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FracTCAM: Fracturable LUTRAM-Based TCAM Emulation on Xilinx FPGAs
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Abstract— In this brief, we present FracTCAM, an efficient
methodology for ternary content addressable memory (TCAM) emula-
tion on Xilinx field-programmable gate arrays (FPGAs) by leveraging
primitive architectural resources. The proposed methodology exploits the
fracturable nature of lookup table random access memories (LUTRAMs)
and built-in slice flip-flops for deeper pipelining. Multiple slices can be
combined together to build deeper and wider TCAMs using ANDing
operations. This results in TCAM implementations that achieve lower
resources utilization, lower delay, and power consumption. A comparison
with the existing schemes shows that FracTCAM consistently achieves
the best performance per area (PA) and performance per area per
watt (PAW).

Index Terms— Field-programmable gate array (FPGA), packet
classification, partial reconfiguration, ternary content addressable
memories (TCAMs).

I. INTRODUCTION

Ternary content addressable memories (TCAMs) enable very fast
content membership checking and are widely used in network
switches and routers to find the best matching route on a table.
If a content resides in a TCAM it would trigger a binary check
flag and the location in memory. This is different from how a
standard memory works and requires specialized circuitry which
is more complex when compared to random access memories
(RAMs) [1]. Traditionally, TCAMs are implemented as specialized
memory blocks in application-specific integrated circuits (ASICs) for
high-speed routers [2]. However, with the emerging requirements
for programability in data planes for software-defined networks
(SDNs), field-programmable gate arrays (FPGAs) are increasingly
being adopted [3], [4]. Unfortunately, modern state-of-the-art FPGAs
have no built-in blocks for TCAMs leaving the design to emulate
them with other resources. TCAM emulation on an FPGA requires
resources for storage, matching logic, and priority encoding. The
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most expensive part of a TCAM is the storage part, and its optimiza-
tion has been actively pursued by researchers. TCAM-emulation on
SRAM-based FPGAs has been explored with four different kinds of
resources, that is, flip-flops (FFs), block-RAMs (BRAMs), lookup
tables (LUTs), and LUT RAMs (LUTRAMs). FF-based TCAMs
utilize in-slice FFs as TCAM storage memory [5]–[8]. Since each FF
stores a single bit of information the interconnect complexity hugely
increases and since many architectural constraints impose that an
LUT–FF pair be used, many of the LUTs will be used as pass-through
resulting in wastage of resources. BRAM-based TCAM emulation
on SRAM-based FPGA has been widely investigated by researchers
in [9], [10], and [11]–[17]. However, the efficient utilization of
BRAM for TCAM emulation is limited by theoretical bounds, that
is, we need at least an SRAM/TCAM bit ratio of 29/9 when
compared to LUTs or LUTRAM-based TCAMs that need 26/6 [18]
so 5× more. LUT-based TCAM has first been introduced by
Reviriego et al. [19]. The authors showed that LUTs, although com-
binational in nature, could be utilized to emulate TCAMs combined
with the reconfiguration capabilities of modern SRAM-based FPGAs.
PR-TCAM [19] used dual-output LUTs (i.e., 5 × 2 LUTs) for
storing TCAM rules while fine-grain frame-level reconfiguration
for rule update. BPR-TCAM [20] improves upon PR-TCAM [19]
by leveraging built-in slice carry-chain to reduce the match-logic
required in TCAMs. However, both these approaches are based
on partial reconfiguration for updating TCAM stored rules. This
makes them slow for updates as partial reconfiguration is orders of
magnitude slower when compared to LUTRAM-based approaches
which update circuits work at the operating frequency. The last FPGA
resource that can be used for TCAM-emulation is LUTRAM, also
called distributed RAM [18], [21]–[26]. Ullah et al. [21] have used
LUTRAMs in a 6 × 1 configuration for TCAM storage and carry-
chains for match-logic reduction in the same slice to achieve better
performance per area (PA) and resource efficiency. D-TCAM [22],
on the other hand, used LUTRAMs in a 6 × 1 configuration for
TCAM storage and fine-grain pipelining by leveraging the built-in
slice register to achieve a much better throughput (TP). However,
no existing work has utilized the LUTRAMs in the 5×2 configuration
(i.e., dual-output LUTRAMs) and all the FFs in SLICEM which can
greatly improve not only the storage density but also TP and PA.

In this brief, FracTCAM a TCAM emulation scheme that utilizes
the fracturable LUTRAMs available in SLICEM on Xilinx FPGA
and the built-in slice FFs is proposed. In our scheme each SLICEM
implements an 8 × 5 TCAM when compared to the authors in
D-TCAM [22], DURE [21], and BPR-TCAM [20] which can imple-
ment only a 4 × 6 TCAM, 1 × 18 TCAM, and 2 × 16 TCAM in
the slice. It should be noted that BPR-TCAM [20] utilizes SLICEL
in contrast to SLICEM used by D-TCAM [22], DURE [21], and
FracTCAM. Therefore, our proposed method has significantly lower
resource usage. In particular, when considering the widely used PA
metric, FracTCAM achieves an improvement that ranges from 25%
(for D-TCAM I versus FracTCAM I) to 311% (for D-TCAM II
versus FracTCAM II) over the best existing scheme for the TCAM
configurations considered. FracTCAM achieves the lowest normal-
ized slice utilization for one of the configuration tested while for
the other two it is only worse by 10% (for BPR-TCAM II versus
FracTCAM II) and 15% (for BPR-TCAM III versus FracTCAM III),
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Fig. 1. Example of TCAM emulation using SRAMs.

Fig. 2. (a) Architecture of the proposed method for mapping a 2 ×5 TCAM
to a slice. (b) Combining four LUTs into 8 × 5 TCAM. (c) Combining four
slices into a TCAM block. (d) Combining blocks to build larger TCAMs.

respectively. As for speed, FracTCAM is the best in two of the
configuration tested and for the other two it is only worse by 2%
(for D-TCAM III versus FracTCAM III) and 12% (for D-TCAM I
versus FracTCAM I), respectively. This combination of high speed
and low resource usage makes FracTCAM an attractive option for
TCAM emulation on FPGAs.

The rest of this brief is organized as follows. Section II presents the
proposed FracTCAM architecture. Section III evaluates FracTCAM
and compares the results with existing works. Section IV concludes
the brief.

II. PROPOSED FRACTCAM ARCHITECTURE

TCAM emulation on SRAM-based FPGAs can be better under-
stood with an example. Let us consider N = 4 and W = 4, that is,
a 4 × 4 TCAM as depicted in Fig. 1, where N is the depth or the
number of rules and W is the width or key size. The basic SRAM
structure in Fig. 1 is a 4 × 1 SRAM or two-input LUT. Each rule
r0, r1, r2, and r3 is mapped to a single two-input LUT or 4 × 1
SRAM memory. Since the key size is 4 and each 4 × 1 SRAM or
two-input LUT has two input address lines, we need to split the
TCAM into two blocks as shown in Fig. 1. The first block is indexed
by k0 and k1 while the second by k2 and k3. The outputs from
the four pairs of SRAM are merged with AND gates called match
logic. Note that the priority encode logic is not shown here. The
design of efficient TCAMs on FPGA boils down to the selection of
SRAM implementation primitives and its depth and width extension.
The proposed FracTCAM leverages the on-chip distributed LUTRAM
located in SLICEM of the Xilinx FPGAs. To better understand
the implementation of FracTCAM on FPGA, let us consider an
8 × 5 TCAM block. This TCAM has eight rules and a key width
of 5, which can be implemented on a single SLICE. For example,
LUTD can be used to implement 2×5 TCAM as shown in Fig. 2(a).

Fig. 3. Architecture of the update logic.

The keyword is connected to 5-bit LUT input (A4:A0) and two rules
(Rule 6 and Rule 7) are read through O5 and O6. Memory M1 saves
Rule 6 and memory M2 saves Rule 7. The rules can be updated using
write address inputs, represented by blue lines in Fig. 2(a), through DI
ports which are not shown here. To implement 8×5 TCAM, the four
LUTs (LUTA, LUTB, LUTC, and LUTD) are stacked with common
keyword and eight different rules through O5 and O6. This is shown
in Fig. 2(b). FracTCAM utilizes 6-LUTs in dual-output mode along
with the eight FFs in a single slice giving rise to 8 × 5 configuration
(compared to 4 × 6 when single output LUTs are used). Moreover,
this configuration efficiently utilizes the local routing matrix due to
shared slice inputs. As shown in Fig. 2(a), O6 can be connected
to DFF through DFFMUX and O5 can be routed to D5FF through
D5FFMUX. In this way, a fully pipelined FracTCAM structure
is designed which improves the performance while the resource
utilization remains the same as that of a nonpipelined structure.

Multiple slices can be combined when the size of the TCAM is
large. For example, increasing the depth of the FracTCAM requires
more slices stacked vertically with the words of same width. This
is illustrated in Fig. 2(c) for a FracTCAM with 32 rules of 5 bits.
Four slices are stacked vertically, where each slice implements an
8 × 5 TCAM. The keywords to all four slices are common. The
proposed methodology terms a 32×5 TCAM as a “block.” The blocks
are combined to produce larger TCAM dimensions. For instance,
to increase the depth from 32 to 64, two blocks are vertically
stacked with the same word size. Similarly, the width extension of
FracTCAM is possible by using multiple blocks with the same depth
in parallel. Fig. 2(d) demonstrates this as a FracTCAM with 64 rules
of 10 bits. In this configuration, two blocks with the same depth
are connected in parallel and each of the two blocks compares to
the corresponding key bits and gives a match of a 64-bit vector.
The final match vector is then obtained by doing a bitwise AND

of the two match-vectors from 64 × 5 FracTCAMs. It is worth
mentioning that the multibit wide AND was manually optimized (17%
improvement in slice utilization for 512 × 80 configuration) using a
tree-like structure instead of relying on the vendor design tool. Fig. 3
shows the update logic (highlighted in a blue dotted bounding box)
for a 16 × 10 FracTCAM. It should be noted that an 8 × 5 block
that is, single SLICEM has write enable “WE” line short for all
the LUTRAMs. Furthermore, the “WE” lines are short for the same
rules, for example, r[7:0] in first and second column have WE shorted
into WE0 and r[15:8] into WE1. These lines are demultiplexed with
row ID to identify which row is to be updated in current write
cycle. The column update logic is responsible for the blocks in
the same column that is, it has the same key lines. The column
update logic consists of serial shift registers realized as SRL32 in
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TABLE I

RESOURCE UTILIZATION OF UPDATE LOGIC FOR FRACTCAM

TABLE II

RESOURCE UTILIZATION, POWER (MILLIWATT), AND SPEED (MEGAHERZ)
FOR DIFFERENT CONFIGURATION OF FRACTCAM

SLICEM. For an 8 × 5 column, we need eight SRL32 which can
be implemented within a single SLICEM. In the write operation,
a global 5-bit counter value is compared with the incoming key value
and the binary value is written into either SRL32 enabled by a 1 × 8
demultiplexer. This demux is controlled by a 3-bit counter inside
SRL fill logic which increments every 33 cycles of the global 5-bit
counter once. All the SRL32s are filled in 8 × 33 cycles which
are then written to an 8 × 5 block in 33 cycles. Therefore, a total
of 297 cycles are required to update 8 rules in an 8 × 5 block that
is, 38 cycles per rule.

III. EVALUATION

The proposed architecture of FracTCAM was implemented on
the Xilinx Virtex-7 28-nm XC7V2000TFHG1761-2L FPGA device
with −2 speed grade. This device contains 1 221 600 LUTs,
344 800 LUTRAMs, 2 443 200 FFs, and 305 400 SLICEs. Vivado
HLx 2016.3 design suite was used for the performance evaluation
of different sizes of TCAMs. The key size of TCAM was varied
from 20 to 160 bits and the number of rules from 64 to 512.
It is worth mentioning that these sizes are chosen because of the
constrains imposed by our basic building block that is, a SLICE
able to implement a 8 × 5 TCAM. Therefore, keys are multiplicative
factors of 5 and rules are multiplicative factors of 8. All the reported
results are based on postplace and postroute implementation available
in [28].

Table I shows the resources required for the update logic and
TCAM storage for two FracTCAM configurations, that is, 512 × 40
and 1024 × 160. It can be noted from the table that the resources
required for update logic are significantly less than those of the
storage part of FracTCAM. In fact, looking at the resources used
in DURE [21] for the update logic, our update logic resource
usage is much lower. Table II shows resource utilization for

FracTCAM of different sizes. It is worth mentioning that the
table does not contain a match reduction or priority encoder.
As previously discussed, the architecture of FracTCAM utilizes three
FPGA resources: LUTRAMs for storing the TCAM rules, logic
LUTs for implementing AND gates, and FFs registers for pipelining.
It can be observed that resource utilization is directly related to
the size of the TCAM. For example, the 64 × 20 TCAM can be
divided into four 64 × 5 FracTCAM blocks. Each block consumes
32 LUTRAMs (8 SLICEM) and 64 FF for pipelining. It is worth
mentioning that FracTCAM utilizes FFs within the same SLICE.
Thus, each 64 × 20 block requires 8 SLICEMs per block and a total
of four blocks, that is, 32 SLICEMs to implement TCAM cells. The
logic LUTs in Table II include the implementation of AND-tree for
match-logic.

The utilization of FFs corresponds to the number of blocks times
the depth of TCAM. For example, 64 × 20 configuration takes
4 × 64, that is, 256 FFs. Similarly, 64 × 80 configuration takes
16 × 64 FFs. It is worth to mention here that Xilinx Virtex-7 FPGA
supports eight FFs within a single SLICE. The proposed FracTCAM
fully exploits this feature to maximize the SLICE resources uti-
lization. In this way, a fully pipelined FracTCAM architecture is
implemented without using extra SLICEs for pipeline registers.

The speed achieved by FracTCAMs of different sizes is also shown
in Table II. It should be noted that FracTCAM inserts register between
input and FracTCAM and between FracTCAM and Reduction OR

Logic. It can be noted that FracTCAM achieves speeds from 363.5 up
to 874.9 MHz for different sizes. The speed of FracTCAM degrades
with its size however this degradation is mild and does not double
as its size doubles. For example, the speed decreases by 10.1 and
29 MHz while moving from 64 × 20 to 128 × 20 and from 64 × 160
to 128 × 160, respectively. Similarly, this degradation is 198.3 and
165.1 MHz while moving from 64× 20 to 64× 40 and from 64× 80
to 64 × 160, respectively. The maximum degradation is 339.2 MHz,
which is 2.14 times, as we move from 256 × 80 to 256 × 160. Thus,
the FPGA resource utilization and speed results in Table II shows
that FracTCAMs scale well with size. Table II also represents the
dynamic power consumption in milliwatts for different configurations
of FracTCAM. These values are reported post implementation by
Vivado power analyzer with default switching activity. It can be noted
that the power consumption increases according to the size of the
TCAM. For the smallest configuration, that is, 64 × 20, the dynamic
power consumption is 11 mW, while for the largest design, that is,
512 × 160, it is 148 mW. Therefore, it can be concluded that the
power consumption increases incrementally with configuration size.

Table III compares FracTCAM with state-of-the-art FPGA TCAMs
in terms of several parameters defined in DURE [21] represented
in (1)–(6). In case BRAMs are used, the number of normalized slices
is calculated using the following equation:

Nslices = S + (BRAMs36 KBits ∗ 24). (1)

For fair comparison across different technology nodes used in
FPGA, the normalized speed is derived from the following equation:

Nspeed = Speed ∗ Technology(nm)

40 (nm)
∗ 1.0

VDD
. (2)

TP, another important parameter for TCAMs comparison, is cal-
culated with the following equation:

TP(Gbit/s) = F(MHz) ∗ TCAMWidth. (3)

Upate rates are normally expressed in clock cycles and a million
of updates per seconds (MUPS) as follows:

Updaterate(MUPS) = Clockrate(MHz)

clockcycles
. (4)
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TABLE III

COMPARISON OF FRACTCAM WITH STATE-OF-THE-ART TCAMS: LUTS AS LUTRAMS/LUTS, SLICES IN REAL/NORMALIZED, SPEED
AS REAL/NORMALIZED IN MEGAHERZ, UPDATE AS CLOCK CYCLES/RATE IN MPPS, POWER IN MILLIWATT,

(TP IN Gbit/s), (PA IN (Mbit/s)/SLICE), AND (PAW IN (Mbit/s)/SLICE/WATT)

A metric that is widely used to compare FPGA TCAMs in literature
is PA expressed by the following equation:

PA(Mbit/s/slices) = TP(Mbit/s)
Nslices

TCAMDepth

. (5)

Finally, the performance per area per watt (PAW) is calculated with
the following equation:

PAW (Mbit/s/slices/watt) = PA (Mbit/s/slices)

Power(W)
. (6)

FracTCAM-I, II, and III, for slice resource usage, respectively,
are 20%, 40%, and 39% more efficient than D-TCAM-I, II and III.
Similarly, FracTCAM-I, II, and III are 22%, 68%, and 27%
faster than D-TCAM-I, II, and III, respectively. Comparing with
BPR-TCAM I, II, and III for slice utilization, FracTCAM-I, II,
and III are shown to be the same, 10%, and 15% worse, respectively.
However, in speed comparison, FracTCAM I, II, and III outper-
form BPR-TCAM I, II, and III by 22%, 68%, and 27%, respec-
tively. Comparing with DURE I and DURE II, FracTCAM I and
FracTCAM IV are 54% and 39% better in slice utilization while at the
same time 23% and 43% better in speed. Update rate is not reported
by BPR-TCAM and D-TCAM, however, in comparison to DURE I
and DURE II, FracTCAM I and FracTCAM IV show more than 2 and
x time improvement in MUPS. G-AETCAM and RPE-TCAM have a
very high MUPS but the authors did not reported resource utilization
which is huge as FFs are used to design TCAM. Therefore, due to
higher speed and resource utilization efficiency, FracTCAM shows
significant improvement in metrics such as TP and PA as can be
seen in Table III. The power consumption is also improved due to
better slice utilization resulting in better PAW. Comparing DURE I
and DURE II, FracTCAM I and FracTCAM IV show 128% and 215%
improvements in PAW. Therefore, FracTCAM shows improvements
in all the compared metrics and can be used for large FPGA-based
TCAMs.

IV. CONCLUSION

FracTCAM leverages the architectural features of Xilinx FPGAs
to efficiently emulate TCAMs. LUTRAMs, configured in dual-output
mode combined with built-in slice registers, found in the latest seven-
series FPGAs, are utilized to propose a modular and scalable TCAM
architecture. The basic building block of the proposed architecture is
able to map an 8×5 TCAM compared to existing 4×6 TCAM, thus,
almost doubling the utilization density. Furthermore, the utilization
of in-slice registers to pipeline LUTRAM outputs enables high speed
operation. Therefore, not only the logic utilization but also TP is
enhanced leading to better PA when compared to existing approaches.
The proposed update logic requires significantly less resources than
existing FPGA TCAMs and is able to update all the rules in an
8 × 5 block simultaneously. Due to better dynamic power con-
sumption, the proposed solution outperforms existing approaches
in PA and PAW, which is very significant considering large size
TCAM-emulation on SRAM-based FPGAs.
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