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Abstract—Memory bandwidth has become the real-time bottle-
neck of current deep learning accelerators (DLA), particularly for
high definition (HD) object detection. Under resource constraints,
this paper proposes a low memory traffic DLA chip with joint
hardware and software optimization. To maximize hardware
utilization under memory bandwidth, we morph and fuse the
object detection model into a group fusion-ready model to reduce
intermediate data access. This reduces the YOLOv2’s feature
memory traffic from 2.9 GB/s to 0.15 GB/s. To support group
fusion, our previous DLA based hardware employes a unified
buffer with write-masking for simple layer-by-layer processing
in a fusion group. When compared to our previous DLA with
the same PE numbers, the chip implemented in a TSMC
40nm process supports 1280x720@30FPS object detection and
consumes 7.9X less external DRAM access energy, from 2607
mJ to 327.6 mJ.

Index Terms—Deep learning accelerator, layer fusion, object
detection, high definition.

I. INTRODUCTION

OBJECT detection with deep learning has attracted sig-
nificant research attention in recent years due to its wide

success over traditional computer vision methods [1], [2].
However, with deeper and wider deep learning models and
larger input size, real-time model execution poses challenges
of high computation cost and memory bandwidth, especially
for edge devices as in autonomous driving. Thus, hardware ac-
celeration with deep learning accelerators (DLAs) is required
to tackle these challenges.

Many DLAs have been proposed with massive parallel
processing elements (PEs) to solve the high computation cost
and different data reuse policies to reduce memory traffic.
We can classify these designs into layer-by-layer process-
ing or layer fusion processing according to their hardware
scheduling. The widely used layer-by-layer DLAs process one
layer after another, which only needs to store one layer of
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weights and partial feature maps inside a chip. They reduce
memory traffic by different data reuse [3]–[5], larger on-chip
DRAM macro [6]–[10], precision adaptive design [11]–[13],
and sparse convolution [14]–[17]. In which, major external
DRAM bandwidth savings come from reusing input, weights,
or partial sums of output [3]. Similar approaches have also
been adopted in DLAs specific to object detection [18]–
[20]. In addition, most of those object detection designs use
abundant memory resources in FPGA [18] to avoid frequent
external DRAM access, which does not apply to ASIC designs
for edge devices. These data reuse policies are limited to one-
layer processing only. All these layer-by-layer DLAs have to
save per layer output to the external DRAM and load it back
for next layer processing, which causes high memory traffic
and inhibits further possible processing speedup due to lack
of data.

In contrast, layer-fusion DLAs [21]–[23] fuse multiple-layer
computation that processes the next layer once its input data
is ready. Thus, it only needs to load the input data of the
first layer and save the output data of the last layer in the
fusion group and can save the access of intermediate data.
The fusion requires a large buffer to store intermediate feature
maps for fusion processing. To avoid this, the input is usually
partitioned into tiles for processing. However, the overlapped
areas between tiles have to be stored and recomputed due
to data dependency, which results in significant buffer cost
when more layers are fused. Thus, non-overlapped tile pro-
cessing proposed by split-CNN [24] or block convolution [25]
avoids this without considering the overlapped area and still
achieves similar accuracy as the original model. Previous non-
overlapped tile processing is targeted on GPU or FPGA, which
assumes a large enough buffer for weight storage. However,
DLA with ASIC used in edge devices has a much smaller
buffer. Note that the layer fusion assumes that all weights
within the fusion group should be stored on the chip to avoid
repeatedly access during tile processing. This poses design
difficulties for a modern network, whose per layer weight
number could be easily over 1 M, exceeds buffer size and
thus inhibits the possibility of layer fusion. Such a problem
cannot be solved by hardware design only as in previous
approaches, which needs model adaption for better algorithm
and architecture co-design.

This work offers a fusion ready hardware and software with
collaborative optimization to develop a low memory traffic
DLA for HD size object detection to address the aforemen-
tioned difficulties. The baseline model, YOLO-v2 [1], needs
55.6M parameters with external memory traffic of 1.6GB

ar
X

iv
:2

20
5.

01
57

1v
1 

 [
cs

.A
R

] 
 2

 M
ay

 2
02

2



2

weight and 4.6GB feature map for 1280x720@30FPS exe-
cution. We propose the resource-constrained network fusion
and pruning (RCNet) to make the model group fusion ready.
The preceding process has also combined hardware-specific
guidelines to make the model hardware friendly. This allows
the model to fit within the limits of weight and feature buffer
size, maximizing the benefits of layer fusion and hardware
utilization. Following model optimization, the hardware based
on our prior design [5] uses the unified buffer design with
write masking to support group fusion. Its computing flow
also employs the modified nonoverlapped tile processing [24],
[25] to reduce the data dependency between tiles. The final
chip is implemented with the TSMC 40nm process, which
achieves real-time high definition object detection and needs
7.9X lower external DRAM energy than our previous design
[5] with the same PE numbers.

The rest of the paper is organized as follows. Section II
introduces the proposed resource-constrained network fusion
and pruning for YOLO-v2. Section III presents the proposed
architecture. The implementation results and comparisons are
shown in Section IV. Finally, this paper is concluded in Section
V.

II. RESOURCE-CONSTRAINED NETWORK FUSION AND
PRUNING (RCNET) FOR YOLO-V2

A. Overview

The main limits for maximizing the benefits of layer fusion
are the weight and feature map buffer sizes. If the weight
buffer cannot hold all weights in a fusion group, weights
must be read repeately from external memory for each tile
processing, resulting high memory traffic. The tile size is
determined by the size of the feature map buffer, which is
a trade-off between accuracy and hardware cost.

For object detection, we choose YOLO-v2 as our baseline
model for its simplicity. YOLO-v2 needs 55.6M parameters,
which makes layer fusionvery unfeasible since each layer
parameter could easily exceed the weight buffer capacity
of edge devices. To make it fusion ready while maximize
hardware utilization, we propose using RCNet to morph the
model according to the buffer size. This resource constrained
YOLO-v2 is denoted as RC-YOLOv2.

B. Lightweight model conversion

The backbone of the original YOLO-v2 is a simple stack
CNN structure like VGG [26]. This model is not ready for
layer fusion due to its large model size. For a fusion-ready
model, the weight numbers of any two consecutive layers shall
be smaller than the weight buffer size after RCNet. Otherwise,
the fusion operation will be degenerated to a layer-by-layer
one.

To make YOLO-v2 fusion ready, we replace the basic
convolutional layer with the MobileNetv2 [27] block that
combines one depthwise, two pointwise convolutions, and skip
connection layers as shown in Fig. 1 (a). In this work, inspired
by [28] that the expansion factor used in MobileNetv2 is not a
must, we remove the first pointwise layer of MobileNetv2 as
shown in Fig. 1 (b). Other model compression approaches can

Fig. 1: (a) The basic MobileNetv2 block, and (b) the proposed
one

Fig. 2: The buffer size constrained structure morphing

also be applied to reduce model size. This step can be skipped
if the input model is near fusion-ready. Our RC-YOLOv2 is
constructed by stacking the blocks shown in Fig. 1 (b).

C. Buffer size constrained structure morphing

Even after lightweight conversion, directly fusing multiple
layers as in [25] cannot maximize the number of fused layers
due to the uneven distribution of per layer size. To solve
this, we propose a new pruning procedure inspired by [29] to
maximize the number of fused layers while remaining within
the weight buffer size set by designers. Fig. 2 shows the
detailed procedure. We first decide the group partition for
fusion by analyzing the model from input to output. If the
size of a layer exceeds the size of the available weight buffer,
the fused layer group ends from its previous layer and we
start a new fusion group from this layer. Our goal is to create
a network in which the total weight size of each fusion group
is close to the weight buffer size B, and to fuse more layers
to avoid external memory traffic for intermediate data.

1) Formulation: The goal of training any network is to
minimize a loss L:

min
θ

L (θ)

where θ denotes all trainable parameters of the network and L
is a loss measuring how well a network is and depends on the
target task. Let O denotes the network after model conversion.
In the first step, we partition the network into several fusion
groups G = {G1, G2, • • •, Gk}. As mentioned above, the
fusion strategy is from input to output. In this step, we allow
the total weight size of each fusion group to exceed the weight
buffer size in a certain range (50% for example in this work).
In the second step, the total weight size of the fusion group
will be slimmed to be smaller than the weight buffer size. At
the same time, the new network O′ learns the optimal structure
with these fixed fusion groups. The formulation is as below

O
′
= argmin
F (Gi)≤B, ∀i=1∼k

min
θ

L (θ) (1)
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Fig. 3: An RCNet example at the first iteration,: (a) before
RCNet, and (b) after RCNet. Best view in colors.

Fig. 4: An RCNet example at the second iteration: (a) before
RCNet, and (b) after RCNet. Best view in colors.

where F represents the total weight size of each fusion group.
To reduce the weight size of each fusion group, we use L1
regularization to train the scaling factor γ in BN that is applied
after every convolutional layer and set the model size as a
constraint. Therefore, the optimization problem is as below:

min
θ

L (θ) + λδ(θ) (2)

where λ denotes the regularization parameter, and δ (θ) de-
notes the regularization term constrained by the weight size.
Assume the weight size of a convolutional layer is Sl. We can
rewrite the weight size as:

F (layer L)=Sl

CL
in−1∑
i=0

AL,i

CL
out−1∑
j=0

BL,j (3)

where AL,i(BL,j) is the indicator function that is zero if the
i-th input (j-th output) of the layer L is zeroed out. CLin and
CLout are the input and output channel for the L − th layer,
respectively. Therefore, the regularization term of the layer L
becomes

δ (θ, layer L) = S

CL
in−1∑
i=0

|γL−1, i|
CL

out−1∑
j=0

BL,j+

S

CL
in−1∑
i=0

AL,i

CL
out−1∑
j=0

|γL, j|

(4)

Then, the whole regularization term becomes

δ (θ) =

N∑
L=1

(θ, layer L) (5)

where N represents the number of layers. After training, we
prune the channel with the smallest γ value in each fusion
group to satisfy the weight buffer size constraint.

To avoid a long training time, we adopt the pruning-from-
scratch method from [30]. Instead of γ values, all other
trainable parameters like weights in the convolutional layer
are frozen for training and set as random values. We only
train the γ value under fixed random weights. Therefore, (1)
becomes:

O
′
= argmin
F (Gi)≤B, ∀i=1∼k

min
γ

L (γ) (6)

and (2) becomes:

min
γ

L (γ) + λδ(γ) (7)

These can speed up the training procedure significantly with-
out performance degradation. We only have to train the entire
network with all trainable parameters once when we finally
obtain the low memory traffic model.

This procedure is done iteratively. Once going through one
iteration, the total model size of the network will become
smaller. The procedure can be stopped at any time when
meeting the requirements or when encountering a dramatic
accuracy drop. In which, to avoid the new network bounded
by its original shape, at the first few iterations, we use uniform
channel width scaling to scale the entire network to its original
model size after the second step.

Algorithm 1: RCNet: Resource-constrained network
fusion and pruning
Input: Initial network, weight buffer size B, extra

buffer size range m
Result: Result network O

′

1 Do model conversion and get a fusion ready network
O;

2 Decide the group partition G from input to output for
layer fusion. Total weight size of the group
F (G) ≤ (1 +m)×B;

3 Train the network to find
O

′
= argminγ L (γ) + λδ(γ) for suitable γ;

4 Find the new network O
′

induced by γ∗ such that
F (G) ≤ B ;

5 At the first few iterations of the training, scale the
network back to its original size;

6 Repeat from Step 2 for many times as desired;

2) Algorithm: The whole algorithm of RCNet is shown in
Algorithm 1. The first step ”model conversion” is suggested
to if the model size is too large for fusion. The conversion
method in Section II-B can be replaced with other model
compression methods as well. Fig. 3 and 4 shows an example
of how the RCNet works with the buffer size in each layer set
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(a) (b)

Fig. 5: (a) The proposed system architecture, and (b) its dataflow

for illustration purposes. We assume the weight buffer size to
be 100 KB, and the extra buffer size range m = 50% in this
case. In Fig. 3 (a), the initial fusion group after step 2 will have
two groups with sizes of 144 KB and 128 KB, respectively.
After applying RCNet, the total weights of the two fused layer
groups will be pruned to 100 KB as in Fig. 3 (b). Note that the
illustration does not scale the channels back so that the model
size of the overall network will be smaller after each iteration.
Then in the second iteration as in Fig. 4 (a), the first fusion
group will expand one more layer after step 2, and the weight
size of the two groups will be 124 KB and 76 KB. After
applying RCNet, the weight size of the first group is pruned
to be 100 KB as in Fig. 3 (b). With the above procedure, we
can fuse as many layers as possible. In our experiment, we set
m = 50%, and just need to run the iteration one or two times
to get the desired result.

3) Hardware oriented fusion guidelines: In the RCNet, the
layers to be fused depend on the model structure and weight
buffer size. In general, pooling or stride layers will affect
hardware utilization significantly due to much smaller input.
However, the first input layer will not be affected by this
significantly due to its larger input. Besides, the group partition
within a residual block will cause extra data access due to the
shortcut connection. Thus, based on the above observations,
we combine the following hardware-oriented fusion guidelines
with the RCNet to make the hardware fully utilized and reduce
unnecessary traffic for YOLOv2.

• The first layer with downsampling shall be fused with
other layers to increase utilization. For computer vision
tasks, the image input comprises only three input chan-
nels. The first convolutional layer usually follows by a
pooling layer or uses strides to reduce the computation
cost. To improve the benefits of layer fusion in the first

fusion group, we will ignore the downsampling of the
first layer and fuse the first layer with others according
to buffer size constraints. Moreover, due to only three
channels in the first layer, the tile size can be maximized
and stored in a unified buffer. Thus, PE utilization can
still be kept high even after the pooling layer.

• A group of fused layers shall have no more than two
downsampling layers. The downsampling layers such as
the pooling layer or stride will reduce the feature map
size. However, too many pooling layers will cause too
small feature maps to fully utilize parallel PEs. Thus, as
a design tradeoff for our current design, we limit no more
than two downsampling layers. This also applies to the
convolution with strides.

• A residual block shall be in the same group of fused
layers. The input data of the first layer in a residual block
needs to be stored due to the skip connection. To avoid
DLAs accessing the skip input from DRAM repeatedly,
we prefer that all layers in a residual block must be in
the same group of fused layers.

Of the three guidelines, the first two are for hardware
utilization. If they are not met, the hardware utilization will
become lower and thus result in lower throughput. The final
one is for memory bandwidth. If we cannot fuse the layers
within the residual connections, extra external DRAM access
will be needed. The impact depends on the size of the feature
input in that residual block. In general, the data access of the
feature input will be one time than that with fusion.

III. SYSTEM ARCHITECTURE

A. Overview

Fig. 5 shows the architecture of the proposed DLA based on
our prior design [5]. This design is a typical systolic array type
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Fig. 6: (a) Illustrations of input and output maps and output generating order of output data reuse (b) The data order for the
input and output buffers without any transposed addressing. (c) The data order for the input and output buffers with transposed
addressing by the write-masking in SRAM.

Fig. 7: Model structure in the morphed YOLO-v2. Numbers in
each block represent the output channel. Structures in residual
blocks are shown as Fig. 8.

with tile-based scheduling. It has a weight buffer for storing fu-
sion weights and a unified buffer with left and right buffers for
storing the feature maps. One PE block has an n×3 MAC array
design. The PE block has n inputs broadcasted horizontally in
the same input column vector, and three weights broadcasted
vertically in the same weight column vector to optimize for
3×3 convolutions. The multiplication results are summed along
the diagonal direction. Finally, the partial sum of PE blocks
will be accumulated at the accumulator to generate the output.
To support the HD size object detection, this DLA core has
768 multiplier accumulator (MAC) units, which are split into
8 PE blocks. Each PE block consists of a 32x3 MAC array

Fig. 8: Structures in residual blocks. (a) The channel number
of layer L− 1 is larger than layer L. (b) The channel number
of layer L− 1 is smaller than layer L.

with 32 feature inputs and three weight inputs.

B. Hardware support for layer fusion group

To support layer fusion, the original design has two major
architecture changes: a larger weight buffer for fusion group
weights and a unified buffer for fusion group execution.
Besides, the nonoverlapped tile processing from [25] is also
used in the computing flow. The weight buffer size is set to
96 KB after several experiments as shown in the result section.
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Nonoverlapped tiling partitions an input into nonoverlapped
tiles and processes them with constant boundary extension or
zero padding. This can help to avoid data dependency between
tiles and make layer fusion easier.

However, for a small tile size, the accuracy loss is greater.
In this work, the tile size is determined by the on-chip feature
buffer size, as opposed to the adhoc fixed value in [25]. For a
fusion group, we first assume the required input feature map
size (map) and then calculate the output feature map size for
all layers in a fusion group based on the channel number
and buffer size, i.e. map/Pooling Factor × channels =
Buffer Size. Then we select the smallest map size value
as the input map size of this group to ensure that such
size is smaller than the buffer size for each layer. Assume
Map Size = Tile Width × Tile Height. Then, the width
of the tile is set to be the same as the width of the feature
map to avoid padding on the left and right boundaries of a
tile. The top and bottom boundaries of a tile use boundary
extensions for the nonoverlapped tile processing. Then the tile
height can then be set as the maximum allowable value. This
tile processing is applied to the complete model.

The layer fusion execution in nonoverlapped tile processing
is simply layer-by-layer processing within a fusion group, but
all intermediate data is from the internal buffer rather than
DRAM. Thus, the input and output buffers in the original
design are now acted as a ping-pong buffer, which is denoted
as the unified buffer as the left and right buffers shown in
Fig. 5. When the left buffer acts as the input buffer, the
right buffer will act as the output buffer. Then, after the
convolution has been completed, their roles as input and output
are switched. Thus, all intermediate data are from the local
buffers.

However, the input buffer is addressed along the spatial
dimension, whereas the output buffer is addressed along the
channel dimension. Because of this addressing inconsistency,
it is inconvenient to use a direct I/O merging buffer, which
has not been addressed in [25]. To address this issue, one
convenient solution is to use the write-masking capability of
the on-chip SRAM to reorder the output data to match the
desired input data.

This transposed addressing is illustrated in Fig. 6. To
support such access without extra overhead, we divide the data
words into eight banks (e.g. A1 A8 in one bank, B1 B8 in
another bank in Fig. 6 (b)) and use the byte write capability
of the SRAM to write OA1 OH1 to different banks as in Fig. 6
(c). This can reorder the output to be the expected input order.
This helps smooth layer fusion to avoid complex control and
provide enough data amount.

IV. EXPERIMENTAL RESULT

A. Resource constrained YOLOv2 (RC-YOLOv2) for HD size
object detection

The RCNet is applied to our target HD size object detection,
YOLO-v2 [1]. This paper adopts the original YOLO-v2 model
as our baseline, which is trained with the Pascal VOC 2007
+ 2012 dataset with 74.23% mAP evaluated on the Pascal
VOC 2007 dataset [31]. The training uses SGD with weight

TABLE I: Ablation study of RC-YOLOv2 on IVS 3cls for
100KB weight buffer size

YOLOv2
Conversion Only? X X
Naive Fusion? X
RCNet? X X
Quantization? X
mAP 88.2 84.3 84.3 80.81 80.02
FLOPs (G) 625 80.2 80.2 38.69
Model size (M) 55.66 3.8 3.8 1.76
Feature I/O(MB) 131.62 130.65 80.45 21.55

decays. For the learning rate, we use the warm-up strategy
from zero to 0.1 in the early epochs and then the step decay
policy until 0.0001. We use L1 loss to regularize the scaling
factor γ in BN. The final model is pretrained on ImageNet
and then trained on this dataset.

The baseline model has 55.6M model parameters and needs
98 MB feature map I/O per inference, which will be 2.9 GB/s
for 30 frames per second (FPS). With the proposed approach,
the new model, RC-YOLOv2, is shown as Fig. 7. We can
reduce the model parameter to 1.014 M with 72.12% mAP and
5.01 MB feature map I/O under the constraint of 96 KB weight
buffer size. The model size is reduced by 98.7% (55.6M to
1.014M) and 73.3% (3.806M to 1.014M) when compared
to the baseline model before and after model conversion,
respectively.

The channel number of the shortcut and 1x1 convolution
path will be inconsistent for the summation of the residual
block after the RCNet pruning. To solve this issue, our
higher priority is to keep the channel number from the 1x1
convolution and sum with the block input of the same number
of channels. We discard extra channels from the block input
as shown in Fig. 8 (a). If the channel number of the block
input is smaller than the convolutional output, extra channels
from the convolutional output are output directly as in Fig. 8
(b).

The RC-YOLOv2 is also trained and tested on an HD size
dataset, IVS 3cls [32] for object detection on road traffic, as
shown in Table I. The input size is 1920x960. The original
model has 88.2% mAP, 55.6M model size, and 131.62 MB fea-
ture map I/O. With the proposed model conversion, the model
size is significantly reduced, but the external I/O still needs
130.65MBs. A naive fusion for 100 KB weight buffer size
only fuses a small fraction of layers and still needs 80.45 MB
I/O. With RCNet, the result model can achieve 80.81% mAP,
1.76M model parameters, and 21.15MBs feature map I/O.
Further quantization to 8-bit does not affect accuracy. The
accuracy drop can be recovered by pretraining on ImageNet
before training on this dataset. The proposed RCNet can be
applied to other tasks as well, like semantic segmentation as
shown in Table II and image classification as shown in Table
III.

In RCNet, an important constraint is the size of the weight
buffer. Different buffer sizes will lead to different network
structures. Overall speaking, a larger buffer will need smaller
feature I/O and has higher accuracy since the constraint caused
by the buffer size is smaller. However, a larger buffer size
means a higher cost for DNN accelerator design. To study
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TABLE II: Ablation study of DeepLabv3 [33] on the PASCAL
VOC 2012 dataset [34] for 100KB weight buffer size

DeepLabv3
Conversion Only? X X
Naive Fusion? X
RCNet? X X
Quantization? X
mIOU 70.5 68.8 68.8 67.1 65.9
FLOPS (G) 51.29 23.28 23.28 4.86
Model size (M) 39.64 9.11 9.11 2.2
Feature I/O (Mbyte) 52 50.2 27.31 6.36

TABLE III: Ablation study of VGG16 [35] on the ImageNet
dataset [36] for 200KB weight buffer size

VGG16
Conversion Only? X X
Naive Fusion? X
RCNet? X X
Quantization? X
Top5 92.5 90.2 90.2 89.7 89.5
FLOPS (G) 30.74 5.42 5.42 3.89
Model size (M) 15.23 4.45 4.45 2.53
Feature I/O (Mbyte) 48.6 48.25 16.32 7.68

this effect, Fig. 9 shows the weight buffer size effect on RC-
YOLOv2 for the target total model size around 1M. Feature
I/O goes higher with a smaller buffer size. When the buffer size
is under 100 KB, the mAP drop will be significant. Therefore,
in this work, we select the weight buffer size around 100 KB,
which is 96 KB based on the selected PE numbers. Fig. 10
shows the results for different final model sizes under 100 KB
weight buffer. The size of the network can be reduced to about
1M within 3% mAP drop. We can also obtain similar results
for different weight buffer sizes. Therefore, we select 1M as
our final model size target.

B. Hardware Implementation Result

Fig. 11 shows the chip photograph and performance sum-
mary, which is fabricated with a TSMC 40 nm CMOS process.

Fig. 9: RC-YOLOv2 under different weight buffer sizes.

Fig. 10: RC-YOLOv2 for different final model sizes under
100 KB weight buffer size.

Fig. 11: Die photo and implementation results.

It occupies 4.56 mm2 with 480 KB SRAM, including 384 KB
unified buffer and 96 KB weight buffer. The peak performance
is 460.8 GOPS at 300MHz for full PE utilization. This chip can
execute this object detection model at 30FPS for 1280×720
HD images and 20 FPS for 1920×1080 full HD images. The
core power consumption is 692.3mW, measured by running
the RC-YOLOv2.

Fig. 12 shows the channel number and data bandwidth
of each layer for the RC-YOLOv2 model targeted to HD
(1280×720) image input. This figure also shows the groups of
fused layers separated by red dashed lines, which are usually
at the pooling layer. Group 1 comprises a 3x3 convolution
with pooling and two residual blocks with pooling. This
group follows the above guideline on the first layer since the
image input only has three input channels that will cause low
hardware utilization. Besides, the weight size of the first group
is small, and the map size is large. Thus, more fused layers
in this group can reduce a large amount of bandwidth in this
model. In addition, the second and the fourth fusion groups
are separated by only one pooling layer since more pooling
layers in these groups will cause low hardware utilization.
Other groups are decided by fusing as many layers as possible
to fit the weight buffer size. The data bandwidth is shown as
the yellow line chart in the figure, which includes all feature
map I/O and weight access. With the group fused layers, the
layer-by-layer external memory traffic can be reduced by 37%
- 99% for different layers.

Table IV shows data bandwidth comparison of the RC-
YOLOv2. The proposed approach can save 85%, and 87% of
memory traffic for image size 416 × 416 and HD (1280×720)
with 30 FPS, respectively, which is 6.5x and 7.9x reduction.
Larger inputs will be benefited more from the fused layer. This
required bandwidth is easily fallen within the range of DDR3
DRAM bandwidth (12.8 GB/s).

Fig. 13 shows latency and memory bandwidth under dif-
ferent weight buffer size constraints to execute RC-YOLOv2
model on full HD images. With a larger buffer size, more

TABLE IV: Memory traffic and energy comparison for 30FPS.
Assume DDR3 DRAM energy consumption 70pJ/bit.

Input size Bandwidth (MB/s) Energy(mJ) SavingsOriginal Proposed Original Proposed
416x416 903 137 506 77 85%
1280x720 4656 585 2607 328 87%
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Fig. 12: The external data amount of each layer for the backbone of the RC-YOLOv2.

TABLE V: Comparisons with other designs, where OD: object detection, GP: general purpose, and SR: super resolution.

Our Work [3] [14] Envision [11] [22] SRNPU [23] THINKER [12]
Technology 40nm 65nm 65nm 28nm 7nm 65nm 65nm
Measurements Chip Chip Post-layout Chip Chip Chip Chip
Layer fusion Y - - - Y Y -
Task OD GP GP GP GP SR GP
Supply Voltage (V) 0.9 1.0 1.0 0.65 - 1.1 0.575 - 0.825 1.1 1.2
Precision (bits) 8,24 FXP 16 FXP 8-20 FXP 4, 8, 16 Dyna. 8,16 FXP, 16 FP 8,16 FXP 8, 16 FXP
PE number 768 168 192 - - - 1024
Clock rate (MHz) 300 200 200 200 290 - 880 200 200
aPeak Throughput
(GOPS)

460.8 67.2 153.6 102 - 408 3604 232.1 409.6
c460.8 c109.2 c249.6 c71.4 - 285.6 c360.35 c377.2 c666.2

bArea (KGE) (logic only) 1838 1176 2695 - - - 2950
Area (mm2) 4.56 e12.25 - e1.87 e3.04 e16 e14.44
SRAM(KB) 480 181.5 192 144 2176 572 348
dArea eff. (GOPS/KGE)

0.25 0.057 0.057 - - - 0.138
c0.25 c0.092 c0.092 - - - c0.22

dArea eff. (GOPS/mm2)
101.05 5.485 - 54.5 - 218 1185 14.5 28.36
101.05 c8.914 - c38.1 - 152 c207.35 c23.56 c46.08

gPower (mW) 692.3 278 460.5 i7.5 - j300 174 - 1053 211 386

Power eff. (TOPS/W) 0.66 0.241 0.333 j0.26 - i10 3.42-6.83 1.1 1.06
h0.66 h0.483 h0.668 hj0.27 - i3.65 h0.48 - 0.502 h2.6 h3.06

a1 GMACS= 2 GOPS bThe area is shown in terms of the size of kilo NAND2 gates (KGE).
cTechnology scaling (

process

40nm
) dWe take the theoretical performance to evaluate area efficiency fairly here.

eCore only size. fChip size.
gCore only power. hNormalized power efficiency = power efficiency ×(

process

40nm
)× (

V oltage

0.9V
)2.

i30% - 60% sparsity, 3 - 4bits, and 76 GOPS at 0.65V. j16 bits precision and 76 GOPS at 1.1V.

layers can be fused for lower memory bandwidth, reducing
38% bandwidth from 50 KB to 200 KB buffer. The reduction
is saturated for 300 KB buffer size because it already has the
maximum group of fused layers for our lightweight model.

C. Area and Power analysis

For the presented chip, on-chip SRAM occupies 63.9%
of the area due to the large size of the unified buffer and
weight buffer for layer fusion. For the logic area, the PE array
occupies 42% of the area due to 768 MAC. The accumulator
occupies 28% of the area due to 24-bits adders and few FIFO
registers for partial sum accumulation. The controller occupies
21% of the area due to a large number of multiplexers and wire
routing between the buffer and the DLA core for layer fusion
processing.

Fig. 14 shows the power breakdown of the chip. Memory
access accounts for 51% of power due to the large amount of
access for layer fusion. However, we only need to access the

original feature map and its output feature maps once through
I/O pads. Thus, I/O pads consume 13.4% of the total power.
The combinational logic consumes 19.5% of power due to 768
PEs, the pipelined accumulator, and the processing of BN and
ReLU6. The register logic consumes 13.7% because most of
the data are stored in on-chip memory, and thus needs few
registers for pipeline hardware and accumulation. This also
results in lower power consumption in the clock network,
which accounts 2.2% of total power. The core energy for
1280x720@30fps is 692.3mJ.

When comparing with our prior design [5] with the same
PE numbers and model, the area overhead due to group fusion
is the larger buffer. However, if the buffers for both designs are
partitioned into the same sized banks, the energy consumption
of these two designs will be comparable due to the same
internal memory access amount and computation.

Above power consumption is only for the chip itself. The
main contribution of this design is the low external memory



9

41.22 41.67 41.759 41.798

10 7.7 5.99 5.8

1.636

1.274

1.023 1.004

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

10

20

30

40

50

60

50KB 96KB 200KB 300KB

B
an

d
w

id
th

 @
 r

e
al

 t
im

e
 (

G
B

s)

La
te

n
cy

 (
m

s/
fr

am
e

)

Weight buffer size

CAL. Lat. MEM. Lat. Memory Bandwidth

Fig. 13: The latency and memory bandwidth for different
weight buffer sizes under design options with fusion and two
192KB unified buffers.
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Fig. 14: The power breakdown of the chip.

traffic. The energy of the external DRAM access is reduced by
7.9X, from 2607mJ to 327.6mJ, as shown in Table IV, when
compared to our prior design [5] with the same PE numbers
and model.

D. Design Comparison

Table V shows comparisons with other designs, which is
difficult due to different tasks and fusion design. The peak
throughput of the proposed design can reach up to 460.8
GOPS. The area efficiency is 0.25 GOPS/KGE and 101.05
GOPS/mm2. The area efficiency is better than most of the
designs except [22] due to its 7 nm process.

The core power consumption is 692.3mW. The core power
efficiency can reach up to 0.66 TOPS/W because of the simple
and regular data flow. Our power efficiency is higher than [3],
[14], [22] but lower than Envision [11], SRNPU [23], and
THINKER [12] after normalized power efficiency. Envision
[11] has higher power efficiency only when using lower
precision hardware to compute 30% - 60% sparse network
at lower supply voltage. These low power techniques can be
applied to our design as well if needed. Thinker [12] saves

SRAM access power by using area hungry DFFs and thus
has much higher area cost than our design. However, both
Envision and THINKER are nonfusion designs. Thus, their
external DRAM access will be similar to our prior design with
the same PE numbers when executing the same model, which
is significantly higher than our design and will cancel out the
benefits of the lower chip power consumption.

For fusion-based designs, SRNPU [23] designs a small
dedicated network for super resolution. The total model size is
around 130K, which can be stored on chip. This is not easily
transferable to other networks. It has higher power efficiency
than our design, but its area efficiency is much lower due to
the large amount of small size cache accessing, more complex
routing, and larger buffer area. Lin et al. [22] uses mega scale
on-chip buffer for fusion and has lower power efficiency than
our design. Both designs use the direct layer fusion, which
cannot fully exploit the benefit of layer fusion. Besides, they
do not consider hardware utilization for fusion.

In summary, the proposed fusion design has achieved a com-
petitive performance for its core design compared to others. In
addition, our design saves significant external DRAM energy
and has higher area efficiency than others.

V. CONCLUSION

This paper proposes a deep learning chip with a low mem-
ory bandwidth for real-time HD object detection. We use group
fusion to solve the high external memory traffic. The proposed
resource-constrained network fusion and pruning, as well as
the unified buffer design, enable this fusion. When compared
to the previous naive fusion approach, this approach reduces
the external memory traffic from 80.45 MB to 21.55 MB for
1920x960 input with a weight buffer size of 100 KB. This
fusion also included hardware-oriented guidelines to maximize
hardware utilization and reduce the bandwidth by 7.9 times to
585 MB/s for HD images with 72.12% and 80.81% mAP for
the Pascal VOC 2007 and HD size datasets, respectively. The
final chip implemented on a TSMC 40 nm CMOS process can
execute real-time object detection at 1280x720@30FPS while
reducing the external DRAM access energy from 2607mJ to
327.6mJ. The proposed method can also be easily integrated
into other existing DLAs to improve energy consumption.
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