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Design and Analysis of Collective Pulse Oscillators
Prashansa Mukim , Student Member, IEEE, Aditya Dalakoti, David McCarthy, Student Member, IEEE,

Carrie Segal, Merritt Miller , James F. Buckwalter , Senior Member, IEEE, and Forrest Brewer, Member, IEEE

Abstract— Collective pulse oscillators (CPOs) are novel designs
constructed using pulse regenerative amplifiers that exhibit time-
variant gate delay based on the residual charge from past
state. This property makes it possible to achieve precise phase
resolutions smaller than a pulse gate delay and/or provide
identical phase taps at multiple physical locations. CPOs exhibit
temporal phase error correction that results in an improvement
in frequency stability ∝ −10 log p for power ∝ p across all
timescales beyond the correction settling time. While CPOs result
in device noise-based figure of merits (FoMs) comparable to that
of ring oscillators, they are more resilient to power-coupled and
impulse noise. This article presents a systematic time-domain
analysis of the properties of CPOs based on an abstract model
that captures the time-variant delay of pulse gates. Closed-
form analytic solutions for CPOs disturbed by impulse noise are
derived, and higher order CPOs with continuous noise injection
are analyzed using behavioral simulations and characterized
using Allan deviation. Hspice simulation results are presented to
validate the model and compare CPOs with ring oscillators. Allan
deviation and phase noise measurements on CPOs of 8 and 40
gates fabricated in GFUS8RF (130-nm) technology corroborate
the theory and simulation results.

Index Terms— Allan deviation, collective dynamics, multiphase
oscillators, nonlinear amplifiers, pulse logic, voltage-controlled
oscillators (VCOs).

I. INTRODUCTION

VOLTAGE-controlled oscillators (VCOs) are required in
a broad range of digital, mixed-signal, and RF inte-

grated circuit (IC) designs for logic timing, sampling, and
frequency synthesis. Applications such as time-to-digital con-
verters (TDCs) [1], [2], analog-to-digital converters (ADCs)
[3], [4], clock and data recovery (CDR) [5], and micro-
processors [6] require low integrated timing noise and often
utilize multiple oscillator phases. To this end, ring oscillators,
consisting of inverters or differential limiting amplifiers, are
commonly used as VCOs due to their small footprint, broad
tuning range, and availability of multiple clock phases.

Widely used techniques to improve phase noise (P.N.)
of ring oscillators include transistor sizing [7], [8], jitter
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minimization [9], transmission line stabilization [10], and
spatial coupling [11], [12]. P.N. is improved by increasing
the power or by coupling to a high-Q resonator. Increasing
the power yields a P.N. improvement of −10 log p, where
the oscillator power is ∝ p. On the other hand, linear spatial
coupling between p-identical oscillators yields a P.N. improve-
ment of −10 log p only near the carrier frequency [12]. At
frequency offsets far from the carrier or equivalently over
small timescales, the improvement in frequency stability is
less than ∝ 1/

√
p. This is due to the finite time associated

with correction of noise perturbations in a weakly coupled
system [13]. However, the possibility of achieving multiple
clock phases with resolutions independent of the smallest gate
delay for a given technology [11] and ease of low-skew low-
jitter timing distribution [14] make their use viable for a variety
of applications [15]–[18].

This article presents collective pulse oscillators (CPOs)
that are realized using pulse regenerative amplifiers [19]
as the main delay element. With pulses traversing the
loop as opposed to edges, CPOs can be constructed with
either even or odd number of pulse buffers, thus providing
even or odd number of phases. Further, they can be operated
in multiple modes by injecting different numbers of pulses
at start-up, providing precise phases with resolution smaller
than the buffer delay if the number of pulses does not
divide the number of phase taps. In particular, operation at
high frequencies is supported independent of the number of
available phase outputs. It is also possible to design CPOs
that provide identically timed image clock phases at multiple
physical locations.

For widely analyzed ring or LC oscillators, it is known that
phase shifts due to noise persist indefinitely [20]. However,
the behavior of CPOs is distinct in this regard. CPOs exhibit
temporal degradation of phase error to a magnitude smaller
than the initial injected phase error. This is achieved by partial
retention of past state in the form of residual gate charge.
Effectively, each gate of the CPO shows local negative timing
feedback and corrects phase errors, leading to improvement
of the global frequency stability. CPOs exhibit self-correction
of phase error at timescales that are close to the oscillation
frequency. As a result, their behavior is similar to that of spa-
tially coupled oscillators with frequency stability improvement
∝ 1/

√
p across all timescales beyond the correction settling

time. Multipulse CPOs also provide a mechanism to improve
frequency stability and P.N. without increasing the total power
density. Compared to ring oscillators operating at similar
frequencies, CPOs indeed consume more power in order to
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Fig. 1. (a) CPOs formed by ring of pulse gates. (b) Voltage at pulse gate nodes during pulse generation.

provide phase correction. Thus, for a figure of merit (FoM)
that only takes into account device noise, along with frequency
and power, the performance of CPOs is similar to that of ring
oscillators. However, for spatially correlated or impulsive noise
sources (e.g., power-coupled noise and single-event upsets),
CPOs achieve superior power versus noise tradeoffs. This
article presents a systematic analysis of the properties of CPOs
and their dependence on design parameters.

Anomalously stable timing characteristics of pulse gate-
based circuits were observed in serial links and arbiters [19].
Fairbanks and Moore [21] observed that asynchronous tokens
fired into a ring had dynamics that led to uniform distribution
of the tokens around the ring. Winters and Greenstreet [22]
used pulse asynchronous circuits to create precision pipelines.
The existence of predictable delay–separation local dynamics
in pulse gates, methods to modify the dynamics via gate con-
struction or device tuning, and results on stability of multipulse
oscillators have also been presented [23]. In a similar vein,
self-timed ring oscillators (STROs) [24], constructed using
Muller-C gates, have been proposed, which utilize gate dynam-
ics to yield integrated P.N. improvements. To the best of our
knowledge, this is the first work that presents detailed time-
domain analysis of the behavior of oscillators that exploit local
time-variant gate delays to achieve precise phase resolutions
and also improve the global frequency stability. The analysis
is strongly supported by simulation and measurement results.

This article is organized as follows. Description of pulse
gates, oscillator architecture, and operation are presented in
Section II. Time-domain closed-form analytic solutions for
phase error of simple loops when disturbed by impulse noise
are derived in Section III. In Section IV, Allan deviation as
the time-domain frequency stability metric for oscillators is
overviewed. In Section V, the analytic model is expanded
into a generic behavioral tool, enabling the analysis of more
complex loops with arbitrarily imposed noise. The behavioral
model is validated against Hspice simulations and the effect
of power-law noise on different parameter CPOs is analyzed.
A comparison between CPOs and ring oscillators in terms
of their response to impulse noise, uncorrelated white device
noise, and power coupled noise is drawn in Section VI.

Fig. 2. (a) Different delay–separation dynamics in amplifiers. (b) Delay–
separation curve for a typical pulse gate showing different regions of
operation.

Finally, measurements on CPOs of 8 and 40 gates fabricated
in GFUS8RF (130 nm) process are presented in Section VII.

II. SYSTEM DESCRIPTION

A pulse gate is a nonlinear, shape-preserving amplifier
shown in Fig. 1(a), derived from a self-resetting pulse gen-
erator. The critical node voltage, Vcrit, is pulled down by the
input pulse signal at Vin, which pulls up the output, Vout, and
triggers the pull down of Vreset, causing the pMOS to pull up
Vcrit, resetting the gate. The keeper loop restores charge on the
Vcrit node and prevents it from floating when it is not actively
driven by an input pulse or the resetting pMOS transistor.
After a suitable delay, Vreset returns to its steady state. Fig. 1(b)
shows the voltages at different nodes of the pulse buffer during
pulse generation. Here, tDp is the delay of the forward path
from the input to the output pulse and tDn is the delay of the
reset loop. A CPO is formed by connecting pulse gates in a
loop.

The relative values of tDp and tDn lead to interesting
dynamics. These dynamics are represented through a delay–
separation curve that shows how the input–output gate delay
(tDp) is modulated by the time separation (τ ) between
consecutive input pulses at that gate. Fig. 2(a) shows
delay–separation curves for repulsive, constant, or attractive
dynamics in amplifiers. Here, m is the slope of the curve and
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b is the y-intercept. While this slope is negative in pulse gates,
typical inverters have a very slightly positive slope, that is,
the delay of the gate decreases as pulses approach in time.
This leads to the well-known “settling” of ring oscillators to
the lowest possible mode. Fig. 2(b) shows the delay–separation
curve for a typical pulse gate. This curve comprises of three
regions which are as follows.

1) Region-1: If the separation τ [i +1] between consecutive
pulses p[i ] and p[i + 1] is small such that Vcrit is still
pulled low when pulse p[i +1] occurs, the pulse p_o[i +
1] at Vout will coalesce with the pulse p_o[i ]. In effect,
the input pulse p[i + 1] is rejected.

2) Region-2: If the separation τ [i +1] between consecutive
pulses p[i ] and p[i + 1] is such that Vcrit has been
pulled-up substantially, but the gate is in its reset phase
when pulse p[i +1] occurs, that is, Vreset is active (low),
trying to pull-up Vcrit, a distinct pulse p_o[i +1] at Vout
will be generated. However, with both the pull-down
and pull-up transistors active, the time to discharge Vcrit
increases, increasing the delay of the gate, effectively
causing repulsion of p_o[i + 1]. This behavior leads to
a high-slope delay–separation region.

3) Region-3: If the separation τ [i +1] between consecutive
pulses p[i ] and p[i + 1] is such that the reset phase
has concluded when p[i + 1] occurs, the stored
charge in the keeper hysteresis loop slightly delays the
pulse p_o[i + 1] at Vout. This leads to a low-slope
delay–separation region.

By changing the relative delays of a pulse gate’s forward and
feedback paths (tDp and tDn, respectively), both b and m can
be tuned. Methods for this are described in [23]. When the
pulse gates are connected in a loop as is the case with CPOs,
pulses distribute uniformly in time around the loop due to the
repulsive dynamics of the gates. Hence, a precise phase tap is
available at each CPO gate. A CPO ring can be constructed
with either even or odd number of pulse gates, making it
possible to generate both even or odd number of clock phases.
A g-gate CPO operating with p-pulses where g/p is an integer
will exhibit g/p different phases, with each phase available at
p gates. If g and p are relatively prime, each gate will produce
a unique phase with period (g/p) ∗ tDp and phase resolution
tDp/p. Thus, a CPO can easily produce pulses with phase
resolution finer than tDp .

For a CPO that has p pulses traveling around the loop,
the oscillation frequency depends on the ratio of gates per
pulse (g/p) and tDp, and is equal to (g/p) ∗ tDp. The ratio
g/p also sets the region of operation on the delay–separation
curve. By increasing the number of pulses p while keeping the
g/p ratio a constant, the rate of pulse arrival at each gate stays
unchanged and the oscillator operates at the same frequency.
However, the total power increases ∝ p, and the effective
frequency stability is enhanced. The duty cycle of the oscillator
is determined by the ratio of the width of pulses (set by the
delay of the reset loop, tDn) and the oscillator period.

Since it is possible for a g gate CPO to run in multiple
modes set by the number of pulses p, it is crucial to ensure
a reliable start-up in the desired mode. The Vfire input of the

Fig. 3. Startup circuit and waveforms for g = 8, p = 2 CPO.

Fig. 4. Period of pulse arrival at different gates of g = 8, p = 2 CPO after
startup settles to a constant value in less than ten cycles.

pulse gate is used to inject a start-up pulse into the CPO.
Starting a mode with p pulses can be done in two ways: 1)
p pulses can be injected sequentially into the Vfire node of a
single pulse gate with relative separations close to the expected
period of the CPO and 2) the Vfire nodes of p uniformly spaced
gates can be injected with a pulse simultaneously. As long
as the separation of start-up pulses is large enough to avoid
pulse coalescence, the CPO will start-up reliably. If the pulse
injection period at start-up does not exactly match the period
of a stably operating CPO or there is a skew between the fire
inputs to the different gates, the repulsive dynamics in pulse
gates will still lead to uniform distribution of pulses, and the
CPO will rapidly settle to a stable state. Fig. 3 shows the start-
up circuit and output waveforms for a g = 8, p = 2 CPO. The
fire pulse is generated by converting an external edge to a pulse
and is injected into gates 1 and 5 of the CPO. Fig. 4 shows the
period of pulse arrival obtained from Hspice simulations for a
g = 8, p = 2 CPO in GFUS8RF technology at different gates
after start-up. Since, at start-up, the Vcrit nodes of the CPO do
not store any residual charge, the gate delay and period of the
CPO are different from the stable period. Once oscillations are
sustained, the pulse arrival period settles to a stable value at
all gates in a few cycles.
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Widely used models for the design of oscillators like the
linear time-variant (LTV) model using impulse sensitivity
function (ISF) [20] and nonlinear analysis techniques of stable
oscillators in the presence of perturbations [25] assume that
phase errors due to noise persist indefinitely, with their mag-
nitude equal to the initial injected error. They do not account
for nonlinear phase error corrections with time, a property
fundamental to the operation of CPOs, and hence cannot be
directly applied to analyze CPOs. To overcome this challenge,
this article formulates a new sequential time delay model that
explains the noise properties of CPOs as a function of various
oscillator parameters. This model is presented in Section III.

III. ANALYTIC MODEL OF PULSE ARRIVAL TIME UNDER

IMPULSE NOISE PERTURBATION

This section presents time-domain analytic solutions for the
pulse arrival time for CPOs perturbed by a noise impulse.
Although a bilinear approximation for the delay–separation
curve is more accurate [see Fig. 2(b)] for CPOs, the model
assumes small perturbations for which the CPO operates in
either one of the linear regions (Region 2 or Region 3).
Analytic solutions are obtained by modeling the arrival time
of pulses at each pulse gate via a set of linear difference
equations. The goal is to derive exact solutions for a few
low-order loops, which can be used to construct a general
perturbation solution.

A. Gates(g) = 1, Pulses(p) = 1

Consider a single-gate CPO with the output of a pulse buffer
looping back to its input (see Fig. 5) that has been started by
an external event. Let x[k] be the arrival time of the kth pulse
at the gate. Then x[k] is given by (1), where b and m are
constants

x[k] = x[k − 1] + b + m(x[k − 1] − x[k − 2]). (1)

The arrival time of a pulse at the gate is the sum of the
arrival time of the previous pulse and the delay of the gate. The
delay here is represented as a linear function of the separation
that is set by the arrival times of the previous two pulses.
In the case of ideal (noise-less) operation, the period (x[k] −
x[k − 1] = x[k − 1] − x[k − 2]) will be a constant given by
b/(1 − m). If an impulse of timing error of magnitude � is
introduced into the system at k = 1, the initial conditions are
given by

x[0] = 0, x[1] = � + b

1 − m
. (2)

Solving this linear difference equation, the kth pulse arrival
time is given by

x[k] = bk

1 − m
+ �

1 − m
− �mk

1 − m
. (3)

The solution consists of three distinct terms which are as
follows.

1) The first term represents the ideal pulse arrival time,
if no noise were introduced into the system.

Fig. 5. One-pulse traveling in a one-pulse-gate loop.

2) For m < 0 (the case for CPOs), the second term
represents the residual phase error after a sufficiently
long interval. It can be observed that an injected impulse
error of � is reduced in magnitude to a residual error of
�/(1 − m).

3) For m < 0 and |m| < 1 (again the case for CPOs),
the third term represents a rapidly diminishing transient
that reduces the magnitude of the phase error to its final
residual value. However, it can be seen that if m > 0 or if
|m| > 1, the phase error can grow with time, making
the oscillator unstable.

Since m > 0 or |m| > 1 have been shown to make the oscil-
lator unstable, the subsequent analysis excludes these cases
and is strictly for CPOs with |m| < 1. Next, we will evaluate
the case of a single-pulse traveling in a loop comprising of
two pulse gates.

B. Gates(g) = 2, Pulses(p) = 1

Let x[k] and y[k] be the arrival times of the kth pulses at
gates 1 and 2, respectively (see Fig. 6). Then x[k] and y[k]
are given by (4) and (5), where b and m are constants:

y[k] = x[k] + b + m(x[k] − x[k − 1]) (4)

x[k] = y[k − 1] + b + m(y[k − 1] − y[k − 2]). (5)

In the case of ideal (noise-less) operation, the pulse arrival
periods at the two gates (x[k]− x[k − 1] = y[k]− y[k − 1] =
y[k − 1] − y[k − 2]) will be constants given by 2b/(1 − 2m),
with each gate contributing to half of the delay. If an impulse
of timing error of magnitude � is introduced when a pulse
arrives at gate 2 at k = 1, the initial conditions are given by

x[0] = 0, y[0] = b

1 − 2m

x[1] = 2b

1 − 2m
, y[1] = � + 3b

1 − 2m
. (6)

Solving this system of linear difference equations, the kth
pulse arrival times are given by

x[k] = 2bk

1 − 2m
+ �

1 − 2m
− � ∗ 2−k

2(1 − 2m)
∗ o[k] (7)

where o[k] is given by

o[k] = 1√
m(m + 4)

× [(m(m + 2 −√
m(m + 4)))k

+ (m(m − 2 +√
m(m + 4)))k

+ (m − 2)((m(m + 2 −√
m(m + 4)))k

− (m(m + 2 +√
m(m + 4)))k)]. (8)
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Fig. 6. One-pulse traveling in a two-pulse-gate loop.

For CPOs with m < 0 and |m| < 1, this loop operates
at a period that is slightly smaller than twice the period of
the previous case, where g = 1, p = 1. The magnitude of
the residual phase error is further reduced compared to the
g = 1, p = 1 case. The transient term, however, is a fairly
complex function of time and the delay–separation slope m
as is expected of a third-order system. This transient term
represents the settling trajectory (and time) of the loop to a
stable state, in response to the impulse injection.

C. Gates(g) = 2, Pulses(p) = 2

Let x[k] and y[k] be the arrival times of the kth pulses at
gates 1 and 2, respectively (see Fig. 7). Then x[k] and y[k]
are given by (9) and (10), where b and m are constants:

y[k] = x[k − 1] + b + m(x[k] − x[k − 1]) (9)

x[k] = y[k − 1] + b + m(y[k] − y[k − 1]). (10)

In the case of ideal (noise-less) operation, the pulse arrival
periods at the two gates (x[k] − x[k − 1] = y[k] − y[k − 1])
will be constants given by b/(1 − m). If an impulse of timing
error of magnitude � is introduced when a pulse arrives at gate
2 at k = 1, the initial conditions are given by

x[0]=0, y[0]=0, x[1]= b

1 − m
, y[1]=� + b

1 − m
. (11)

Solving this system of linear difference equations, the kth
pulse arrival times are given by

x[k] = bk

1 − m
+ �

2(1 − m)
− � ∗ 2−kmk

2(1 − m)
∗ ox [k] (12)

y[k] = bk

1 − m
+ �

2(1 − m)
− � ∗ 2−k(−m)k

2(1 − m)
∗ oy[k] (13)

where ox [k] and oy[k] are given by

ox [n] = 1√
1 + m(m + 6)

× ((−m − 1 −√
1 + m(m + 6))n

− (−m − 1 +√
1 + m(m + 6))n) (14)

oy[n] = −ox [n]. (15)

The first term of the solution in this case exactly matches
the first term of the case where g = 1, p = 1. This also
matches the intuitive expectation, as fixing the g/p ratio and
changing p should result in the same oscillation frequency.
The magnitude of the residual phase error [the second term in
(12) and (13)] is exactly half, compared to the g = 1, p = 1
case. This illustrates that by doubling the effective mass of the
ring (and its power consumption), while keeping its oscillation

Fig. 7. Two pulses traveling in a two-pulse-gate loop.

frequency constant, the magnitude of the residual phase error
is made twice as small. Once again, the transient terms for the
two gates are fairly complex, but also show a symmetry. The
two gates act in conjunction such that their respective phase
errors symmetrically approach the final residual phase error in
the loop.

Based on the three exact solutions derived so far, the nor-
malized phase error (obtained by subtracting the ideal noise-
less arrival time from the derived solutions and normalizing
it with respect to the magnitude of the injected impulse �)
is plotted in Fig. 8. The following observations can be made
from these plots.

1) Fig. 8(a) compares the normalized phase error for
oscillators exhibiting attractive (m > 0), constant
(m = 0), and repulsive (m < 0) dynamics. It can
be seen that constant dynamics result in a constant
phase error of magnitude equal to the impulse noise
injection, as is the case with conventional oscillators.
To model a conventional ring oscillator, the p = 1
mode was chosen, as inverter-based ring oscillators
only involve circulation of a single event around the
ring. The phase error for attractive dynamics increases
in magnitude, making the oscillator unstable. With
repulsive dynamics, the oscillator settles to a phase
error smaller in magnitude than the initial injected
impulse.

2) Increasing the number of gates (g), number of pulses
(p), or the magnitude of the (negative) delay–separation
slope (m) reduces the magnitude of the residual phase
error.

3) The settling time, that is, the time taken by the transient
term to diminish in magnitude, is a complex function
of the loop topology and operating slope. While it can
be inferred that a multipulse ring tends to have a longer
settling time, increasing the magnitude of the operating
slope can increase or decrease the settling time, as can
be seen in Fig. 8(b) and (c). For the g = 1, p = 1 and
g = 2, p = 1 CPOs increasing the magnitude of m from
−0.05 to −0.5 increases the settling time. Whereas for
the g = 2, p = 2 CPO, it causes the settling time to
decrease.

D. Generalization: Gates(g), Pulses(p)

Obtaining exact solutions for higher order loops (order
> 3) is difficult. However, based on the three exact solu-
tions derived, the fixed (noise-less) pulse arrival time and
magnitude of the residual error can be inferred to have forms
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Fig. 8. Normalized phase error obtained from analytical solutions for (a) different delay–separation dynamics, (b) weakly repulsive dynamics, and (c) strongly
repulsive dynamics.

shown in

x[k] = gbk

p(1 − (g/p)m)
+ �

p(1 − (g/p)m)
+ � ∗ transientx [k, g, p, m] (16)

or

x[k] = Tok + �[k]. (17)

The general solution of (16) is rewritten in (16) as the sum
of: 1) the nominal arrival time (with To as the nominal period
of the CPO), represented by the first term of (16) and 2) phase
deviation �[k], represented by the sum of second and third
terms of (16). The correctness of this general solution has
been verified against both behavioral and Hspice simulations
presented in Section V. The general analytic solution shows
the following.

1) For a fixed number of gates g and (negative) m, CPOs
operating in different modes set by the number of pulses
p, see a reduction in period that is less than ∝ p.

2) The magnitude of both the residual phase error and the
transient term is directly proportional to the magnitude
of the injected noise impulse. This makes the settling
time independent of the magnitude of noise injection.

3) Increasing the number of gates g, the number of pulses
p, or the magnitude of the (negative) delay–separation
slope m reduces the magnitude of the residual phase
error.

4) For a fixed oscillation frequency (obtained by having
g/p and m constant), the residual phase error reduc-
tion for a noise impulse is proportional to the number
of pulses p and hence the total power consumption.
Qualitatively, this shows that for a loop, each gate’s
noise injection is scaled by the number of pulses which
react as an ensemble to reduce the magnitude of the
injected error.

These analytic solutions are based on impulse noise injection
into a single CPO gate. To analyze the frequency stability with
continuous power-law noise injection, Allan deviation, a time
domain stability measurement metric is used.

IV. TIME DOMAIN MEASUREMENT OF STABILITY

We use Allan deviation as the analysis metric as it measures
the stability of CPOs at different timescales. It characterizes

the fractional frequency fluctuations (F[k]) in CPOs given
by (18), where �[k] is the phase deviation (in seconds) as
a discrete function of time and τ is the measurement interval

F[k] = �[k + τ ] − �[k]
τ

. (18)

Noise in circuits generally exhibits a power law given by
SF ( f ) ∝ f α , where SF ( f ) is the autospectral density of
fractional frequency fluctuations F[k] and the exponent α
ranges from −3 to +2 typically. The well analyzed noise
sources in circuits, white FM and flicker FM, have α of 0 and
−1, respectively. Allan deviation is the same as the ordinary
standard deviation of fractional frequency fluctuation values
for white FM noise, but has the advantage, for more divergent
noise types such as flicker noise, of converging to a value that
is independent on the number of samples [26]. Allan deviation
is given by the square root of σ 2(τ ) in (19), where �i is the i th
phase error value spaced by the measurement interval τ and
N is the number of samples of phase error values averaged
over τ :

σ 2(τ ) = 1

2(N − 2)τ 2

N−2∑
i=1

[�i+2 − 2�i+1 + �i ]2. (19)

Overlapping Allan deviation is a variant of the original
Allan deviation that provides better statistical confidence [26].
Modified Allan deviation given by the square root of (20) is
another variant that can additionally distinguish between noise
behaviors having α ≥ 1 [27]. Here, the measurement interval
τ = aτo, where a is the averaging factor and τo is the basic
measurement interval:

Mod σ 2(τ ) = 1

2a2τ 2(n − 3a + 1)

×
N−3a+1∑

j=1

⎧⎨
⎩

j+a−1∑
i= j

[�i+2a − 2�i+a + �i ]
⎫⎬
⎭

2

.

(20)

Different frequency domain noise profiles can be iden-
tified by measuring the slope of modified Allan deviation
(Mod σ 2(τ )) on a log–log scale. White FM and Flicker FM
have a slope of −1/2 and 0, respectively. Sections V–VII
of this article use modified Allan deviation to characterize
the frequency stability of CPOs at different timescales. The
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dynamic phase error correction properties and the settling
time associated with them are represented on modified Allan
deviation plots by an initial high-slope (<−1/2) region. For
comparing the jitter of CPOs operating at different frequencies,
the Allan deviation values are scaled by the oscillation period
(To) and plotted as a function of number of clock cycles. This
metric is termed “jitter stability” in this article and the k-cycle
jitter stability, J [k] is defined as follows:

Jitter Stability, J [k] = Mod σ(kTo) ∗ To. (21)

V. BEHAVIORAL SYSTEM SIMULATOR

The aim of building the behavioral simulator was to: 1) ver-
ify the residual phase error expression in the general analytic
solution of CPOs [see (16)] when injected by impulse noise;
2) analyze settling time behaviors of higher order loops; and
3) analyze the dependence of design parameters on frequency
stability of CPOs under continuous power-law noise injection.
Fundamentally, the simulator is built upon the same abstract
model as the analytic solutions. The details of the behavioral
simulator are summarized as follows.

1) Pulse gates are abstracted as nodes that compute the
arrival time of the output pulse based on the arrival
time of the input pulse and the gate delay. The gate
delay is modeled by linear and repulsive (m < 0) delay–
separation dynamics and is given by

tDp = b + mτ. (22)

2) Pulses are assumed to be traversing a simple loop of
pulse gates as shown in Fig. 1.

3) Pulse arrival times are the state variables initialized for
the first two cycles and then updated sequentially.

4) Each gate can be injected by noise when a pulse arrives
at its input. The noise injection is modeled by a pertur-
bation of the pulse arrival time. This perturbation can
either be an impulse, where only one gate is injected
by noise at a given pulse arrival, or can be modeled as
injection of white FM and/or flicker FM noise sources
at each gate and at each pulse arrival.

5) For a g-gate CPO, the maximum number of pulses p
equals the number of gates g.

A. Impulse-Noise Analysis

CPOs with varying parameters (g, p, and m) were con-
structed and pulse arrival times under ideal (noiseless) opera-
tion were determined. Their behavior was then analyzed with
impulse-noise injection. The ideal operating period (To) and
residual phase error exactly match the first and second terms
of the general analytic solution of (16). This comparison is
shown in Fig. 9. Since the general analytic solution does not
predict the transient term, the behavioral simulator is utilized
to analyze the transient behavior in terms of the settling time.
The settling time is obtained by computing the time taken for
the phase error of all gates of the CPO to reach 1% of the
final residual phase error after injection of a noise impulse.

Settling times as a function of |m| for 8-gate and 40-
gate CPOs (m < 0) running in different modes are shown

Fig. 9. Comparison of (a) To and (b) residual phase error values obtained
from the general analytic solution and behavioral simulator.

Fig. 10. Effect of m on settling time with impulse-noise injection obtained
from behavioral simulator. (a) g = 8 CPO. (b) g = 40 CPO.

Fig. 11. Impulse noise simulation setup in Hspice.

in Fig. 10(a) and (b), respectively. These plots indicate that
for p = 1 CPOs, larger values of |m| (for a constant g)
lead to longer settling times. However, for multipulse CPOs
(p > 1), the settling time is nonmonotonic with respect
to |m|; increasing |m| leads to lower settling times until a
minimum is reached, beyond which the settling time increases
as |m| increases. It can also be observed that for a fixed m,
increasing the density of a CPO ring (by increasing p for a
fixed g) or increasing the ring diameter (or g) for a fixed
ring density (or p/g) both result in longer settling times.
Interestingly, the residual phase error diminishes in magnitude
for larger ring densities and diameters. Hence, from a design
perspective, there exists a tradeoff between the desired residual
phase error and the amount of time taken to settle to the
residual value.

B. Verification of Behavioral Simulations Using Hspice

The analysis so far on the behavior of CPOs has been
based on an abstract model constructed using the linear and
repulsive delay–separation dynamics of pulse gates. To verify
that this model accurately captures salient properties of CPOs,
impulse-noise results obtained from the behavioral simulator
were verified against Hspice simulations. The simulation setup
used in Hspice is shown in Fig. 11. g = 8 and g = 12 CPOs
were tested, in the p = 2 and p = 3 modes, respectively.
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Fig. 12. Comparison of normalized residual (impulse) phase error obtained
from behavioral and Hspice simulations. (a) g = 8, p = 2. (b) g = 12, p = 3.

After starting the oscillators by firing two and three pulses,
in about ten cycles, stable operation of the oscillators was
achieved with a constant non-time-varying period. To model
an impulse time perturbation, a small current impulse (1% of
the peak output current) was injected into the input node of
a single-pulse gate. The pulse arrival times at each gate were
calculated at the rising-edge zero-crossings of the pulses when
the pulse voltage was at half the maximum voltage (Vdd/2).
Phase errors were obtained by subtracting the pulse arrival
times after noise injection and those in an ideal noise-less
simulation.

Phase errors obtained using Hspice and the behavioral
simulator for two and three equidistant gates of the g = 8 and
g = 12 CPOs, respectively, normalized with respect to the
magnitude of the initial injected error are shown in Fig. 12(a)
and (b). The delay–separation slope m in the behavioral
simulations was set to the same value as obtained from Hspice
simulations. It can be seen that for both simulations there
is a very close match between the trajectory of phase-error
correction, settling time as well as the magnitude of the
residual phase error. This validates that the abstract model
and analytical solutions accurately capture the behavior of
CPOs and can be used as a substitute to relatively slow Hspice
simulations.

C. Power-Law Noise Analysis

Discrete-time noise sequences generated by the algo-
rithm presented in [28] were used for simulating power-
law noise sources. For analyzing the resulting phase data
using Allan deviation, the IEEE Standard Allan deviation tool
Stable-32 [29] was used. Frequency stability over different
timescales was analyzed for CPOs of various gate counts
g, operating in various modes (set by p) and values of
delay–separation slopes m. Figs. 13–15 show modified Allan
deviation plots across the design space with both white FM and
flicker FM noise injection. The magnitude of the flicker noise
component was set to be 1/10th of the white noise component.
The “conventional” oscillator in these plots corresponds to
a single-event oscillator (p = 1) that does not exhibit any
dynamics (m = 0). The error bars depict the 95% confidence
limits.

Fig. 13 shows the modified Allan deviation of CPOs of
different diameters (or g), but same pulse density (or p/g) and
m. For larger values of p, the frequency stability substantially

Fig. 13. Improvement in frequency stability of CPOs as a function of p for
fixed g/p and m obtained from behavioral simulations.

Fig. 14. Improvement in frequency stability of CPOs as a function of m for
fixed g, p, and To obtained from behavioral simulations.

improves beyond ≈3–4 ns, whereas the initial instability
and higher slope region correspond to the larger settling
time associated with multipulse CPOs. The single-pulse CPO
does not exhibit any initial instability, due to its shorter
settling time. The CPOs in this simulation naturally operate at
identical frequencies (=5 GHz) and hence the improvement
in frequency stability and jitter stability [see (21)] is the
same. Comparing the jitter stability values obtained from this
experiment, it was inferred that beyond the high-slope region,
J [k] is ∝ √

g/p(1 − (g/p)m). The denominator is identical
to the residual phase error derived in (16). The

√
g term in

the numerator can be explained by the increase in the total
(uncorrelated) noise power injection as the CPO diameter is
increased. This indicates that at equal pulse density, equal
frequency CPOs will exhibit an improvement in low-frequency
P.N. that equals −10 log p, where the oscillator power is ∝ p.
A unique feature of this class of CPOs is that any added power
is distributed in space, and thus frequency stability is improved
without increasing the power density.

Fig. 14 shows the modified Allan deviation for g = 40,
p = 5 CPOs operating at different values of m. Compared
to the conventional oscillator, the frequency stability of the
m = −0.005 and m = −0.05 CPOs shows a slight deteriora-
tion for ≈3 ns. This is due to the relatively smaller corrections
made by CPOS with smaller |m|, which increases the time for
multipulse rings to reach an equilibrium, leading to a larger
degradation in the frequency stability over short timescales.
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Fig. 15. Improvement in (a) frequency stability and (b) jitter stability of
CPOs as a function of p for fixed g obtained from behavioral simulations.

Whereas, for the m = −0.5 CPO, the disequilibrium between
multiple pulses quickly falls to a small value, and as the errors
get smaller, the corrections also get smaller, increasing the
time to settle to the final (smaller) residual error. In this simu-
lation, the CPOs were made to operate at the same frequency
(3 GHz) by tuning their b values. Hence, the improvement in
frequency stability and jitter stability of the compared CPOs is
again the same. The J [k] values computed in this experiment
match the relation between J [k] and CPO parameters inferred
from the previous experiment.

Fig. 15 shows the frequency and jitter stability of g = 40
CPOs running in different modes and at different values of m.
These values of m were chosen to simulate designs nearly
identical to the fabricated 40-gate CPOs, the results of which
are presented in Section VII. These CPOs all operate at differ-
ent frequencies (550 MHz, 580 MHz, 2.8 GHz, and 4.6 GHz)
and hence the jitter stability plots aid better in comparing their
stability as a function of oscillation cycles. The larger initial
instability and longer high-slope regions for CPOs running in
a high-p mode correspond to their longer settling times. This
simulation also validates the relation between J [k] and CPO
parameters.

Results obtained from the behavioral simulations have
helped us understand better the frequency stability of CPOs
at different timescales and their dependence on design para-
meters. The main conclusions that can be drawn are that:
1) the phase error correction properties of CPOs improve their

frequency stability across timescales beyond the settling time
of the correction; 2) jitter stability of CPOs is ∝ √

g/p(1 −
(g/p)m) and 3) CPOs identical in terms of frequency, pulse
density (p/g), and m provide P.N. improvement of −10 log p,
where the power consumption is ∝ p and distributed in
space. Although for the results presented in this section, CPOs
shown better long-term stability than ring oscillators, they also
consume more power due to the more complicated design
of pulse gates. Analyzing this power-performance tradeoff is
beyond the scope of the behavioral simulator and hence is
done through Hspice simulations presented in Section VI.

VI. HSPICE-BASED COMPARISON OF CPOS AND RING

OSCILLATORS

To compare the FoM of ring oscillators and CPOs based on
frequency, power, and device noise, as well as their response
to power-coupled and impulse-noise, Hspice simulation results
are presented. Comparisons are made between two 5-NAND

gate rings with different transistor strengths and g = 4
CPOs with different delay–separation slopes (m), as well as a
g = 8, p = 2 CPO. The value of m for the CPOs was tuned by
changing the relative delay of the feed-forward and feedback
paths in the pulse gate, and the feedback path was built using
four inverters for better controllability of m. NAND-gate rings
were chosen for comparison, as they allow ring oscillators
to be enabled/disabled easily. The ring was built using all
NAND gates instead of one NAND gate and four inverters
to ensure that the phases of the ring are uniformly spaced.
This makes the comparison of ring oscillators to CPOs fair as
CPOs also have additional inputs to start and enable/disable
the ring. The schematics of the ring oscillator and CPOs used
for comparison are shown in Fig. 16. The pull-down network
of the pulse gates in this CPO contains additional inputs that
allow the oscillator or the firing of a start-up pulse to be
disabled by making the nodes enable_ring and enable_fire low,
respectively.

The effect of device noise was evaluated by transient noise
Hspice simulations conducted at a temperature of 45 ◦C
and supply voltage of 1.5 V in GFUS8RF 130-nm technol-
ogy. P.N. estimation with the Shooting Newton engine in
Hspice or Specter is based on the assumption that the oscillator
follows an LTV model [31], and injected phase errors persist
indefinitely with a magnitude that equals the initial injected
phase error. This assumption is not valid for CPOs as they
exhibit temporal phase error correction, which in fact improves
their frequency stability. This makes the simulated P.N. estima-
tion for CPOs inaccurate. Fig. 17 shows the simulated P.N. for
a g = 4, p = 1 CPO and wp = wn = 8 μm 5-NAND-gate ring
oscillator. The rms phase jitter JRMS, obtained by integrating
the P.N., is also shown on this plot. The relationship between
P.N. and rms jitter is as follows [31]:

JRMS = 1

2π fo

√
2
∫

10L( f )/10d f . (23)

Here fo is the nominal oscillation frequency and L( f ) is
the single-sideband P.N. While P.N. simulation results predict
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Fig. 16. Schematics of compared (a) 5-NAND-gate ring and (b) g = 4 CPO.

the CPO P.N. to be ≈3 dB higher than that of the 5-NAND-
gate ring oscillator and consequently higher integrated rms
phase jitter for the CPO, the jitter obtained from time-domain
simulations (see Fig. 18) clearly shows the opposite trend. The
k-cycle rms phase jitter was calculated from N = 100 runs of
transient noise simulations based on the k-cycle phase error
�[k] as follows:

JRMS[k] =
√∑N

i=1 �i [k]2

N
. (24)

This validates the inadequacy of P.N. simulations and hence
the comparisons in this section are based on time-domain sim-
ulations. The frequency, power, and 500-cycle rms phase jitter
obtained from transient noise simulations for the oscillators are
listed in Table I. Table I also includes the FoM improvement of
CPOs with respect to that of ring oscillators. The improvement
for the g = 4, p = 1 CPOs was calculated against the wp =
wn = 8 μm NAND-gate ring, while that of the g = 8, p = 2
CPO was calculated using the wp = wn = 16 μm NAND-ring
as follows:

FoM improvement = 20 log

(
fCPO

fRO

)
− 10 log

(
PCPO

PRO

)

− 20 log

(
JRMS[k = 500]CPO

JRMS[k = 500]RO

)
. (25)

Here fCPO, PCPO, and JRMS[k = 500]CPO are the frequency,
power, and 500-cycle rms phase jitter of the CPO and fRO,
PRO, JRMS[k = 500]RO are those of the ring oscillator against
which the CPO is compared. While the CPOs operate at a
higher frequency and power than the ring oscillators, the jitter

TABLE I

PERFORMANCE COMPARISON OF CPOS AND RING OSCILLATORS
(OBTAINED FROM HSPICE SIMULATIONS)

Fig. 17. Simulated P.N. and rms phase jitter obtained by integrating P.N.

in CPOs strongly depends on the value of m. It can be seen
that larger magnitudes of m lead to lower jitter as expected
and the FoMs show a trend similar to the trend in jitter.
These results suggest that by operating CPOs at relatively
high values of |m|, the phase correction properties lead to
similar FoMs as ring oscillators. Jitter stability plots for the
5-NAND-gate rings, g = 4, p = 1 and g = 8, p = 2
CPOs also obtained from transient noise simulations are shown
in Fig. 19. The higher powered NAND-gate rings and CPOs
show jitter stability values ≈√

2 smaller than their respective
lower powered counterparts. For both CPOs, the jitter stability
values are higher for approximately ten cycles, while the far-
out values are better than the corresponding ring oscillators as
expected.

Fig. 20 shows the magnitude of residual phase error in the
CPOs and ring oscillators after the injection of an impulse
of noise current, of magnitude 2 μA. Although the ring
oscillators see a smaller initial timing deviation for the same
magnitude of injected noise, the CPOs show significantly
smaller residual error values. The g = 4, p = 1 CPO has
a residual error 38% better than the wp = wn = 8 μm NAND-
gate ring, while the g = 8, p = 2 CPO has a residual error
35% better than the wp = wn = 16 μm NAND-gate ring.
Fig. 21 compares the performance of CPOs and ring oscillators
under the influence of sinusoidal power-coupled noise sources
of amplitude 75 mV (5%Vdd). The cycle–jitter and cycle–cycle
jitter [32] for the g = 4, p = 1 CPO are 29 and 46% smaller
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Fig. 18. RMS phase jitter obtained from transient noise simulations.

Fig. 19. Jitter stability obtained from transient noise simulations.

Fig. 20. Simulated normalized phase error of CPOs and ring oscillators with
impulse noise injection.

than the wp = wn = 8 μm NAND-gate ring. These results
indicate that CPOs designed to operate at high values of |m|
offer significant improvements over ring oscillators in terms
of both impulse noise and power-coupled noise rejection. The
jitter values for the higher powered g = 8, p = 2 CPO
in Fig. 21 are almost identical to that of the g = 4, p = 1
CPO, indicating that the lower jitter values with power noise
are a result of the corrections due to a larger value of |m| and
not multiple pulses. Finally, Fig. 22 shows the effect of supply
voltage and temperature on the frequency of ring oscillators
and CPOs, indicating that the tuning range of CPOs largely
resembles that of ring oscillators.

Fig. 21. Comparison of CPOs and ring oscillators in terms of (a) cycle jitter
and (b) cycle–cycle jitter with power-coupled noise simulation.

Fig. 22. Frequency as a function of (a) voltage and (b) temperature for
5-NAND-gate ring oscillator and g = 4, p = 1 CPO.

VII. MEASUREMENT RESULTS

CPO with 8 and 40 gates fabricated in the GFUS8RF (130-
nm) process have been tested. The chip micrograph is shown
in Fig. 23(a) and CPO layouts are shown in Fig. 23(b) and
(c). The g = 8 CPO can be run in either the p = 1 or
p = 2 mode, and the g = 40 CPO can run in ten modes
corresponding to p =1–10. The pulse gate topology in the
fabricated designs is similar to Fig. 16(b), with four inverters
in the feedback loop and pull-down transistors to enable firing
of a start-up pulse as well as enable the ring itself. To generate
a start-up pulse, an external rising edge was driven into the
chip and converted into a pulse. The pulse was used to drive
the fire inputs of multiple gates of the two CPOs. For the g = 8
CPO, the fire input on gate-1 and gate-5 [Fig. 16(b), node b1]
was driven by the fire pulse, with a separate enable_fire signal
(node b2) for gate-1 and gate-5. The CPO mode was set by



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE II

GFUS8RF (130 nm) MEASURED RESULTS

Fig. 23. (a) Micrograph of fabricated chip in GFUS8RF (130 nm). Layouts of fabricated CPOs: (b) 8-gate CPO. (c) 40-gate CPO.

making one (p = 1 mode) or both (p = 2 mode) enable_fire
signals active by external control signals. The enable_ring
signal (node a2) was used to enable or disable oscillations in
the ring. Similarly, for the g = 40 CPO, every fourth gate was
driven by the fire pulse, with independent fire_enable signals
for each of the ten gates to run the CPO is different modes
and a ring_enable signal to enable the CPO.

The CPOs were characterized by both P.N. and frequency–
jitter stability measurements. P.N. measurements were made
using a Keysight PXA Signal Analyzer (N9030B). For obtain-
ing the Allan deviation values, the CPO output waveforms
captured on an Agilent Infiniium oscilloscope were sampled
at 80 GSamples/s. The zero crossings of the rising edge of the
waveforms (at Vdd/2) were computed, and using the resultant
phase data, Allan deviation and jitter stability values were
calculated in IEEE Stable-32 [29]. The error bars on these
plots depict the 95% confidence values. Power supply was
regulated by an on-board Analog Devices LT3042 regulator.
No on-chip regulator was used for these measurements. The
measured frequency, power, tuning range, P.N. at 1- and
10-MHz offsets, number of phases, and FoM calculated at an
offset frequency of 10 MHz are summarized in Table II. It also
includes the normalized jitter stability at k = 100 cycles for
different modes of the two CPOs. These values were computed
by dividing the J [k = 100] for the p = 1 mode of each CPO
by the J [k = 100] for the other modes of the same CPO. The
FoM is calculated as follows:

FoM = 20 log

(
fo

� f

)
− P.N. − 10 log

(
Po

1mW

)
(26)

where fo is the oscillation frequency, � f is the frequency
offset at which the P.N. is measured, and Po is the oscillator
power consumption in mW .

For the g = 8 CPO, the p = 2 mode operates at a higher
frequency and power than the p = 1 mode as expected. The
modified Allan deviation and jitter stability for the two modes
of the g = 8 CPO are plotted in Fig. 24(a) and (b). This CPO
shows better jitter stability in the p = 2 mode than the p = 1
mode beyond ≈2–3 cycles. This is attributed to both smaller
residual phase error for multipulse CPOs, as well as operation
of the two-pulse and one-pulse CPOs in Region 2 and Region 3
of the delay–separation curve of Fig. 2(b), respectively, and
hence at different magnitudes of m. An increase in the delay–
separation slope (of relatively small magnitude) results in both
smaller settling time (see Fig. 10) and smaller jitter stability,
which improves both short- and long-term behavior as can
be seen for the g = 8 oscillator. The value of J [k = 100]
is 2.9 times smaller in the p = 2 mode compared to the
p = 1 mode. If the two modes operated at identical (small)
slopes, the improvement would have been ≈2 times instead.
Consequently, the P.N. in the p = 2 mode is ≈3 dB better than
in the p = 1 mode, resulting in an improvement in FoM of
≈5 dB. These results show that multipulse CPOs can not only
support higher operating frequencies, but also exhibit lower
P.N., resulting in an improved FoM. Fig. 24(c) shows the
measured P.N. for the g = 8, p = 2 CPO compared against
the simulation values. As explained in Section VI, since phase
error correction is not taken into account by P.N. simulators,
the measured values at 1- and 10-MHz phase offsets are indeed
lower than the simulated values. However, the simulated value
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Fig. 24. Measurement results. (a) Mod σ(τ ) for g = 8 CPO. (b) J [k] for g = 8 CPO. (c) Comparison of simulated and measured P.N. for g = 8, p = 2
CPO. (d) Mod σ(τ ) for g = 40 CPO. (e) J [k] for g = 40 CPO. (f) Oscilloscope waveform for g = 40, p = 1 CPO.

TABLE III

PERFORMANCE COMPARISON OF FABRICATED g = 8, p = 2 CPO
WITH SIMILAR PREVIOUS WORKS

at 100-MHz offset is better than the measured value due
to higher settling time associated with instabilities at large
frequency offsets and high-frequency power-coupled noise
during measurements.

For the g = 40 CPO operating in different modes, the fre-
quency scaling with respect to the number of pulses, p is
less than proportional to the increase in p, which matches
our analytic predictions. The modified Allan deviation and
jitter stability for three modes (p = 1, p = 5, and p = 10)
are plotted in Fig. 24(d) and (e), respectively. The p = 1
and p = 2 modes of the g = 8 CPO mode present nearly
identical frequency (same g/p ratio) comparison points to the
p = 5, p = 10 modes of the g = 40 CPO. As expected,
the g = 40 CPO outperforms the corresponding modes of the
g = 8 CPO at longer timescales. While at shorter timescales,
the g = 8 CPO modes show better jitter stability, as they
involve interactions between a smaller number of pulses and

exhibit shorter settling times. As can be seen from Table II,
the P.N. of the g = 40, p = 5 CPO is ≈7.5 dB better than
the g = 8, p = 1 CPO. This confirms the inference made
from behavioral simulations about the improvement in P.N.
to be ∝ √

p for power ∝ p. Table II also shows the jitter
stability for the g = 40 CPO in different modes at k = 100
cycles, compared against the p = 1 mode of this CPO. The
improvement is close to the mode value p for modes p = 1−6,
which is expected of CPOs operating at a small magnitude
of m. The improvement in jitter stability dips slightly for the
p = 7 mode, followed by a significant improvement for modes
p = 8–10. One factor leading to this shift in the trend of jitter
stability values is the switch in CPO operation from Region
3 to Region 2 of the delay–separation curve of Fig. 2(b).
The frequency and power consumption rise as the mode (p)
is increased, the P.N. degrades slightly and the FoM across
all modes lies in a 3–4-dB range. Our model currently does
not capture the effects of wire-length mismatches, substrate
coupling, and power noise, which could all contribute to some
nonmonotonicity in P.N. as can be seen for the p = 7–
10 modes of this CPO. This CPO can also provide up to
40 phases in certain modes with phase resolution as small
as 5.56 ps (p = 9 mode) in 130-nm technology. Fig. 24(f)
shows an oscilloscope waveform for the p = 1 mode of the
g = 40 CPO. Table III shows the performance comparison of
the g = 8; p = 2 fabricated CPO with similar previous works.

VIII. CONCLUSION

CPOs present a new design space for high-performance
multiphase ring oscillators that can provide precise phase
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resolutions, not limited by the smallest achievable gate delay
for a given technology. Pulse gates forming CPOs exhibit time-
variant gate dynamics that cause pulses to distribute uniformly
around the ring, enabling the existence of precise phases in
even or odd numbers as well as mirror phase taps. Further,
these dynamics result in temporal phase error corrections that
can be utilized to improve the overall frequency stability of
the oscillator beyond the first few cycles. This article presents
detailed time-domain analysis of the behavior of CPOs, includ-
ing closed-form analytic solutions that illustrate the effect of
design parameters on noise properties. The analysis is strongly
supported by behavioral and Hspice simulations, as well as
measurements on fabricated designs.

The analysis and results presented in this article show that
to first order, the properties of CPOs are solely governed by
the local gate delay–separation dynamics. For equal frequency,
equal pulse density CPOs, scaling power by a factor of p
improves the frequency stability and P.N. by a factor of
1/

√
p or −10 log p. A unique feature of such multipulse CPOs

is that P.N. is improved by adding power that is distributed
in space, and hence P.N. improvement is obtained without
increasing the power density. CPOs achieve device noise-based
FoMs similar to that of ring oscillators. However, CPOs are
more resilient to noise that shows correlation among different
gates, such as power noise. Finally, for systems dominated by
noise profiles that are impulsive, CPOs present a potential to
achieve frequency stability improvements ∝ 1/p, significantly
improving the power-versus-noise tradeoff.
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