
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract— Stochastic unary computing provides low-area

circuits. However, the required area consuming stochastic number

generators (SNGs) in these circuits can diminish their overall gain

in area, particularly if several SNGs are required. We propose

area-efficient SNGs by sharing the permuted output of one linear

feedback shift register (LFSR) among several SNGs. With no

hardware overhead, the proposed architecture generates

stochastic bit streams with minimum stochastic computing

correlation (SCC). Compared to the circular shifting approach

presented in prior work, our approach produces stochastic bit

streams with 67% less average SCC when a 10-bit LFSR is shared

between two SNGs. To generalize our approach, we propose an

algorithm to find a set of 𝒎 permutations (𝒏 > 𝒎 > 𝟐) with

minimum pairwise SCC, for an 𝒏-bit LFSR. The search space for

finding permutations with exact minimum SCC grows rapidly

when 𝒏 increases and it is intractable to perform a search

algorithm using accurately calculated pairwise SCC values, for

𝒏 > 𝟗. We propose a similarity function that can be used in the

proposed search algorithm to quickly find a set of permutations

with SCC values close to the minimum one. We evaluated our

approach for several applications. The results show that,

compared to prior work, it achieves lower MSE with the same (or

even lower) area. Additionally, based on simulation results, we

show that replacing the comparator component of an SNG circuit

with a weighted binary generator can reduce SCC.

Index Terms— Stochastic number generator, Stochastic

computing, Linear feedback shift register, Permutation

I. INTRODUCTION

TOCHASTIC computing (SC) has emerged as an

unconventional technique for performing computations by

logic circuits [1]. Rather than performing computation on

deterministic binary numbers, SC circuits are designed to

process random bit streams. The input and output are

represented by bit streams and their values are encoded as the

probabilities of seeing 1’s in the bit streams. Evidently, the

values are confined in the unit interval [0,1], since probabilities

cannot be beyond the unit interval. Compared to deterministic

binary computing, SC provides several advantages including

reduced hardware complexity and fault-tolerant computing.

Because of these advantages, SC has been considered as an

appropriate alternative to binary computing in different

applications such as low-density parity check (LDPC) decoding

[2], image processing [3], neural networks [4,5], and digital

filters [6,7].

One main advantage of SC is its very low hardware-

complexity that could result in cost-efficient computing

circuits. The most common way to demonstrate the low

hardware-cost of SC is its implementation of basic operations,

i.e., multiplication and addition. Fig. 1(a) shows a simple AND

gate implementing multiplication in SC. For the AND gate, the

output is 1 only when input 𝐴 and input 𝐵 are both 1. Therefore,

the probability of having 1 in the output bit stream is the

multiplication of the probabilities of having 1 in each of the

input bit streams, i.e., 𝑃(𝐶 = 1) = 𝑃(𝐴 = 1) × 𝑃(𝐵 = 1), that

is 𝑐 = 𝑎 × 𝑏. Similarly, Fig. 1(b) shows a 2-input multiplexer

computing scaled addition. For the multiplexer, the output 𝐶 is

1 when 𝑆 is 0 and 𝐴 is 1 or when 𝑆 is 1 and 𝐵 is 1. Therefore,

𝑃(𝐶 = 1) = (1 − 𝑃(𝑆 = 1)) × 𝑃(𝐴 = 1) + 𝑃(𝑆 = 1) ×

𝑃(𝐵 = 1) , that is 𝑐 = (1 − 𝑠) × 𝑎 + 𝑠 × 𝑏.

A stochastic number generator (SNG) is an essential part of

any SC circuit. A SC circuit uses SNGs to convert binary

numbers to their corresponding random bit streams. They

generate random bit streams with probabilities of producing 1’s

equal to their corresponding binary numbers. SNGs play a

central role in the efficiency of a SC circuit for two reasons.

First, for SC circuits the size of an SNG part is remarkable with

respect to the computing part. This problem becomes more

critical for applications with SC circuits that require many

SNGs, such as high degree digital filtering and image

Low-cost Stochastic Number

Generators for Stochastic Computing

Sayed Ahmad Salehi, Member, IEEE

 Electrical and Computer Engineering Department, University of Kentucky

Lexington, KY, USA

S
𝐿4

𝐿3

𝐿2

𝐿1
x4 x3 x2 x1

𝑟4
𝑟3
𝑟2
𝑟1

PCC

RNS

0
0

0
1

(a) (b)

Fig. 2(a). General structure of a SNG. (b) LFSR is used as RNS.

01101010

11010010

01000010A

B
C

a:4/8

b:4/8

c:2/8
A

B

S

C
1

0

 (a) (b)

Fig.1 Low hardware-complexity in SC: (a) a simple AND gate computes
multiplication, (b) a multiplexer compute scaled addition.

processing algorithms. In fact, for several SC designs, SNG

circuits consume around 80% or even 90% of the total area

[8,9]. Second, the quality of the random numbers generated by

SNGs can significantly affect the computational accuracy of SC

designs and correlation among random bit streams is a source

of inaccuracy in SC. Therefore, obtaining area-efficient and

low-correlated SNGs is a major design challenge for SC.

In response to this challenge, the contributions of this paper

are the following:

- Introducing a new permutation-based design space for

sharing a random number source among several SNGs. The

design space yields low-cost and low-correlated SNGs.

Compared to SNGs with the same hardware complexity, the

proposed SNGs generate random bit streams with lower cross

correlation.

- Modeling the variation of SC correlation for the proposed

design space and presenting a searching algorithm for finding

the permutations with minimum correlation. In addition, we

present a similarity function that can be used to speed up the

searching algorithm by degrading its accuracy in obtaining the

permutations with exact minimum SC correlation. Even the fast

version of the proposed algorithm achieves permutations with

lower SC correlation, compared to prior work with the same

hardware complexity.

- Using simulation results to demonstrate a reduction in SC

correlation achievable by replacing the comparator component

of SNG circuits with weighted binary generator.

In the next section, we explain the general structure of SNGs,

a measure to evaluate their performance in SC, and related prior

work. Section III describes the proposed design technique for

two SNGs sharing a random number source. Section IV

presents a low computational complexity model for the

correlation variation of the proposed design and Section V

generalizes the design approach for more than two SNGs. In

Section VI, we evaluate our technique for some applications

and Section VII concludes the paper.

II. PRELIMINARIES AND PRIOR WORK

A. SNG

Generally speaking, an SNG is composed of two parts: a

random number source (RNS) and a probability conversion

circuit (PCC). An RNS is used to generate a sequence of

uniformly distributed random numbers, while a PCC is

designed to convert the generated random numbers into a

random bit stream with the desired probability of generating

1’s. Fig. 2(a) shows an SNG circuit.

A linear feedback shift register (LFSR) and a cellular

automata (CA) can be used as a digital RNS. A CA is made up

of cascaded modules called a cell or site [10]. Each cell is

composed of a flip-flop and a combinational circuit. In its

simplest form, each cell is connected to only two neighbor cells

on its left and right. The next value of one cell is defined by its

current value and that of the connected neighbor cells. Although

a CA provides modularity and can generate good-quality

random numbers, it is not commonly used in SC circuits due to

its hardware-complexity compared to an LFSR. Due to the low

hardware-complexity and high speed of an LFSR, it is

employed as the RNS part in most SC circuits, including the

circuits proposed in this paper. The advantage of using an LFSR

is more crucial for computationally intensive applications such

as deep neural networks [5] and energy-limited applications

such as embedded systems and mobile internet of things (IoT)

devices. Note that CA and LFSR circuits cannot be designed to

generate true random numbers; however, their output sequences

pass some of the random number tests and if the period of the

sequences is large enough, they resemble an ideal RNS for SC

computing [11].

An 𝑛-bit LFSR is composed of an 𝑛-bit shift register and one

or more XOR gates. Fig. 2 (b) shows a 4-bit LFSR initialized

by 0001. Normally, an LFSR is designed to have the maximum

sequence length of 2𝑛 − 1. That is, the output sequence of a

maximal-length LFSR repeats after a period of 2𝑛 − 1 binary

numbers and each number in the range of [1, 2𝑛 − 1] is

generated once in the period.

Considering the sequence of bits produced in each single

flip-flop of the LFSR in Fig. 2 (b), four random bit streams are

generated as shown in Table I by 𝐿4, 𝐿3, 𝐿2, and 𝐿1. Each bit

stream has a period of 15 bits including eight 1’s and seven 0’s.

 In general, for an 𝑛-bit maximal-length LFSR, the bit pattern

in each bit stream repeats every 2𝑛 − 1 bits. Since 2𝑛−1 of bits

in the pattern are 1’s, the probability of nearly 0.5 is generated

by each bit stream.

Because all the bit streams produced by an LFSR have the

probability of 0.5, a PCC is required in order to generate a bit

stream with a desired probability other than a 0.5. PCC is a

combinational circuit with two 𝑛-bit inputs. One is connected

to a deterministic binary number 𝑥, and the other one to a

sequence of numbers generated by an LFSR. It produces a bit

stream with the probability of 𝑃𝑥 = 𝑥 × 2−𝑛, or more accurately

𝑃𝑥 =
𝑥

2𝑛−1
. In each clock cycle, one 𝑛-bit number from the

output sequence of an LFSR is converted to one bit. The output

TABLE I

THE OUTPUT BITSTREAMS FOR THE LFSR IN FIG. 2 WHEN A COMPARATOR OR A

WBG ARE USED AS THE PCC PART.

L4 L3 L2 L1 𝒔𝑪𝑴𝑷 𝒔𝑾𝑩𝑮

0 0 0 1 1 1

1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 1 1

1 0 0 1 1 1

1 1 0 0 0 1

0 1 1 0 1 0

1 0 1 1 1 1

0 1 0 1 1 0

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 0 0 1

1 1 1 1 0 1

0 1 1 1 1 0

0 0 1 1 1 1

8/15 8/15 8/15 8/15 11/15 11/15

bit stream is generated such that the total of 𝑥 bits in each period

are 1 and the other bits are 0. In the literature of SC, two types

of PCC circuits have been proposed: digital comparator (CMP)

and weighted binary generator (WBG). A CMP is an 𝑛-bit

digital comparator circuit that produces a 1 if the random

number from the LFSR is less than the binary number 𝑥, and a

0 otherwise. A WBG circuit works differently. First it converts

the output sequence of an LFSR into a sequence of weighted

binary numbers and then, generates the output bit stream using

the weighted sequence and input binary number 𝑥 [12]. For a

4-bit CMP and WBG, the internal circuits are illustrated in Fig.

3(a) and 3(b), respectively. Although both circuits generate bit

streams with the desired probability for every input 𝑥, their

internal logic circuits and generated bit streams are different.

For 𝑥 = 1011, Table I tabulates the output bits generated by a

CMP, 𝑆CMP, and a WBG, 𝑆𝑊𝐵𝐺 , for an LFSR’s output,

𝐿4𝐿3𝐿2𝐿1. In this paper, we examine both CMP and WBG

circuits as the PCC part of the proposed SNG circuits.

B. SCC

When two (or more) random bit streams are used as inputs

for a SC circuit, the cross correlation between them can affect

the computational accuracy of the circuit. Assume 𝑠x is a

random bit stream generated for binary number 𝑥 and 𝑠y is

generated for binary number 𝑦. In order to quantitatively

evaluate the correlation between 𝑠𝑥 and 𝑠y, one commonly used

measure is the SC correlation (SCC) computed by (1) [13].

Where, 𝑃(𝑠𝑥) and 𝑃(𝑠𝑦) are, respectively, the probabilities

for bit streams 𝑠𝑥 and 𝑠𝑦 to have 1’s and 𝛿(𝑆𝑥 , 𝑆𝑦) =

𝑃(𝑆𝑥 ∧ 𝑆𝑦) − 𝑃(𝑠𝑥)𝑃(𝑠𝑦) with ∧ denotes the bitwise AND of

𝑠𝑥 and 𝑠𝑦 . SCC can have values between -1 and +1, where ±1

indicate maximum correlation and 0 means no correlation.

When comparing the corresponding bits of the two bit streams,

the SCC is positive if most 1’s and 0’s are aligned. However, if

𝑆𝐶𝐶(𝑆𝑥 , 𝑆𝑦) =

{

𝛿(𝑆𝑥,𝑆𝑦)

min(𝑃(𝑠𝑥),𝑃(𝑠𝑦))−𝑃(𝑠𝑥)𝑃(𝑠𝑦)
 𝛿(𝑆𝑥 , 𝑆𝑦) => 0

𝛿(𝑆𝑥,𝑆𝑦)

𝑃(𝑠𝑥)𝑃(𝑠𝑦)−max(𝑃(𝑠𝑥)+𝑃(𝑠𝑦)−1,0)
 𝛿(𝑆𝑥 , 𝑆𝑦) < 0

 (1)

most corresponding bits are complemented to each other, the

SCC is negative. Since lower absolute SCC values elicit more

accurate results in SC, researchers seek designs that generate

bit streams with low SCCs. In general, the absolute values for

SCC among bit streams generated in each flip-flop of an LFSR

(before connecting them to a PCC) are low. For example, the

cross correlation between each pair of bit streams generated by

a maximal-length 4-bit LFSR, e.g., (𝐿2, 𝐿1) in Table I, is -

0.0816 and becomes smaller as 𝑛 increases.

As suggested in [6], we evaluate the correlation between two

SNGs by finding the average SCC among their generated bit

streams for all possible input values and represent it as 𝑆𝐶𝐶𝑎𝑣𝑔.

We can calculate the 𝑆𝐶𝐶𝑎𝑣𝑔 for SNG1 and SNG2 by (2).

𝑆𝐶𝐶𝑎𝑣𝑔(𝑆𝑁𝐺1, 𝑆𝑁𝐺2) = ∑ ∑
|𝑆𝐶𝐶(𝑠𝑖,𝑠′𝑗)|

2𝑛×2𝑛
2𝑛−1
𝑗=0

2𝑛−1
𝑖=0 (2)

Where, 𝑠𝑖 and 𝑠′𝑗 are bit streams generated by SNG1 and

SNG2, respectively. To calculate the 𝑆𝐶𝐶𝑎𝑣𝑔, first, for both

SNGs, the bit streams of all possible inputs, i.e., 𝑠𝑘 and 𝑠′𝑘for

𝑘 = 1,2, … , 2𝑛 − 1, are generated. Then, SCC values between

each bit stream of SNG1 and bit streams of SNG2 are calculated

by (1). Finally, the 𝑆𝐶𝐶𝑎𝑣𝑔 is calculated by computing and

normalizing the total sum of the SCCs. Obviously, 𝑆𝐶𝐶𝑎𝑣𝑔 is a

positive number between 0 and 1 and the lower its value means

less correlation between the two SNGs.

C. Prior Work

When several bit streams are required in a SC circuit, the

straightforward implementation is to use a separate SNG to

generate each bit stream. [14] has shown that careful seeding,

scrambling, and feedback polynomials for the LFSR parts of

these SNGs can improve computational accuracy. However,

rather than using a separate LFSR for each SNG, a common

approach to design compact SNGs is based on sharing an LFSR

among them. Although sharing an LFSR reduces the hardware

cost, it significantly raises the cross correlation between each

pair of the generated random bit streams and thus leads to

computational inaccuracy. It is worth mentioning there are a

limited number of applications for SC where computational

accuracy is not affected by the correlation between bit streams.

Therefore, an LFSR can be directly shared among different

SNGs [15]. However, it is required for many applications to

reduce the mutual correlation among random number

sequences before sharing them [5]. [16] has suggested using an

extra S-Box circuit to generate low-correlated copies of an

LFSR’s output to be shared with different SNGs. Although this

method generates low auto- and cross-correlated bit streams,

the S-Box is a combinational circuit that can increase the

hardware complexity significantly for large values of 𝑛. Recent

L4
L3
L2
L1

X4
X3
X2
X1

Stochastic
bitstream

(a)

Stochastic
bitstream

X4 X3 X2 X1

L1

L2

L3

L4

w2

w3

w4

w1

(b)

Fig. 3 Two commonly used PCC circuits: (a) CMP, (b) WBG.

work [8] has suggested a circular shifting approach in order to

obtain bit streams with low cross correlation from a shared

LFSR without hardware overhead. However, the approach does

not provide bit streams with the minimum cross correlation. In

fact, circular shifts are a small portion of an unexplored design

space that can produce low-correlated bit streams from a shared

LFSR with no hardware overhead. This research investigates

the whole design space to find designs with minimum 𝑆𝐶𝐶𝑎𝑣𝑔.

Note that some SNGs [17] generate multi-bit-width (parallel)

bit streams for an input binary number, but this paper focuses

on SNGs generating single-bit-width (serial) bit stream.

III. SNG COST REDUCTION WITH PERMUTATION-BASED

SHARED RNS

This section presents the proposed approach for the design of

efficient SNGs. We share one LFSR between two SNGs to

reduce the area cost. However, unlike prior work, we reduce the

correlation among the generated sequences without adding any

extra hardware. In this section, we explain the method for two

SNGs and in Section V, we generalize the idea for designing

more than two SNGs.

In order to generate low-correlated random bit streams, the

cross correlation among the sequences of random numbers fed

to the PCCs of different SNGs should be low. While using one

LFSR generates one sequence of random numbers, we can feed

different sequences of random numbers to different PCCs by

permuting the connection between the LFSR’s output and the

inputs of the PCCs. Consider a simple example of generating

two random bit streams from a 4-bit LFSR. Fig. 4(a) shows two

4-bit SNGs sharing one LFSR based on the proposed approach.

We connect the 𝐿4, 𝐿3, 𝐿2, and 𝐿1 outputs of the LFSR, to the

𝑟4, 𝑟3, 𝑟2, and 𝑟1 inputs of the first PCC, respectively. For the

second SNG, however, we permute the output bits of the LFSR

before connecting them to the inputs of the SNG’s PCC.

The permutations of an LFSR’s output can provide low-

correlated random number sequences with the required feature

due to two reasons. First, in general, there is a low correlation

among bits in the flip-flops of an LFSR at a given time. Thus,

permuted versions of LFSR’s output sequences have low cross

correlation and they feed low-correlated sequences of random

numbers to different PCCs. Second, all permutations of a

maximal-length LFSR generate uniformly distributed random

numbers such that in its repeating cycle (period), every integer

binary number between 1 and 2𝑛 − 1 is repeated exactly once.

Hence, the permutation of an LFSR’s output bits does not affect

the functionality of SNGs connected to them. That is, in each

period, connected PCCs generate the desired number of 1’s and

0’s but in a permuted order.

The approach can be extended to any 𝑛-bit maximal-length

LFSR: the first SNG is built by direct connection of the LFSR’s

output to a PCC’s input whereas the second SNG is built by

connecting the permuted output of the LFSR to another PCC’s

input. The permuted output should be chosen such that the SCC

between the generated bit streams of the first and second SNG

is minimum. However, other than the direct connection, there

are (𝑛! − 1) different permutations for an 𝑛-bit LFSR output;

which one achieves the minimum 𝑆𝐶𝐶𝑎𝑣𝑔? To answer this

question for different values of 𝑛, we examine all possible

permuted connections of the LFSR and search for those with

minimum 𝑆𝐶𝐶𝑎𝑣𝑔. We start for the case of 𝑛 = 4. Assume that

vector L = [𝐿1, 𝐿2, 𝐿3, 𝐿4] is the output of a 4-bit LFSR. There

are 24 possible permutations for L. Also, assume the first SNG

is formed by connecting 𝐿4, 𝐿3, 𝐿2, and 𝐿1, respectively, to

𝑟4, 𝑟3, 𝑟2, and 𝑟1 of a PCC. Among the other 23 possible

permutations for L, the SNG that results in the minimum

𝑆𝐶𝐶𝑎𝑣𝑔 with the first SNG, is formed by connecting 𝐿1, 𝐿2, 𝐿3,

and 𝐿4, respectively, to 𝑟4, 𝑟3, 𝑟2, and 𝑟1, of another PCC. Similar

results are observed by investigating the proposed approach for

the permutation of other values of 𝑛. The following conclusion

generalizes the approach: for 𝑖 = 1,2, … , 𝑛, if the first SNG is

formed by connecting 𝐿𝑖, i.e., the 𝑖th flip-flop of an LFSR, to

𝑟𝑖, i.e., the 𝑖th input of a PCC, then the second SNG, resulting

in the minimum 𝑆𝐶𝐶𝑎𝑣𝑔 with the first SNG, is formed by

connecting 𝐿𝑛−𝑖 output of the LFSR to 𝑟𝑖 input of another PCC.

[18] has proved that a permutation with reversed ordering

provides the maximum deviation distance that agrees with our

results.

For example, to share an 8-bit LFSR, 𝐿1 to 𝐿8 are

respectively connected to the 𝑟1 to 𝑟8 of a PCC to build the first

SNG and 𝐿8 to 𝐿1 are respectively connected to the 𝑟1 to 𝑟8 of

another PCC to build the second SNG. Fig. 4 shows the

proposed LFSR-sharing approach based on permutation for

𝑛=4 and 𝑛=8.

To illustrate how the 𝑆𝐶𝐶𝑎𝑣𝑔varies with permutation, Fig. 5

(a)-(d) shows the 𝑆𝐶𝐶𝑎𝑣𝑔 values between the first SNG and the

permuted ones for 𝑛=4 to 7. For the purpose of better

readability, we do not include the graph of 𝑆𝐶𝐶𝑎𝑣𝑔 for higher

values of 𝑛; however, they have a similar pattern. The

horizontal axis ranges from 1 to 𝑛! and represents the index of

permutation in reverse lexicographic order [19] (the same order

produced by MATLAB’s function perms) [20]. For reverse

lexicographic order, the permutation of a vector is performed

based on the positional index of its elements. That is, the

permuted versions of a vector are formed by rearranging its

elements from left to right and starting from greater positional

indices. For example, for 𝑛=4 and original vector [1, 2, 3, 4],

the permutations in reverse lexicographic order are listed as:

[4,3,2,1], [4,3,1,2], [4,2,3,1], [4,2,1,3], [4,1,3,2], [4,1,2,3],

[3,4,2,1], [3,4,1,2], [3,2,4,1], [3,2,1,4], [3,1,4,2], [3,1,2,4],

[2,4,3,1], [2,4,1,3], [2,3,4,1], [2,3,1,4], [2,1,4,3], [2,1,3,4],

[1,4,3,2], [1,4,2,3], [1,3,4,2], [1,3,2,4], [1,2,4,3], [1,2,3,4].

So, the first 𝑆𝐶𝐶𝑎𝑣𝑔 is corresponding to the permuted vector

[4, 3, 2, 1], the second one to the permuted vector [4, 3, 1, 2],

and so on. Note that in the reverse lexicographic order, the last

permuted vector is the same as the original vector.

For all values of 𝑛 in Fig. 5, the 𝑆𝐶𝐶𝑎𝑣𝑔 corresponding to the

first permutation is the minimum 𝑆𝐶𝐶𝑎𝑣𝑔. This permutation is

representing the connection of 𝐿𝑛 , 𝐿𝑛−1, … , 𝐿1 to 𝑟1, 𝑟2, … , 𝑟𝑛.

On the other side, since the last permutation, i.e., vector

[1, 2, … , 𝑛], is the same as the original SNG connection, it has

the maximum 𝑆𝐶𝐶𝑎𝑣𝑔.

 Let 𝑘, where 1 ≤ 𝑘 ≤ 𝑛, denote the number of shifts in the

circular shifting approach [8]. The red dots in Fig. 5 mark the

values of 𝑆𝐶𝐶𝑎𝑣𝑔 related to the circular shifts with 𝑘 bits shift.

As it is explained in [8], compared to the other values of 𝑘, the

circular shift with maximum gap, i.e., 𝑘 = 𝑛/2, yields the

lowest 𝑆𝐶𝐶𝑎𝑣𝑔 values achievable by the circular shifting

approach. Yet, our proposed permutation-based approach can

find 𝑆𝐶𝐶𝑎𝑣𝑔 values lower than those produced by the circular

shifting approach. The green stars in Fig. 5(a) mark these points

for 𝑛=4. The minimum 𝑆𝐶𝐶𝑎𝑣𝑔 calculated for 𝑛=4 to 𝑛=10 is

listed in Table II. The first and second columns compare the

minimum 𝑆𝐶𝐶𝑎𝑣𝑔 achievable by the circular shift and our

permutation approaches. For both methods an 𝑛-bit comparator

is used as the PCC part. The third column is for using an 𝑛-bit

WBG as the PCC part in our method. Obviously, using WBG

as the PCC part and increasing the value of 𝑛 further reduce the

𝑆𝐶𝐶𝑎𝑣𝑔.

IV. MODELING AND ANALYSIS

To find the permutation with minimum 𝑆𝐶𝐶𝑎𝑣𝑔, we need to

calculate 𝑆𝐶𝐶𝑎𝑣𝑔 between the original SNG and (𝑛! − 1) other

SNGs formed from the permutation of an 𝑛-bit LFSR’s output.

As the length of LFSR increases, the search space and the

required resources to find the solution rapidly become much

larger. For example, for 𝑛 = 11, each copy of all permutations

of L requires more than 3 GB of RAM [20] and it grows

quickly. In fact, for 𝑛 > 9, an exhaustive search for finding the

minimum 𝑆𝐶𝐶𝑎𝑣𝑔 is intractable. In order to reduce the

Fig.5 The 𝑆𝐶𝐶𝑎𝑣𝑔 variation for circular shift and permutation-based methods.

𝐿4

𝐿3

𝐿2

𝐿1

y4 y3 y2 y1

x4 x3 x2 x1

PCC1

bit stream1

r4
r3
r2
r1

PCC2

bit stream2

r4
r3
r2
r1

 (a)

X8 X7 X6 X5 X4 X3 X2 X1

L8

L8

L8

L7

L5

L6

L4

L3

L2

L1

Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1

PCC1
bit stream1

PCC2
bit stream2

 (b)

Fig. 4- Proposed structure for sharing an LFSR with two SNGs based on output permutation: (a) 𝑛=4 and (b) 𝑛=8.

computational complexity of this problem, we model the

behavior of 𝑆𝐶𝐶𝑎𝑣𝑔 for different permutations of an LFSR by

introducing a new function; one that we call the similarity

function. Assuming the original (non-permuted) output vector

of an 𝑛-bit LFSR is L=[𝐿1, 𝐿2, . . . , 𝐿𝑛], the positional index for

𝐿1 is 1, for 𝐿2 is 2, and so on. Also, let 𝑃𝐿𝑘, for 1 ≤ 𝑘 ≤ 𝑛!,
denote the 𝑘th permuted vector of L in the reverse

lexicographic order. The similarity function calculates an

approximation of the 𝑆𝐶𝐶𝑎𝑣𝑔 between L and its permutations,

𝑃𝐿𝑘, and is defined as:

𝑆(𝑘) = ∑ 𝑖 × 𝑖𝑛𝑑(𝑃𝐿𝑘(𝑖))𝑛
𝑖=1 (3)

where, 𝑖𝑛𝑑(𝑃𝐿𝑘(𝑖)) is the index of the 𝑖th element of vector

𝑃𝐿𝑘 in the original vector L. For example, if 𝑘 = 1 then 𝑆(1)

calculates the similarity function for 𝑃𝐿1, the first permutation

of L. Since 𝑃𝐿1=[𝐿𝑛 , 𝐿𝑛−1, . . . , 𝐿1], the 𝑖th element of 𝑃𝐿1 is

𝐿(𝑛−𝑖+1). That is to say, the index for the 𝑖th element of 𝑃𝐿1is

(𝑛 − 𝑖 + 1) in the original vector L. Therefore, 𝑆(1) is

calculated as 𝑆(1) = ∑ 𝑖 × (𝑛 − 𝑖 + 1)𝑛
𝑖=1 . Similarly, if 𝑘=2,

𝑆(2) is calculated as 𝑆(2) = (𝑛 − 1) + 2𝑛 + ∑ 𝑖 × (𝑛 −𝑛−2
𝑖=1

𝑖 + 1), because 𝑃𝐿2 = [𝐿𝑛 , 𝐿𝑛−1, . . . , 𝐿3, 𝐿1, 𝐿2]. For the last

permutation of L, i.e., 𝑃𝐿(𝑛!), since it is the same as the original

vector L, 𝑆(𝑛!) is calculated as 𝑆(𝑛!) = ∑ 𝑖 × 𝑖𝑛
𝑖=1 .

The value of 𝑆(𝑘) is smaller if more elements of the

corresponding permuted vector, 𝑃𝐿𝑘, change their positional

index with respect to the original vector L. In other words, the

similarity function is smaller if, in the connection of LFSR’s

output to PCC unit, more bits are permuted with respect to the

direct connection. Therefore, the similarity function provides

an estimate of the correlation among bit streams generated by

the permutations of an LFSR. Fig. 6 illustrates the graph of

normalized 𝑆(𝑘) for 𝑛=4 to 7. The figure includes the graph of

the 𝑆𝐶𝐶𝑎𝑣𝑔 values to make comparison easier. Although the

similarity function does not calculate the exact values for the

𝑆𝐶𝐶𝑎𝑣𝑔, comparing two graphs shows that this function

approximately models the behavior of the 𝑆𝐶𝐶𝑎𝑣𝑔 and provides

an approximation of indices of permutations with the minimum

𝑆𝐶𝐶𝑎𝑣𝑔. We can find other measures for the closeness between

permutations of a sequence [21]. Among them, squared

deviation distance [22] achieves the same pattern as 𝑆(𝑘), but

with different calculations, and can be used for our model.

Compared to the other measures, 𝑆(𝑘) appropriately

approximates the 𝑆𝐶𝐶𝑎𝑣𝑔 with lower computational

complexity.

In fact, the similarity function forms a low-cost heuristic

computation approach for the estimation of the 𝑆𝐶𝐶𝑎𝑣𝑔. For any

reason, such as limitations in circuit level implementation, if a

designer decides to use permutations other than the permutation

with the minimum correlation, then the similarity function can

provide a guiding estimate for choosing other permutations

with low correlation.

Notice that for any specific 𝑛, as long as each number

between 1 and 2𝑛 − 1 repeats exactly once in each period of the

random number sequence, the variation of 𝑆𝐶𝐶𝑎𝑣𝑔 with respect

TABLE II

COMPARISON OF MINIMUM 𝑆𝐶𝐶𝑎𝑣𝑔_AVG VALUES ACHIEVABLE BY CIRCULAR

SHIFT [8] AND THE PROPOSED APPROACH.

𝑛 Circular Shift [8] Proposed (CMP) Proposed (WBG)

4 0.528 0.473 0.387

5 0.467 0.372 0.286

6 0.387 0.274 0.198

7 0.336 0.192 0.132

8 0.270 0.130 0.085

9 0.218 0.086 0.053

10 0.162 0.054 0.033

Fig.6 -The exact 𝑆𝐶𝐶𝑎𝑣𝑔 values and the similarity function for different values of 𝑛 .

to permutations is the same. That is, for all possible structures

of an 𝑛-bit LFSR, if it is a maximal-length LFSR, the values of

the 𝑆𝐶𝐶𝑎𝑣𝑔 for permutations are the same. Further, the behavior

of the 𝑆𝐶𝐶𝑎𝑣𝑔 is independent of which permutation we choose

as the original (direct) output of the LFSR. For example, if we

choose L=[𝐿2, 𝐿1, 𝐿4, 𝐿3] as the direct output of a 4-bit LFSR,

then the permutation [𝐿3, 𝐿4, 𝐿1, 𝐿2] provides the minimum

𝑆𝐶𝐶𝑎𝑣𝑔 with L.

V. GENERALIZATION

So far, we have discussed the permutation-based sharing of

an LFSR between two SNGs. However, the idea can be

extended to sharing an 𝑛-bit LFSR for more than two SNGs.

Let us assume we want to share an LFSR among 𝑚 SNGs,

where 𝑛 > 𝑚 > 2. The goal is to find a set of 𝑚 different

permutations of the LFSR’s output such that the maximum of

all pairwise 𝑆𝐶𝐶𝑎𝑣𝑔 values for this set is minimum among other

possible sets. For example, assume 𝑚 = 3 and 𝑃1, 𝑃2, and 𝑃3

are indices in reverse lexicographic order for the permutations

of an 𝑛-bit LFSR that build 3 SNGs with the minimum mutual

values of 𝑆𝐶𝐶𝑎𝑣𝑔. Then, permutations 𝑃𝐿P1, 𝑃𝐿P2, and 𝑃𝐿P3

are the ones that minimize 𝑀𝑃3(𝑃𝐿Pi , 𝑃𝐿Pj, 𝑃𝐿Pk), where

𝑀𝑃3(𝑃𝐿Pi, 𝑃𝐿Pj, 𝑃𝐿Pk) =

max{𝑆𝐶𝐶𝑎𝑣𝑔(𝑃𝐿Pi, 𝑃𝐿Pj), 𝑆𝐶𝐶𝑎𝑣𝑔(𝑃𝐿Pi, 𝑃𝐿Pk), 𝑆𝐶𝐶𝑎𝑣𝑔(𝑃𝐿Pj, 𝑃𝐿Pk)}

for 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛!.
The pseudo code in Algorithm 1 represents the proposed

algorithm for finding a set of 𝑚 permutations that can provide

a RNS for 𝑚 SNGs with minimum 𝑆𝐶𝐶𝑎𝑣𝑔 values. For each

permutation, the algorithm examines whether it can be part of a

set of 𝑚 permutations with minimum 𝑆𝐶𝐶𝑎𝑣𝑔 values. It starts

with SM=1, the greatest possible value for 𝑆𝐶𝐶𝑎𝑣𝑔. If the

maximum value of 𝑆𝐶𝐶𝑎𝑣𝑔 among a set of 𝑚 permutations is

less than SM, then the algorithm updates SM with this

maximum value and saves the indices of the permutations in

𝑃1, 𝑃2, … , 𝑃𝑚 as the current set with the minimum 𝑆𝐶𝐶𝑎𝑣𝑔

value. This process repeats for all possible sets of permutations

and after examining the last set, indices for the best set are saved

in 𝑃1, 𝑃2, … , 𝑃𝑚. As an example, Algorithm 2 represents the

pseudo code for 𝑚 = 3. The pairwise 𝑆𝐶𝐶𝑎𝑣𝑔 values and

indices of three permutations with minimum mutual 𝑆𝐶𝐶𝑎𝑣𝑔

values for 𝑛=4 to 7 are listed in Table III. We extend the circular

shift approach for obtaining a set of 3 shifts with minimum

𝑆𝐶𝐶𝑎𝑣𝑔 values and list the results in Table IV. Comparing the

results in Tables III and IV show that the proposed method can

achieve triple sets with lower 𝑆𝐶𝐶𝑎𝑣𝑔values. Notice that for

both methods there are more than one set with minimum

𝑆𝐶𝐶𝑎𝑣𝑔 values. Running the algorithm and replacing CMP by

WBG in the permutation-based SNGs reduces the obtained

𝑆𝐶𝐶𝑎𝑣𝑔 values even more as listed in Table V.

Here, we assume the cross correlations between all elements

in a set of 𝑚 permutations are equally important. However, if it

is required for particular applications, we can change the

algorithm to give priority to 𝑆𝐶𝐶𝑎𝑣𝑔 values for some pairs over

others.

Due to the inequalities in the if statements of Algorithm 1,

part of its pseudocode is executed conditionally. That is,

different permutations may require different amounts of time to

complete their pass in the algorithm. To estimate the worst-case

time complexity of finding the best set of 𝑚 permutations, we

break down the process into four steps:

1) Calculating all possible permutations for an 𝑛-bit LFSR;

the computational complexity is 𝑂(𝑛! × 𝑛). 2) Calculating bit

streams for each permutation; the computational complexity is

𝑂(22𝑛). 3)Calculating 𝑆𝐶𝐶𝑎𝑣𝑔 for all pairs of the

permutations; the computational complexity is 𝑂((𝑛! × 2𝑛)2).

Algorithm 2: Algorithm for finding the set of 3

permutations of an LFSR with minimum pairwise 𝑺𝑪𝑪𝒂𝒗𝒈.

Initialization: SM=1

for 𝒊 = 𝟑 to 𝒏! do

 for 𝒋 = 𝟏 to 𝒊 − 𝟐 do

 if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋) <SM then

 𝑺𝑷𝟏=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋);

 for 𝒌𝟏=1 to 𝒊 − 𝒋 − 𝟏 do

 if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋+𝒌𝟏
) < SM then

 𝑺𝑷𝒌𝟏
=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋+𝒌𝟏

);

 if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒋, 𝑷𝑳𝒋+𝒌𝟏
) <SM then

 𝑺𝑷𝒉𝟏𝒉𝟐
=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒋, 𝑷𝑳𝒋+𝒌𝟏

);

 𝑷𝟏 = 𝒊;

 𝑷𝟐 = 𝒋;

 𝑷𝟑 = 𝒋 + 𝒌𝟏;

 SM= 𝒎𝒂𝒙 { 𝑺𝑷𝟏, 𝑺𝑷𝒌𝟏
, 𝑺𝑷𝒉𝟏𝒉𝟐

}

Algorithm 1: Algorithm for finding the set of 𝒎 permutations of a

LFSR with minimum pairwise 𝑺𝑪𝑪𝒂𝒗𝒈.

Input: 𝒎

Outputs: 𝑷𝟏, 𝑷𝟐, … , 𝑷𝒎

Initialization: SM=1

for 𝒊 = 𝒎 𝒕𝒐 𝒏! do

 for 𝒋 = 𝟏 𝒕𝒐 𝒊 − (𝒎 − 𝟏) do

 if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋) < 𝑺𝑴 then

 𝑺𝑷𝟏=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒋);

 for each set (𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎−𝟐) of 𝒎 − 𝟐

 elements in {𝒋 + 𝟏, 𝒋 + 𝟐, … , 𝒊 − 𝟏} do

 if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒌𝒓
) < SM for all 𝒌𝒓 ∈ (𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎−𝟐) then

 for all 𝒌𝒓 do

 𝑺𝑷𝒌𝒓
=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒊, 𝑷𝑳𝒌𝒓

);

 if 𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒉𝟏
, 𝑷𝑳𝒉𝟐

) <SM for all pairs(𝒉𝟏, 𝒉𝟐)

 in (𝒋, 𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎−𝟐) then

 𝑺𝑷𝒉𝟏𝒉𝟐
=𝑺𝑪𝑪𝒂𝒗𝒈(𝑷𝑳𝒉𝟏

, 𝑷𝑳𝒉𝟐
);

 𝑷𝟏 = 𝒊;

 𝑷𝟐 = 𝒋;

 𝑷𝟑 = 𝒌𝟏;

 ⋮

 𝑷𝒎 = 𝒌𝒎−𝟐

 SM= 𝒎𝒂𝒙 {all 𝑺𝑷𝒒s: 𝑺𝑷𝟏, 𝑺𝑷𝒌𝟏
, …, 𝑺𝑷𝒌𝒎−𝟐

, 𝑺𝑷𝒉𝟏𝒉𝟐
,…}

4) Finding the set of 𝑚 permutations with minimum pairwise

𝑆𝐶𝐶𝑎𝑣𝑔 by performing comparisons. To calculate the number

of required computations, assume 𝑀𝑃𝑚 is the maximum of all

pairwise 𝑆𝐶𝐶𝑎𝑣𝑔 values for a set of 𝑚 permutations. Since there

are (
𝑚
2

) distinct pairs of permutations within a set, finding

𝑀𝑃𝑚 for each set requires (
𝑚
2

) − 1 comparisons. Since, for an

𝑛-bit LFSR, (
𝑛!
𝑚

) distinct sets of 𝑚 permutations are possible,

the total number of required comparisons to find maximum

values for all the sets is (
𝑛!
𝑚

) × [(
𝑚
2

) − 1]. Finally, finding the

minimum of the maximum values requires (
𝑛!
𝑚

) − 1

comparisons. Thus, the total number of required comparisons

by the algorithm is (
𝑛!
𝑚

) × [(
𝑚
2

) − 1] + (
𝑛!
𝑚

) − 1, simplified to

(
𝑛!
𝑚

) × (
𝑚
2

) − 1.

 The total computational complexity for the worst-case

runtime is the sum of the above four steps. Note that when 𝑛 is

increased, in addition to the required computational

complexity, the required memory grows exponentially and

becomes a challenge. To show the actual runtime of Algorithm

1, Table VI lists the runtime of the algorithm for different

values of 𝑛 and 𝑚 implemented by MATLAB on a computer

with a Core i7 2.11GHz intel processor and 16 GB of RAM.

Rather than using 𝑆𝐶𝐶𝑎𝑣𝑔, we can use the similarity function

in Algorithm 1 to reduce its runtime. We replace steps 1, 2 and

3 by calculating 𝑆(𝑘) using (3). First, we use 𝑆(𝑘) to find the

indices of the best 𝑚 permutations and then compute the exact

value of 𝑆𝐶𝐶𝑎𝑣𝑔 for these indices. Table VI shows the average

runtime using 𝑆(𝑘)for different values of 𝑛 and 𝑚. As the table

shows, using 𝑆(𝑘) significantly reduces the computational time

of the algorithm. The reduction becomes more significant when

𝑛 increases. Table VII shows the indices and values of the best

three permutations obtained using 𝑆(𝑘) in Algorithm 1. These

results show that by using the similarity function we can find

permutations with 𝑆𝐶𝐶𝑎𝑣𝑔 values very close to those listed in

Table III. In fact, the 𝑆𝐶𝐶𝑎𝑣𝑔 values of the achieved

permutations for 𝑛=5 is the same in both Table III and Table

VII. Although using the similarity function in Algorithm 1 does

not necessarily achieve the minimum correlations, it achieves

correlation values lower than circular shifting results listed in

Table VI.

VI. EVALUATION WITH APPLICATIONS

In this section, we evaluate the proposed design approach

using applications with different levels of complexity ranging

from simple multiplication to image segmentation. For all

experiments, we used 8-bit maximal-length LFSRs and

represent variables by 255-bit random bit streams. To make a

fair comparison with prior work regarding hardware

implementation, we use the synthesis results obtained by

Synopsys Design Compiler in 45nm NanGate library [23]. We

compare the results for 6 different methods: deterministic

(conventional binary), no-share LFSR (separate LFSR for each

SNG), simple-share (one LFSR with the same output

connection for all SNGs), SBoNG [16], circular shift [8], and

our proposed method. Fig. 7 shows the circuit area (in 𝜇𝑚2)

and Table VIII lists the mean-squared error (MSE) for each

application.

As the first application, we implement a simple 2-input

multiplier. For the binary multiplication, we use a conventional

8 × 8 Wallace tree multiplier [24]. Because the MSE varies for

some SC-based circuits due to the use of different LFSRs, we

calculate the average MSE for 1000 trials with different LFSRs.

While the proposed circuit has the same size as the simple-share

TABLE IV

MINIMUM 𝑆𝐶𝐶𝑎𝑣𝑔 VALUES FOR SHARING AN LFSR WITH 3 DIFFERENT

SNGS BY EXTENDING THE CIRCULAR SHIFT APPROACH. .

𝑛 𝑘1 𝑘2 𝑘3 𝑆𝐶𝐶𝑎𝑣𝑔

(𝐶k1, 𝐶k2)

𝑆𝐶𝐶𝑎𝑣𝑔

(𝐶k1, 𝐶k3)

𝑆𝐶𝐶𝑎𝑣𝑔

(𝐶k2, 𝐶k3)

4 0 1 3 0.6254 0.6254 0.6254

5 0 3 4 0.4885 0.6507 0.6507
6 0 2 4 0.4626 0.4626 0.4626

7 0 2 5 0.4468 0.4468 0.3369

8 0 3 6 0.4373 0.2587 0.4373

TABLE V

MINIMUM 𝑆𝐶𝐶𝑎𝑣𝑔 VALUES FOR SHARING AN LFSR WITH 3 DIFFERENT

SNGS USING THE PROPOSED APPROACH WITH WBG.

𝑛 𝑃1 𝑃2 𝑃3 𝑆𝐶𝐶𝑎𝑣𝑔

(𝑃𝐿P1, 𝑃𝐿P2)

𝑆𝐶𝐶𝑎𝑣𝑔

(𝑃𝐿P1, 𝑃𝐿P3)

𝑆𝐶𝐶𝑎𝑣𝑔

(𝑃𝐿P2, 𝑃𝐿P3)

4 3 10 23 0.5207 0.5207 0.5207
5 10 39 119 0.4321 0.4276 0.3994

6 40 177 720 0.3260 0.3260 0.3260

7 184 1017 5040 0.2381 0.2381 0.2381

TABLE III

MINIMUM 𝑆𝐶𝐶𝑎𝑣𝑔 VALUES FOR SHARING AN LFSR WITH 3 DIFFERENT SNGS

USING THE PROPOSED APPROACH WITH COMPARATOR.

 𝑛 𝑃1 𝑃2 𝑃3 𝑆𝐶𝐶𝑎𝑣𝑔

(𝑃𝐿P1, 𝑃𝐿P2)

𝑆𝐶𝐶𝑎𝑣𝑔

(𝑃𝐿P1, 𝑃𝐿P3)

𝑆𝐶𝐶𝑎𝑣𝑔

(𝑃𝐿P2, 𝑃𝐿P3)

 4 4 9 24 0.5470 0.5470 0.5470

 5 12 44 88 0.4887 0.4882 0.4885

 6 57 160 719 0.3870 0.3870 0.3870
 7 184 1017 5040 0.3082 0.3082 0.3082

TABLE VI

Actual runtimes (in seconds) of Algorithm 1 using the exact

𝑆𝐶𝐶𝑎𝑣𝑔 values and the similarity function.

method 𝑚 𝑛 = 4 𝑛 = 5 𝑛 = 6 𝑛 = 7

𝑆𝐶𝐶𝑎𝑣𝑔 3

4

0.021

0.045

1.089

4.897

162.247

987.482

37174.120

301105.142

 𝑆(𝑘) 3 0.012 0.060 2.112 225.098

 4 0.026 0.217 14.006 1538.910

TABLE VII

Repeating the experiment of Table III using 𝑆(𝑘).

𝑛 𝑃1 𝑃2 𝑃3 𝑆𝐶𝐶𝑎𝑣𝑔

(𝑃𝐿P1, 𝑃𝐿P2)

𝑆𝐶𝐶𝑎𝑣𝑔

(𝑃𝐿P1, 𝑃𝐿P3)

𝑆𝐶𝐶𝑎𝑣𝑔

(𝑃𝐿P2, 𝑃𝐿P3)

4 5 12 13 0.6071 0.5470 0.5207
5 23 46 61 0.4882 0.4887 0.4885

6 92 232 291 0.4052 0.4489 0.4119

7 597 1392 1729 0.3422 0.3351 0.3385

and circular shift circuits, it achieves higher accuracy.

Interestingly, the multiplier implemented using the proposed

method has a lower MSE than the no-share and SBoNG

methods. We can justify this by considering the fact that in our

method we design SNGs based on minimum SCC values and

the definition of SCC in (1) is completely in favor of

multiplication of two bitstreams. Thus, we find a pair of an

LFSR’s permutations that can yield better results than two

separate LFSRs or randomized output of an LFSR for

multiplication.

For more complex examples, we compare different

implementations of 31- and 267-tap FIR filters in the form of a

MUX tree explained in [6] and [7]. For both filters, we use

MATLAB to generate low-pass filters’ coefficients. For the

SBoNG method, we use the SNG circuit described in [16] with

8-bit LFSRs, and for the circular shifting method, we use

circuits similar to the architectures described in [6]. When a

separate LFSR is used for each data and selection input, the

number of required LFSRs for each application is listed in

Table VIII. As the table shows, for the 267-tap filter, the

proposed approach provides better accuracy compared to the

circular shift method. For this filter, the no-share LFSR and

SBoNG methods can achieve lower MSE values but their

hardware complexity is more.

Finally, we apply our technique to the implementation of two

image processing applications, i.e., edge detection and image

segmentation, and compare their stochastic computation using

different circuits. We evaluate our method by the Roberts cross

edge detection algorithm implemented in SC [25] and by the

kernel density estimation (KDE)-based image segmentation

[3]. In the circuits related to the no-share LFSR method, each

data and selection input of the multiplexers uses a separate

LFSR. We obtained MSE values by exploiting five normalized

grayscale still images with 256 levels from black to white for

the edge detection algorithm, and four grayscale movies with

33 frames for the image segmentation algorithm. Table VIII

lists MSE values for each algorithm calculated by taking the

average of the MSE values of all trials for a design. For the edge

detection, our method results in a MSE value close to that of

the no-share LFSR and SBoNG method, however, with lower

hardware complexity. For the KDE-based image segmentation,

our proposed circuit leads to a MSE value nearly half of the

MSE value for the circular shift circuit with the same hardware

complexity.

VII. CONCLUSION

In this paper, we investigated the design of low-cost and low-

correlated SNG circuits using LFSR sharing. To reduce the

correlation among the generated bit streams, we permuted the

output of a shared LFSR before using it as input for different

SNGs. We modeled the behavior of 𝑆𝐶𝐶𝑎𝑣𝑔 for all permutations

and our results show that for an LFSR’s output, its first

permutation in the reverse lexicographic order provides the

minimum cross correlation. Compared to prior work with the

same hardware complexity, i.e., the circular shift [8][6], our

method results in SNGs with lower cross correlation values. We

also proposed an algorithm for finding a set of 𝑚 permutations

that can be shared among 𝑚 SNGs with minimum cross

correlation. We used the proposed SNGs in the SC-based

implementation of several applications and the results show

that, with low hardware complexity, we obtain better

computational accuracy compared to prior methods.

REFERENCES

[1] B. R. Gaines, "Stochastic computing" AFIPS spring joint computer
conference. ACM, pages149–156, 1967.

[2] V. C. Gaudet, and A. C. Rapley, “Iterative decoding using stochastic
computation,” Electronics Letters, vol. 39, no. 3, pp. 299–301, 2003.

[3] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on Stochastic Bit Streams Digital Image Processing Case Studies,” IEEE
Trans. VLSI Syst., vol. 22, no. 3, pp. 449–462, Mar. 2014.

[4] B. D. Brown and H. C. Card, “Stochastic neural computation. I.
computational elements,” IEEE Trans. Comput., vol. 50, no. 9, pp. 891–
905, Sep. 2001.

[5] Y. Xie et al., "Fully-parallel area efficient deep neural network design
using stochastic computing," IEEE Trans. CAS II, , vol. 64, pp. 1382-
1386, 2017.

[6] H. Ichihara, and T. Sugino, “Compact and accurate digital filters based
on stochastic computing,” IEEE Transactions on Emerging Topics in
Computing, 2019.

TABLE VIII
CALCULATED MSE FOR DIFFERENT SC IMPLEMENTATIONS OF MULTIPLICATION,

31-TAP FIR FILTER, 267-TAP FIR FILTER, EDGE DETECTION, AND KDE-BASED

IMAGE SEGMENTATION.

Application #of

LFSR

No-share

LFSR

Simple

-share

SBoNG Circular

Shift

Proposed

Multiplier 2 0.00008 0.01057 0.00010 0.00012 0.00001
f31 61 0.00062 0.01825 0.00064 0.00065 0.00065

f267 533 0.00814 0.04912 0.00883 0.00947 0.00902

Edge detection 7 0.00055 0.11714 0.00056 0.00052 0.00054
KDE 96 0.02285 0.88158 0.03582 0.08349 0.04324

(a) (b) (c) (d) (e)

Fig7- Area comparison for different implementations of (a) multiplier, (b) 31-tap FIR filter, (c) 267-tap FIR filter, (d) edge detection, and

(e) KDE-based image segmentation.

[7] R. Wang, B. F. Cockburn, and D. G. Elliott, “Design, evaluation and fault-
tolerance analysis of stochastic FIR filters,” Microelectronics Rel., vol.
57, no. 2, pp. 111–127, 2016.

[8] H. Ichihara, "Compact and accurate stochastic circuits with shared
random number sources." IEEE 32nd International Conference on
Computer Design (ICCD), pp. 361-366, 2014.

[9] S Mohajer, Z Wang, K Bazargan, M Riedel, DJ Lilja, SA Faraji, “Parallel
computing using stochastic circuits and deterministic shuffling
networks,” US Patent App. 16/165,713

[10] P. D. Hortensius, R. D. McLeod, and H. C. Card,” Parallel Random
Number Generator for VLSI Systems Using Cellular Automata”,
Proceedings of IEEE Transactions on Computers, vol. 38, 1989

[11] W.J. Poppelbaum, “Statistical processors.” Adv. Computers, vol. 14, pp.
187–230. 1976.

[12] P.K. Gupta, and R. Kumaresan, “Binary multiplication with PN
sequences.” IEEE Trans. Acoustics Speech Signal Process. vol. 36, pp.
603–606, 1988.

[13] A. Alaghi, and J.P. Hayes, “Exploiting Correlation in Stochastic Circuit
Design,” Proc. Intl Conf. on Computer Design (ICCD), pp. 39–46, Oct.
2013.

[14] J.H. Anderson, Y. Hara-Azumi, and S. Yamashita, “Effect of LFSR
seeding, scrambling and feedback polynomial on stochastic computing
accuracy,” in Proc. Design, Automation, and Test in Europe (DATE),
pp.1550-1555, 2016.

[15] M. Yang, B. Li, D. J. Lilja, B. Yuan, and W. Qian, “Towards theoretical
cost limit of stochastic number generators for stochastic computing.” In

Proceedings of the 2018 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI’18). IEEE, Los Alamitos, CA, pp. 154–159, 2018.

[16] F. Neugebauer, I. Polian and J. P. Hayes, “Building a better random
number generator for stochastic computing,” in Proc. DSD, pp. 1–8, Aug.
2017.

[17] K. Kim, J. Lee and K. Choi, "An energy-efficient random number
generator for stochastic circuits," Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 256-261, 2016.

[18] Ronald, S. “More distance functions for order-based encodings.” Proc
IEEE Conference on Evolutionary Computation, pages 558–563, 1998.

[19] https://en.wikipedia.org/wiki/Lexicographical_order

[20] https://www.mathworks.com/help/matlab/ref/perms.html

[21] Sevaux, M. and Sorensen, K. “Permutation distance measures for
memetic algorithms with population management.” Metaheuristics
International Conference, 2005.

[22] Siegel, S. and Castellan, N. J. Nonparametric Statistics for the Behavioral
Sciences. McGraw-Hill, 1988.

[23] NanGate open cell library, (https://projects.si2.org), 2011.

[24] T. Yang, T. Ukezono, and T. Sato, “Low-Power and High-Speed
Approximate Multiplier Design with a Tree Compressor” Computer
Design (ICCD), pp. 89-96, Nov 2017.

[25] P. Li, and D. J. Lilja, “Using Stochastic Computing to Implement Digital
Image Processing Algorithms,” Proc. ICCD, pp. 154–161, 2011.

https://en.wikipedia.org/wiki/Lexicographical_order
https://www.mathworks.com/help/matlab/ref/perms.html
https://projects.si2.org/

	2020 IEEE
	FinalVersion (2)

