
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 1

R2F: A Remote Retraining Framework for AIoT
Processors with Computing Errors

Dawen Xu, Meng He, Cheng Liu, Ying Wang, Long Cheng, Huawei Li, Senior Member, IEEE,
Xiaowei Li, Senior Member, IEEE, and Kwang-Ting Cheng, Fellow, IEEE

Abstract—AIoT processors fabricated with newer technology
nodes suffer rising soft errors due to the shrinking transistor
sizes and lower power supply. Soft errors on the AIoT processors
particularly the deep learning accelerators (DLAs) with massive
computing may cause substantial computing errors. These com-
puting errors are difficult to be captured by the conventional
training on general purposed processors like CPUs and GPUs in a
server. Applying the offline trained neural network models to the
edge accelerators with errors directly may lead to considerable
prediction accuracy loss.

To address the problem, we propose a remote retraining
framework (R2F) for remote AIoT processors with computing
errors. It takes the remote AIoT processor with soft errors in
the training loop such that the on-site computing errors can be
learned with the application data on the server and the retrained
models can be resilient to the soft errors. Meanwhile, we propose
an optimized partial TMR strategy to enhance the retraining.
According to our experiments, R2F enables elastic design trade-
offs between the model accuracy and the performance penalty.
The top-5 model accuracy can be improved by 1.93%-13.73%
with 0%-200% performance penalty at high fault error rate.
In addition, we notice that the retraining requires massive data
transmission and even dominates the training time, and propose a
sparse increment compression approach for the data transmission
optimization, which reduces the retraining time by 38%-88%
on average with negligible accuracy loss over a straightforward
remote retraining.

I. INTRODUCTION

Neural networks that enable intelligent or smart things
are gaining increasing popularity in IoT devices [1]. They
are usually both computing- and memory-intensive, and thus
pose a great challenge to the general purposed processors
(GPPs) in IoT devices with limited power budgets but real-
time processing requirements in many applications such as
obstacle detection in mobile robots, autonomous drones and
vehicles [2] [3] [4]. In this circumstance, numerous neural
network accelerators closely coupled with a GPP, namely AIoT
processors, emerge in IoT devices and the number grows

This article was presented in part at The 30th IEEE International Conference
on Application-specific Systems, Architectures and Processors, 2019.

Dawen Xu, and Meng He are with both Hefei University of Technology,
Hefei 230009, China and SKLCA, Institute of Computing Technology (ICT),
Chinese Academy of Sciences (CAS), Beijing 100180, China.

Cheng Liu and Ying Wang are with SKLCA, ICT, CAS, Beijing 100180,
China. (e-mail:liucheng@ict.ac.cn)

Huawei Li is with both SKLCA, ICT, CAS, Beijing 100180, China and
Peng Cheng Laboratory, Shenzhen, 518055, China.

Long Cheng is with the School of Control and Computer Engineering,
North China Electric Power University, Beijing 102206, China.

Kwang-Ting Cheng is with Department of Computer Science and Engineer-
ing, The Hong Kong University of Science and Technology, 999077, Hong
Kong.

rapidly over the years [1]. To ensure both low-power and real-
time processing of the various neural networks, many AIoT
processors are fabricated with newer technology nodes. For
instance, Google Edge AI platform Coral is fabricated with
7 nm technology, and Navida Jetson Xavier adopts 12 nm
technology. The small feature sizes of the transistors and
higher clock frequency in these AIoT processors are more
likely to be affected by the extreme environments and ra-
diation, and greatly increase the probability of soft errors
accordingly [5] [6], which can induce the computing er-
rors and cause wrong prediction when the neural networks
are deployed. The wrong prediction in many safety-sensitive
applications such as autonomous driving, unmanned aerial
vehicle, robotics, and engine failure prediction and diagnosis
may lead to catastrophic consequences and losses. Although
many classical fault-tolerant design techniques such as triple
modular redundancy (TMR) can be utilized to mitigate the
influence of the soft errors, they typically induce considerable
overhead in terms of performance and power consumption,
which contradicts with the real-time processing and low-
power requirements of the typical AIoT applications. Thereby,
lightweight yet effective fault mitigation techniques that will
not incur neither notable performance penalty nor power
consumption remain highly demanded.

Fortunately, we notice that, unlike generic applications,
neural networks inherently involve redundancy and are more
resilient to the computing errors [7], many neural network
model optimizations like quantization and pruning essentially
take advantage of this feature to obtain notable performance
and energy efficiency improvement with minor inference ac-
curacy penalty [8] [9]. Hereby, a straightforward yet effective
approach to mitigate the soft errors in the AIoT processors is
to exploit the redundancy in the the neural network models
with the retraining such that the computing errors along with
the data can be learned by the retrained models. The retrained
models that usually have the same sizes with the original
models can be executed without performance penalty.

Retraining the neural network models to tolerate soft errors
with marginal performance penalty and energy consumption
overhead is promising for the AIoT processors, but it is non-
trivial to conduct the retraining with existing deep learning
frameworks such as Caffe [10], Tensorflow [11] and PyTorch
[12]. First of all, existing frameworks typically have the
entire training performed on the general purposed processors
especially GPUs, but the AIoT devices with limited computing
power and energy budgets usually are incapable of supporting
the power-hungry GPUs and the neural network training

ar
X

iv
:2

10
7.

03
09

6v
1

 [
cs

.A
R

]
 7

 J
ul

 2
02

1

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 2

directly. As a result, the training must be conducted on a
powerful server either in the edge or in the cloud. On the
other hand, it is rather difficult for the GPUs in the server to
capture the influence of the soft errors on the neural network
inference conducted on the remote AIoT processors exactly.
The offline trained models with noise injection show only
marginal model accuracy improvement when deployed in a
different faulty environment according to our experiments in
Section III.

To address the above challenges, we propose a Remote
Retraining Framework (R2F) for the fault-tolerant neural net-
work models targeting at the resilient deployment on AIoT
processors with soft errors. It takes the AIoT processors in the
conventional training loop and exposes the on-site computing
errors to the training framework such that the obtained models
can learn the application data with the computing errors at the
same time. More specifically, it has the forward propagation
(FP) affected by the soft errors conducted on the remote AIoT
processor and the backward propagation (BP) on the server.
The iterative training process has the FP and BP conducted
interchangeably. At the same time, the intermediate outputs
of the FP need to be sent to the server for the gradient
calculation and model updating. The updated model in BP
needs to be transmitted to the AIoT processor for the inference
in next iteration. However, there is still a lack of supporting
gateware that enables the frequent communication between the
AIoT processor and the server for the collaborated training.
To that end, we define a set of high-level communication
APIs to characterize the basic data transmissions between
the remote AIoT processor and the server, and implement
with the remote procedure calls integrated in ThingsBoard, a
typical IoT software stack. With these APIs, the remote AIoT
processor can be fitted to PyTorch for the remote retraining.

In addition, we observe that the retraining with R2F usu-
ally involves many training iterations and each iteration may
include multiple batch processing. As a result, a large amount
of data transmission is required between the AIoT processor
and the server. Moreover, the size of the intermediate outputs
of the batched inference can be much larger than that of the
weights and the inputs. For instance, suppose the batch size
is 16, the intermediate outputs of MobileNet (8bit fixed point)
and ResNet50 (8bit fixed point) are 11× and 19× over the
input images, and 30× and 7× over the weights respectively.
At the same time, there is usually limited communication
bandwidth between the AIoT processors and the server due
to the resource constrain on the edge. Thereby, the frequent
and large amount of intermediate data transmission poses a
great challenge to the retraining. In this work, we propose
a sparse increment compression scheme to reduce the data
transmission. The basic idea is to apply TMR to the neural
network execution on the AIoT processor to approximate the
golden intermediate outputs of the inference. Then, we take the
approximated intermediate outputs as the base and calculate
the increments to the base. As the computing errors are rather
sparse, the increments can be compressed effectively. When
the compressed increment and the input features are transmit-
ted to the server, the server can recompute the intermediate
outputs with the transmitted input features and approximate the

actual intermediate outputs with computing errors by adding
the increments. With the proposed compression method, the
intermediate data transmission can be greatly reduced and the
retraining time can be cut down accordingly.

On top of the on-site retraining time optimization, we also
optimize the R2F for more elastic design trade-offs between
the retrained model accuracy and model execution time on
the AIoT processors with soft errors. Basically, we notice that
straightforward on-site retraining shows limited model accu-
racy improvement under relatively higher fault error rate while
TMR can be used to reduce the influence of soft errors and
improve the model accuracy significantly. However, the TMR
overhead is usually overwhelming especially for the AIoT
processors with limited power budgets. In this circumstance,
we apply a heuristic algorithm to select the most fragile layers
and have them protected via TMR which is also utilized in
the remote retraining. The neural network with partial TMR
protection is implemented in R2F such that the retrained model
accuracy can be improved with minor performance penalty
even under higher fault error rate.

The contribution of this work can be summarized as follows:

• We proposed R2F, an efficient remote retraining frame-
work, to enable the collaborated neural network model re-
training on both remote AIoT processors and the servers.
It takes the remote AIoT processors with computing
errors in the training loop and has the influence of the
soft errors learned with the application data such that the
retrained models can be fault-tolerant.

• We define a series of client-server communication APIs
on top of typical IoT software stacks to facilitate the R2F
implementation on a conventional training framework
like PyTorch and a representative IoT software stack.
Moreover, we further optimize R2F from the perspective
of the retraining time and the model accuracy. Specif-
ically, we propose a sparse increment compression to
greatly alleviate the large data transmission overhead in
retraining, and provide an elastic design trade-off between
the model accuracy and performance penalty with an
optimized partial TMR strategy.

• According to our experiments on a set of typical neural
networks, R2F reduces the training time by 38%-88%
with the proposed data transmission optimization when
compared to the baseline method. It achieves an elastic
design trade-off between the model accuracy and the
performance penalty with the proposed partial TMR
protection. The top-5 model accuracy can be improved
by 1.93%-13.73% while the performance penalty ranges
from 0%-200% under high fault error rate.

The structure of this paper is organized as follows. Section 2
briefly introduces the related works on fault tolerant design of
neural network models and accelerators. Section 3 analyzes
the influence of soft errors on neural network accelerators
and motivates the necessity of the neural network model
retraining. Section 4 details R2F for resilient neural network
execution on AIoT processors with soft errors. Section 5
introduces the proposed optimizations for R2F. Section 6
includes comprehensive experiments and evaluates R2F from

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 3

different angles including accuracy improvement and training
time. Finally, we conclude this work in Section 7.

II. RELATED WORK

A. AIoT Processors

For the sake of both the low-power and real-time processing,
neural network accelerators are increasingly utilized for the
Artificial intelligence (AI) processing [13] [14] in Internet
of Things (IoT). They are usually closely integrated with
a general purposed processor, and the integrated processor
that enables AI on IoT devices is known as AIoT processor.
Although numerous efforts have been devoted to the AIoT
processor design especially the neural network accelerator
design [15] [16], it remains rather challenging to ensure the
contradictory design goals of low energy consumption, high
performance and prediction accuracy [17] [18]. In this case,
the reliability of the neural network processing on AIoT
processors under soft errors further complicates the design.
Conventional fault-tolerant techniques such as TMR that typ-
ically will induce substantial power consumption and perfor-
mance penalty can not be used directly. More lightweight
fault-tolerant approaches are highly demanded for the neural
network processing on AIoT processors.

B. Fault-tolerant Neural Network Processing

Plenty of prior works have investigated the fault-tolerant
processing of neural networks from many different angles
[19] [20] [21] [22] [23] [24] [25]. They can be roughly
divided into three categories based on the fault-tolerant targets.
Some of them attempt to develop fault-tolerant neural network
architectures, some of them seek to harden the underlying
hardware infrastructures while some of them adopt hybrid
approaches that take both the hardware accelerators and the
neural network models into consideration at the same time.
They will be illustrated in detail in the rest of this subsection.

1) Fault-tolerant Neural Network Models: According to the
evaluation in [19] [20], minor computing errors in the neural
network execution may not necessarily cause the wrong pre-
diction. Basically, neural networks are usually more resilient
compared to generic applications because of the computing
redundancy and activation functions that can mitigate the com-
puting variations in the neural network models. Many prior
works exploit this feature of neural network models to further
improve the resilience of the neural network processing. Some
of them mainly rely on the training by introducing additional
noise or in-situ faults [26] [27], or by adding regularization
or penalty terms [28] [29] [30], or adding constraints to the
weights [17] [31]. Model retraining-based approaches are also
applied specifically for the emerging yet imperfect RRAM-
based neural network accelerators [32] [33]. Unlike these
aforementioned works that will not change the structure of
the neural network models, FTT-NAS [34] [35] provides an
end-to-end fault-tolerant neural network search to redesign
the neural network architecture. The obtained neural network
model is more fault-tolerant, but the accuracy still drops given
higher fault injection eventually and it can still be improved
with retraining. Liu et al. proposed to enhance the algorithm

level error-resilience capability of DNN classifiers through
a collaborative logistic classifier design by leveraging both
asymmetric binary classification and an optimized variable-
length “decode-free” scheme [36]. Hoang et al. [37] proposed
to systematically define the clipping values of the activation
functions that result in increased resilience of the networks
against faults. The authors in [38] analyzed the vulnerability of
the different neural network layers, replicated the most fragile
layers and scheduled the processing to minimize the influence
of hard errors.

2) Fault-tolerant Neural Network Accelerator Architec-
tures: To mitigate faults in the neural network accelerator
caused by soft errors, an intuitive approach is to harden the
neural network accelerator with conventional fault-tolerant
circuit design techniques such as TMR. For instance, the
authors in [39] proposed a block-based modular redundancy
strategy to mitigate the faulty computing array blocks of the
neural network accelerator. The work in [40] [41] employed
the spatial and temporal checksum to protect full connection
and convolution layers in deep neural network models. The
checksum-based approach originated from the algorithm-based
fault tolerance for matrix-matrix multiplication enables both
efficient error detection and correction [42]. The authors
in [43] proposed a parallel stochastic computing(SC)-based
NN accelerator purely using bitstream computation by fully
exploiting the superior fault tolerance of SC mainly for ternary
neural networks. Li et al. [44] proposed an error detecting
scheme to locate incorrect Processing Elements (PEs) of the
neural network accelerator and gave an error masking method
to achieve fault-tolerance. Mahdiani et al. [45] proposed to
relax the fault-tolerance of the VLSI implementation by em-
ploying TMR to only the computation of the most important
bits such that the hardware overhead is reduced and the critical
path latency is improved without any accuracy penalty. Xu et
al. [46] has a dot-production unit to recompute the operations
that are mapped to the faulty PEs in the 2D computing
array without affecting the original dataflow. However, these
techniques usually result in non-trivial overhead in terms of
timing, area, and power consumption, which may fail the
stringent performance and power consumption requirements
of the AIoT applications. In addition, the accelerators need
to be redesigned heavily, which can also be a barrier for the
off-the-shelf products like Google Edge TPU.

3) Hybrid Fault-tolerant Techniques: There are also a few
works proposed to co-optimize the neural network models and
the underlying neural network accelerators at the same time for
higher resilience. The work in [47] [48] proposed to add ad-
ditional bypass logic to PEs in the neural network accelerator
and the output will be set to be constant such as zero for faulty
PEs. On top of the accelerator with constant bypass, it further
retrains the models to achieve higher prediction accuracy. The
authors in [49] proposed to add different bypass data paths to
the PEs in neural network accelerators such that faulty PEs
can be skipped and had the weights mapped to the faulty
PEs pruned at the same time. Instead of directly pruning the
weights, they reorganized the models to minimize the sum of
the the saliency of the pruned neural network weights, which
greatly alleviates the accuracy degradation. The authors in [50]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 4

proposed a software and hardware co-design methodology to
effectively preserve the classification accuracy of CNN with
few on-device training iterations on RRAM-crossbars. Kim
et al. [51] proposed an algorithm and hardware co-designed
fault-tolerance framework called MATIC, which combines
the characteristics of destructive SRAM reads with the error
resilience of neural networks in a memory-adaptive training
process. Ma et al. [52] leverage the fault-tolerance of the neural
network models to mitigate the faults caused by the process
variation of the neural network accelerator with hardware
bypassing and a novel weight transfer technique. In this case,
the computing array of the neural network accelerator can run
at higher frequency with limited accuracy drop.

In summary, retraining is usually applied to obtain fault-
tolerant neural network models particularly for model-based
and co-designed fault-tolerant approaches. However, prior
works do not have the remote retraining overhead evaluated
and ignore the overhead in IoT system with limited commu-
nication bandwidth.

III. MOTIVATION

In this section, we mainly investigate the influence of soft
errors on the neural network prediction accuracy and effec-
tiveness of retraining with computing errors, which motivates
the proposed remote retraining framework.

A. Influence of Soft Errors on Model Accuracy

In order to evaluate the influence of soft errors on the
neural network model accuracy, we have random bit errors
injected to weights, inputs, outputs as well as the hidden
states of the neural network models similar to the approach
utilized in [19]. We take three widely utilized neural network
models, including ResNet18, MobileNet, and SqueezeNet pre-
trained on ImageNet as the benchmark. All the models are
8bit fixed point. Note that the bit error rate (BER) represents
the total number of bit errors over the total bit number of
the data i.e. weights, inputs, outputs and hidden states of the
neural network models. The experiment result is shown in
Figure 1. It can be observed that the prediction accuracy of the
neural network models drops little when BER is lower than
5×10−6 though there are computing errors caused by the soft
errors, which also demonstrates the intrinsic fault tolerance
of the neural network models. Nevertheless, the accuracy
drops rapidly when the BER reaches 5 × 10−5. Particularly,
SqueezeNet drops by 6.04% which is unacceptable for most
of the accuracy-sensitive neural network models. Even for
ResNet18 with the least accuracy drop, it also shows 3.72%
accuracy penalty which is non-trivial.

0%

20%

40%

60%

80%

100%

0.5% 1.0% 1.5% 2.0% 2.5%

F
u

ll
y
 f

u
n

ct
io

n
a
l

p
ro

b
a
b

il
it

y

PER

CR RR DR

70%

75%

80%

85%

90%

ResNet18 VGG11 SqueezeNet

A
cc

u
ra

cy

0 1.0E-06

5.0E-06 1.0E-05

5.0E-05

70%

75%

80%

85%

90%

ResNet18 MobileNet SqueezeNet

A
cc

u
ra

cy

0 1.0E-06 5.0E-06 1.0E-05 5.0E-05BER

Fig. 1. Influence of the soft errors on the top-5 accuracy of different neural
network models and bit error rate.

B. Effectiveness of the Model Retraining on Soft Errors

While it is promising to take advantage of the redundancy
in neural network models with retraining to tolerate computing
errors, we evaluate the effectiveness of the retraining on
mitigating soft errors on a neural network accelerator in a
remote AIoT processor. As the actual computing variation
caused by the soft errors is not immediately available to the
server and it is also difficult to model the exact variation on the
server, we have the models retrained on the server with noise
which is simulated via by injecting soft errors to the neural
network accelerator with a different BER from that on the
remote AIoT processor. Basically, we retrain the models with
unmatched computing errors. Meanwhile, we also compare
it with an on-site retraining which has the exact computing
errors on remote AIoT processor transmitted to the server. The
comparison is presented in Figure 2. Note that ’Base’ refers
to the model without retraining, ’UR’ refers to unmatched
retraining and ’MR’ refers to the matched on-site retraining.
Particularly for the unmatched retraining, we set two different
bit error rate. One of them is far from the actual BER (’UR-F’)
and the other one is close to the actual BER (’UR-C’). It can
be observed that retraining with unmatched BER that is far
from the on-site situation i.e. ’UM-F’ poses marginal model
accuracy small improvements. In contrast, the retraining with
matched retraining and unmatched retraining that is close to
the on-site situation i.e. ’UR-C’ exhibits much more significant
accuracy improvement in general.

In summary, retraining is generally beneficial to the pre-
diction accuracy when the model is executed on a neural
network accelerator affected by soft errors. Nevertheless, the
retraining must have the computing errors caused by the soft
errors considered and minor mismatch is acceptable. At the
same time, the benefits will be dramatically undermined if
the inference condition differs too much from the training
condition.

IV. REMOTE RETRAINING FRAMEWORK (R2F)

A. Overview

To retrain a fault-tolerant neural network model for resilient
execution on an AIoT processor, we opt to integrate the AIoT
processor in the training loop of a conventional deep learning
framework such that the computing errors caused by the soft
errors can be learned and tolerated by the resulting neural
network models, and develop a remote retraining framework
(R2F) on top of PyTorch as shown in Figure 3. Unlike the
conventional offline neural network training frameworks, it
adopts a client-server computing diagram for the collaborated
retraining between a remote AIoT processor and a server.
On the server side, it reuses the conventional backward-
propagation (BP) in PyTorch, but it needs to acquire the in-
termediate outputs of the neural network forward-propagation
(FP) via a series of APIs denoted as R2F.Server.API(). At
the same time, it also needs to send the neural network
models updated after BP to the client with the communication
APIs provided by R2F.Server.API(). On the client side, it
receives the neural network models sent from the server and
conducts the FP on the AIoT processor. Meanwhile, it has the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 5

(a) ResNet18 (c) SqueezeNet(b) MobileNet

84%

85%

86%

87%

88%

89%

90%

B
as

e

U
R

-F

U
R

-C

M
R

B
as

e

U
R

-F

U
R

-C

M
R

BER=1.0E-6 BER=5.0E-5

A
cc

u
ra

cy

70%

71%

72%

73%

74%

75%

76%

B
as

e

U
R

-F

U
R

-C

M
R

B
as

e

U
R

-F

U
R

-C

M
R

BER=1.0E-6 BER=5.0E-5

A
cc

u
ra

cy

80%

82%

84%

86%

88%

90%

92%

B
as

e

U
R

-F

U
R

-C

M
R

B
as

e

U
R

-F

U
R

-C

M
R

BER=1.0E-6 BER=5.0E-5

A
cc

u
ra

cy

Fig. 2. The influence of the neural network retraining with matched and unmatched computing errors. Note that the BER used for training under ’UR-F’ and
’UR-C’ are 5.0 × 10−5 and 5.0 × 10−6 respectively when the actual inference is conducted under 1.0 × 10−6. BER used for training under ’UR-F’ and
’UR-C’ are 1.0× 10−6 and 4.5× 10−5 when the actual inference is conducted under 5.0× 10−5.

R2F

BP

R2F Server.API()

Transports

PyTorch

ThingsBoard

Server Client

Core

FP

R2F Client.API()

Device

IoTCPU+GPU
AIoT Processor

(CPU+Acc.)

A
p

p
li

ca
ti

o
n

s
Io

T
 S

o
ft

w
a
r
e

S
ta

ck
s

P
h

y
si

ca
l

L
a
y
er

Network

ModelData DataModel

Fig. 3. An overview of the proposed remote retraining (R2F) framework on
an AIoT system. It is essentially built on PyTorch and IoT software stacks,
i.e. ThingsBoard, and integrates them with a series of client-server APIs.

intermediate outputs of the FP extracted and sent to the server
with the R2F.client.API().

Under the R2F, it is a typical IoT software stack and
we adopt an open-source IoT framework called ThingsBoard
(TB) in this work. TB enables cloud and IoT device connec-
tivity via industry standard IoT protocols, such as, MQTT,
CoAP, and HTTP and provides IoT oriented communication
such as transport component. We take advantage of these
communication facilities and wrap up them for the neural
network training oriented communication i.e. R2F.server.API()
and R2F.client.API(), which can be seamlessly integrated by
PyTorch. The bottom layer is mainly the different hardware
platforms. The server is typically equipped with both a pow-
erful GPP and GPUs while the AIoT processor is usually
configured with an neural network accelerator and a low-power
GPP. They are connected with an IoT network supporting
various communication protocols, such as LoRa, 802.15.4g,
HSPA, and LTE Cat.4. When they are used in R2F, the AIoT
processor collects input data from the sensors such as camera,
and conducts the neural network models in a normal inference
process while the server updates the neural network models
based on the on-site inference outputs.

B. Intermediate Output Extraction

Unlike the normal inference in which the outputs of the
last layer of the neural network models are sufficient to
obtain the prediction, the inference performed on the AIoT
processor during the collaborated retraining needs to send
the outputs of each neural network layer to the server for
the gradient calculation and weight update in BP. However,
many neural network accelerators are mainly optimized for
inference without offering intermediate outputs. Outputs of
some intermediate layers are completely stored in the on-
chip buffer and directly consumed by the following neural
network layer to reduce the accesses to the external memory.
In this case, the accelerator need to add an optional data path
to enable the intermediate output data write to the external
memory on request. The intermediate output write can be
done in parallel with the pipelined neural network execution.
For some of the off-the-shelf neural network accelerators that
do not support the intermediate output extraction, a more
general approach to obtain the intermediate outputs is to divide
the neural network models into sub models each of which
includes a single neural network layer. When the sub models
are compiled and executed sequentially, intermediate outputs
can also be obtained, though it may take longer execution time.

C. Client-Server Communication Interface

To enable the collaborated neural network model retraining
with both an AIoT processor and a server that are far from each
other, we define and implement a series of client-server APIs
providing the high-level communication interfaces for the
proposed retraining framework. With these APIs, we can adapt
different types of AIoT processors and IoT software stacks to
a unified retraining framework, i.e. R2F. These communication
APIs are summarized in Table I. It can be classified as server
APIs and client APIs running on the server and the clients
respectively. The server APIs are mainly used to configure the
mode of the remote AIoT processors, to deploy the updated
neural network models, and to collect the inference results as
well as the intermediate outputs sent from the remote clients.
The client APIs are mainly used to response the different
processing commands from the server and send the processing
results to the server. There are two data conversion APIs
used in the server side, because floating point is usually used
in BP while 8-bit fixed point is mostly used in FP in the
AIoT processor. More specifically, the received intermediate

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 6

TABLE I
COMMUNICATION INTERFACES BETWEEN A SERVER AND A CLIENT

1 API Name server.setAIoTMode(uint deviceID, uchar mode)

Description

mode=’inference’, it sets the AIoT processor to
conduct inference only.
mode=’training’, it sets the AIoT processor to
dump intermediate outputs for retraining.

2 API Name server.deployModel(uint deviceID, Model* model)

Description It sends the neural network model to the AIoT
processor for deployment.

3 API Name server.getData(uint deviceID, uchar mode)

Description

mode=’inference’, it receives outputs of the
inference sent from the AIoT processor.
mode=’training’, it receives both the intermediate
outputs and network outputs sent from the AIoT
processor.

4 API Name server.convertFloat2Int(float* fData, uchar* iData)

Description It converts the floating point model generated in BP
to fixed point for deployment.

5 API Name server.convertInt2Float(uchar* iData, float* fData)

Description It converts the received fixed point model to float
model for BP.

6 API Name client.sendAck(uint* deviceID)

Description It sends an acknowledgement to the server to ensure
the finish of the setup or commands.

7 API Name server.sendData(uint* deviceID, uchar mode)

Description

mode=’inference’, it sends the neural network
outputs to the server.
mode=’training’, it sends both the intermediate
outputs and network outputs to the server on
request.

outputs will be converted to floating point for the float gradient
calculation while the updated model will be quantized to 8-
bit fixed point before it is sent to the AIoT processor for the
deployment. Brief descriptions of all the APIs are listed in
Table I.

V. R2F OPTIMIZATIONS

On top of the baseline R2F, we further optimize it from the
following different angles. First, we optimize the communica-
tion time that dominates the on-site retraining time due to the
limited uplink bandwidth of the AIoT processors. Second, we
propose a partial TMR protection strategy to further improve
the retrained model accuracy with minor performance penalty.
Third, TMR is the basis of the aforementioned optimizations
and its implementations are also optimized. They will be
detailed in the rest of this section.

A. Communication Optimization

As discussed in prior section, R2F needs to transmit a
large amount of intermediate outputs of the neural network
models from the AIoT processors to the server, which requires
both considerable time and power consumption due to the
limited uplink bandwidth. Thereby, we seek to optimize the
communication to enable efficient remote training. We notice
that the computing errors caused by the soft errors can be
effectively mitigated with classical TMR. Thus, we apply
TMR to the neural network processing on the AIoT processor
to obtain more accurate intermediate computing results of the

neural network models. Since these results are close to the
reference outputs, we take it as approximate reference outputs.
Then, we calculate the increments of the intermediate outputs
relative to the approximate reference outputs on the AIoT
processor with soft errors. Since they are not significantly
different, the incremental results includes a large number of
zeros and can be compressed efficiently. Thereby, we can have
the compressed increments instead of the intermediate outputs
with computing errors sent to the server. At the same time, we
also have the inputs of the neural network sent to the server.
In the server, the reference outputs of the intermediate outputs
can be re-calculated with the inputs. With both the increments
of the intermediate outputs and the reference intermediate
outputs, we can approximate the intermediate outputs of the
neural networks in the AIoT processors affected by the soft
errors. According to the motivation experiment in Section 3,
these approximate outputs are still appropriate for the BP and
on-site retraining on the server.

To support TMR on AIoT processors without hardware
modification, we conduct temporal TMR directly. Basically,
the neural network accelerator computes on the same inputs
three times when it is set to be ‘training’ mode. The results
of each output layer will be stored in memory. Then we have
the general purposed processor to conduct the voter operations
for each output. Since the data are sequentially stored, and the
voting process can be improved with the vector processing unit
inside the AIoT processor, the processing time of the voting
stage is small compared to the inference time.

B. Critical Layer Protection

Although the on-site model retraining improves the re-
silience of the neural network models to the soft errors, the
prediction accuracy loss remains non-trivial under relatively
higher fault injection rate. While the straightforward TMR on
all neural network layers can greatly alleviate the influence of
soft errors and extend the upper limit of the retraining method,
it induces considerable performance penalty. Moreover, we
notice that the computing errors on some layers of the neural
network models may have distinct influence on the resulting
prediction accuracy. Thereby, we select those layers that have
the most significant influence on the neural network accuracy
as critical layers and only have them protected with TMR
to reduce both the model accuracy loss and the performance
penalty. In addition, the implementation of the TMR is also
consistent with that is mentioned in communication optimiza-
tion.

In order to optimize the critical layer protection, we for-
mulate the problem as follows. Suppose the target neural
network includes l layers, and s layers are protected and the
indices of the protected layer belong to a set S. The model
accuracy of the neural network can be denoted as AS . The
computing overhead of each neural network layer is denoted
as Oi where i represents the layer index. The design goal of
the critical layer protection is to determine the set of the layers
S that need to be protected such that AS is maximized where
the additional computing overhead relative to the original
computing is less than r. To address the problem, we propose

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 7

a heuristic algorithm to optimize the critical layer selection
as illustrated in Algorithm 1. The basic idea is to iteratively
search the most critical neural network layer in a layer-wise
manner. It continues the selection until the overhead of the
partial TMR exceeds rmax.

Algorithm 1 Critical layer selection algorithm
Input: A neural network with l layers, the set of all the layer

indices L = (1, 2, ..., l), the computing overhead of the ith layer is
Oi where 1 ≤ i ≤ l.

Output: The total number of protected layers s and the set of
protected neural layer indices S such that the AS is maximized and
the normalized redundant computing overhead is no more than rmax.

1: s = 0, S = ∅
2: while (r < rmax) do
3: for each i ∈ (L \ S) do
4: Measure the accuracy AS∪(i)
5: end for
6: Find i that AS∪(i) is maximized.
7: S.append(i), s← s+ 1

8: Calculate the normalized overhead r =
∑

i∈S Oi∑
i∈L

Oi

9: if r > rmax then
10: S.remove(i), s← s− 1
11: end if
12: end while
13: Return s and S

With the proposed critical layer selection algorithm, the
total number of design options that need to be evaluated in
the search is Sum(L, s) =

∑k=L
k=s+1 k = (L+s+1)×(L−s)

2 .
In contrast, a straightforward brute-force search requires to
evalaute C(L, s) = L!

s!×(L−s)! design options. Take ResNet50
as an example, suppose s = 5, each design option evaluation
needs to conduct 1000 inference and takes around 16 seconds.
The brute-force search requires to evaluate 2118760 design
options and the total search time will be more than 392 days.
Thus, it cannot be used in practice. The proposed search
requires to evaluate 240 design options, which is 8820X faster
and can be finished in around 64 minutes.

C. TMR Implementation Optimization

Although TMR is a classical redundancy approach, there
are different methods to implement it on an AIoT processor.
Since we will not change the architecture of the AIoT pro-
cessors, a temporal TMR redundancy is used in this work.
A straightforward TMR implementation is to conduct the
neural network processing three times with the same input
independently. Then the intermediate outputs from the three
implementations are voted as the TMRed results. We name
this approach as network-wise TMR (NW-TMR). While NW-
TMR does not take the propagation of the computing errors
across the different neural network layers into consideration,
we propose to conduct the TMR in a layer-wise manner.
Basically, the first layer of the neural network will be executed
three times with the same input, and the outputs will be voted
and the TMRed results will be used as the inputs of the next
layer. This implementation is named as the layer-wise TMR
(LW-TMR). It is conducted iteratively until the end of the
neural network model execution. We use the percentage of

TABLE II
TYPICAL IOT COMMUNICATION PROTOCOLS

Technology Typical Applications Bit Rate
Downlink Uplink

LoRa smart street lights and meter 50 kbit/s
802.15.4g remote monitoring, industrial control 800 kbit/s

HSPA shared payment, wearable device 21.1 Mbit/s 5.76 Mbit/s
LTE Cat.4 smart medicine, autonomous driving 150 Mbit/s 50 Mbit/s

the identical outputs between the approximate intermediate
outputs and the actual intermediate outputs as the output
similarity evaluation metric. In order to avoid inefficient TMR
that all the three data vary substantially, we only conduct
the TMR-based compression to layers with higher similarity.
The threshold of the output similarity can be changed for
the different trade-offs between the training overhead and
the retrained model accuracy. It will be evaluated in the
experiment Section.

VI. EXPERIMENT

A. Experiment Setup

1) Hardware Platform: In the experiment, the server is
configured with an Intel Xeon cpu E5-2699 v3@2.30GHz
processor and 128 GB DRAM while we have a Raspberry
Pi 3 Model B platform equipped with an ARM Cortex A53
processor and 1 GB memory as the AIoT processor. The
hardware platform is mainly used to verify the functionality
of the proposed R2F framework. Since the Raspberry Pi does
not have a neural network accelerator integrated, we assume
that a Eyerisis-like neural network accelerator simulated with
Scale-Sim is used instead. The neural network accelerator
is configured with 32 × 32 2-D computing array, 1024 KB
on-chip buffer. And the neural network models are executed
with a classical weight-stationary dataflow. Moreover, the
simulation-based neural network accelerator also facilitates
the fault injection and analysis. The communication protocols
used in IoTs greatly affect the bandwidth and even dominate
the training time in R2F. While the different IoT protocols
provide distinct bandwidth as shown in Table II and they
are usually utilized for different domains of IoT applications,
802.15.4g (802) and HSPA with moderate bandwidth and
power consumption are more likely for the low power AIoT
applications, and they are evaluated in the experiments.

2) Software: we use ThingsBoard as a representative IoT
framework and PyTorch as a typical deep learning framework
for R2F. In order to compress the increments of the intermedi-
ate inference outputs on the ARM processors for efficient data
transmission, we utilized the optimized LZ4 implementation
in [53] that offers fast lossless compression in the experiments.

3) Fault Injection: Soft errors are randomly distributed
to all the memory cells of the neural network accelerator
including the register files and the on-chip buffers. When a
memory cell is affected by a soft error, the bit in the memory
cell will be flipped. The soft error rate i.e., bit error rate (BER)
is defined as the ratio of the bit faults over the total number
of the memory cells. As the soft errors in the register file and
input/output/weight buffers essentially affect the input and out-
put of each MAC (multiply-accumulate), we have the influence

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 8

TABLE III
NEURAL NETWORK BENCHMARK

Network ResNet18 ResNet50 MobileNet ShuffleNet SqueezeNet

Model Size 1.2 MB 24.3 MB 3.3 MB 1.3 MB 1.2 MB

of Layers 20 53 52 57 26

of the soft errors in the neural network accelerator converted
to the random bit flip of both the input and output of each
basic MAC in the neural network processing similar to prior
works [19] [40] [34] [35]. Basically, bit errors are randomly
injected to the input features, weights, hidden states, and
output features during the neural network execution. It mainly
evaluates the soft errors in algorithm level and does not take
the soft errors in the controlling logic into consideration. This
algorithm-level fault analysis strategy is also demonstrated
in [54]. In this case, BER denotes the number of bit errors
relative to the total bit number of the weights, inputs, hidden
states, and output features. In the experiments, we investigate
a broad range of BER setups starting from 1.0 × 10−6 to
1.0 × 10−4. In addition, we focus on the fault tolerance of
neural network models which are usually deployed on a deep
learning accelerator in an AIoT processor, and assume that the
GPP processor is reliable.

4) Neural Network Benchmark: In the experiment, we
take five typical lightweight neural network models including
ResNet18, ResNet50, MobileNet, ShuffleNet, and SqueezeNet
utilized as the neural network benchmark. All the models are
8-bit fixed point models and pre-trained for ImageNet dataset.
Details of these neural network models can be found in Table
III. The number of the convolution layers ranges from 20 to
57. The sizes of the neural network models ranges from 1.2
MB to 24.3 MB. In the experiments, we select 50000 images
from ImageNet for the retraining, set the epoch to 1 and the
batch size to 16.

B. Prediction Accuracy Improvement

In this section, we mainly evaluate the prediction accuracy
of the retraining and have the different retraining approaches
compared. The neural network models executed directly on
the accelerators with soft errors are considered as the baseline
(Base). R2F puts the remote neural network accelerator into
the training loop such that the retrained model can be fault-
tolerant. The directly retrained model is noted with (DRM).
While the direct retraining with R2F requires a large amount
of intermediate data transmission particularly from the AIoT
processor to the server, we further apply the TMR-based
retraining, which has the compressed sparse increments rather
than the intermediate outputs transmitted to the server for the
retraining. The retrained model is denoted as an approximate
retrained models (APRM). For the TMR-based retraining, we
also explore the trade-offs between the percentage of the
TMRed layers and the data transmission reduction. Basically,
when more layers are transmitted with the original intermedi-
ate outputs, the retrained model will be more close to DRM,
but more data transmission is required. In this work, we use the
percentage of the identical outputs between the approximate
intermediate outputs and the actual intermediate outputs as a

simple output similarity evaluation metric and we only conduct
the TMR-based compression to layers with higher similarity.
Note that the metric is obtained with an offline analysis on a
single random input. We have three different similarity thresh-
olds, including 80%, 60%, and 50%, applied and evaluated in
the experiments. The obtained models are denoted as APRM-
80%, APRM-60%, APRM-50% respectively.

The resulting model accuracy of the different retraining is
compared in Figure 4. It can be observed that the prediction
accuracy of the neural network model degrades gracefully at
the beginning but drops rapidly when the BER rises to certain
points according to the ’Base’ curve. Basically, the neural
network models are fault-tolerant to the errors with in certain
limit, but the models suffer dramatic accuracy degradation
when the faults reach to the limit. In contrast to the ’Base’,
the retrained models with on-site computing errors generally
exhibit clear prediction accuracy improvement. While the
improvement is trivial when the BER is low, it gets significant
when the BER is relatively higher. The top-5 prediction
accuracy of DRM improves by 1.93% on average compared to
’Base’ at the highest BER under which the models can still be
retrained. However, the on-site retraining shows less accuracy
improvement and even fails to converge for some of the neural
networks under high BER. Particularly, the retraining that does
not converge is denoted as ’X’ in the figures. We argue that this
may also be caused by the limited fault-tolerance of the neural
network models. Generally, the retraining works in a certain
limit of the BER and fails when the BER exceeds the limit.
When we compare DRM and the different APRM methods,
we notice that the prediction accuracy of the retrained neural
network models show little difference and it confirms that
TMR can be applied to reduce the data transmission in a large
range of scenarios.

In order to further enlarge the benefits of the retraining, we
propose to apply TMR to a small set of the most critical neural
network layers to avoid the substantial performance penalty
of a conventional TMR while retaining the model accuracy as
much as possible. We call this approach as TMR-based critical
layer protection (TCLP). As we can adjust the number of the
critical layers and the performance overhead to compromise
with the prediction accuracy improvement, we have a set of
TCLP implementations with different performance overhead
evaluated. We set the redundant computing relative to the
original neural network computing as the overhead metric. The
different TCLP implementations are denoted as TCLP-200%,
TCLP-50%, and TCLP-20% respectively. TCLP-200% essen-
tially refers to the standard TMR implementations. In addition,
we also have the DRM and ’Base’ compared. The comparison
is shown in Figure 5. It can be observed that the retraining
on top of the conventional TMR-based protection, i.e. TCLP-
200% shows 13.73% and 4.97% accuracy improvement on
average compared to both the ’Base’ and ’DMR’ particularly
when the BER reaches to 1×10−4. When the TMR overhead
is constrained, the resulting model accuracy also shows clear
improvement compared to the DRM but imposes much less
performance overhead than the full TMR. For instance, TCLP-
200% shows 4.97% accuracy improvement on average over
the DRM with 1 × 10−4 fault injection, while TCLP-50%

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 9

DRM APRM-80% APRM-60% Base

(a) ResNet18 (c) MobileNet(b) ResNet50 (d) ShuffleNet (e) SqueezeNet

84%

85%

86%

87%

88%

89%

90%

0 1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

A
cc

u
ra

cy

BER

89%

90%

91%

92%

93%

94%

95%

0 1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

BER

80%

82%

84%

86%

88%

90%

92%

0 1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

BER

70%

71%

72%

73%

74%

75%

76%

0 1
.E

-0
6

5
.E

-0
6

7
.E

-0
6

9
.E

-0
6

1
.E

-0
5

1
.E

-0
4

BER

66%

68%

70%

72%

74%

76%

78%

0 1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

BER

APRM-50% Not Converged

Fig. 4. The achieved prediction accuracy of the neural network models trained with data compression optimization under different output similarity thresholds.

DRM TCLP-200% TCLP-50% Base

(a) ResNet18 (c) MobileNet(b) ResNet50 (d) ShuffleNet (e) SqueezeNet

TCLP-20%

84%

85%

86%

87%

88%

89%

90%

0 1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

A
cc

u
ra

cy

BER

88%

89%

90%

91%

92%

93%

94%

0 1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

BER

80%

82%

84%

86%

88%

90%

92%

0 1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

BER

71%

72%

73%

74%

75%

76%

77%

0 1
.E

-0
6

5
.E

-0
6

7
.E

-0
6

9
.E

-0
6

1
.E

-0
5

1
.E

-0
4

BER

66%

68%

70%

72%

74%

76%

78%

0 1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

BER

Not Converged

Fig. 5. The prediction accuracy of the retrained neural network models with different critical layer protection.

shows 2.01% accuracy improvement over the DRM. On the
other hand, the performance of TCLP-200% is 4X lower
compared to TCLP-50%. Similar design trade-offs between the
model accuracy improvement and the performance overhead is
observed on all the neural network models in the benchmark.
Moreover, the experiments also reveal that some of the neural
network layers are more critical than the others and prioritizing
these layers for TMR protection helps to achieve significant
accuracy improvement with least performance penalty. In
addition, these design trade-offs are supported in R2F and can
be applied for different application requirements.

C. Training Time Reduction

As discussed in prior section, the proposed TMR-based ap-
proximate retraining can greatly reduce the training time. We
have the training time of the different neural network models
under different IoT communication protocols decomposed and
evaluated in Figure 6. Note that the output similarity threshold
in the experiment is set to be 60% and will be discussed
in the next subsection. The runtime of the retraining in
R2F consists of six stages, including the forward propagation
(FP), TMR processing of the intermediate outputs from FP
(TMR), increment calculation, compression & decompression
(Dec/compression), data transmission from the AIoT processor
to the server (Data Transmission), backward propagation (BP),
and model transmission from the server to the AIoT processor
(Model Transmission). To facilitate the comparison over the
different neural network models and communication protocols,
we have the training time normalized to that of DRM, which
has the neural network intermediate outputs transmitted di-
rectly to the server. Note that 802 and HSPA listed in Table II
are used in this experiment. All the five representative neural
network models listed in Table III are evaluated.

It can be observed that the data transmission dominates the
retraining time when BER is relatively high. This is mainly
because that the amount of the intermediate outputs of FP is
usually large compared to the weights and it increases propor-
tional to the batch sizes. Many of the network layers fail to
meet the similarity threshold and require the direct data trans-
mission at higher BER. On the other hand, the communication
bandwidth provided by the typical IoT processors is limited
and it further induces the large data transmission overhead.
When the BER is lower, the majority of the neural network
layers can benefit from the TMR-based data compression and
the R2F training time is greatly reduced. In addition, we notice
that the neural network models also have significant influence
on the training time optimization. The normalized retraining
time of ShuffleNet and MobileNet is much less compared to
that of the rest neural network models. This may be caused
by both the fault tolerance and sizes of the neural network
models. Neural network models with smaller sizes and less
computation are less probably to produce wrong computing
results and thus are more likely to be optimized with the
TMR-based compression in R2F. In contrast, ResNet18 and
ResNet50 with much more computation may fail to meet the
similarity threshold and more data needs to be transmitted
directly. SqueezeNet is also as lighweight as ShuffleNet and
MobileNet, but it is more sensitive to the soft errors as shown
in Figure 4. As a result, it also requires considerable direct
data transmission and consumes non-trivial time. In summary,
the retraining time reduction is closely related with the BER.
When the BER is low e.g. 1 × 10−6, the retraining time can
be reduced by 88% on average compared to that of DRM.
When the BER is moderate e.g. 1× 10−5, the retraining time
can be reduced by 73% on average. When the BER is high
e.g. 1× 10−4, the retraining time can be reduced by 38% on
average.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 10

(f) HSPA/ResNet18 (h) HSPA/MobileNet(g) HSPA/ResNet50 (i) HSPA/ShuffleNet (j) HSPA/SqueezeNet

BP Data TransmissionDec/compression FP Model Transmission TMR

(a) 802/ResNet18 (c) 802/MobileNet(b) 802/ResNet50 (d) 802/ShuffleNet (e) 802/SqueezeNet

0%

20%

40%

60%

80%

100%

1
E

-6

5
E

-6

1
E

-5

3
E

-5

5
E

-5

1
E

-4

N
o
rm

al
iz

ed

R

u
n
ti

m
e

BER

0%

20%

40%

60%

80%

100%

1
E

-6

5
E

-6

1
E

-5

3
E

-5

5
E

-5

1
E

-4

N
o
rm

al
iz

ed

R

u
n
ti

m
e

BER

0%

20%

40%

60%

80%

100%

1
E

-6

5
E

-6

1
E

-5

3
E

-5

5
E

-5

BER

0%

20%

40%

60%

80%

100%

1
E

-6

5
E

-6

1
E

-5

3
E

-5

5
E

-5

BER

0%

20%

40%

60%

80%

100%

1
E

-6

5
E

-6

1
E

-5

3
E

-5

5
E

-5

BER

0%

20%

40%

60%

80%

100%

1
E

-6

5
E

-6

1
E

-5

3
E

-5

5
E

-5

BER

0%

20%

40%

60%

80%

100%

1
E

-6

5
E

-6

1
E

-5

3
E

-5

5
E

-5

BER

0%

20%

40%

60%

80%

100%

1
E

-6

5
E

-6

1
E

-5

3
E

-5

5
E

-5

BER

0%

20%

40%

60%

80%

100%

1
E

-6

5
E

-6

1
E

-5

3
E

-5

5
E

-5

1
E

-4

BER

0%

20%

40%

60%

80%

100%

1
E

-6

5
E

-6

1
E

-5

3
E

-5

5
E

-5

1
E

-4

BER

Fig. 6. The distribution of the retraining time normalized to the direct retraining. In particular, ”HSPA/ResNet18” means that the AIoT processor communicates
with HSPA protocol and the retrained neural network is ResNet18.

(a) ResNet18 (c) MobileNet(b) ResNet50 (d) ShuffleNet (e) SqueezeNet

0%

5%

10%

15%

20%

1
.E

-0
6

5
.E

-0
6

7
.E

-0
6

9
.E

-0
6

1
.E

-0
5

BER

APRM-60%APRM-50% APRM-80%

0%

20%

40%

60%

80%

1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

N
o
rm

al
iz

ed
 D

at
a

T
ra

n
sm

is
si

o
n

BER

0%

20%

40%

60%

80%

1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

BER

0%

10%

20%

30%

40%

1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

BER

0%

15%

30%

45%

60%

1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

BER

Fig. 7. The amount of data transmission required by R2F under different similarity metrics.

D. Design Option Tuning

The data transmission reduction directly depends on the
amount of the layers that can be approximated with TMR
according to the output similarity metric. Thus, we have the
amount of the data transmission required by the different
approximate retraining approaches, including APRM-50%,
APRM-60%, and APRM-80%, normalized to that required by
DRM and compared. The comparison is shown in Figure 7. It
can be observed that more data transmission can be reduced
under lower BER when almost all the intermediate data can
be effectively compressed with the TMR-based increment
transmission. When BER rises, more neural network layers
suffer considerable computing errors and these errors can not
be mitigated with TMR. As a result, only a fraction of the
neural network layers can be compressed under higher BER.
Another observation from Figure 7 is that the output similarity
threshold does not show dramatic data transmission variations.
It is mainly because that the computing errors caused by the
soft errors may aggregate and the number of the computing
errors increases dramatically with the rising BER. As a result,
the similarity metric is not proportional to the amount of the
data transmission. The amount of the data transmission in the
same neural network model retraining under the different BER
also confirms this feature. In this work, we adopt 60% as the
similarity threshold to decide whether the outputs of a neural
network layer will be transmitted directly or with the TMR-

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128

A
cc

u
ra

cy

Batch Size

ResNet18

ResNet50

MobileNet

ShuffleNet

SqueezeNet

Fig. 8. The influence of batch size on the proposed R2F training.

based increment compression.
The amount of the intermediate data transmission is propor-

tional to the batch size and affects the R2F training time. Thus,
we investigate the influence of the batch size on the retrained
model accuracy. The experiment result is shown in Figure 8.
It can be observed that larger batch size is generally beneficial
to the model accuracy but the benefits roughly get saturated
when the batch size reaches to 16. The main reason is that
larger batch training helps to neutralize the various influence
of the computing errors caused by the random soft errors. In
this work, we set batch size to be 16 for the different model
retraining in R2F.

TMR is the basis of the R2F optimizations for both the
retraining time and the resulting model accuracy. We have

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 11

NW-TMR LW-TMR

0%

20%

40%

60%

80%

100%

1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

O
u

tp
u

t
S

im
il

ar
it

y

BER

0%

20%

40%

60%

80%

100%

1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

BER

0%

20%

40%

60%

80%

100%

1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

BER

0%

20%

40%

60%

80%

100%

1
.E

-0
6

5
.E

-0
6

7
.E

-0
6

9
.E

-0
6

1
.E

-0
5

BER

0%

20%

40%

60%

80%

100%

1
.E

-0
6

5
.E

-0
6

1
.E

-0
5

3
.E

-0
5

5
.E

-0
5

1
.E

-0
4

BER

(a) ResNet18 (c) MobileNet(b) ResNet50 (d) ShuffleNet (e) SqueezeNet

Fig. 9. Last layer output similarity comparison of the different TMR implementations.

82%

84%

86%

88%

90%

92%

1 4 16

A
cc

u
ra

cy

Epoch

1.E-06 1.E-05 1.E-04BER

Fig. 10. The influence of different epoch setups on the proposed R2F training.

two potential TMR implementations, i.e. NW-TMR and LW-
TMR evaluated with the output similarity metric. The eval-
uation result is presented in Figure 9. It shows that LW-
TMR shows significantly higher output similarity especially
under relatively lower BER. The main reason is that LW-
TMR has the computing errors mitigated in layer order of
the neural network architecture. The computing errors of the
upstream layers are alleviated with TMR before they are
passed to the downstream layers. In contrast, NW-TMR has
the computing errors passed through the entire neural network
and computing errors in upstream neural network layers can
aggregate in the downstream neural network layers. Thereby,
the computing errors are much larger and the TMR is more
likely to fail. When the BER is too high, the majority of the
computing errors induced by the soft errors can no longer
be mitigated with neither TMR implementations. As a result,
the difference narrows down in these cases, which is expected
and also roughly exhibits the upper bound of the TMR-based
protection.

Since larger epoch setups typically improve the prediction
accuracy of the resulting model. We take ResNet18 as an
example and evaluated the model accuracy under different
epoch setups. The experiment result is shown in Figure 10.
It can be observed that the retrained model accuracy shows
little improvement given larger epoch. The main reason is that
the fault-tolerant retraining is based on a pre-trained model
rather than a totally new model. In this case, a single epoch
is sufficient according to our experiments.

VII. CONCLUSION

Retraining is widely utilized to exploit the inherit redun-
dancy of the neural network models to tolerate the soft errors

in AIoT processors, but it is difficult to capture the influence
of the soft errors in conventional offline training on GPUs. In
this work, we propose R2F, a remote retraining framework, to
put the remote AIoT processors in the training loop such that
the computing errors caused by the soft errors can be learned
with the application data and aware by the resulting models.
On top of the basic R2F, we also propose an elastic design
trade-off between the model accuracy and the performance
penalty with partial TMR optimization to further enhance the
retraining. According to our experiments, R2F improves the
top-5 model accuracy by 1.93%-13.73% with the performance
penalty ranging from 0%-200%. In addition, we notice that
the remote retraining requires a large amount of intermediate
data transmission between the AIoT processors and the server,
which even dominates the training time due to the limited
uplink bandwidth in the AIoT processors. To address the prob-
lem, we propose a sparse increment compression approach by
taking advantage of the TMR to reduce the data transmission
significantly. Our experiment results reveal that the retraining
time can be reduced by 38%-88% on average depending on
the BER.

VIII. ACKNOWLEDGEMENT

This paper is supported in part by the National Key
Research and Development Program of China under grant
2020YFB1600201, and in part by the National Natural Sci-
ence Foundation of China (NSFC) under grant No.(61902375,
61876173). The corresponding author is Cheng Liu.

REFERENCES

[1] K. L. Loh, “1.2 fertilizing AIoT from roots to leaves,” in 2020 IEEE
International Solid- State Circuits Conference - (ISSCC), 2020, pp. 15–
21.

[2] S. Kodali, P. Hansen, N. Mulholland, P. Whatmough, D. Brooks, and G.-
Y. Wei, “Applications of deep neural networks for ultra low power iot,”
in 2017 IEEE International Conference on Computer Design (ICCD).
IEEE, 2017, pp. 589–592.

[3] S. Lee and S. Nirjon, “Neuro. zero: a zero-energy neural network
accelerator for embedded sensing and inference systems,” in Proceedings
of the 17th Conference on Embedded Networked Sensor Systems, 2019,
pp. 138–152.

[4] S. Venkataramani, J. Choi, V. Srinivasan, W. Wang, J. Zhang, M. Schaal,
M. J. Serrano, K. Ishizaki, H. Inoue, E. Ogawa et al., “Deeptools:
Compiler and execution runtime extensions for rapid ai accelerator,”
IEEE Micro, vol. 39, no. 5, pp. 102–111, 2019.

[5] A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” in 2011 International Reliability Physics Symposium. IEEE,
2011, pp. 5B–4.

[6] D. Y.-W. Lin and C. H.-P. Wen, “Dad-ff: Hardening designs by delay-
adjustable d-flip-flop for soft-error-rate reduction,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp.
1030–1042, 2020.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 12

[7] J. Nunez-Yanez, “Energy proportional neural network inference with
adaptive voltage and frequency scaling,” IEEE Transactions on Com-
puters, vol. 68, no. 5, pp. 676–687, 2018.

[8] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep
convolutional neural networks for object recognition,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2015, pp. 1131–1135.

[9] P. Merolla, R. Appuswamy, J. Arthur, S. K. Esser, and D. Modha, “Deep
neural networks are robust to weight binarization and other non-linear
distortions,” arXiv preprint arXiv:1606.01981, 2016.

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 675–678.

[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[12] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[13] S. Liao, Z. Li, X. Lin, Q. Qiu, Y. Wang, and B. Yuan, “Energy-efficient,
high-performance, highly-compressed deep neural network design using
block-circulant matrices,” in 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2017, pp. 458–465.

[14] M. Verhelst and B. Moons, “Embedded deep neural network processing:
Algorithmic and processor techniques bring deep learning to iot and edge
devices,” IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 55–65,
2017.

[15] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[16] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An ultra-
low power convolutional neural network accelerator based on binary
weights,” in 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 2016, pp. 236–241.

[17] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2016, pp. 267–278.

[18] S. M. Nabavinejad, M. Baharloo, K.-C. Chen, M. Palesi, T. Kogel,
and M. Ebrahimi, “An overview of efficient interconnection networks
for deep neural network accelerators,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 10, no. 3, pp. 268–282,
2020.

[19] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-
holland, D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying
the resilience of deep neural networks,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[20] D. Xu, Z. Zhu, C. Liu, Y. Wang, H. Li, L. Zhang, and K.-T. Cheng,
“Persistent fault analysis of neural networks on fpga-based acceleration
system,” in 2020 IEEE 31st International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 2020,
pp. 85–92.

[21] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[22] M. A. Hanif, R. Hafiz, and M. Shafique, “Error resilience analysis for
systematically employing approximate computing in convolutional neu-
ral networks,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 913–916.

[23] B. Salami, O. S. Unsal, and A. C. Kestelman, “On the resilience of
RTL NN accelerators: fault characterization and mitigation,” in 2018
30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE, 2018, pp. 322–329.

[24] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104,
p. 101689, 2020.

[25] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu,
L. Orosa, and J. Choi, “Robust machine learning systems: Challenges,
current trends, perspectives, and the road ahead,” IEEE Design & Test,
vol. 37, no. 2, pp. 30–57, 2020.

[26] M. Qin, C. Sun, and D. Vucinic, “Robustness of neural networks against
storage media errors,” arXiv preprint arXiv:1709.06173, 2017.

[27] S. Kim, P. Howe, T. Moreau, A. Alaghi, L. Ceze, and V. S. Sathe,
“Energy-efficient neural network acceleration in the presence of bit-level
memory errors,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 65, no. 12, pp. 4285–4298, 2018.

[28] X. He, L. Ke, W. Lu, G. Yan, and X. Zhang, “Axtrain: Hardware-oriented
neural network training for approximate inference,” in Proceedings of
the International Symposium on Low Power Electronics and Design,
2018, pp. 1–6.

[29] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” IEEE Access, vol. 5, pp. 17 322–17 341, 2017.

[30] C.-S. Leung, W. Y. Wan, and R. Feng, “A regularizer approach for
rbf networks under the concurrent weight failure situation,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 6,
pp. 1360–1372, 2016.

[31] C. Schorn, A. Guntoro, and G. Ascheid, “An efficient bit-flip resilience
optimization method for deep neural networks,” in 2019 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE,
2019, pp. 1507–1512.

[32] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang,
“Accelerator-friendly neural-network training: Learning variations and
defects in rram crossbar,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. IEEE, 2017, pp. 19–24.

[33] L. Xia, M. Liu, X. Ning, K. Chakrabarty, and Y. Wang, “Fault-
tolerant training enabled by on-line fault detection for rram-based neural
computing systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 9, pp. 1611–1624, 2018.

[34] X. Ning, G. Ge, W. Li, Z. Zhu, Y. Zheng, X. Chen, Z. Gao, Y. Wang,
and H. Yang, “Ftt-nas: Discovering fault-tolerant neural architecture,”
arXiv preprint arXiv:2003.10375, 2020.

[35] W. Li, X. Ning, G. Ge, X. Chen, Y. Wang, and H. Yang, “Ftt-nas:
discovering fault-tolerant neural architecture,” in 2020 25th Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE, 2020,
pp. 211–216.

[36] T. Liu, W. Wen, L. Jiang, Y. Wang, C. Yang, and G. Quan, “A fault-
tolerant neural network architecture,” in 2019 56th ACM/IEEE Design
Automation Conference (DAC), 2019, pp. 1–6.

[37] L. H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience
analysis of deep neural networks and improving their fault tolerance
using clipped activation,” in 2020 Design, Automation Test in Europe
Conference Exhibition (DATE), 2020, pp. 1241–1246.

[38] G. Gambardella, J. Kappauf, M. Blott, C. Doehring, M. Kumm, P. Zipf,
and K. Vissers, “Efficient error-tolerant quantized neural network accel-
erators,” in 2019 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2019,
pp. 1–6.

[39] Z. Xu and J. Abraham, “Safety design of a convolutional neural
network accelerator with error localization and correction,” in 2019 IEEE
International Test Conference (ITC). IEEE, 2019, pp. 1–10.

[40] E. Ozen and A. Orailoglu, “Sanity-check: Boosting the reliability of
safety-critical deep neural network applications,” in 2019 IEEE 28th
Asian Test Symposium (ATS). IEEE, 2019, pp. 7–75.

[41] K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang, F. Cappello,
and Z. Chen, “Algorithm-based fault tolerance for convolutional neural
networks,” arXiv preprint arXiv:2003.12203, 2020.

[42] S. K. S. Hari, M. Sullivan, T. Tsai, and S. W. Keckler, “Making
convolutions resilient via algorithm-based error detection techniques,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[43] Y. Zhang, S. Lin, R. Wang, Y. Wang, Y. Wang, W. Qian, and R. Huang,
“When sorting network meets parallel bitstreams: a fault-tolerant parallel
ternary neural network accelerator based on stochastic computing,” in
2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2020, pp. 1287–1290.

[44] W. Li, G. Ge, K. Guo, X. Chen, Q. Wei, Z. Gao, Y. Wang, and H. Yang,
“Soft error mitigation for deep convolution neural network on fpga
accelerators,” in 2020 2nd IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS). IEEE, 2020, pp. 1–5.

[45] H. R. Mahdiani, S. M. Fakhraie, and C. Lucas, “Relaxed fault-tolerant
hardware implementation of neural networks in the presence of multiple
transient errors,” IEEE transactions on neural networks and learning
systems, vol. 23, no. 8, pp. 1215–1228, 2012.

[46] D. Xu, C. Chu, C. Liu, Q. Wang, Y. Wang, L. Zhang, H. Liang, and K.-
T. T. Cheng, “A hybrid computing architecture for fault-tolerant deep
learning accelerators,” in The 38th IEEE International Conference on
Computer Design(ICCD). IEEE, 2020, pp. 1–8.

[47] J. J. Zhang, K. Basu, and S. Garg, “Fault-tolerant systolic array based
accelerators for deep neural network execution,” IEEE Design & Test,
vol. 36, no. 5, pp. 44–53, 2019.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXX 2021 13

[48] J. J. Zhang, T. Gu, K. Basu, and S. Garg, “Analyzing and mitigating
the impact of permanent faults on a systolic array based neural network
accelerator,” in 2018 IEEE 36th VLSI Test Symposium (VTS). IEEE,
2018, pp. 1–6.

[49] M. Abdullah Hanif and M. Shafique, “Salvagednn: salvaging deep
neural network accelerators with permanent faults through saliency-
driven fault-aware mapping,” Philosophical Transactions of the Royal
Society A, vol. 378, no. 2164, p. 20190164, 2020.

[50] Z. Song, Y. Sun, L. Chen, T. Li, N. Jing, X. Liang, and L. Jiang,
“ITT-RNA: Imperfection Tolerable Training for RRAM-Crossbar based
Deep Neural-network Accelerator,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2020.

[51] S. Kim, P. Howe, T. Moreau, A. Alaghi, L. Ceze, and V. Sathe,
“Matic: Learning around errors for efficient low-voltage neural network
accelerators,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 1–6.

[52] M. Ma, J. Tan, X. Wei, and K. Yan, “Process variation mitigation on
convolutional neural network accelerator architecture,” in 2019 IEEE
37th International Conference on Computer Design (ICCD). IEEE,
2019, pp. 47–55.

[53] C. Yann, H. Felix, R. Ido, and O. Rei, “LZ4 - Extremely fast com-
pression,” https://github.com/lz4/lz4, 2020, [Online; accessed 24-April-
2021].

[54] Y. He, P. Balaprakash, and Y. Li, “Fidelity: Efficient resilience anal-
ysis framework for deep learning accelerators,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 270–281.

https://github.com/lz4/lz4

	I Introduction
	II Related Work
	II-A AIoT Processors
	II-B Fault-tolerant Neural Network Processing
	II-B1 Fault-tolerant Neural Network Models
	II-B2 Fault-tolerant Neural Network Accelerator Architectures
	II-B3 Hybrid Fault-tolerant Techniques

	III motivation
	III-A Influence of Soft Errors on Model Accuracy
	III-B Effectiveness of the Model Retraining on Soft Errors

	IV Remote Retraining Framework (R2F)
	IV-A Overview
	IV-B Intermediate Output Extraction
	IV-C Client-Server Communication Interface

	V R2F Optimizations
	V-A Communication Optimization
	V-B Critical Layer Protection
	V-C TMR Implementation Optimization

	VI Experiment
	VI-A Experiment Setup
	VI-A1 Hardware Platform
	VI-A2 Software
	VI-A3 Fault Injection
	VI-A4 Neural Network Benchmark

	VI-B Prediction Accuracy Improvement
	VI-C Training Time Reduction
	VI-D Design Option Tuning

	VII Conclusion
	VIII Acknowledgement
	References

