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Efficient Decompression of Binary Encoded Balanced
Ternary Sequences

Olivier Muller, Adrien Prost-Boucle, Alban Bourge,
Frédéric Pétrot Member, IEEE

Abstract—A balanced ternary digit, known as a trit, takes its values
in {-1, 0, 1}. It can be encoded in binary as {11, 00, 01} for direct use in
digital circuits. In this correspondence, we study the decompression of
a sequence of bits into a sequence of binary encoded balanced ternary
digits. We first show that it is useless in practice to compress sequences
of more than 5 ternary values. We then provide two mappings, one to
map 5 bits to 3 trits and one to map 8 bits to 5 trits. Both mappings were
obtained by human analysis and lead to boolean implementations that
compare quite favorably with others obtained by tweaking assignment
or encoding optimization tools. However, mappings that lead to better
implementations may be feasible.

I . I N T R O D U C T I O N

Ternary encoding of data has been shown useful at least in
the following contexts: general purpose computing [1], wireless
transmission [2], [3], texture representation in images [4], quantum
computing [5], optical super computing [6], and artificial neural
networks [7][8].

In many applications, the binary value representing a sequence of
{−1, 0, 1} needs to be stored in memory, so finding an encoding
that minimizes both the compressor and decompressor is a legitimate
goal. However, our own focus is the VLSI implementation of neural
networks making use of ternary weigths, in which the weight values
are written in a memory only once and read almost continuously [9].
In that case, it is necessary to combinatorially produce a sequence
of binary encoded balanced ternary values from an encoded binary
string.

Our objective is thus to determine a mapping (i.e. a one-to-
one function that maps binary strings to binary encoded balanced
ternary values) which, when implemented as a boolean multi-valued
function, leads to factored-form expressions with the least number
of boolean operators and the least number of literals (considering
also the outputs of previous operators) as operands of those operators.
This factored-form representation is interesting because it approxi-
mates the complexity of a gate-level implementation [10]. The only
constraint we have is the encoding of the ternary values, given by
µ : {−1, 0, 1} 7→ {11, 00, 01}. This choice is appropriate for use
in classical two’s complement arithmetic circuits, for instance when
these values are directly fed into multipliers or adders [9].

In the following sections, we show that it is not useful to compress
more than 5 trits on 8 bits, and give the best mappings that we found,
i.e. the ones requiring fewer gates, for compressing 3 trits on 5 bits
and 5 trits on 8 bits. Please note that we do not propose a general
algorithm to solve the problem for sequences of any length.

I I . P R O B L E M F O R M U L AT I O N

A ternary digit contains log2(3) ≈ 1.586 bits of information.
We compute the maximum theoretical gain that can be obtained by
compressing trits in binary. As a sequence of n trits (n ∈ N) represents
3n values, at least dlog2(3n)e = dn log2(3)e bits are necessary to
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TABLE I: Gain and free values for encoding trits on bits

trits bits gain free values
(2bits − 3trits)

1 2 0.00% 1
2 4 0.00% 7
3 5 16.67% 5
4 7 12.50% 47
5 8 20.00% 13
6 10 16.67% 295
7 12 14.29% 1909
8 13 18.75% 1631
9 15 16.67% 13085

10 16 20.00% 6487

17 27 20.58% 5077565

encode this sequence in binary. For n trits the gain compared to the
non encoded sequence is given by un = 2n−dn log2(3)e

2n
. By definition

x ≤ dxe < x+ 1, hence

2n− n log2(3)
2n︸ ︷︷ ︸
vn

≥ un >
2n− (n log2(3) + 1)

2n︸ ︷︷ ︸
wn

Yet ∀n ∈ N, vn = 1− log2(3)

2
and limn→∞ wn = 1− log2(3)

2
. Since

vn and wn increase monotonically, this yields by the squeeze theorem
limn→∞ un = 1− log2(3)

2
≈ 0.2075.

Table I gives the actual gain for small values of n. As can be seen,
there is not much interest in encoding sequences of more than 5 trits
(actually 10 bits) on 8 bits, since it is at ≈ 0.75% of the maximum
achievable gain. The next higher gain, obtained for 17 trits, is given
in the table for completeness.

Given b bits and t trits, we have to determine how to map 2b

values onto 3t values so that the multi-level logic implementation
is minimized, i.e. leads to the use of as few boolean operators as
possible with each of these operators having an as low number of
inputs as possible. From a combinatorial point of view these mappings
are ordered arrangements, so there are 2b

3t

= 2b!
(2b−3t)

of them,
where nm represents the falling factorial. We focus on two particular
instances of the problem, the mapping of 3 trits on 5 bits, leading to
3227 ≈ 2.2 1033 possible mappings, and the mapping of 5 trits on 8
bits, leading to 256243 ≈ 1.4 10497 mappings to choose from.

It is quite clear given this analysis that searching for an optimized
mapping of 17 trits on 27 bits is totally unpractical.

Even for our two cases of relatively small size, given the size of
the search space, exhaustive search is not an option, and finding the
optimal solutions is statistically unlikely since multi-level optimization
is an NP-complete problem [11].

I I I . R E L AT E D W O R K

This problem may seem a fairly well known one, but to our
surprise, the work of mapping a bit string representing a subset of its
possible values to a subset of bit strings of smaller size containing
all permutations does not seem documented in the literature.

The most extensive surveys on logic synthesis and input/output
encoding and state assignment [10], [12] target slightly different
problems, making the available techniques not easily transposable.
Another approach to obtain state assignment, by using symbolic
representation of the states as proposed in [13], reaches optimal
solutions with more than the minimal number of bits, whereas it is
critical in our case to stick to the minimum number of bits. Chapter
7.5 of De Micheli’s book [14] is dedicated to these encoding problems,
but again, the problems that are solved are sufficiently different from
ours to make the approaches inappropriate.

Output encoding is also the subject of [15]. This paper cites all the
relevant works on the topic of encoding targeting logic minimization.
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We refer the interested reader to its bibliography, to avoid too many
citations in this correspondence. This work makes the assumption
that the mapping is already chosen, although part of the output uses
symbols instead of bits, and it is the bit strings corresponding to these
symbols that are searched for. Their proposition is also unfortunately
not generalizable to our problem.

Bearing in mind that our goal is not to devise the best assignment
for this problem in its generality, but for the two instances that we
believe are useful, we focus on these problems only.

I V. E VA L U AT I O N A P P R O A C H

We take as first approximation of the logic complexity the number
of literals after multi-level minimization and technology mapping on a
minimal standard cell library using the Alliance VLSI CAD tools [16].
We also tried with Espresso [17] followed by Alliance technology
mapping, but the results where not consistent with Synopsys synthesis
as Espresso targets multi-level PLA minimization and not standard
cells. The library contains exclusively a not and 2, 3 and 4-input
and, or, nand, nor, xor, and xnor gates, and uses arbitrary units
for area (λ). This step allows first to rank the solutions easily and
second to reproduce the results presented here, without the need to
access a specific proprietary software and cell library.

As a first step, we generated 10,000 random assignments for the
two interesting cases, using the mapping µ for the ternary values
representation. The mapping of 32 values coded on 5 bits to the 27
legal 3 trits coded on 6 bits led to an average number of gates equal to
≈ 77.4 with a standard deviation of ≈ 6.0 after technology mapping.
Regarding the assignment of 256 values coded on 8 bits to the 243
legal 5 trits coded on 10 bits, the average number of gates equals
to ≈ 886.8 with a standard deviation of ≈ 14.8 after technology
mapping. We give here the number of gates, but we verified that,
given the limited number of gates in the standard cell library, there is
a very strong correlation with the area.

As a second step, and for actual implementation, we use Synopsys’
design compiler targeting STMicroelectronics 28 nm FDSOI standard
cell library at an operating point of 0.9 V. The areas and propagation
times of the circuits are given as reported by the synthesis tool.

V. E N C O D I N G S O L U T I O N S

We tried several automated solutions that failed to minimize the
number of gates. The Hungarian algorithm [18] is optimal for
assignment problem, as long as we can provide a cost matrix. We are
unable to build a relevant cost matrix. Indeed, costs are interdependent
since boolean subexpressions are shared. We attempted unsuccessfully
with several cost functions being variation of the Hamming distance
between the trits code and the binary values. We also tried to tweak
state assignment algorithms to perform this assignment instead of
state assignment. Overall, these trials produce encodings that, once
synthesized, contain half the number of gates of a random assignment,
but are still far from the solution we present below (at least twice as
big for the 8 bits to 5 trits case).

In this work, we did not consider classical algorithms used for
large NP-complete problems such as simulated annealing, generic
algorithms or tabu search. To perform efficiently, these algorithms
need a fast and accurate evaluation of the solutions to deal with the
huge number of produced solutions during searching. Unfortunately, a
ASIC synthesis on the chosen pre-characterized library of logic cells
requires at least a minute.

The solutions presented below where derived by hand assuming
structural properties. Regarding the notation, ‘-’ represents a “don’t
care”, i.e. the value of the signal is irrelevant.

A. 5 bits to 3 trits

Denoting t5..0 the binary encoded ternary values and b4..0 the binary
codes, our best assignment solution is:

t5 ... t0 b4 ... b0 t5 ... t0 b4 ... b0
000000 -0001 000101 10000
000001 -0010 110101 10011
000011 -0110 000111 10100
000100 00-00 110100 10101
001100 01-00 110111 10111
010101 00011 001101 11000
010100 00101 110000 11001
010111 00111 110001 11010
010000 01001 111101 11011
010001 01010 001111 11100
011101 01011 111100 11101
011100 01101 110011 11110
010011 01110 111111 11111
011111 01111

We now detail how we have obtained this solution. The principle is
as follows. First, we generate each trit by coding only its magnitude
(t4, t2, or t0), i.e. whether it is null or not. The sign is obtained
thanks to one input bit only (b4, b3, or b2). The codes are then
(b4.t4, t4, b3.t2, t2, b2.t2, t2). We call (t4, t2, t0) the magnitude vector.
Second, the idea is to gather codes having similar magnitude vectors
in sets. In our proposal, the first set contains the 8 codes associated
to the magnitude vector (1, 1, 1). The second set contains 6 codes,
4 associated to the magnitude vector (0, 1, 1) and 2 associated to
(0, 1, 0). In this set, the most significant trit is 0. Thus, b4 can be
reused and the magnitude vector can be (0, 1, b4). Similarly, the
third set contains the 6 codes corresponding to the magnitude vector
(b3, 0, 1). The last set contains the last 7 codes, 4 associated to the
magnitude vector (1, 1, 0), 2 associated to (1, 0, 0) and one to (0, 0, 0).
The first 6 codes can be efficiently expressed by magnitude vector
(1, b2, 0). When b2 is 0, b3 is unused. It is then used to distinguish
(1, 0, 0) from (0, 0, 0). So we can extend the magnitude vector to
(b3+b2, b2, 0) to cover all cases. These 4 sets are respectively encoded
as ‘11’, ‘00’, ‘10’ and ‘01’ using b1b0.

From classical boolean optimization [19] and factorization
techniques, we derive the following equations:

x0 = b0 (b1 + b2), x1 = b0 + b1

t0 = b1 + b0 b4, t1 = t0 b2

t2 = x0 + x1, t3 = t2 b3

t4 = x0 + b3 x1, t5 = t4 b4

This solution can be synthesized in 17 gates with an area of 17250 λ2

with Alliance. Compared to the random generated cases, it is about
4.5 times smaller. Synthesis on STMicro 28 nm FDSOI using the
entire standard cell library produces an area of 6.52 µm2, (11 gates
instantiated), and a propagation time of 41 ps.

B. 8 bits to 5 trits

Again, denoting t9..0 the binary encoded ternary values and b7..0
the binary codes, our best assignment solution is:

t9 ... t0 b7 ... b0 t9 ... t0 b9 ... b0
0100010101 00000000 0111111111 01111111
0101000001 00000001 1100010101 10000000
0101000000 00000010 1101000001 10000001
0101010100 00000011 1101000000 10000010
0101000101 00000100 1101010100 10000011
0101010001 00000101 1101000101 10000100
0101010000 00000110 1101010001 10000101
0101010101 00000111 1101010000 10000110
0001010101 00001000 1101010101 10000111
0001000000 000-1001 0011010101 10001000
0100010100 00001010 0011000000 100-1001
0001010100 00001011 0000010101 10001010
0100000101 00001100 0001010001 10001011
0001000001 00001101 1100000101 10001100
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t9 ... t0 b7 ... b0 t9 ... t0 b9 ... b0
0000010100 -0001110 0011000001 10001101
0101010111 00001111 1101010111 10001111
0100010111 00010000 1100010111 10010000
0101000011 00010001 1101000011 10010001
0100000100 0-010010 1100000100 1-010010
0101011100 00010011 1101011100 10010011
0101000111 00010100 1101000111 10010100
0101010011 00010101 1101010011 10010101
0101000100 00010110 1101000100 10010110
0101011101 00010111 1101011101 10010111
0001010111 00011000 0011010111 10011000
1100010100 00011010 0000010111 10011010
0001011100 00011011 0001010011 10011011
0100000111 00011100 1100000111 10011100
0001000011 00011101 0011000011 10011101
0000011100 -0011110 1101011111 10011111
0101011111 00011111 1100011101 10100000
0100011101 00100000 1100010001 10100001
0100010001 00100001 1100010000 10100010
0100010000 00100010 1101110100 10100011
0101110100 00100011 1101001101 10100100
0101001101 00100100 1101110001 10100101
0101110001 00100101 1101110000 10100110
0101110000 00100110 1101110101 10100111
0101110101 00100111 0011011101 10101000
0001011101 00101000 0000000001 10101001
0100000000 00101001 0000011101 10101010
0100011100 00101010 0001110001 10101011
0001110100 00101011 1100001101 10101100
0100001101 00101100 1100000001 10101101
0100000001 00101101 1101110111 10101111
0000110100 -0101110 1100011111 10110000
0101110111 00101111 1100010011 10110001
0100011111 00110000 1100001100 1-110010
0100010011 00110001 1101111100 10110011
0100001100 0-110010 1101001111 10110100
0101111100 00110011 1101110011 10110101
0101001111 00110100 1101001100 10110110
0101110011 00110101 1101111101 10110111
0101001100 00110110 0011011111 10111000
0101111101 00110111 0000000011 10111001
0001011111 00111000 0000011111 10111010
1100000000 00111001 0001110011 10111011
1100011100 00111010 1100001111 10111100
0001111100 00111011 1100000011 10111101
0100001111 00111100 1101111111 10111111
0100000011 00111101 1100110101 11000000
0000111100 -0111110 1111000001 11000001
0101111111 00111111 1111000000 11000010
0100110101 01000000 1111010100 11000011
0111000001 01000001 1111000101 11000100
0111000000 01000010 1111010001 11000101
0111010100 01000011 1111010000 11000110
0111000101 01000100 1111010101 11000111
0111010001 01000101 0011110101 11001000
0111010000 01000110 0000010000 11001001
0111010101 01000111 0000110101 11001010
0001110101 01001000 0011010001 11001011
0000000100 010-1001 0011000101 11001100
0100110100 01001010 0000010001 11001101
0011010100 01001011 0011010000 11001110
0001000101 01001100 1111010111 11001111
0000000101 01001101 1100110111 11010000
0001010000 01001110 1111000011 11010001
0111010111 01001111 1111011100 11010011
0100110111 01010000 1111000111 11010100
0111000011 01010001 1111010011 11010101
0111011100 01010011 1111000100 11010110
0111000111 01010100 1111011101 11010111
0111010011 01010101 0011110111 11011000
0111000100 01010110 0000000000 11-11001
0111011101 01010111 0000110111 11011010
0001110111 01011000 0011010011 11011011
1100110100 01011010 0011000111 11011100
0011011100 01011011 0000010011 11011101
0001000111 01011100 0011000100 11011110
0000000111 01011101 1111011111 11011111
0001000100 01011110 1100111101 11100000
0111011111 01011111 1100110001 11100001
0100111101 01100000 1100110000 11100010
0100110001 01100001 1111110100 11100011
0100110000 01100010 1111001101 11100100
0111110100 01100011 1111110001 11100101
0111001101 01100100 1111110000 11100110
0111110001 01100101 1111110101 11100111

t9 ... t0 b7 ... b0 t9 ... t0 b9 ... b0
0111110000 01100110 0011111101 11101000
0111110101 01100111 0000110000 11101001
0001111101 01101000 0000111101 11101010
0000001100 011-1001 0011110001 11101011
0100111100 01101010 0011001101 11101100
0011110100 01101011 0000110001 11101101
0001001101 01101100 0011110000 11101110
0000001101 01101101 1111110111 11101111
0001110000 01101110 1100111111 11110000
0111110111 01101111 1100110011 11110001
0100111111 01110000 1111111100 11110011
0100110011 01110001 1111001111 11110100
0111111100 01110011 1111110011 11110101
0111001111 01110100 1111001100 11110110
0111110011 01110101 1111111101 11110111
0111001100 01110110 0011111111 11111000
0111111101 01110111 0000111111 11111010
0001111111 01111000 0011110011 11111011
1100111100 01111010 0011001111 11111100
0011111100 01111011 0000110011 11111101
0001001111 01111100 0011001100 11111110
0000001111 01111101 1111111111 11111111
0001001100 01111110

This mapping, obtained using a strategy similar to the previous one,
can be produced using the following boolean equations:

x0 = y1 b2, x1 = (b0 + b5) b6 b1 b2 + b3 + x0

x2 = z2 b3 b2, x3 = (b0 z0 + z2) b7 y9

x4 = y2 b5 + z1 + y1, x5 = y3 b6 b5 + y6 b2 b6 + y5 y9

x6 = (y8 + b1 b4) b2 + y8 b4 b3 + y7 + b0 z1 + y1

x7 = b0 b2 (b1 + b3) + y2 b5, x8 = (b7 + y9) y1 + y7

x9 = y6 b2 + y4 b3 + x2 b6 b4 + y5 + y3 b7 b6

y0 = b1 y9 + b7 z0 + y5 + b1 y9 b7, y1 = b0 b1

y2 = y4 (b0 ⊕ b1) b3 b2, y3 = b0 b1 b3

y4 = b0 + b4, y5 = b0 b1, y6 = b0 b3

y7 = x2 b6, y8 = b0 b7 b6, y9 = b3 + b2

z0 = b6 b1 b5, z1 = b3 b2, z2 = b0 b1

t0 = x0 + y0, t1 = b4 y0 + b3 x0, t2 = x8 + x9, t3 = b5 x9 + b4 x8

t4 = x6 + x7, t5 = b6 x7 + b5 x6, t6 = x4 + x5, t7 = b7 x5 + b6 x4

t8 = x1 + x3, t9 = b4 x3 + b7 x1

These equations lead to a circuit of 85 elementary gates (98500 λ2)
using Alliance. Synthesis for STMicro 28 nm FDSOI produces an
area of 38.51 µm2 (62 gates instantiated), and a propagation time of
120 ps.

C. Technology mapping optimization

As can be seen in the previous assignment tables, some ternary
codes are generated by 2 binary codes because of the “don’t cares” (5
ternary codes for our first decoder and 13 for the second one). There are
potential boolean simplification and technology mapping optimization
opportunities left by assigning only one binary code per ternary code
and specifying a “don’t care” output for the unused binary codes.
However, there is no general optimization pattern that we could find to
select one of these two possibilities for the 5 (respectively 13) cases so
as to minimize the number of gates resulting from the implementation.
As the number of possible combinations is 25 = 32 for the first
decoder and 213 = 8192 for the second one, we decided to use a
brute-force approach. Indeed, these numbers are small enough that
we can synthesize all theses cases in a few days1. For all synthesized
circuits, we plot the critical path as a function of the area in Figures 1
and 2. The size of the dot is proportional to the number of cases that
match a given (area, time).

1Synthesizing all 5b-to-3t cases on a medium range server actually took a
bit more than 4 hours, and all 8b-to-5t cases two and a half days.
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Fig. 1: Design space for the 5 bits to 3 trits decoder
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Fig. 2: Design space for the 8 bits to 5 trits decoder

As expected, there are better solutions than our original hand-derived
one, for area and/or time. However, some of them are worse for both
area and time, even though they actually are just subsets of our initial
designs. The performance of the optimization process of the synthesis
tool (and maybe the targeted technology) is then key for the quality
of the solutions and none can be said to be the best in all conditions,
as the Pareto front in the figures shows. The search and the choice
of the best trade-off has to be done by the users of the decoder with
their tool, technology, and target applications.

D. Encoding

For completeness, we also now give the number of gates, area and
propagation time for the encoding part of our decoders. If needed, the
equations of the encoder can be generated by a boolean minimization
program (e.g. Espresso) using the reverse table as entry point. Please
note that since we are focused on reading and decompressing the
code, the values written into memory may well be computed offline
by software instead of requiring dedicated encoding hardware.

1) 3 trits to 5 bits: Using the reversed version of the mapping of
subsection V-A using Synopsys on STMicro 28 nm FDSOI gives an
area of 18.44 µm2 (29 gates instantiated), and a propagation time of
92 ps.

2) 5 trits to 8 bits: Identically, for the mapping of subsection V-B,
we obtain an area of 102.7 µm2 (172 gates instantiated), and a
propagation time of 178 ps using STMicro 28 nm FDSOI technology.

V I . A R E A S AV I N G S

As illustrated in Figure 3, the area overhead brought by our decoders
depends only on the memory width (in bits) and not on the memory

depth (number of words). So no matter how large the decoder, there
will always exist a minimum number of words above which the
memory area savings are higher than the decoder overhead.

Fig. 3: Impact of decoding (D) on an ternary ANN weight memory.
Weights are written once at configuration time, and read simultaneously
during inference.

In [20]2, the authors report an SRAM bit cell area of AB =
0.12 µm2 in the technology we use, also for an ANN application.
Given this information, we can derive rough but credible estimates of
the size of a memory cut of W words of B bits each, and decide when
it is interesting to use our encoding approach. We note D the number of
decoders and AD the area of one decoder. For the 3-trit case, we have
D = B

6
. The area overhead of the decoders is AD ×D = AD × B

6
.

The memory area spared is D ×W ×AB = B
6
×W ×AB . Hence,

to obtain a saving of R as ratio of the original memory size, the
condition is:

B

6
×W ×AB −AD ×

B

6
> R×W ×B ×AB (1)

Which simplifies to:

W >
AD

AB
× 1

1−R× 6
(2)

A similar argument gives in the 5-trit case:

W >
AD

AB
× 1

2−R× 10
(3)
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Fig. 4: Minimum memory size for a given area savings

Figure 4 gives the value ofW such that Equation 2 (3-trit case) and 3
(5-trit case) hold for continuous values of R. It shows that the 3-trit
approach is more interesting for small memories, while the highest area

2Slide 25 of their oral ISSCC presentation.
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savings are obtained with the 5-trit approach. At the intersection point,
both approaches bring overall savings of 15.4% with 691 memory
words. The need for memories of such size is very common in the
context of neural network architectures. For example in the AlexNet
network [21], the largest layers feature 4096 neurons with 4096 weight
values per neuron. The corresponding memories of weights, both deep
and wide, are perfect candidates to ternary compression. The proposed
compression approaches, completely devoid of control, are also among
the few—if not the only ones—suitable for such wide memories under
a sustained throughput measured in Tb/s.

Clearly, any better trits-to-bits mapping associated to an optimized
logic synthesis process would enable lowering these thresholds, hence
the interest in any approach that could address this class of problems.

V I I . P O W E R C O N S I D E R AT I O N S

SRAM memories are known to consume orders of magnitude more
than logic gates [22], even with relatively small memories. This is
still the case with the technology we use, although the raw data is not
publicly accessible. The power—and area—of memory cuts depends a
lot on technological features and architectural-level parameters anyway,
so we provide power results as a general trend only.

We did power simulations with the STMicro 28 nm FDSOI
technology, assuming a toggle rate of 50% on the inputs (standard
assumption, but high in the context of ternary ANN where zero weights
dominate). We observed that the 5-trit decoder consumes roughly
8× more than the 3-trit decoder. However, due to the much higher
consumption of the SRAM, the 5-trit approach brings overall better
power savings than the 3-trit one thanks to its better compression ratio
(−20% versus −16.7% in memory width). Both decoding solutions
bring around 15% power savings for small memories, e.g. 512 words,
with a slight advantage for the 5-trit approach. Higher savings, closer
to the 20% limit, can be obtained with the 5-trit approach for deeper
and/or wider memories, e.g. around 18% overall power savings are
observed with 4k words.

In the case of external DRAM access, the power consumption of
decoding (and even encoding) is so insignificant compared to DRAM
operations that the proposed approaches would bring a solid 16.6%
power savings for the 3-trit approach and 20% savings for the 5-trit,
along with similar reduction in memory size requirements.

V I I I . S U M M A RY

In this correspondence, we address the problem of efficiently
decompressing a vector of bits into binary encoded trits. We first
show that it is neither necessary nor practical to compress more than
5 trits into 8 bits, and then give two optimized mappings and their
corresponding multivalued and multilevel boolean function. These
mappings were obtained by human reasoning, and no automatic method
we could think of gave better or even approaching results. It is left
as an open problem to know if better mappings exist.

In conclusion, the proposed approaches bring noticeable savings
both on area and power, which makes them essential in all classes
of applications where ternary values are stored in memory and read
frequently.
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