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Abstract— Stochastic unary computing provides low-area 

circuits. However, the required area consuming stochastic number 

generators (SNGs) in these circuits can diminish their overall gain 

in area, particularly if several SNGs are required. We propose 

area-efficient SNGs by sharing the permuted output of one linear 

feedback shift register (LFSR) among several SNGs. With no 

hardware overhead, the proposed architecture generates 

stochastic bit streams with minimum stochastic computing 

correlation (SCC). Compared to the circular shifting approach 

presented in prior work, our approach produces stochastic bit 

streams with 67% less average SCC when a 10-bit LFSR is shared 

between two SNGs. To generalize our approach, we propose an 

algorithm to find a set of 𝒎 permutations (𝒏 > 𝒎 > 𝟐) with 

minimum pairwise SCC, for an 𝒏-bit LFSR. The search space for 

finding permutations with exact minimum SCC grows rapidly 

when 𝒏 increases and it is intractable to perform a search 

algorithm using accurately calculated pairwise SCC values, for 

𝒏 > 𝟗. We propose a similarity function that can be used in the 

proposed search algorithm to quickly find a set of permutations 

with SCC values close to the minimum one. We evaluated our 

approach for several applications. The results show that, 

compared to prior work, it achieves lower MSE with the same (or 

even lower) area. Additionally, based on simulation results, we 

show that replacing the comparator component of an SNG circuit 

with a weighted binary generator can reduce SCC. 

 
Index Terms— Stochastic number generator, Stochastic 

computing, Linear feedback shift register, Permutation 

 

I. INTRODUCTION 

TOCHASTIC computing (SC) has emerged as an 

unconventional technique for performing computations by 

logic circuits [1]. Rather than performing computation on 

deterministic binary numbers, SC circuits are designed to 

process random bit streams. The input and output are 

represented by bit streams and their values are encoded as the 

probabilities of seeing 1’s in the bit streams. Evidently, the 

values are confined in the unit interval [0,1], since probabilities 

cannot be beyond the unit interval. Compared to deterministic 

binary computing, SC provides several advantages including 

reduced hardware complexity and fault-tolerant computing. 

Because of these advantages, SC has been considered as an 

appropriate alternative to binary computing in different 

applications such as low-density parity check (LDPC) decoding 

[2], image processing [3], neural networks [4,5], and digital 

filters [6,7].  

One main advantage of SC is its very low hardware-

complexity that could result in cost-efficient computing 

circuits. The most common way to demonstrate the low 

hardware-cost of SC is its implementation of basic operations, 

i.e., multiplication and addition. Fig. 1(a) shows a simple AND 

gate implementing multiplication in SC. For the AND gate, the 

output is 1 only when input 𝐴 and input 𝐵 are both 1. Therefore, 

the probability of having 1 in the output bit stream is the 

multiplication of the probabilities of having 1 in each of the 

input bit streams, i.e., 𝑃(𝐶 = 1) = 𝑃(𝐴 = 1) × 𝑃(𝐵 = 1), that 

is 𝑐 = 𝑎 × 𝑏. Similarly, Fig. 1(b) shows a 2-input multiplexer 

computing scaled addition. For the multiplexer, the output 𝐶 is 

1 when 𝑆 is 0 and 𝐴 is 1 or when 𝑆 is 1 and 𝐵 is 1. Therefore, 

𝑃(𝐶 = 1) = (1 − 𝑃(𝑆 = 1)) × 𝑃(𝐴 = 1) + 𝑃(𝑆 = 1) ×

𝑃(𝐵 = 1) , that is 𝑐 = (1 − 𝑠) × 𝑎 + 𝑠 × 𝑏. 

A stochastic number generator (SNG) is an essential part of 

any SC circuit. A SC circuit uses SNGs to convert binary 

numbers to their corresponding random bit streams. They 

generate random bit streams with probabilities of producing 1’s 

equal to their corresponding binary numbers. SNGs play a 

central role in the efficiency of a SC circuit for two reasons. 

First, for SC circuits the size of an SNG part is remarkable with 

respect to the computing part. This problem becomes more 

critical for applications with SC circuits that require many 

SNGs, such as high degree digital filtering and image 
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Fig. 2(a). General structure of a SNG. (b) LFSR is used as RNS. 
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Fig.1 Low hardware-complexity in SC: (a) a simple AND gate computes 
multiplication, (b) a multiplexer compute scaled addition. 

 



processing algorithms. In fact, for several SC designs, SNG 

circuits consume around 80% or even 90% of the total area 

[8,9]. Second, the quality of the random numbers generated by 

SNGs can significantly affect the computational accuracy of SC 

designs and correlation among random bit streams is a source 

of inaccuracy in SC. Therefore, obtaining area-efficient and 

low-correlated SNGs is a major design challenge for SC. 

In response to this challenge, the contributions of this paper 

are the following: 

- Introducing a new permutation-based design space for 

sharing a random number source among several SNGs. The 

design space yields low-cost and low-correlated SNGs. 

Compared to SNGs with the same hardware complexity, the 

proposed SNGs generate random bit streams with lower cross 

correlation. 

- Modeling the variation of SC correlation for the proposed 

design space and presenting a searching algorithm for finding 

the permutations with minimum correlation. In addition, we 

present a similarity function that can be used to speed up the 

searching algorithm by degrading its accuracy in obtaining the 

permutations with exact minimum SC correlation. Even the fast 

version of the proposed algorithm achieves permutations with 

lower SC correlation, compared to prior work with the same 

hardware complexity. 

- Using simulation results to demonstrate a reduction in SC 

correlation achievable by replacing the comparator component 

of SNG circuits with weighted binary generator. 

In the next section, we explain the general structure of SNGs, 

a measure to evaluate their performance in SC, and related prior 

work. Section III describes the proposed design technique for 

two SNGs sharing a random number source. Section IV 

presents a low computational complexity model for the 

correlation variation of the proposed design and Section V 

generalizes the design approach for more than two SNGs. In 

Section VI, we evaluate our technique for some applications 

and Section VII concludes the paper. 

II. PRELIMINARIES AND PRIOR WORK 

A. SNG 

Generally speaking, an SNG is composed of two parts: a 

random number source (RNS) and a probability conversion 

circuit (PCC). An RNS is used to generate a sequence of 

uniformly distributed random numbers, while a PCC is 

designed to convert the generated random numbers into a 

random bit stream with the desired probability of generating 

1’s. Fig. 2(a) shows an SNG circuit. 

A linear feedback shift register (LFSR) and a cellular 

automata (CA) can be used as a digital RNS. A CA is made up 

of cascaded modules called a cell or site [10]. Each cell is 

composed of a flip-flop and a combinational circuit. In its 

simplest form, each cell is connected to only two neighbor cells 

on its left and right.  The next value of one cell is defined by its 

current value and that of the connected neighbor cells. Although 

a CA provides modularity and can generate good-quality 

random numbers, it is not commonly used in SC circuits due to 

its hardware-complexity compared to an LFSR. Due to the low 

hardware-complexity and high speed of an LFSR, it is 

employed as the RNS part in most SC circuits, including the 

circuits proposed in this paper. The advantage of using an LFSR 

is more crucial for computationally intensive applications such 

as deep neural networks [5] and energy-limited applications 

such as embedded systems and mobile internet of things (IoT) 

devices. Note that CA and LFSR circuits cannot be designed to 

generate true random numbers; however, their output sequences 

pass some of the random number tests and if the period of the 

sequences is large enough, they resemble an ideal RNS for SC 

computing [11]. 

An 𝑛-bit LFSR is composed of an 𝑛-bit shift register and one 

or more XOR gates. Fig. 2 (b) shows a 4-bit LFSR initialized 

by  0001. Normally, an LFSR is designed to have the maximum 

sequence length of 2𝑛 − 1. That is, the output sequence of a 

maximal-length LFSR repeats after a period of 2𝑛 − 1 binary 

numbers and each number in the range of [1, 2𝑛 − 1] is 

generated once in the period. 

Considering the sequence of bits produced in each single 

flip-flop of the LFSR in Fig. 2 (b), four random bit streams are 

generated as shown in Table I by 𝐿4, 𝐿3, 𝐿2, and 𝐿1. Each bit 

stream has a period of 15 bits including eight 1’s and seven 0’s. 

 In general, for an 𝑛-bit maximal-length LFSR, the bit pattern 

in each bit stream repeats every 2𝑛 − 1 bits. Since 2𝑛−1 of bits 

in the pattern are 1’s, the probability of nearly 0.5 is generated 

by each bit stream. 

Because all the bit streams produced by an LFSR have the 

probability of 0.5, a PCC is required in order to generate a bit 

stream with a desired probability other than a 0.5. PCC is a 

combinational circuit with two 𝑛-bit inputs. One is connected 

to a deterministic binary number 𝑥, and the other one to a 

sequence of numbers generated by an LFSR. It produces a bit 

stream with the probability of 𝑃𝑥 = 𝑥 × 2−𝑛, or more accurately 

𝑃𝑥 =
𝑥

2𝑛−1
. In each clock cycle, one 𝑛-bit number from the 

output sequence of an LFSR is converted to one bit. The output 

TABLE I 

THE OUTPUT BITSTREAMS FOR THE LFSR IN FIG. 2 WHEN A COMPARATOR OR A 

WBG ARE USED AS THE PCC PART. 

L4 L3 L2 L1 𝒔𝑪𝑴𝑷 𝒔𝑾𝑩𝑮 

0 0 0 1 1 1 

1 0 0 0 1 1 

0 1 0 0 1 0 

0 0 1 0 1 1 

1 0 0 1 1 1 

1 1 0 0 0 1 

0 1 1 0 1 0 

1 0 1 1 1 1 

0 1 0 1 1 0 

1 0 1 0 1 1 

1 1 0 1 0 1 

1 1 1 0 0 1 

1 1 1 1 0 1 

0 1 1 1 1 0 

0 0 1 1 1 1 

8/15 8/15 8/15 8/15 11/15 11/15 

 



bit stream is generated such that the total of 𝑥 bits in each period 

are 1 and the other bits are 0. In the literature of SC, two types 

of PCC circuits have been proposed: digital comparator (CMP) 

and weighted binary generator (WBG). A CMP is an 𝑛-bit 

digital comparator circuit that produces a 1 if the random 

number from the LFSR is less than the binary number 𝑥, and a 

0 otherwise. A WBG circuit works differently. First it converts 

the output sequence of an LFSR into a sequence of weighted 

binary numbers and then, generates the output bit stream using 

the weighted sequence and input binary number 𝑥 [12].  For a 

4-bit CMP and WBG, the internal circuits are illustrated in Fig. 

3(a) and 3(b), respectively. Although both circuits generate bit 

streams with the desired probability for every input 𝑥, their 

internal logic circuits and generated bit streams are different. 

For 𝑥 = 1011, Table I tabulates the output bits generated by a 

CMP, 𝑆CMP, and a WBG, 𝑆𝑊𝐵𝐺 , for an LFSR’s output, 

𝐿4𝐿3𝐿2𝐿1. In this paper, we examine both CMP and WBG 

circuits as the PCC part of the proposed SNG circuits. 

B. SCC 

When two (or more) random bit streams are used as inputs 

for a SC circuit, the cross correlation between them can affect 

the computational accuracy of the circuit. Assume 𝑠x is a 

random bit stream generated for binary number 𝑥 and 𝑠y is 

generated for binary number 𝑦. In order to quantitatively 

evaluate the correlation between 𝑠𝑥 and 𝑠y, one commonly used 

measure is the SC correlation (SCC) computed by (1) [13]. 

Where, 𝑃(𝑠𝑥) and 𝑃(𝑠𝑦) are, respectively, the probabilities 

for bit streams 𝑠𝑥 and 𝑠𝑦  to have 1’s and 𝛿(𝑆𝑥 , 𝑆𝑦) =

𝑃(𝑆𝑥 ∧ 𝑆𝑦) − 𝑃(𝑠𝑥)𝑃(𝑠𝑦) with ∧ denotes the bitwise AND of 

𝑠𝑥 and 𝑠𝑦 .  SCC can have values between -1 and +1, where ±1 

indicate maximum correlation and 0 means no correlation. 

When comparing the corresponding bits of the two bit streams, 

the SCC is positive if most 1’s and 0’s are aligned. However, if 

𝑆𝐶𝐶(𝑆𝑥 , 𝑆𝑦) =

{

 
𝛿(𝑆𝑥,𝑆𝑦)

min(𝑃(𝑠𝑥),𝑃(𝑠𝑦))−𝑃(𝑠𝑥)𝑃(𝑠𝑦)
            𝛿(𝑆𝑥 , 𝑆𝑦) => 0

𝛿(𝑆𝑥,𝑆𝑦)

𝑃(𝑠𝑥)𝑃(𝑠𝑦)−max(𝑃(𝑠𝑥)+𝑃(𝑠𝑦)−1,0)
      𝛿(𝑆𝑥 , 𝑆𝑦) < 0

    (1) 

most corresponding bits are complemented to each other, the 

SCC is negative. Since lower absolute SCC values elicit more 

accurate results in SC, researchers seek designs that generate 

bit streams with low SCCs. In general, the absolute values for 

SCC among bit streams generated in each flip-flop of an LFSR 

(before connecting them to a PCC) are low. For example, the 

cross correlation between each pair of bit streams generated by 

a maximal-length 4-bit LFSR, e.g., (𝐿2, 𝐿1) in Table I, is -

0.0816 and becomes smaller as 𝑛 increases. 

As suggested in [6], we evaluate the correlation between two 

SNGs by finding the average SCC among their generated bit 

streams for all possible input values and represent it as 𝑆𝐶𝐶𝑎𝑣𝑔. 

We can calculate the 𝑆𝐶𝐶𝑎𝑣𝑔 for SNG1 and SNG2 by (2). 

𝑆𝐶𝐶𝑎𝑣𝑔(𝑆𝑁𝐺1, 𝑆𝑁𝐺2) = ∑ ∑
|𝑆𝐶𝐶(𝑠𝑖,𝑠′𝑗)|

2𝑛×2𝑛
2𝑛−1
𝑗=0

2𝑛−1
𝑖=0          (2) 

Where, 𝑠𝑖 and 𝑠′𝑗  are bit streams generated by SNG1 and 

SNG2, respectively. To calculate the 𝑆𝐶𝐶𝑎𝑣𝑔, first, for both 

SNGs, the bit streams of all possible inputs, i.e., 𝑠𝑘 and 𝑠′𝑘for 

𝑘 = 1,2, … , 2𝑛 − 1, are generated. Then, SCC values between 

each bit stream of SNG1 and bit streams of SNG2 are calculated 

by (1). Finally, the 𝑆𝐶𝐶𝑎𝑣𝑔 is calculated by computing and 

normalizing the total sum of the SCCs. Obviously, 𝑆𝐶𝐶𝑎𝑣𝑔 is a 

positive number between 0 and 1 and the lower its value means 

less correlation between the two SNGs. 

 

C. Prior Work 

When several bit streams are required in a SC circuit, the 

straightforward implementation is to use a separate SNG to 

generate each bit stream. [14] has shown that careful seeding, 

scrambling, and feedback polynomials for the LFSR parts of 

these SNGs can improve computational accuracy. However, 

rather than using a separate LFSR for each SNG, a common 

approach to design compact SNGs is based on sharing an LFSR 

among them. Although sharing an LFSR reduces the hardware 

cost, it significantly raises the cross correlation between each 

pair of the generated random bit streams and thus leads to 

computational inaccuracy. It is worth mentioning there are a 

limited number of applications for SC where computational 

accuracy is not affected by the correlation between bit streams. 

Therefore, an LFSR can be directly shared among different 

SNGs [15]. However, it is required for many applications to 

reduce the mutual correlation among random number 

sequences before sharing them [5]. [16] has suggested using an 

extra S-Box circuit to generate low-correlated copies of an 

LFSR’s output to be shared with different SNGs. Although this 

method generates low auto- and cross-correlated bit streams, 

the S-Box is a combinational circuit that can increase the 

hardware complexity significantly for large values of 𝑛. Recent 
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Fig. 3 Two commonly used PCC circuits: (a) CMP, (b) WBG. 
 



work [8] has suggested a circular shifting approach in order to 

obtain bit streams with low cross correlation from a shared 

LFSR without hardware overhead. However, the approach does 

not provide bit streams with the minimum cross correlation. In 

fact, circular shifts are a small portion of an unexplored design 

space that can produce low-correlated bit streams from a shared 

LFSR with no hardware overhead. This research investigates 

the whole design space to find designs with minimum 𝑆𝐶𝐶𝑎𝑣𝑔. 

Note that some SNGs [17] generate multi-bit-width (parallel) 

bit streams for an input binary number, but this paper focuses 

on SNGs generating single-bit-width (serial) bit stream. 

III. SNG COST REDUCTION WITH PERMUTATION-BASED 

SHARED RNS 

This section presents the proposed approach for the design of 

efficient SNGs. We share one LFSR between two SNGs to 

reduce the area cost. However, unlike prior work, we reduce the 

correlation among the generated sequences without adding any 

extra hardware. In this section, we explain the method for two 

SNGs and in Section V, we generalize the idea for designing 

more than two SNGs. 

In order to generate low-correlated random bit streams, the 

cross correlation among the sequences of random numbers fed 

to the PCCs of different SNGs should be low. While using one 

LFSR generates one sequence of random numbers, we can feed 

different sequences of random numbers to different PCCs by 

permuting the connection between the LFSR’s output and the 

inputs of the PCCs. Consider a simple example of generating 

two random bit streams from a 4-bit LFSR. Fig. 4(a) shows two 

4-bit SNGs sharing one LFSR based on the proposed approach. 

We connect the 𝐿4, 𝐿3, 𝐿2, and 𝐿1 outputs of the LFSR, to the 

𝑟4, 𝑟3, 𝑟2, and 𝑟1 inputs of the first PCC, respectively. For the 

second SNG, however, we permute the output bits of the LFSR 

before connecting them to the inputs of the SNG’s PCC. 

The permutations of an LFSR’s output can provide low-

correlated random number sequences with the required feature 

due to two reasons. First, in general, there is a low correlation 

among bits in the flip-flops of an LFSR at a given time. Thus, 

permuted versions of LFSR’s output sequences have low cross 

correlation and they feed low-correlated sequences of random 

numbers to different PCCs. Second, all permutations of a 

maximal-length LFSR generate uniformly distributed random 

numbers such that in its repeating cycle (period), every integer 

binary number between 1 and 2𝑛 − 1 is repeated exactly once. 

Hence, the permutation of an LFSR’s output bits does not affect 

the functionality of SNGs connected to them. That is, in each 

period, connected PCCs generate the desired number of 1’s and 

0’s but in a permuted order. 

The approach can be extended to any 𝑛-bit maximal-length 

LFSR: the first SNG is built by direct connection of the LFSR’s 

output to a PCC’s input whereas the second SNG is built by 

connecting the permuted output of the LFSR to another PCC’s 

input. The permuted output should be chosen such that the SCC 

between the generated bit streams of the first and second SNG 

is minimum. However, other than the direct connection, there 

are (𝑛! − 1) different permutations for an 𝑛-bit LFSR output; 

which one achieves the minimum 𝑆𝐶𝐶𝑎𝑣𝑔? To answer this 

question for different values of 𝑛, we examine all possible 

permuted connections of the LFSR and search for those with 

minimum 𝑆𝐶𝐶𝑎𝑣𝑔. We start for the case of 𝑛 = 4. Assume that 

vector L = [𝐿1, 𝐿2, 𝐿3, 𝐿4] is the output of a 4-bit LFSR. There 

are 24 possible permutations for L. Also, assume the first SNG 

is formed by connecting 𝐿4, 𝐿3, 𝐿2, and 𝐿1, respectively, to 

𝑟4, 𝑟3, 𝑟2, and 𝑟1 of a PCC. Among the other 23 possible 

permutations for L, the SNG that results in the minimum 

𝑆𝐶𝐶𝑎𝑣𝑔 with the first SNG, is formed by connecting 𝐿1, 𝐿2, 𝐿3, 

and 𝐿4, respectively, to 𝑟4, 𝑟3, 𝑟2, and 𝑟1, of another PCC. Similar 

results are observed by investigating the proposed approach for 

the permutation of other values of 𝑛. The following conclusion 

generalizes the approach: for 𝑖 = 1,2, … , 𝑛, if the first SNG is 

formed by connecting 𝐿𝑖, i.e., the 𝑖th flip-flop of an LFSR, to 

𝑟𝑖, i.e., the 𝑖th input of a PCC, then the second SNG, resulting 

in the minimum 𝑆𝐶𝐶𝑎𝑣𝑔 with the first SNG, is formed by 

connecting 𝐿𝑛−𝑖 output of the LFSR to 𝑟𝑖 input of another PCC. 

[18] has proved that a permutation with reversed ordering 

provides the maximum deviation distance that agrees with our 

results. 

For example, to share an 8-bit LFSR, 𝐿1 to 𝐿8 are 

respectively connected to the 𝑟1 to 𝑟8 of a PCC to build the first 

SNG and 𝐿8 to 𝐿1 are respectively connected to the 𝑟1 to 𝑟8 of 

another PCC to build the second SNG. Fig. 4 shows the 

proposed LFSR-sharing approach based on permutation for 

𝑛=4 and 𝑛=8. 

To illustrate how the 𝑆𝐶𝐶𝑎𝑣𝑔varies with permutation, Fig. 5 

(a)-(d) shows the 𝑆𝐶𝐶𝑎𝑣𝑔 values between the first SNG and the 

permuted ones for 𝑛=4 to 7. For the purpose of better 

readability, we do not include the graph of 𝑆𝐶𝐶𝑎𝑣𝑔 for higher 

values of 𝑛; however, they have a similar pattern. The 

horizontal axis ranges from 1 to 𝑛! and represents the index of 

permutation in reverse lexicographic order [19] (the same order 

produced by MATLAB’s function perms) [20]. For reverse 

lexicographic order, the permutation of a vector is performed 

based on the positional index of its elements. That is, the 

permuted versions of a vector are formed by rearranging its 

elements from left to right and starting from greater positional 

indices. For example, for 𝑛=4 and original vector [1, 2, 3, 4], 

the permutations in reverse lexicographic order are listed as: 

[4,3,2,1], [4,3,1,2], [4,2,3,1], [4,2,1,3], [4,1,3,2], [4,1,2,3], 

[3,4,2,1], [3,4,1,2], [3,2,4,1], [3,2,1,4], [3,1,4,2], [3,1,2,4], 

[2,4,3,1], [2,4,1,3], [2,3,4,1], [2,3,1,4], [2,1,4,3], [2,1,3,4], 

[1,4,3,2], [1,4,2,3], [1,3,4,2], [1,3,2,4], [1,2,4,3], [1,2,3,4]. 

So, the first 𝑆𝐶𝐶𝑎𝑣𝑔 is corresponding to the permuted vector 

[4, 3, 2, 1], the second one to the permuted vector [4, 3, 1, 2], 

and so on. Note that in the reverse lexicographic order, the last 

permuted vector is the same as the original vector. 

For all values of 𝑛 in Fig. 5, the 𝑆𝐶𝐶𝑎𝑣𝑔 corresponding to the 

first permutation is the minimum 𝑆𝐶𝐶𝑎𝑣𝑔. This permutation is 



representing the connection of 𝐿𝑛 , 𝐿𝑛−1, … , 𝐿1 to 𝑟1, 𝑟2, … , 𝑟𝑛. 

On the other side, since the last permutation, i.e., vector 

[1, 2, … , 𝑛], is the same as the original SNG connection, it has 

the maximum 𝑆𝐶𝐶𝑎𝑣𝑔. 

 Let 𝑘, where 1 ≤ 𝑘 ≤ 𝑛, denote the number of shifts in the 

circular shifting approach [8]. The red dots in Fig. 5 mark the 

values of 𝑆𝐶𝐶𝑎𝑣𝑔 related to the circular shifts with 𝑘 bits shift. 

As it is explained in [8], compared to the other values of 𝑘, the 

circular shift with maximum gap, i.e., 𝑘 = 𝑛/2, yields the 

lowest 𝑆𝐶𝐶𝑎𝑣𝑔 values achievable by the circular shifting 

approach. Yet, our proposed permutation-based approach can 

find 𝑆𝐶𝐶𝑎𝑣𝑔 values lower than those produced by the circular 

shifting approach. The green stars in Fig. 5(a) mark these points 

for 𝑛=4. The minimum 𝑆𝐶𝐶𝑎𝑣𝑔 calculated for 𝑛=4 to 𝑛=10 is 

listed in Table II. The first and second columns compare the 

minimum 𝑆𝐶𝐶𝑎𝑣𝑔 achievable by the circular shift and our 

permutation approaches. For both methods an 𝑛-bit comparator 

is used as the PCC part. The third column is for using an 𝑛-bit 

WBG as the PCC part in our method. Obviously, using WBG 

as the PCC part and increasing the value of 𝑛 further reduce the 

𝑆𝐶𝐶𝑎𝑣𝑔. 

IV. MODELING AND ANALYSIS 

To find the permutation with minimum 𝑆𝐶𝐶𝑎𝑣𝑔, we need to 

calculate 𝑆𝐶𝐶𝑎𝑣𝑔 between the original SNG and (𝑛! − 1) other 

SNGs formed from the permutation of an 𝑛-bit LFSR’s output. 

As the length of LFSR increases, the search space and the 

required resources to find the solution rapidly become much 

larger. For example, for 𝑛 = 11, each copy of all permutations 

of L requires more than 3 GB of RAM [20] and it grows 

quickly. In fact, for 𝑛 > 9, an exhaustive search for finding the 

minimum 𝑆𝐶𝐶𝑎𝑣𝑔 is intractable. In order to reduce the 

 
Fig.5 The 𝑆𝐶𝐶𝑎𝑣𝑔 variation for circular shift and permutation-based methods. 
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Fig. 4- Proposed structure for sharing an LFSR with two SNGs based on output permutation: (a) 𝑛=4 and (b) 𝑛=8. 

 



computational complexity of this problem, we model the 

behavior of 𝑆𝐶𝐶𝑎𝑣𝑔 for different permutations of an LFSR by 

introducing a new function; one that we call the similarity 

function. Assuming the original (non-permuted) output vector 

of an 𝑛-bit LFSR is L=[𝐿1, 𝐿2, . . . , 𝐿𝑛], the positional index for 

𝐿1 is 1, for 𝐿2 is 2, and so on. Also, let 𝑃𝐿𝑘, for 1 ≤ 𝑘 ≤ 𝑛!,  
denote the 𝑘th permuted vector of L in the reverse 

lexicographic order. The similarity function calculates an 

approximation of the 𝑆𝐶𝐶𝑎𝑣𝑔 between L and its permutations, 

𝑃𝐿𝑘, and is defined as: 

𝑆(𝑘) = ∑ 𝑖 × 𝑖𝑛𝑑(𝑃𝐿𝑘(𝑖))𝑛
𝑖=1        (3) 

where, 𝑖𝑛𝑑(𝑃𝐿𝑘(𝑖)) is the index of the 𝑖th element of vector 

𝑃𝐿𝑘 in the original vector L. For example, if 𝑘 = 1 then 𝑆(1) 

calculates the similarity function for 𝑃𝐿1, the first permutation 

of L. Since 𝑃𝐿1=[𝐿𝑛 , 𝐿𝑛−1, . . . , 𝐿1], the 𝑖th element of 𝑃𝐿1 is 

𝐿(𝑛−𝑖+1). That is to say, the index for the 𝑖th element of 𝑃𝐿1is 

(𝑛 − 𝑖 + 1) in the original vector L. Therefore, 𝑆(1) is 

calculated as 𝑆(1) = ∑ 𝑖 × (𝑛 − 𝑖 + 1)𝑛
𝑖=1 . Similarly, if 𝑘=2, 

𝑆(2) is calculated as 𝑆(2) = (𝑛 − 1) + 2𝑛 + ∑ 𝑖 × (𝑛 −𝑛−2
𝑖=1

𝑖 + 1), because 𝑃𝐿2 = [𝐿𝑛 , 𝐿𝑛−1, . . . , 𝐿3, 𝐿1, 𝐿2]. For the last 

permutation of L, i.e., 𝑃𝐿(𝑛!), since it is the same as the original 

vector L, 𝑆(𝑛!) is calculated as 𝑆(𝑛!) = ∑ 𝑖 × 𝑖𝑛
𝑖=1 .  

The value of 𝑆(𝑘) is smaller if more elements of the 

corresponding permuted vector, 𝑃𝐿𝑘, change their positional 

index with respect to the original vector L. In other words, the 

similarity function is smaller if, in the connection of LFSR’s 

output to PCC unit, more bits are permuted with respect to the 

direct connection. Therefore, the similarity function provides 

an estimate of the correlation among bit streams generated by 

the permutations of an LFSR. Fig. 6 illustrates the graph of 

normalized 𝑆(𝑘) for 𝑛=4 to 7. The figure includes the graph of 

the 𝑆𝐶𝐶𝑎𝑣𝑔 values to make comparison easier. Although the 

similarity function does not calculate the exact values for the 

𝑆𝐶𝐶𝑎𝑣𝑔, comparing two graphs shows that this function 

approximately models the behavior of the 𝑆𝐶𝐶𝑎𝑣𝑔 and provides 

an approximation of indices of permutations with the minimum 

𝑆𝐶𝐶𝑎𝑣𝑔. We can find other measures for the closeness between 

permutations of a sequence [21]. Among them, squared 

deviation distance [22] achieves the same pattern as 𝑆(𝑘), but 

with different calculations, and can be used for our model. 

Compared to the other measures, 𝑆(𝑘) appropriately 

approximates the 𝑆𝐶𝐶𝑎𝑣𝑔 with lower computational 

complexity. 

In fact, the similarity function forms a low-cost heuristic 

computation approach for the estimation of the 𝑆𝐶𝐶𝑎𝑣𝑔. For any 

reason, such as limitations in circuit level implementation, if a 

designer decides to use permutations other than the permutation 

with the minimum correlation, then the similarity function can 

provide a guiding estimate for choosing other permutations 

with low correlation. 

Notice that for any specific 𝑛, as long as each number 

between 1 and 2𝑛 − 1 repeats exactly once in each period of the 

random number sequence, the variation of 𝑆𝐶𝐶𝑎𝑣𝑔 with respect 

TABLE II 

COMPARISON OF MINIMUM 𝑆𝐶𝐶𝑎𝑣𝑔_AVG VALUES ACHIEVABLE BY CIRCULAR 

SHIFT [8] AND THE PROPOSED APPROACH. 

𝑛 Circular Shift [8] Proposed (CMP) Proposed (WBG) 

4 0.528 0.473 0.387 

5 0.467 0.372 0.286 

6 0.387 0.274 0.198 

7 0.336 0.192 0.132 

8 0.270 0.130 0.085 

9 0.218 0.086 0.053 

10 0.162 0.054 0.033 

 
 

 
Fig.6 -The exact 𝑆𝐶𝐶𝑎𝑣𝑔 values and the similarity function for different values of 𝑛 . 

 



to permutations is the same. That is, for all possible structures 

of an 𝑛-bit LFSR, if it is a maximal-length LFSR, the values of 

the 𝑆𝐶𝐶𝑎𝑣𝑔 for permutations are the same. Further, the behavior 

of the 𝑆𝐶𝐶𝑎𝑣𝑔 is independent of which permutation we choose 

as the original (direct) output of the LFSR. For example, if we 

choose L=[𝐿2, 𝐿1, 𝐿4, 𝐿3] as the direct output of a 4-bit LFSR, 

then the permutation [𝐿3, 𝐿4, 𝐿1, 𝐿2] provides the minimum 

𝑆𝐶𝐶𝑎𝑣𝑔 with L. 

V. GENERALIZATION 

So far, we have discussed the permutation-based sharing of 

an LFSR between two SNGs. However, the idea can be 

extended to sharing an 𝑛-bit LFSR for more than two SNGs. 

Let us assume we want to share an LFSR among 𝑚 SNGs, 

where 𝑛 > 𝑚 > 2. The goal is to find a set of 𝑚 different 

permutations of the LFSR’s output such that the maximum of 

all pairwise 𝑆𝐶𝐶𝑎𝑣𝑔 values for this set is minimum among other 

possible sets. For example, assume 𝑚 = 3 and 𝑃1, 𝑃2, and 𝑃3 

are indices in reverse lexicographic order for the permutations 

of an 𝑛-bit LFSR that build 3 SNGs with the minimum mutual 

values of 𝑆𝐶𝐶𝑎𝑣𝑔. Then, permutations 𝑃𝐿P1, 𝑃𝐿P2, and 𝑃𝐿P3 

are the ones that minimize 𝑀𝑃3(𝑃𝐿Pi , 𝑃𝐿Pj, 𝑃𝐿Pk), where 

𝑀𝑃3(𝑃𝐿Pi, 𝑃𝐿Pj, 𝑃𝐿Pk) =

max{𝑆𝐶𝐶𝑎𝑣𝑔(𝑃𝐿Pi, 𝑃𝐿Pj), 𝑆𝐶𝐶𝑎𝑣𝑔(𝑃𝐿Pi, 𝑃𝐿Pk), 𝑆𝐶𝐶𝑎𝑣𝑔(𝑃𝐿Pj, 𝑃𝐿Pk)} 

for 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛!. 
The pseudo code in Algorithm 1 represents the proposed 

algorithm for finding a set of 𝑚 permutations that can provide 

a RNS for 𝑚 SNGs with minimum 𝑆𝐶𝐶𝑎𝑣𝑔 values. For each 

permutation, the algorithm examines whether it can be part of a 

set of 𝑚 permutations with minimum 𝑆𝐶𝐶𝑎𝑣𝑔 values. It starts 

with SM=1, the greatest possible value for 𝑆𝐶𝐶𝑎𝑣𝑔. If the 

maximum value of 𝑆𝐶𝐶𝑎𝑣𝑔 among a set of 𝑚 permutations is 

less than SM, then the algorithm updates SM with this 

maximum value and saves the indices of the permutations in 

𝑃1, 𝑃2, … , 𝑃𝑚 as the current set with the minimum 𝑆𝐶𝐶𝑎𝑣𝑔 

value. This process repeats for all possible sets of permutations 

and after examining the last set, indices for the best set are saved 

in 𝑃1, 𝑃2, … , 𝑃𝑚. As an example, Algorithm 2 represents the 

pseudo code for 𝑚 = 3. The pairwise 𝑆𝐶𝐶𝑎𝑣𝑔 values and 

indices of three permutations with minimum mutual 𝑆𝐶𝐶𝑎𝑣𝑔 

values for 𝑛=4 to 7 are listed in Table III. We extend the circular 

shift approach for obtaining a set of 3 shifts with minimum 

𝑆𝐶𝐶𝑎𝑣𝑔 values and list the results in Table IV. Comparing the 

results in Tables III and IV show that the proposed method can 

achieve triple sets with lower 𝑆𝐶𝐶𝑎𝑣𝑔values. Notice that for 

both methods there are more than one set with minimum 

𝑆𝐶𝐶𝑎𝑣𝑔 values. Running the algorithm and replacing CMP by 

WBG in the permutation-based SNGs reduces the obtained 

𝑆𝐶𝐶𝑎𝑣𝑔 values even more as listed in Table V. 

Here, we assume the cross correlations between all elements 

in a set of 𝑚 permutations are equally important. However, if it 

is required for particular applications, we can change the 

algorithm to give priority to 𝑆𝐶𝐶𝑎𝑣𝑔 values for some pairs over 

others.  

Due to the inequalities in the if statements of Algorithm 1, 

part of its pseudocode is executed conditionally. That is, 

different permutations may require different amounts of time to 

complete their pass in the algorithm. To estimate the worst-case 

time complexity of finding the best set of 𝑚 permutations, we 

break down the process into four steps:  

1) Calculating all possible permutations for an 𝑛-bit LFSR; 

the computational complexity is 𝑂(𝑛! × 𝑛). 2) Calculating bit 

streams for each permutation; the computational complexity is 

𝑂(22𝑛). 3)Calculating 𝑆𝐶𝐶𝑎𝑣𝑔 for all pairs of the 

permutations; the computational complexity is 𝑂((𝑛! × 2𝑛)2). 

Algorithm 2: Algorithm for finding the set of 3  

permutations of an LFSR with minimum pairwise 𝑺𝑪𝑪𝒂𝒗𝒈. 

Initialization: SM=1 

for 𝒊 = 𝟑 to 𝒏! do  

 for 𝒋 = 𝟏 to 𝒊 − 𝟐 do 

 if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋) <SM then 

   𝑺𝑷𝟏=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋); 

 for 𝒌𝟏=1 to 𝒊 − 𝒋 − 𝟏 do 

     if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋+𝒌𝟏
) < SM then 

         𝑺𝑷𝒌𝟏
=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋+𝒌𝟏

);  

         if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒋, 𝑷𝑳𝒋+𝒌𝟏
) <SM then 

             𝑺𝑷𝒉𝟏𝒉𝟐
=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒋, 𝑷𝑳𝒋+𝒌𝟏

); 

             𝑷𝟏 = 𝒊; 

             𝑷𝟐 = 𝒋; 

             𝑷𝟑 = 𝒋 + 𝒌𝟏; 

              SM= 𝒎𝒂𝒙 { 𝑺𝑷𝟏, 𝑺𝑷𝒌𝟏
, 𝑺𝑷𝒉𝟏𝒉𝟐

} 

 

Algorithm 1: Algorithm for finding the set of 𝒎 permutations of a 

LFSR with minimum pairwise 𝑺𝑪𝑪𝒂𝒗𝒈. 

Input: 𝒎 

Outputs: 𝑷𝟏, 𝑷𝟐, … , 𝑷𝒎 

Initialization: SM=1 

for 𝒊 = 𝒎 𝒕𝒐 𝒏! do 

          for 𝒋 = 𝟏 𝒕𝒐 𝒊 − (𝒎 − 𝟏) do 

         if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋) < 𝑺𝑴 then 

          𝑺𝑷𝟏=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋); 

       for each set (𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎−𝟐) of 𝒎 − 𝟐  

          elements in {𝒋 + 𝟏, 𝒋 + 𝟐, … , 𝒊 − 𝟏}  do 

          if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒌𝒓
) < SM for all 𝒌𝒓 ∈ (𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎−𝟐) then 

             for all 𝒌𝒓 do 

     𝑺𝑷𝒌𝒓
=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒌𝒓

);  

    if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒉𝟏
, 𝑷𝑳𝒉𝟐

) <SM for all pairs(𝒉𝟏, 𝒉𝟐)  

                  in (𝒋, 𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎−𝟐) then 

        𝑺𝑷𝒉𝟏𝒉𝟐
=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒉𝟏

, 𝑷𝑳𝒉𝟐
); 

        𝑷𝟏 = 𝒊; 

        𝑷𝟐 = 𝒋; 

        𝑷𝟑 = 𝒌𝟏; 

               ⋮ 

        𝑷𝒎 = 𝒌𝒎−𝟐 

        SM= 𝒎𝒂𝒙 {all 𝑺𝑷𝒒s: 𝑺𝑷𝟏, 𝑺𝑷𝒌𝟏
, …, 𝑺𝑷𝒌𝒎−𝟐

, 𝑺𝑷𝒉𝟏𝒉𝟐
,…} 

 



4) Finding the set of 𝑚 permutations with minimum pairwise 

𝑆𝐶𝐶𝑎𝑣𝑔 by performing comparisons. To calculate the number 

of required computations, assume 𝑀𝑃𝑚 is the maximum of all 

pairwise 𝑆𝐶𝐶𝑎𝑣𝑔 values for a set of 𝑚 permutations. Since there  

are (
𝑚
2

) distinct pairs of permutations within a set, finding 

𝑀𝑃𝑚 for each set requires (
𝑚
2

) − 1 comparisons. Since, for an 

𝑛-bit LFSR, (
𝑛!
𝑚

) distinct sets of 𝑚 permutations are possible, 

the total number of required comparisons to find maximum 

values for all the sets is (
𝑛!
𝑚

) × [(
𝑚
2

) − 1]. Finally, finding the 

minimum of the maximum values requires (
𝑛!
𝑚

) − 1 

comparisons. Thus, the total number of required comparisons 

by the algorithm is (
𝑛!
𝑚

) × [(
𝑚
2

) − 1] + (
𝑛!
𝑚

) − 1, simplified to 

(
𝑛!
𝑚

) × (
𝑚
2

) − 1. 

 The total computational complexity for the worst-case 

runtime is the sum of the above four steps. Note that when 𝑛 is 

increased, in addition to the required computational 

complexity, the required memory grows exponentially and 

becomes a challenge.  To show the actual runtime of Algorithm 

1, Table VI lists the runtime of the algorithm for different 

values of 𝑛 and 𝑚 implemented by MATLAB on a computer 

with a Core i7 2.11GHz intel processor and 16 GB of RAM. 

Rather than using 𝑆𝐶𝐶𝑎𝑣𝑔, we can use the similarity function 

in Algorithm 1 to reduce its runtime. We replace steps 1, 2 and 

3 by calculating 𝑆(𝑘) using (3). First, we use 𝑆(𝑘) to find the 

indices of the best 𝑚 permutations and then compute the exact 

value of 𝑆𝐶𝐶𝑎𝑣𝑔 for these indices. Table VI shows the average 

runtime using 𝑆(𝑘)for different values of 𝑛 and 𝑚. As the table 

shows, using 𝑆(𝑘) significantly reduces the computational time 

of the algorithm. The reduction becomes more significant when 

𝑛 increases. Table VII shows the indices and values of the best 

three permutations obtained using 𝑆(𝑘) in Algorithm 1. These 

results show that by using the similarity function we can find 

permutations with 𝑆𝐶𝐶𝑎𝑣𝑔 values very close to those listed in 

Table III. In fact, the 𝑆𝐶𝐶𝑎𝑣𝑔 values of the achieved 

permutations for 𝑛=5 is the same in both Table III and Table 

VII. Although using the similarity function in Algorithm 1 does 

not necessarily achieve the minimum correlations, it achieves 

correlation values lower than circular shifting results listed in 

Table VI.  

VI. EVALUATION WITH APPLICATIONS 

In this section, we evaluate the proposed design approach 

using applications with different levels of complexity ranging 

from simple multiplication to image segmentation. For all 

experiments, we used 8-bit maximal-length LFSRs and 

represent variables by 255-bit random bit streams. To make a 

fair comparison with prior work regarding hardware 

implementation, we use the synthesis results obtained by 

Synopsys Design Compiler in 45nm NanGate library [23]. We 

compare the results for 6 different methods: deterministic 

(conventional binary), no-share LFSR (separate LFSR for each 

SNG), simple-share (one LFSR with the same output 

connection for all SNGs), SBoNG [16], circular shift [8], and 

our proposed method. Fig. 7 shows the circuit area (in 𝜇𝑚2) 

and Table VIII lists the mean-squared error (MSE) for each 

application. 

As the first application, we implement a simple 2-input 

multiplier. For the binary multiplication, we use a conventional 

8 × 8 Wallace tree multiplier [24]. Because the MSE varies for 

some SC-based circuits due to the use of different LFSRs, we 

calculate the average MSE for 1000 trials with different LFSRs. 

While the proposed circuit has the same size as the simple-share 

TABLE IV 

MINIMUM 𝑆𝐶𝐶𝑎𝑣𝑔 VALUES FOR SHARING AN LFSR WITH 3 DIFFERENT 

SNGS BY EXTENDING THE CIRCULAR SHIFT APPROACH. . 

𝑛 𝑘1 𝑘2 𝑘3 𝑆𝐶𝐶𝑎𝑣𝑔 

(𝐶k1, 𝐶k2) 

𝑆𝐶𝐶𝑎𝑣𝑔 

(𝐶k1, 𝐶k3) 

𝑆𝐶𝐶𝑎𝑣𝑔 

(𝐶k2, 𝐶k3) 

4 0 1 3 0.6254 0.6254 0.6254 

5 0 3 4 0.4885 0.6507 0.6507 
6 0 2 4 0.4626 0.4626 0.4626 

7 0 2 5 0.4468 0.4468 0.3369 

8 0 3 6 0.4373 0.2587 0.4373 

 

TABLE V 

MINIMUM 𝑆𝐶𝐶𝑎𝑣𝑔 VALUES FOR SHARING AN LFSR WITH 3 DIFFERENT 

SNGS USING THE PROPOSED APPROACH WITH WBG. 

𝑛 𝑃1 𝑃2 𝑃3 𝑆𝐶𝐶𝑎𝑣𝑔 

(𝑃𝐿P1, 𝑃𝐿P2) 

𝑆𝐶𝐶𝑎𝑣𝑔 

(𝑃𝐿P1, 𝑃𝐿P3) 

𝑆𝐶𝐶𝑎𝑣𝑔 

(𝑃𝐿P2, 𝑃𝐿P3) 

4 3 10 23 0.5207 0.5207 0.5207 
5 10 39 119 0.4321 0.4276 0.3994 

6 40 177 720 0.3260 0.3260 0.3260 

7 184 1017 5040 0.2381 0.2381 0.2381 

 

TABLE III 

MINIMUM 𝑆𝐶𝐶𝑎𝑣𝑔 VALUES FOR SHARING AN LFSR WITH 3 DIFFERENT SNGS 

USING THE PROPOSED APPROACH WITH COMPARATOR. 

 𝑛 𝑃1 𝑃2 𝑃3 𝑆𝐶𝐶𝑎𝑣𝑔 

(𝑃𝐿P1, 𝑃𝐿P2) 

𝑆𝐶𝐶𝑎𝑣𝑔 

(𝑃𝐿P1, 𝑃𝐿P3) 

𝑆𝐶𝐶𝑎𝑣𝑔 

(𝑃𝐿P2, 𝑃𝐿P3) 

 4 4 9 24 0.5470 0.5470 0.5470 

 5 12 44 88 0.4887 0.4882 0.4885 

 6 57 160 719 0.3870 0.3870 0.3870 
 7 184 1017 5040 0.3082 0.3082 0.3082 

  

 

TABLE VI 

Actual runtimes (in seconds) of Algorithm 1 using the exact 

𝑆𝐶𝐶𝑎𝑣𝑔 values and the similarity function. 

method 𝑚 𝑛 = 4 𝑛 = 5 𝑛 = 6 𝑛 = 7 

𝑆𝐶𝐶𝑎𝑣𝑔 3 

4 

0.021 

0.045 

1.089 

4.897 

162.247 

987.482 

37174.120 

301105.142 

       𝑆(𝑘) 3 0.012 0.060 2.112 225.098 

 4 0.026 0.217 14.006 1538.910 
  

TABLE VII 

Repeating the experiment of Table III using 𝑆(𝑘). 

𝑛 𝑃1 𝑃2 𝑃3 𝑆𝐶𝐶𝑎𝑣𝑔 

(𝑃𝐿P1, 𝑃𝐿P2) 

𝑆𝐶𝐶𝑎𝑣𝑔 

(𝑃𝐿P1, 𝑃𝐿P3) 

𝑆𝐶𝐶𝑎𝑣𝑔 

(𝑃𝐿P2, 𝑃𝐿P3) 

4 5 12 13 0.6071 0.5470 0.5207 
5 23 46 61 0.4882 0.4887 0.4885 

6 92 232 291 0.4052 0.4489 0.4119 

7 597 1392 1729 0.3422 0.3351 0.3385 
       
 
 



and circular shift circuits, it achieves higher accuracy. 

Interestingly, the multiplier implemented using the proposed 

method has a lower MSE than the no-share and SBoNG 

methods. We can justify this by considering the fact that in our 

method we design SNGs based on minimum SCC values and 

the definition of SCC in (1) is completely in favor of  

multiplication of two bitstreams. Thus, we find a pair of an 

LFSR’s permutations that can yield better results than two 

separate LFSRs or randomized output of an LFSR for 

multiplication. 

For more complex examples, we compare different 

implementations of 31- and 267-tap FIR filters in the form of a 

MUX tree explained in [6] and [7]. For both filters, we use 

MATLAB to generate low-pass filters’ coefficients. For the 

SBoNG method, we use the SNG circuit described in [16] with 

8-bit LFSRs, and for the circular shifting method, we use 

circuits similar to the architectures described in [6]. When a 

separate LFSR is used for each data and selection input, the 

number of required LFSRs for each application is listed in 

Table VIII. As the table shows, for the 267-tap filter, the 

proposed approach provides better accuracy compared to the 

circular shift method. For this filter, the no-share LFSR and 

SBoNG methods can achieve lower MSE values but their 

hardware complexity is more. 

Finally, we apply our technique to the implementation of two 

image processing applications, i.e., edge detection and image 

segmentation, and compare their stochastic computation using 

different circuits. We evaluate our method by the Roberts cross 

edge detection algorithm implemented in SC [25] and by the 

kernel density estimation (KDE)-based image segmentation 

[3]. In the circuits related to the no-share LFSR method, each 

data and selection input of the multiplexers uses a separate 

LFSR. We obtained MSE values by exploiting five normalized 

grayscale still images with 256 levels from black to white for 

the edge detection algorithm, and four grayscale movies with 

33 frames for the image segmentation algorithm. Table VIII 

lists MSE values for each algorithm calculated by taking the 

average of the MSE values of all trials for a design. For the edge 

detection, our method results in a MSE value close to that of 

the no-share LFSR and SBoNG method, however, with lower 

hardware complexity. For the KDE-based image segmentation, 

our proposed circuit leads to a MSE value nearly half of the 

MSE value for the circular shift circuit with the same hardware 

complexity. 

VII. CONCLUSION 

In this paper, we investigated the design of low-cost and low-

correlated SNG circuits using LFSR sharing. To reduce the 

correlation among the generated bit streams, we permuted the 

output of a shared LFSR before using it as input for different 

SNGs. We modeled the behavior of 𝑆𝐶𝐶𝑎𝑣𝑔 for all permutations 

and our results show that for an LFSR’s output, its first 

permutation in the reverse lexicographic order provides the 

minimum cross correlation. Compared to prior work with the 

same hardware complexity, i.e., the circular shift [8][6], our 

method results in SNGs with lower cross correlation values. We 

also proposed an algorithm for finding a set of 𝑚 permutations 

that can be shared among 𝑚 SNGs with minimum cross 

correlation. We used the proposed SNGs in the SC-based 

implementation of several applications and the results show 

that, with low hardware complexity, we obtain better 

computational accuracy compared to prior methods. 

REFERENCES 

[1] B. R. Gaines, "Stochastic computing" AFIPS spring joint computer 
conference. ACM, pages149–156, 1967. 

[2] V. C. Gaudet, and A. C. Rapley, “Iterative decoding using stochastic 
computation,” Electronics Letters, vol. 39, no. 3, pp. 299–301, 2003. 

[3] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation 
on Stochastic Bit Streams Digital Image Processing Case Studies,” IEEE 
Trans. VLSI Syst., vol. 22, no. 3, pp. 449–462, Mar. 2014. 

[4]  B. D. Brown and H. C. Card, “Stochastic neural computation. I. 
computational elements,” IEEE Trans. Comput., vol. 50, no. 9, pp. 891–
905, Sep. 2001. 

[5] Y. Xie et al., "Fully-parallel area efficient deep neural network design 
using stochastic computing," IEEE Trans. CAS II, , vol. 64, pp. 1382-
1386, 2017. 

[6]  H. Ichihara, and T. Sugino, “Compact and accurate digital filters based 
on stochastic computing,” IEEE Transactions on Emerging Topics in 
Computing, 2019. 

TABLE VIII 
CALCULATED MSE FOR DIFFERENT SC IMPLEMENTATIONS OF MULTIPLICATION, 

31-TAP FIR FILTER, 267-TAP FIR FILTER, EDGE DETECTION,  AND KDE-BASED 

IMAGE SEGMENTATION. 

Application #of 

LFSR 

No-share  

LFSR 

Simple 

-share 

SBoNG Circular 

Shift 

Proposed 

Multiplier 2 0.00008 0.01057 0.00010 0.00012 0.00001 
f31 61 0.00062 0.01825 0.00064 0.00065 0.00065 

f267 533 0.00814 0.04912 0.00883 0.00947 0.00902 

Edge detection 7 0.00055 0.11714 0.00056 0.00052 0.00054 
KDE 96 0.02285 0.88158 0.03582 0.08349 0.04324 

   
 

 
(a)        (b)        (c)        (d)        (e) 

Fig7- Area comparison for different implementations of (a) multiplier, (b) 31-tap FIR filter, (c) 267-tap FIR filter, (d) edge detection, and 

(e) KDE-based image segmentation. 
 

 



[7] R. Wang, B. F. Cockburn, and D. G. Elliott, “Design, evaluation and fault-
tolerance analysis of stochastic FIR filters,” Microelectronics Rel., vol. 
57, no. 2, pp. 111–127, 2016. 

[8]  H. Ichihara, "Compact and accurate stochastic circuits with shared 
random number sources." IEEE 32nd International Conference on 
Computer Design (ICCD), pp. 361-366, 2014. 

[9] S Mohajer, Z Wang, K Bazargan, M Riedel, DJ Lilja, SA Faraji, “Parallel 
computing using stochastic circuits and deterministic shuffling 
networks,” US Patent App. 16/165,713 

[10] P. D. Hortensius, R. D. McLeod, and H. C. Card,” Parallel Random 
Number Generator for VLSI Systems Using Cellular Automata”, 
Proceedings of IEEE Transactions on Computers, vol. 38, 1989 

[11] W.J. Poppelbaum, “Statistical processors.”  Adv. Computers, vol. 14, pp. 
187–230. 1976. 

[12] P.K. Gupta, and R. Kumaresan, “Binary multiplication with PN 
sequences.” IEEE Trans. Acoustics Speech Signal Process. vol. 36, pp. 
603–606, 1988. 

[13]  A. Alaghi, and J.P. Hayes, “Exploiting Correlation in Stochastic Circuit 
Design,” Proc. Intl Conf. on Computer Design (ICCD), pp. 39–46, Oct. 
2013.  

[14] J.H. Anderson, Y. Hara-Azumi, and S. Yamashita, “Effect of LFSR 
seeding, scrambling and feedback polynomial on stochastic computing 
accuracy,” in Proc. Design, Automation, and Test in Europe (DATE), 
pp.1550-1555, 2016. 

[15]  M. Yang, B. Li, D. J. Lilja, B. Yuan, and W. Qian, “Towards theoretical 
cost limit of stochastic number generators for stochastic computing.” In 

Proceedings of the 2018 IEEE Computer Society Annual Symposium on 
VLSI (ISVLSI’18). IEEE, Los Alamitos, CA, pp. 154–159, 2018. 

[16]  F. Neugebauer, I. Polian and J. P. Hayes, “Building a better random 
number generator for stochastic computing,” in Proc. DSD, pp. 1–8, Aug. 
2017. 

[17] K. Kim, J. Lee and K. Choi, "An energy-efficient random number 
generator for stochastic circuits,"  Asia and South Pacific Design 
Automation Conference (ASP-DAC), pp. 256-261, 2016. 

[18] Ronald, S. “More distance functions for order-based encodings.” Proc 
IEEE Conference on Evolutionary Computation, pages 558–563, 1998. 

[19] https://en.wikipedia.org/wiki/Lexicographical_order 

[20]  https://www.mathworks.com/help/matlab/ref/perms.html 

[21] Sevaux, M. and Sorensen, K. “Permutation distance measures for 
memetic algorithms with population management.” Metaheuristics 
International Conference, 2005. 

[22] Siegel, S. and Castellan, N. J. Nonparametric Statistics for the Behavioral 
Sciences. McGraw-Hill, 1988. 

[23]  NanGate open cell library, (https://projects.si2.org), 2011. 

[24]  T. Yang, T. Ukezono, and T. Sato, “Low-Power and High-Speed 
Approximate Multiplier Design with a Tree Compressor” Computer 
Design (ICCD), pp. 89-96, Nov 2017. 

[25] P. Li, and D. J. Lilja, “Using Stochastic Computing to Implement Digital 
Image Processing Algorithms,” Proc. ICCD, pp. 154–161, 2011.

 

https://en.wikipedia.org/wiki/Lexicographical_order
https://www.mathworks.com/help/matlab/ref/perms.html
https://projects.si2.org/

	2020 IEEE
	FinalVersion (2)

