with 3-bit Nyquist and 10-bit 

sub-Nyquist rate random samplings. In comparison to 

compressed sensing, the method is shown to provide for energy 

savings in the digital back-end, with minor sacrifice in the 

analog front-end. 

II. BACKGROUND 

In this section, the CS theory is briefly reviewed1 against a 

typical, non-uniform sampler AIC approach. 

A. Compressive Sensing 

The CS theory provides a framework for acquisition and 

recovery of sparse signals with significantly reduced number of 

required samples. A length-N signal 𝑋 ∈ 𝑅𝑁×1 , is called K-

sparse, if only 𝐾  out of its 𝑁  elements are non-zero in some 

basis [8]. An incomplete set of M measurements 𝑌𝑀×1 are 

obtained by multiplying vector 𝑋𝑁×1 by  𝑀 × 𝑁  measurement 

matrix Φ𝑀×𝑁  

𝑌𝑀×1 = 𝛷𝑀×𝑁𝑋𝑁×1 (1) 

The number of measurements, 𝑀, can be much smaller than 

number of the signal elements 𝑁  (M<<N). Since (1) is an 

underdetermined system, infinite number of solutions exist for 

X. Based on the sparsity assumption, an estimate 𝑋̂  can be 

recovered by solving the 𝑙1norm minimization problem [8]:  
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𝑋̂ = argmin‖𝑋̂′‖
1
  subject  to  𝑌 = 𝛷𝑋′̂ (2) 

If the input signal, 𝑋 does not have a sparse representation in the 

sampling domain, while it has a sparse representation, 𝛼, in a 

transform domain (𝛼 = 𝛹  𝑋 ), the recovery problem can be 

modified to solve for 𝛼̂ instead, as below: 

𝑎̂ = argmin‖𝑎̂′‖1 subject  to   𝑌 = 𝛷𝛹−1𝑎̂′ (3) 

Once 𝑎̂ is known, 𝑋̂ can be recovered through 𝑋̂ = 𝛹−1 𝑎̂ . 
Incoherence of Φ and 𝛹 matrices is essential for exact recovery, 

requiring Φ to be random [8] to make each measurement a 

unique linear combination of elements of 𝑋. 

B. Non-Uniform Sampler  

Non-uniform sampler (NUS) is a typical AIC, first proposed 

in [8] with  first implementation presented in [9]. Fig. 1 depicts 

a typical block diagram of the AIC. It consists of an ADC which 

is driven by a pseudo-random clock and a digital processor 

which performs CS recovery to reconstruct the original signal 

from the incomplete set of random samples. The NUS AIC can 

be assumed as a conventional Nyquist-rate ADC which 

randomly discards some of the uniformly taken samples. Using 

the NUS architecture, Fourier domain sparse signals can be sub-

sampled and recovered. 

CLK

X(t) Digital Back-end 

(CS recovery)ADC

Pseudo-

Random Bit 

Generator

X[n]

Random Clock

Sub-samples

  
Fig. 1. Block diagram of the Non-Uniform Sampler (NUS) AIC 

The major advantage of AICs is their capability of sub-Nyquist 

sampling. However, this is at the cost of power dissipation in the 

digital recovery process. To obviate this problem, we propose an 

approach that by sacrificing slightly the energy consumptions of 

the analog front-end, substantial savings in the digital back-end 

are achieved. In section IV, an experimental NUS AIC is used 

for verifying the simulation results. 

III.  PROPOSED ARCHITECTURE 

Fig. 2 illustrates the proposed architecture, that augments the 

conventional AIC with a low-resolution ADC, a 3-bit version in 

our example. The high resolution sub-Nyquist rate path samples 

the Fourier domain sparse signal 𝑋 through the measurement 

matrix Φ, and maps it to vector 𝑌. The low-resolution Nyquist 

rate path detects most non-zero coefficients of the spectrum with 

the computationally simple Periodogram algorithm [16,17] for  

removal from the CS recovery process. As a result, the 

reconstruction problem is transformed into solving an over-

determined system with a few unknowns. The non-zero 

coefficients and their corresponding columns are gathered into 

matrix 𝐴, which is Φ × Ψ. This problem is efficiently solved 

through 𝑙2 norm minimization, providing the actual values of 

non-zero coefficients. Finally, the removed coefficients, that are 

known to be zero, are substituted into their places. Please note 

that, in section IV.C, for transistor level implementation, we 

 
 

merge the ADC into a NUS AIC. 

Low Resolution ADC

 
Fig. 2. Architecture of proposed acquisition system 

A. Recovery Algorithm for the Proposed Architecture 

In the algorithm below 𝑋𝐴𝐷𝐶  refers to the signal acquired by 

the low-resolution ADC, and 𝐴 to 𝛷 × 𝛹  matrix. The proposed 

algorithm recovers the signal in four steps. First, the locations of 

the possible non-zero coefficients in the spectrum are detected. 

Then, the detected zero coefficients are removed from the 

equation of the recovery system, with the recovery problem 

becoming an over-determined one. Finally, the solution is 

obtained through 𝑙2 norm minimization [18]. 

Algorithm 1. The proposed recovery procedure 

Step 1. Find K largest(S<K<<M) FFT coefficients of the XADC (S is 

sparsity degree) 

Step 2. Except for columns corresponding to the locations of K 

largest coefficients, remove all columns of the 𝐴𝑀×𝑁  matrix and 

assume the resultant matrix as 𝐴′𝑀×𝐾  

Step 3. Find the 𝑎′ through solving the following via the 𝑙2norm 

minimization  

            min||𝛼′𝐾×1||𝟐 subject to   𝐴′𝑀×𝐾𝛼′𝐾×1 = 𝑌𝑀×1 

Step 4. Substitute the removed zero coefficients, expanding 𝛼′𝐾×1 

to full-length recovered signal, 𝛼̂𝑁×1 

IV. RESULTS AND DISCUSSION 

 The proposed architecture was simulated in MATLAB with 

the above recovery algorithm. Then, transistor level simulation 

of SAR ADC/NUS was carried out. Finally, a demonstration 

system was set-up using off-the-shelf components. 

A. Computational Complexity of Recovery Algorithms 

The computational complexity of the proposed recovery 

method was compared against two CS algorithms,  Basis Pursuit 

(BP) [18] and Orthogonal Matching Pursuit (OMP) [7]. The 

complexity of the FFT based  Periodogram is 𝑂(𝑁log𝑁) [17], 

for sorting2 it is 𝑂(𝐾𝑁) [19, 20], and for Step 4  𝑂(𝑀𝐾2 + 𝐾3), 
where (𝐾 << 𝑀 << 𝑁). The overall computational complexity 

is: 

CC= 𝑂(𝑁 log𝑁) + 𝑂(𝑀𝐾2 + 𝐾3) + 𝑂(𝑁) = 𝑂(𝑁 log𝑁) (4) 

Table 1 outlines the complexity of the different algorithms. 

2 The most complex sorting algorithm is of order O(N2). Here, sorting only K 

largest, would result in computational cost of O(KN). 
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Table 1.Computational cost of recovery algorithms 

Algorithms BP [6] OMP [7] Proposed 

 Complexity 𝑂(𝑀2𝑁1.5) 𝑂(𝑠𝑀𝑁) 𝑂(𝑁log𝑁) 

*Notes. The notation s and K refer to the sparsity and number of non-zero 

coefficients; M denotes the number of measurements; N denotes the signal 

length. 

For complexity comparison of algorithm implementations, 

their MATLAB execution FLOP counts were used  [21]. Fig. 3 

shows the FLOP counts by BP, OMP and the proposed method. 

The data for recovering is a sparse signal of length N=1024 for 

different number of measurements M. We chose the number of 

potential non-zero coefficients 𝐾, to be equal to 10% of the 

number of measurements 𝑀, (𝐾 = 0.1𝑀).  For the proposed 

method Fig. 3 demonstrates a significantly lower FLOP counts 

than for BP and OMP. 

 
Fig. 3. Measurement of computational complexity  

In MATLAB simulation, as well as HSPICE hardware 

simulation, and the final practical verification, a sum of three 

sinusoids with frequencies 100, 250 and 450 KHz was fed to the 

ADC as a sparse signal.  

To evaluate the recovery algorithms for communication 

sensing, uniformly distributed wideband noise was injected into 

the input. Fig. 4 shows the SNRs of reconstructed results as a 

function of input SNRs. Notice that the bit rate of the proposed 

approach is twice the rate fed to BP and OMP algorithms.  

 
Fig. 4. SNR of Recovery vs. Input Noise 

Furthermore, for transmission purposes in sensor network 

applications, smaller average rates of bit per sample can be 

captured, through reducing number of high resolution samples, 

while the SNR of recovery, according to simulations, is 

maintained approximately at the same level. Fig. 5 depicts 

simulation results for recovery of a sparse signal in different bit 

per sample rates through proposed method and CS method.  

 
Fig. 5. Recovery comparison for equivalent bit rates 

We have demonstrated the performance for 3- and 10-bit 

sampling precisions, selected as examples of low and high 

precision ADCs. The choice of M/N ratio depends on the 

characteristics of the application signals. With higher M/N ratios 

both the CS and our scheme reach higher SNRs, but the cost is 

increased power consumption. 

B. Hardware design and simulation 

Since both the ADC and NUS AIC observe the same signal 

and only differ by resolutions, they were merged into a 

reconfigurable ADC. For the ADC successive approximation 

register (SAR) approach was selected due to its simplicity [22]. 

Binary-weighted capacitive [23] array DAC with attenuation 

capacitor is employed to convert the digital numbers of the SAR 

logic to analog signal, with minor modification for dual mode 

operation. The details and considerations of the unit capacitor in 

the DAC capacitor array as well as the SAR logic are similar to 

[24]. Fig. 6 presents the block diagram of the fully differentially 

dual mode SAR ADC which consists of a comparator, Digital 

Control Logic (DCL) and capacitive Digital to Analog 

Converter (DAC). The sampling of the amplified input signal is 

done by DAC itself. The NUS mode sampling clock 

(SMP_NUS) is generated from Nyquist mode sampling clock 

(SMP_Nyq.). The introduced comparator or in [25] is utilized 

for dual mode operation.  
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generator
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SAR
Logic

3/10 Bits 
DAC

3/10 Bits 
DAC

D
C

L


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)(zin+V Master 
clock

D0-D9/

D0-D2 D0-D9/

Sensor Reconfigurable 
SAR ADC

Amp.

 
Fig. 6. Dual mode SAR ADC structure 

The ADC operates in two modes based on the Random Clock 

Generator (RCG) [26] output. Here, 25% (𝑀 = 𝑁/4) of the 

input samples are converted in 10-bit sub-Nyquist rate NUS 



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 

 

4 

mode and the rest 75% in the 3-bit Nyquist rate mode. That is, 

high resolution non-uniform samples are collected on the 

Nyquist sampling grid skipping randomly (𝑁 −𝑀) time 

instants, and the rest of the samples are collected in the 3-bit 

mode, to reduce the average sampling-quantization rate. The10-

bit and 3-bit samples are complementary and cover the whole 

Nyquist sampling grid. For generating  the random clock, a 

Linear Feedback Shift Register (LFSR) consisting of R flip-flops 

[27] is used (R must at least be 10 to ensure that the repeated 

pattern of sampling clock over the sampling window of 1024 

sample is random [27]). To set the ratio between the NUS and 

the Nyquist rate sampling, LFSR has been designed to generate 

random bit stream with adjustable, unequal distribution of ones 

and zeros (Fig.7).  

Random clock generator

Clk

D B

DFF0

Clk

D B
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D B
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D B
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Digital 

Comparator

B
9

B
8

B
1

B
0

Threshods

10 Bits

SMP_Nyq.

 

Fig.7. Random clock generator 

The output of the LFSR is an R-bit integer, that is compared to 

a threshold, determining the distribution of 1s and 0s. The 

hardware for the proposed scheme was designed using a 90nm 

CMOS process. The simulations with HSPICE were carried out 

with 1MS/s sampling rate in Nyquist rate mode. The SNR of the 

recovered signal was above 55dB, essentially the same as in 

behavioral simulations. The HSPICE simulation results showed 

average power consumption of less than 26μW with 1V power 

supply. This is somewhat higher than the 18μW dissipated by 

the 10-bit NUS alone. However, due to the noise and linearity 

requirements relaxation in the 3-bit operation mode, this 

difference can be reduced, too. Supply voltage scaling [28] can 

also be used to further reduce the energy-per-conversion.  

C. Power Analysis of Analog Front-end 

We analyzed the power of the proposed architecture based on 

power estimations for NUS. Briefly, the power consumption of 

the ADC, can be expressed as [13, 29]: 

𝑃𝐴𝐷𝐶,𝑠𝑦𝑠 = 2(𝐵.𝑊𝑓) [𝐹𝑂𝑀. 2
𝐸𝑁𝑂𝐵⏟        

𝐴𝐷𝐶

+ 3𝐶1. 𝐺𝐴
2. 22𝐸𝑁𝑂𝐵⏟          

𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟

]  
(5) 

Since, a NUS is basically an ADC with non-uniform sampling 

behavior, its power consumption equation is almost the same as 

with ADC. The difference is multiplication of the first term by 

factor of 𝑀/𝑁, as the average NUS sample rate is 𝑀/𝑁 ( 𝑀 

random samples in each 𝑁 sample window). So, for the NUS 

AIC we have:  

𝑃𝑁𝑈𝑆,𝑠𝑦𝑠 = 2(𝐵.𝑊 𝑓) [𝐹𝑂𝑀. 2
𝐸𝑁𝑂𝐵.

𝑀

𝑁⏟        
𝐴𝐷𝐶

+ 3𝐶1. 𝐺𝐴
2. 22𝐸𝑁𝑂𝐵⏟          

𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟

]  
(6) 

The power of the analog front-end of the proposed structure, 

is the sum of power consumption for an AIC and a low 

resolution (3-Bits) ADC. Hence, based on the above, we get: 

𝑃𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝑃𝐴𝐼𝐶,𝑠𝑦𝑠 + 𝑃𝐴𝐷𝐶,𝑠𝑦𝑠 =  

𝑃𝐴𝐼𝐶,𝑠𝑦𝑠 + (2(𝐵.𝑊 𝑓)[𝐹𝑂𝑀. 2
𝐸𝑁𝑂𝐵 + 3𝐶1. 𝐺𝐴

2 . 22𝐸𝑁𝑂𝐵])  
(7) 

Depending on the AIC type, the power estimate of the 

respective AIC is substituted in the above equation. In case the 

AIC is a NUS, the result becomes: 
𝑃𝐹𝑟𝑜𝑛𝑡−𝑒𝑛𝑑,𝑠𝑦𝑠 = 𝑃𝐴𝐼𝐶,𝑠𝑦𝑠 + 𝑃𝐴𝐷𝐶,𝑠𝑦𝑠 =

 2(𝐵.𝑊 𝑓) [
𝑀

𝑁
. 𝐹𝑂𝑀. 2𝐸𝑁𝑂𝐵𝑁𝑈𝑆 + 𝐹𝑂𝑀. 2𝐸𝑁𝑂𝐵3𝐵𝑖𝑡𝑠 +

 3𝐶1. 𝐺𝐴
2. 22𝐸𝑁𝑂𝐵𝑁𝑈𝑆]  

(8) 

  Since the implementation here is in fact a dual mode 

reconfigurable ADC (ADC and NUS share samples), the power 

is further saved and is:  

𝑃𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑,𝑠𝑦𝑠 =  2(𝐵.𝑊 𝑓) [
𝑀

𝑁
. 𝐹𝑂𝑀. 2𝐸𝑁𝑂𝐵10𝐵𝑖𝑡𝑠 +

(
𝑁−𝑀

𝑁
)𝐹𝑂𝑀. 2𝐸𝑁𝑂𝐵3𝐵𝑖𝑡𝑠 + 3𝐶1. 𝐺𝐴

2. 22𝐸𝑁𝑂𝐵10𝐵𝑖𝑡𝑠]  

(9) 

The power consumption compared to a NUS is higher, but still 

lower than the power consumption of an equivalent ADC. 

D. Experimental Results 

An implementation for a verification of the proposed 

architecture was carried out based on STM ARM Cortex®-M4 

microcontroller. This chip was selected due to its three 

independent programmable 12-Bit, 1MS/s SAR ADCs and a 

Random Number Generator (RNG) Unit [30]. Firmware was 

written to emulate a low-resolution Nyquist-rate ADC and a 

NUS AIC. Fig. 8 shows the setup. 

250KHz

+

Digital Recovery (MATLAB)

UART

ADC (NUS)

ADC (Low-Res.)

100KHz

450KHz

Processor

Random Clock

Nyquist Clock

STM32F MCU

 

Fig.8. Test bench setup 

A sparse signal same as the previous section was generated 

through summing outputs of three signal generators. An Op-

Amp used as an analog adder and buffer. The same lengths of 

1MS/s rate of the signal was collected as random non-uniform 

10-Bits and uniform Nyquist rate 3-Bits samples and recovered. 

The experimental implementation, subjected to the non-

idealities of the real world, resulted in the reconstructed signal 

with slightly above 50dB SNR. 

E. Discussion 

Table 2 compares results of HSPICE simulations of the 

proposed architecture to other AIC solutions. Since 

computational cost of our method grows linearly, we can capture 

longer windows, therefore, the solution is more robust against 

spectral leakage. However, the downside of the method is that 

the minimum amplitude of each frequency bin should be high 

enough to be detectable through the spectrum sensing 

algorithms. Admittedly, the power consumption of our AIC 

solution is not the lowest one in Table 2, but the primary 

intention has been in showing the efficient reconstruction with 

the proposed scheme. That is achieved at a moderate overhead 

in the analog part. Moreover, the proposed method can be 

integrated to other AICs such as the Random Demodulator AIC 

architecture proposed by Guo et al [33], to push their efficiency 
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further. The applications of the proposed methods are in two 

scenarios. First, it can be used for wide-band sparse spectrum 

sensing and recovery. In this case, there is no communication 

cost, and getting the low-resolution version of data only adds 

slightly to power consumption of analog front-end. The second 

application, is in sensor networks where commonly the signal 

needs to be compressed to be transmitted from a battery powered 

sensor node to another, and the received signal needs to be 

reconstructed there. We have shown that the proposed approach 

is capable of recovery with the same average bit per sample rate 

as CS methods, with tolerable loss in reconstruction quality.  

Table 2. Summary and comparison with different approaches 

 Architecture 
AIC This 

Work 

Sim. 
[9] 

Chip 

[11] 

Chip 

[31] 

Chip 

[32] 

Sim. 

[33] 

Chip 

Analog 

Power 5.8W 506mW 1.8𝝁W 69.5nW 5𝝁W 26𝝁W 

ENOB  9 Bits 9 Bits 6.5 Bits 9.5 Bits 9.8 Bits 9.1 Bits 

Bandwidth 2GHz 2GHz 1KHz 500Hz 500KHz 500KHz 

Technology Custom 

Design2 90nm 0.13𝝁m 65nm 0.13𝝁m 90nm 

FoM [/step] 2.7pJ 0.24pJ 9.6pJ 187fJ 5fJ 46fJ 

Digital 1 

Algorithm BP OMP Proposed 

Number of 

FLOPs 
~100M ~10M ~0.1M 

FoM 
𝑃𝑜𝑤𝑒𝑟

2 × 𝐵.𝑊 × 2𝐸𝑁𝑂𝐵
 

1 Number of FLOPs for recovery of windows 1024 samples and 120 measurements 
2 in-house S/H and off-the-shelf ADC 

V. SUMMARY   

The computational cost of the proposed architecture for sparse 

signal acquisition is small in comparison to compressed sensing 

recovery algorithms. It can be an alternative for applications 

with energy dissipation of computing as a crucial factor. 

Nevertheless, the power consumption in the analog front-end 

increases slightly due to adding a low-resolution ADC. The 

proposed reconfigurable implementation is flexible, combining 

a random sampler SAR ADC/NUS with an adjustable output 

distribution random clock generator. The functionality of the 

approach has been demonstrated with HSPICE together with a 

practical implementation.  
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