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Multiplierless MP-Kernel Machine For
Energy-efficient Edge Devices

Abhishek Ramdas Nair∗,Pallab Kumar Nath∗,Shantanu Chakrabartty,and Chetan Singh Thakur,

Abstract—We present a novel framework for designing mul-
tiplierless kernel machines that can be used on resource-
constrained platforms like intelligent edge devices. The frame-
work uses a piecewise linear (PWL) approximation based
on a margin propagation (MP) technique and uses only
addition/subtraction, shift, comparison, and register under-
flow/overflow operations. We propose a hardware-friendly MP-
based inference and online training algorithm that has been
optimized for a Field Programmable Gate Array (FPGA) plat-
form. Our FPGA implementation eliminates the need for DSP
units and reduces the number of LUTs. By reusing the same
hardware for inference and training, we show that the platform
can overcome classification errors and local minima artifacts
that result from the MP approximation. The implementation
of this proposed multiplierless MP-kernel machine on FPGA
results in an estimated energy consumption of 13.4 pJ and
power consumption of 107 mW with ~9k LUTs and FFs each
for a 256 × 32 sized kernel making it superior in terms of
power, performance, and area compared to other comparable
implementations.

Index Terms—Support Vector Machines, Margin Propagation,
Online Learning, FPGA, Kernel Machines.

I. INTRODUCTION

EDGE computing is transforming the way data is being
handled, processed, and delivered in various applications

[1] [2]. At the core of edge computing platforms are embedded
machine learning (ML) algorithms that make decisions in real-
time, which endows these platforms with greater autonomy [3]
[4]. Common edge-ML architectures reported in the literature
are based on a deep neural network [5] or support vector
machines [6], and one of the active areas of research is
to be able to improve the energy efficiency of these ML
architectures, both for inference and learning [7]. To achieve
this, the hardware models are first trained offline, and the
trained models are then optimized for energy efficiency using
pruning or sparsification techniques [8] before being deployed
on the edge platform.

An example of such design-flows is the binary or the
quaternary neural networks, which are compressed and energy-
efficient variants of deep-neural network inference engines
[9] [10]. However, robust training of quantized deep learning
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Fig. 1: Edge Device with Online Learning Capability

architectures still requires full precision training [11]. Also,
deep neural networks require a large amount of training data
[12] which is generally unavailable for many applications. On
the other hand, Support Vector Machines (SVMs) can provide
good classification results with significantly less training data.
The convex nature of SVM optimization makes its training
more robust and more interpretable [13]. SVMs have also
been shown to outperform deep learning systems for detecting
rare events [14] [15], which is generally the case for many
IoT applications. One such IoT-based edge device architecture
is depicted in Fig. 1. Data from video surveillance, auditory
event, or motion sensor can be analyzed, and the system can be
trained on the device to produce robust classification models.

At a fundamental level, SVMs and other ML architec-
tures extensively use Matrix-Vector-Multiplication (MVM)
operations. One way to improve the overall system energy
efficiency is to reduce the complexity or minimize MVM
operations. In literature, many approximations and reduced
precision MVM techniques have been proposed [16] and have
produced improvements in energy efficiency without signif-
icantly sacrificing classification accuracy. Kernel machines
have similar inference engine as SVMs, sharing the execution
characteristics with SVM [17]. This paper proposes a kernel
machine architecture that eliminates the need for multipli-
ers. Instead, it uses more fundamental but energy efficient
and optimal computational primitives like addition/subtraction,
shift, and overflow/underflow operations. For example, in a
45 nm CMOS technology, it has been shown that an 8-bit
multiplication operation consumes 0.2 pJ of energy, whereas
an 8-bit addition/subtraction operation consumes only 0.03
pJ of energy [18]. Shift and comparison operations consume
even less energy than additions and subtractions, and un-
derflow/overflow operations do not consume any additional
energy at all. To achieve this multiplierless mapping, the
proposed architecture uses a margin propagation (MP) ap-
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proximation technique originally proposed for analog comput-
ing [19]. MP approximation has been optimized for a digital
edge computing platform like field-programmable gate arrays
(FPGA) in this work. We show that for inference, the MP
approximation is computed as a part of learning, and all
the computational steps can be pipelined and parallelized for
other MP approximation operations. In addition to reporting
an MP approximation-based inference engine, we also report
an online training algorithm that uses a gradient-descent
technique in conjunction with hyper-parameter annealing. We
show that the same hardware can be reused for both training
and inference for the proposed MP kernel machine. As a result,
the MP approximation errors can be effectively reduced. Since
kernel machine inference and SVM inference have similar
equations, we compare our system with traditional SVMs.
We show that MP-based kernel machines can achieve similar
classification accuracy as floating-point SVMs without using
multipliers or equivalently any MVMs.

The main contributions of this paper are as follows:
• Design and optimization of MP-approximation using

iterative binary addition, shift, comparison, and under-
flow/overflow operations.

• Implementation of energy-efficient MP-based inference
on an FPGA-based edge platform with multiplierless
architecture that eliminates the need for DSP units.

• Online training of MP-based kernel machine that reuses
the inference hardware.

The rest of this paper is organized as follows. Section II
briefly discusses related work, followed by section III, where
we explain the concept of multiplierless inner product com-
putation and the related MP-based approximation. Section IV
presents the kernel machine formulation based on MP theory.
Section V details the online training of the system. Section VI
provides the FPGA implementation details and contrasts with
other hardware implementations of MP-based kernel machine
algorithm. Section VII discusses results obtained with few
classification datasets and compares our multiplierless system
with other SVM implementations, and Section VIII concludes
this paper and discusses potential use cases.

II. RELATED WORK

Energy-efficient SVM implementations have been reported
for both digital [20] and analog hardware [21], which also ex-
ploit the inherent parallelism and regularity in MVM computa-
tion. In [22], an analog circuit architecture of Gaussian-kernel
SVM having on-chip training capability has been developed.
Even though it has a scalable processor configuration, the
circuit size increases in proportion to the number of learning
samples. Such designs are not scalable as we increase the
dataset size for edge devices due to hardware constraints.
Analog domain architectures tend to have lower classification
latency [23], but they support simple classification models
with small feature dimensions. In [24], an SVM architecture
has been reported using an array of processing elements in
a systolic chain configuration implemented on an FPGA. By
exploiting resource sharing capability among the processing
units and efficient memory management, such an architecture
permitted a higher throughput and a more scalable design.

Digital and optimized FPGA implementation of SVM has
been reported in [25] using a cascaded architecture. A hard-
ware reduction method is used to reduce the overheads due to
the implementation of additional stages in the cascade, leading
to significant resource and power savings for embedded appli-
cations. The use of cascaded SVMs increase the classification
speeds, but the improved performance comes at the cost of
additional hardware resources.

Ideally, a single-layered SVM should be enough for clas-
sification at the edge. In [26], SVM prediction on an FPGA
platform has been explored for ultrasonic flaw detection. A
similar system has been implemented in [27] using Hamming
distance for onboard classification of hyperspectral images.
Since the SVM training phase needs a large amount of
computation power and memory space, and often retraining is
not required, the SVM training was realized offline. Therefore,
the authors chose to accelerate only the classifier’s decision
function. In [28], the authors use stochastic computing as a
low hardware cost and low power consumption SVM classifier
implementation for real-time EEG based gesture recognition.
Even though, this novel design has merits of energy efficient
inference, the training framework had to be handled offline on
a power hungry system.

Often, training offline is not ideal for edge devices, primarily
when the device is operating in dynamic environments, i.e.,
ever-changing parameters. In such cases, retraining of the ML
architecture becomes important. One such system is discussed
in [29], where sequential minimal optimization learning algo-
rithm is implemented as an IP on FPGA. This can be leveraged
for online learning systems. However, this system standalone
cannot provide an end-to-end training and inference system.
Another online training capable system was reported in [30]
and used an FPGA implementation of a sparse neural network
capable of online training and inference. The platform could be
reconfigured to trade-off resource utilization with training time
while keeping the network architecture the same. Even though
the same platform can be used for training and inference,
memory management and varying resource utilization based
on training time make it less conducive to deploy on the edge
device. Reconfiguration of the device would require additional
usage of a microcontroller, increasing the system’s overall
power consumption.

As hardware complexity and power reduction are a major
concern in these designs, the authors in [31] implement
a multiplierless SVM kernel for classification in hardware
instead of using a conventional vector product kernel. The
data-flow amongst processing elements is handled using a
parallel pipelined systolic array system. In the multiplierless
block the authors use Canonic Signed Digit (CSD) to reduce
the maximum number of adders. CSD is a number system
by which a floating-point number can be represented in two’s
complement form. The representation uses only -1, 0, +1 (or
-, 0, +) symbols with each position denoting the addition and
subtraction of power of 2. Despite being multiplierless, the
system consumes many Digital Signal Processors (DSPs) due
to the usage of polynomial kernel having exponent operation.
The usage of DSPs increases the power consumption of the
design.
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Another system that uses multiplierless online training was
reported in [32]. The authors use a logarithm function based on
a look-up table, and a float-to-fixed point transform to simplify
the calculations in a Naive Bayes classification algorithm. A
novel format of a logarithm look-up table and shift operations
are used to replace multiplication and division operations.
Such systems incur an overhead of generating the logarithmic
look-up table for most operations. The authors chose to
calculate logarithmic values offline and store them in memory,
contributing to increased memory access for every operation.

There have been various neural network implementations
that eliminate the usage of multipliers in their algorithms. In
[33], Convolutional Neural Networks (CNNs) are optimized
using a new similarity measure by taking L1 norm distance be-
tween the filters, and the input features as the output response.
Even though it eliminated the multipliers, this implementation
requires batch normalization after each convolution operation,
resulting in usage of multipliers for this operation. It also
requires a full precision gradient-descent training scheme to
achieve reasonable accuracy.

Similarly, in [34], convolutional shifts and fully connected
shifts are introduced to replace multiplications with bitwise
shifts and sign flipping. The authors use powers of 2 to
represent weights, bias, and activations and use compression
logic for storing these values. There is a significant overhead
for compression and decompression logic for the implemen-
tation of an online system. In [35], the authors leverage
the idea of using additions and logical bit-shifts instead of
multiplications to explicitly parameterize deep networks that
involve only bit-shift and additive weight layers. This network
has limitations for implementing activation functions in the
shift-add technique. In all these neural network systems, the
training algorithm and activation implementations involve mul-
tipliers. Hence these systems cannot be termed as a complete
multiplierless system.

In this work, we propose to use an MP approximation to
implement multiplierless kernel machine. MP-based approxi-
mation was first reported in [19], and in [36], an MP-based
SVM was reported for analog hardware. The main objective
of this work is to build scalable digital hardware using an
optimized MP approximation. Also, the previous work in
MP-based SVM has used offline training. Our system is a
one-of-a-kind digital hardware system using a multiplierless
approximation technique in conjunction with online training
and inference on the same platform.

III. MULTIPLIERLESS INNER-PRODUCT COMPUTATION

In this section, we first describe a framework to approximate
inner-products using a quadratic function, which is then gen-
eralized to the proposed MP-based multiplierless architecture.
Consider the following mathematical expression

y =
1

2

[
f(w + x,−w − x)

−f(w − x,−w + x)
]
. (1)

where f : RD × RD → R is a Lipschitz continuous function,
y ∈ R is a scalar variable, w ∈ RD and x ∈ RD are D
dimensional real vectors.

Corollary 1: If we choose f to be a quadratic equation as
f(x,−x) = 1

2x
Tx+ c, where c ∈ R is a constant, we get,

y = wTx. (2)

Eq.(2) is an exact inner-product between the vectors w and
x. The quadratic function is a means to derive the inner prod-
uct. Inner-products essentially denote Multiply-Accumulate
(MAC) operations in any design. One of the most commonly
used operations in ML systems including SVMs is MAC
operation. We intend to approximate this operation using our
MP algorithm with a kernel machine implementation described
in Section IV. We can also use this approximation in other
systems which utilizes MAC operation like neural networks.
The novelty of our proposed work lies in approximating MAC
operation to achieve energy-efficient ML systems with mini-
mal accuracy degradation that can be deployed on hardware-
constrained devices. Fig.2a illustrates this process using two
scalars w ∈ R and x ∈ R using a one dimensional quadratic
function.

yQP (x) =
1

4
[(w + x)2 − (w − x)2]. (3)

However, implementing multiplication and inner-products us-
ing this approach on digital hardware would require computing
a quadratic function, which would require using a look-up
table or other numerical techniques [37]. Also, this approach
does not consider the finite dynamic range if the operands are
represented using fixed precision. While the effect of finite
precision might not be evident for 16-bit operands, when the
precision is reduced down to 8-bits or lower, yQP (x) will
saturate due to overflow or underflow. Next, we consider a
form of yQP (x) that captures the effect of saturation.

Corollary 2: Let f be a log-sum-exponential (LSE) func-
tion defined over the elements of x = [x1, x2, ..., xD] as

f(x,−x) = log

(
D∑
i=1

exi +
D∑
i=1

e−xi
)

, using Taylor-Series

expansion [38], we get,

f(w + x,−w − x) ≈ f(x,−x) +wT∇f(x,−x) (4)

f(w − x,−w + x) ≈ f(x,−x)−wT∇f(x,−x) (5)

Substituting these in eq.(1),

y =

D∑
k=1

wk

D∑
i=1

[exi − e−xi ]

D∑
i=1

[exi + e−xi ]

≈ wTx (6)

The effect of eq. (6) can be visualized in Fig.2b for scalars
w ∈ R and x ∈ R and for a one-dimensional LSE function

yLSE(x) = log
(
ew+x + e−w−x

)
− log

(
ew−x + e−w+x

)
.
(7)

From Fig.2b, we see that for smaller values of the operands,
the yLSE(x) approximates the multiplication operation,
whereas for larger values yLSE(x) saturates. This effect also
applies to general inner-products using multi-dimensional vec-
tors, as described by eq.(6). Fig.2c shows the scatter plot that
compares the values of y computed using eq.(2) and its log-
sum-exponential approximation given by eq.(6), for randomly
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(a) (b) (c)

Fig. 2: (a) Scalar Inner Product expressed in quadratic equation for 3 different w, i.e.,(w1, w2, w3). Here, QP+ = (w + x)2

and QP− = −(w − x)2. (b) Scalar Inner Product approximation expressed using log-sum-exponential terms for 3 different
w, i.e.,(w1, w2, w3). Here, LSE+ = log (ew+x + e−w−x) and LSE− = − log (ew−x + e−w+x). (c) Inner Product and Log-
Sum-Exponential Approximation scatter plot of 64 dimensional vectors with each input randomly varied between -1 and
+1

(a) (b) (c)

Fig. 3: (a) Scalar Inner Product approximation expressed in MP domain for 3 different w, i.e.,(w1, w2, w3). Here, MP+ =
MP ([w + x,−w − x] , γ) and MP− = −MP ([w − x,−w + x] , γ). (b) Inner Product and MP Approximation scatter plot
of 64 dimensional vectors with each input randomly varied between -1 and +1 (c) Variance in error of z value due to shift
approximation of |S| becomes zero after 10 iterations

generated D = 64 dimensional vectors w and x. The plot
clearly shows that the two functions approximate each other,
particularly for a smaller magnitude of ||x||. Like the quadratic
function, implementing the LSE function on digital hardware
would also require look-up tables. Note that other choices of
f(.) could also lead to similar multiplierless approximations of
the inner-products. However, we are interested in finding the f
that can be easily implemented using simple digital hardware
primitives.

A. Margin Propagation based Multiplierless Approximation

Margin Propagation is an approximating technique which
can be used to generate different forms of linear and nonlinear
functions using thresholding operations [39]. Here, we explain

the steps to derive this technique. We first express the LSE
equation from Corollary 2 as,

zlog = γ log

(
D∑
i=1

e
xi
γ + e

−xi
γ

)
. (8)

as a constraint
D∑
i=1

e
[xi−zlog ]

γ +

D∑
i=1

e
[−xi−zlog ]

γ = 1. (9)

Here, γ > 0 is a hyper-parameter. In the first-order MP-
approximation, the exponential function is approximated using
a simple piecewise linear model as

e
x−zlog

γ ≈
[x− zMP

γ
+ 1
]
+
. (10)
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(a) (b) (c) (d)

Fig. 4: Impact of quantization and approximation on inner product normalized between 0 and 1 for 1000 pairs of 64 dimensional
vector randomly sampled between -1 and 1.

where [·]+ = max(·, 0) is a rectifying linear operation, zMP is
the approximation of zlog. The detailed explanation of piece-
wise linear approximation of log-sum-exponential function is
described in [39]. Thus, the constraint in eq.(9) can be written
as

D∑
i=1

[xi − zMP + γ]+ +

D∑
i=1

[−xi − zMP + γ]+ = γ. (11)

Here, zMP is computed as the solution of the equation and
zMP

∼= MP (x, γ) forms the MP function. Note that all
operations in eq.(11) requires only unsigned arithmetic, and
[·]+ operation. [·]+ operation is essentially a ReLU operation
which has used in digital hardware by implementing a register
underflow. So MP-function could be readily and efficiently
mapped onto low-precision digital hardware for computing
inner-products and multiplications. The detailed derivation
of the MP-function is described as a reverse water-filling
procedure in [39]. Based on eq.(1), eq. (2) and (11), we get

y = wTx ≈MP ([w + x,−w − x], γ)

−MP ([w − x,−w + x], γ). (12)

The approximation of a multiplication operation can be visu-
alized for scalars w ∈ R and x ∈ R, for a one-dimensional
MP-function as

yMP (x) =MP ([w + x,−w − x] , γ)
−MP ([w − x,−w + x] , γ) . (13)

Fig.3a shows that the MP-function computes a piecewise linear
approximation of the LSE function and exhibits the saturation
due to register overflow/underflow.

When the function f(.) in eq.(1) is replaced by MP (x, γ),
an approximation to the inner-product can be obtained using
only piecewise linear functions. Fig.3b shows the scatter plot
that compares the true inner-product with the MP-based inner-
product, showing that the approximation error is similar to
that of the log-sum-exp approximation in Fig.2c. Thus, MP-
function serves as a good approximation to the inner-product
computation.

B. Implementation of MP-function on Digital Hardware

Given an input vector x = {x1, x2, ..., xD} and hyper-
parameter γ, in [39] an algorithm was presented to compute
the function z = MP (x, γ). The approach was based on
iterative identification of the set S = {xi;xi > z} using
the reverse water filling approach. From eq.(11), we get the
expression of MP (x, γ) as

MP (x, γ) = − γ

|S|
+

∑
i∈S

xi

|S|
. (14)

where |S| is the size of the set S. Since |S| is a function of
MP (x, γ), the expression in eq.(14) requires dividers.

We now report an implementation of MP-function that uses
only basic digital hardware primitives like addition, subtrac-
tion, shift, and comparison operations. The implementation
poses the constraint in eq.(11) as a root-finding problem for the
variable z. Then, applying Newton-Raphson recursion [40],
the MP function can be iteratively computed as

zn ← zn−1 +

D∑
i=1

[xi − zn−1 + γ]+ − γ

|Sn−1|
. (15)

Here, Sn = {xi;xi > zn} and zn
n→∞−−−−→ MP (x, γ).

The Newton-Raphson step can be made hardware-friendly by
quantizing Sn−1 to the nearest upper bound of power of two
as Sn−1 ≈ 2Pn−1 or by choosing a fixed power of 2 in terms
of P . Here, P = floor(log2(count)) + 1 as shown in Fig 5.
This is implemented in hardware using a priority encoder that
checks the highest bit location whose bit value is 1 for the
variable count. Then, the division operation in eq.(15) can
be replaced by a right-shift operation. This approximation
error can be readily tolerated within each Newton-Raphson
step since each step will correct any approximation error in
the previous step. Note that the Newton-Raphson iteration
converges quickly to the desired solution, and hence only a
limited number of iterations are required in practice. Fig.3c
shows several examples of the MP-function converging to the
final value within 10 Newton-Raphson iterations for a 100-
dimensional input x. Thus, in our proposed algorithm in Fig 5
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TABLE I: Bit width comparison for both types of quantization
used in Fig. 4. We use higher precision MP inputs for the same
bit width inner product output, resulting in better outputs.

Inner product bit width
(64-dimensions)

Input bit width
Quantized MP-Quantized

16-bit 5-bit 9-bit
14-bit 4-bit 7-bit
12-bit 3-bit 5-bit
10-bit 2-bit 3-bit

used for computing the MP-function we limit the number of
Newton-Raphson iterations to 10.

In order to make any algorithm hardware-friendly, the
classic approach is to express it in minimum possible bit width
precision with minimal loss in functionality. This would help
reduce area and power when implementing digital hardware.
In Fig. 4, we see the impact of reducing the bit precision
on the approximation of inner product for a 64-dimensional
input vector sampled between -1 and 1. We see the variance
in inner product for MP approximation exists, which can
be termed as the MP approximation error, compared to the
standard quantization of the inner product even for higher bit
precision (Fig. 4(a) and 4(b)). We use the online learning
approach, detailed in Section V, for MP approximation in
our system with minimal hardware increase to mitigate this
approximation error. However, as we reduce the bit precision
further, we see the quantization error increases and overlaps
the MP approximation error (Fig. 4(c) and 4(d)). We see
in Table I, for an n-bit inner product output, the standard
quantized version requires (n−6)

2 - bit input vector, whereas
quantized MP inner product requires (n − 6 − 1) - bit input
vector due to addition operation instead of multiplication.
Here, we use 6-bits for the 64-dimensional input vector. This
shows that MP has better input precision for the same output
bit width, leading to better output approximation. The online
learning in our design helps mitigate the MP approximation
errors by adjusting the weights to accommodate these errors.
Thus, the MP approximation, despite quantization, performs
better or is equivalent to the standard quantized approach as
we reduce the bit precision of the output. At the same time,
MP uses lesser hardware for the output with the same bit
width inputs as it uses simple hardware elements like adders
in comparison to multipliers for the standard approach. Hence,
MP proves to be a hardware-friendly approximation even when
the algorithm is quantized.

C. Energy-cost of MP-based Computing

Let C,CM , and CA denote the total energy-cost correspond-
ing to an MVM operation, a single multiplication operation,
and a single addition operation, respectively. Then, MVM of a
1×M vector and a M×M matrix would incur an energy-cost

C =M2 × CM + (M2 −M)× CA. (16)

For an MP-based approximation of the MVM, the energy cost
incurred is

CMP = (M2 + (M × F ×R))× CA +M ×R× CC .
(17)

Fig. 5: Newton Raphson method based MP formulation. |S|
is the approximated value of variable count and represented
as the nearest upper bound power of 2.

Here, F is the sparsity factor determined by γ, typically
having a value less than 1, and CC is the energy-cost for
a comparison operation having O(1) complexity. Also, note
that R is the number of Newton-Raphson iterations, which
is 10 in our case. Thus, as inputs increase beyond R, MP
approximation complexity reduces further compared to that of
MVM. Multiplication requires n2 full adders for n-bit system,
i.e., CM = n2 × CA [41]. CA has linear complexity, i.e.,
O(n). Hence, the MP approximation technique becomes ideal
for digital systems as the implementation of adder logic is
less complex and low on resource usage than the equivalent
multiplier.

IV. MP KERNEL MACHINE INFERENCE

We now use the MP-based inner product approximation to
design an MP kernel machine. Consider a vector x ∈ Rd, the
decision function for kernel machines [42] is given as,

f(x) = wTK+ b. (18)

where f : Rd → R, K : Rd×d → Rd is the kernel which is a
function of x, and w ∈ Rd, b ∈ R is the corresponding trained
weight vector and bias, respectively. As, MP approximation,
as shown in eq. (13), is in differential format, we express the
variables as w = w+−w−, b = b+−b− and K = K+−K−.

f(x) = (w+ −w−)
T
(K+ −K−) + (b+ − b−).

f(x) =
[
(w+)

T
K+ + (w−)

T
K− + b+

]
−
[
(w+)

T
K− + (w−)

T
K+ + b−

]
. (19)
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Fig. 6: MP kernel machine architecture. Kernel MP is based on eq. (27) and the other MP functions are described from eq.
(22) to (24).

Using eq.(2), and applying MP approximation based on
eq.(13), we can express eq.(19) as,

fMP (x) =MP ([w+ +K+,w− +K−,b+], γ)

−MP ([w+ +K−,w− +K+,b−], γ). (20)

Fig.6 describes the kernel machine architecture using MP
approximation. The input is provided to a difference unit
to generate x+,x−,x+

s and x−s vectors. The kernel MP
generates the kernel output with inputs as a combination of
x+,x−,x+

s ,x
−
s based on the kernel used. In our case, we

use the kernel mentioned in next section IV-A. This kernel
K is used to produce K+ and K− with the help of the
difference unit. The weights and bias generated, described in
section V, are used with the kernel combination to generate
MP approximation output as below. We can express eq.(20)
as,

fMP (x) = z+ − z−. (21)

where,

z+ =MP ([w+ +K+,w− +K−,b+], γ1). (22)
z− =MP ([w+ +K−,w− +K+,b−], γ1). (23)

γ1 is a hyper-parameter that is learned using gamma annealing
described in Algorithm 1. We normalize the values for z+ and
z− for better stability of the system using MP,

z =MP ([z+, z−], γn). (24)

Here, γn is the hyper-parameter used for normalization. In this
case, γn = 1. The output of the system can be expressed in
differential form,

p = p+ − p−. (25)

Here, p ∈ R, p+ + p− = 1 and p+, p− ≥ 0. As z is the
normalizing factor for z+ and z−, we can estimate the output
using reverse water filling algorithm [39], which is generated
by the MP function in eq.(24) for each class,

p+ = [z+ − z]+.
p− = [z− − z]+. (26)

A. MP Kernel Function
We use a similarity measure function, which has similar

property as a Gaussian function, between the vectors x and
xs for defining Kernel MP approximation as,

K− =MP ([2x+
s , 2x

−
s , 2x

+, 2x−,

x+
s + x− + 2,

x−s + x+ + 2], γ2). (27)

γ2 is the MP hyper-parameter for kernel. We define K+ =
−K−. The kernel function is derived in detail in Section A
of the supplementary document.

Complexity of Kernel Machine, based on eq.(16) and (18),
can be expressed as,

CKM = (M2 +M)× CM + (M2 +M − 1)× CA. (28)

and similarly, complexity of kernel machine in MP domain
based on eq. (17) can be expressed as,

CMPKM = (F ×R×M + 2×M2 + 1)× CA
+ R×M × Cc. (29)

The complexity equations show that the MP kernel machine
complexity is a fraction of that of traditional SVM. This can
be leveraged to reduce the power and hardware resources and
increase the speed of operation of the MP kernel machine
system over traditional SVM.
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V. ONLINE TRAINING OF MP KERNEL MACHINE

The training of our system requires cost calculation and
parameter updates to be done over multiple iterations (τ ) using
the gradient descent approach, which is described below.
Consider a two-class problem, and the cost function can be
written as,

E =

M∑
n=1

|y+n − p+n |+ |y−n − p−n |. (30)

where M is the number of input samples, y+n and y−n are the
class labels where y+n , y

−
n ∈ 0, 1 p+n and p−n are the respective

predicted values. p+n , p
−
n ≥ 0. We have selected the absolute

cost function as it is easier to implement on hardware, as
we require fewer bits to represent this cost function than the
squared error function.

The weights and biases are updated during each iteration
using gradient descent optimization,

w+ ← w+ − η
[ M∑
n=1

(
(sgn+)

(
1− 1

|S|

)(
I(z+)

1

|Sp|
I(w+K+)

− 1

|Sn|
I(w+K−)

)
+ (sgn−)

(
1− 1

|S|

)(
I(z−)

1

|Sn|
I(w+K−)

− 1

|Sp|
I(w+K+)

))]
.

(31)

w− ← w− − η
[ M∑
n=1

(
(sgn+)

(
1− 1

|S|

)(
I(z+)

1

|Sp|
I(w−K−)

− 1

|Sn|
I(w−K+)

)
+ (sgn−)

(
1− 1

|S|

)(
I(z−)

1

|Sn|
I(w−K+)

− 1

|Sp|
I(w−K−)

))]
.

(32)

b+ ← b+ − η
[ M∑
n=1

(sgn+)

(
1− 1

|S|

)
I(z+)

1

|Sp|
I(b+)

]
.

(33)

b− ← b− − η
[ M∑
n=1

(sgn−)

(
1− 1

|S|

)
I(z−)

1

|Sn|
I(b−)

]
.

(34)

where η is the learning rate, sgn+ = sgn(p+n − y+n ),
sgn− = sgn(p−n − y−n ), I(z+) = 1(z+ > z),
I(z−) = 1(z− > z), I(w+K+)=1(w+ +K+ > z+),
I(w+K−)=1(w+ +K− > z−), I(w−K+)=1(w− +K+ > z+),
I(w−K−)=1(w− +K− > z−), I(b+) = 1(b+ > z+) and
I(b−) = 1(b− > z−). 1 is the indicator function. An indicator
function is defined on a set X indicating membership of
an element in a subset A of X , having the value 1 for all

elements of X in A and value 0 for all elements of X not in
A. The gradient descent steps have been derived in detail in
Section B of the supplementary document

Algorithm 1: Gamma Annealing. Eτ is the value of
cost function (30) estimated at iteration τ . Here, ε and
δ are empirical values based on the input dataset. iter
is the number of iteration for the MP gradient update.
Input: Eτ ,δ,ε,iter
Output: γ1
Intialize γ1 = c ; // Initalize to a value c
based on input for MP function

for τ = 2 to iter do
if (Eτ−1 − Eτ ) > δ then

γ1 = γ1 − ε;
end

end

The parameter γ in eq.(14) impacts the output of MP
function and hence can be used as a hyper-parameter in the
learning algorithm for the 2nd layer as per Fig.6, i.e., γ1. This
value is adjusted each iteration based on the change in the cost
between two consecutive iterations as described in Algorithm
1.

Since the gradient is obtained using the MP approximation
technique, the training of the system is more tuned to mini-
mizing the error rather than mitigating the approximation itself
and hence improves the overall accuracy of the system.

As we see in all these equations, we require only basic
primitives such as comparator, shift operators, counters, and
adders to implement this training algorithm, making it very
hardware-friendly in terms of implementation.

VI. FPGA IMPLEMENTATION OF MP KERNEL MACHINE

The FPGA implementation of the proposed multiplierless
kernel machine is described in this section. It is a straight for-
ward hardware implementation of the MP-based mathematical
formulation proposed in section IV. The salient features of the
proposed design are as follows:
• The proposed architecture is designed to support 32 input

features and a total of 256 kernels. It can easily be
modified to support any number of features and kernel
sizes by increasing or decreasing the MP processing
blocks.

• The design parameters are set to support 32 input features
(in differential mode x+i ∈ R32 and x−i ∈ R32) and 256
stored vectors (in differential form x+si ∈ R32 and x−si ∈
R32). Here, x+i , x

−
i ∈ x, and x+si, x

−
si ∈ xs.

• In this design, the width of the data path is set to 12-bits.
• The proposed design includes inference and training and

does not consume any complex arithmetic modules like
multiplier or divider, only uses adder, subtractor, and
shifter modules.

• The resource sharing between training and inference
modules saves a significant amount of hardware re-
sources. The weight vectors (also in differential form w+

and w−) calculation, as shown in red in Fig.7, are the
additional blocks required for training.
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Fig. 7: High-level block diagram of MP kernel machine. The proposed design shares hardware resources during both the
training and inference phase. The red blocks are used only during training.
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Fig. 8: Architecture of an MP processing block.
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Fig. 9: Architecture for cost function calculation and gamma
annealing.

A. Description of the proposed design:

The high-level block diagram of the proposed MP-kernel
machine, which can support both online training and inference,
is shown in Fig.7. The architecture has four stages. Stage 0
shows a memory management unit for storing input samples
from the external world to input memory blocks. The MP-
based kernel function computation is described in Stage 1.
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Fig. 10: Architecture for weights and bias update module. The final weights (w+, w−) and bias values (b+, b−) are stored
in the corresponding memory blocks (MEM0 and MEM1) and registers, respectively. The parameters q =

(
1− 1

|S|

)
1
|Sp| and

r =
(
1− 1

|S|

)
1
|Sn| (shown in red) are calculated using the adder and combinational shifter modules. The vali (shown in blue)

values are provided by the MP processing block Fig.8

Stage 2 provides a forward pass to generate necessary outputs
for inference and training based on the kernel function output
obtained from Stage 1. Stage 3 is used only for online training
and calculates weight vectors (w+,w−) and bias values (b+,
b−). Here all the stages execute in a parallel manner after
receiving the desired data and control signals.

Stage 0 (Accessing inputs from the external world): The
input features (x+i , x−i ∈ x ) of a sample are stored in Block
RAM (BRAM), either IPMEM0 or IPMEM1. These BRAMs
act as a ping-pong buffer. When an incoming sample is being
written into IPMEM0, the kernel computation is carried out
on the previously acquired sample in IPMEM1 and vice-versa.
The dimension of each input memory block is 64× 9-bit.

Stage 1 (Kernel function computation): The architectural
design of an MP processing block is shown in Fig.8, the
straight forward implementation of the algorithm from Fig. 5.
The inputs xi appear in the MP unit serially i.e. one input in

each clock cycle, and calculates vali. The vali having positive
value is getting accumulated in acc register, where as number
of positive terms is counted on count register. The msb of vali
is used to detect positive terms. The vali is passed through
the OR gate to perform bit-wise OR and the output is used
to discard vali with value zero. After accessing all the inputs,
the count value is approximated to nearest upper bound of
power of two, i.e. |S| ≈ 2P and P = floor(log2(count))+1.
This is implemented using a simple priority encoder followed
by an incrementer. The priority encoder checks the highest bit
location whose bit value is 1 for the variable count. The com-
binational shifter right shifts the (acc−γ) value by P number
of bits. After that, z is updated with the summation of the
previous value of z and shifter output. This process iterates 10
times to get the final value of z. The high-level architecture for
computing MP kernel function (K−) represented in eq.(27),
is shown in Fig.7. Here, 64 MP processing blocks (KMP0-
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63) are executed parallely and reuses these blocks 4 times to
generate a kernel vector (K−) of dimension 256 × 1. Each
MP processing block is associated with a dual-port BRAM
named SVMEM for storing 4 support vectors. Here, SVMEM0
for KMP0 stores support vectors with indices 0, 64, 128, and
192. Similarly, SVMEM1 stores the vectors xsi with indices
1, 65, 129, and 193. The rest of the support vectors are stored
similarly in the respective SVMEM. An MP processing block
receives the inputs serially as mentioned in eq.(27), i.e., 2x+i ,
2x−si, x

−
si + x+i + 2, 2x−i , 2x+si, x

+
si + x−i + 2 and generates

output z after 10 iterations. Here, all the 64 MP processing
blocks receives inputs and generates outputs simultaneously.
The generated kernel vector K− is stored in BRAM either
KMEM0 or KMEM1 based on the select signal sel1 (working
as a ping-pong buffer). Here, K+=−K−.

Stage 2 (Merging of Kernel function output): In this
stage, three MP processing blocks (MMP0-2) are arranged in a
layered manner. In the first layer, two MP processing blocks,
i.e., MMP0 and MMP1, execute simultaneously, and in the
second layer, MMP2 starts processing after receiving outputs
from the first layer. The MMP0 implements the eq.(22) and
generates output z+. The inputs arrive at the MP block serially
in the following order (w++ K+), (w−+ K−), b+. Similarly,
MMP1 takes (w++ K−), (w−+ K+), b−, and γ1 as inputs
and produces z− as the output according to eq.(23). In this
stage, K− is accessed from either KMEM0 or KMEM1 based
on sel2 signal, w+ and w− are accessed from MEM0 and
MEM1, respectively.

The two outputs (z+ and z−) generated from the first layer
are provided as inputs to MMP2 along with γ1. This module
generates outputs p+ and p− according to the eq.(26). The
final prediction value p is computed based on the eq.(25). In
the Fig.8 pval1 = p+ and pval2 = p− at 10th round.

Stage 3 (Weights and bias update module): This stage
executes only during the training cycle. The detailed hardware
architecture for updating weights and bias is shown in Fig.10.
The proposed design performs error gradients update ( ∂E

∂w+ ,
∂E
∂w− , ∂E

∂b+ , ∂E
∂b− ) followed by weights and bias update at

the end of each iteration (τ ) according to eq.(31)-(34). The
hardware resources of stages 0, 1 and 2 are shared by
both the training and inference cycles. This stage updates
weight vectors (w+, w−) and bias values (b+, b−) based
on the parameters generated at Stage 2. At the training
phase, outputs |Sp|, |Sn| and |S| are generated from MMP0,
MMP1, and MMP2, respectively, and stored in three different
registers. After that, two parameters q =

(
1− 1

|S|

)
1
|Sp|

and r =
(
1− 1

|S|

)
1
|Sn| are calculated using the adder and

combinational shifter modules. The precomputed values q and
r are used to update the weights and bias values according to
eq.(31)-(34). The sign bit, i.e., val(0)i [msb] and val

(1)
i [msb],

originated from MMP0 and MMP1 respectively at the 10th

round are passed through two separate 8-bit serial in parallel
out (s2p) registers to generate 8-bit data which is stored
in two separate BRAMs (MEM2 and MEM3, respectively).
The memory contents are accessed through an 8-bit parallel
in serial out (p2s) register during processing. Similarly, the
sign bits val(2)1 [msb] and val

(2)
2 [msb] from MMP2 are also

stored in two separate registers. The sign bits are used to
implement indicator function (1) represented in eq.(31)-(34).
An architecture that calculates both cost function (E) and
gamma annealing is shown in Fig. 9. The architecture works
in two phases, in the first phase (dsel[msb] = 0), the cost
function is calculated according to eq.(30), and in the second
phase (dsel[msb] = 1), gamma annealing is performed as per
the Algorithm 1 mentioned in Section V. The preset signal
initializes γ1 register and the register content getting updated
in each iteration (τ ) according to the Algorithm 1. In the first
phase, the module also calculates sgn(p+−y+), sgn(p−−y−)
and stores the outputs in two registers (sign1 and sign2),
respectively, which are used as inputs to the weights and bias
update module.

The datapath for updating error gradients as well as weights
and bias updates are shown in Fig. 10. The values of ∂E

∂w+

and ∂E
∂w− are stored in MEM4 and MEM5 BRAMs (256×9-

bit each), respectively, and the values of ∂E
∂b+ and ∂E

∂b− are
stored in registers. At the beginning of each iteration (τ ), these
are initialized with zero. The error gradients are accumulated
for each sample, and the respective storage is updated. The
mathematical formulation for the error gradient update is
explained in Section B of the supplementary document.

In Fig. 10, the MUXes are used to select appropriate inputs
for the adder-subtractor modules. The signals sign1 and sign2
are used to select the appropriate operations i.e., either addition
or subtraction. The sel5 signal is generated by delaying sel4
by one clock cycle. When the msb of sel4 is 0, it accesses
and updates the MEM4 and MEM5 alternatively in each
clock cycle. After that, the msb of sel4 becomes high and
updates the registers. While processing the last sample of an
iteration (τ ), an active high signal lastsample along with sel6
starts updating the MEM0 and MEM1 for w+ and w−, and
the registers for b+ and b−. Here, the learning rate (η) is
expressed in powers of 2 and can be implemented using a
combinational shifter module.

VII. RESULTS AND DISCUSSION

The proposed design has been implemented on Artix-7
(xc7a25tcpg238-3), manufactured at 28 nm technology node,
a low-powered, highly efficient FPGA. Artix-7 family devices
have been extensively used in edge device applications like
automotive sensor processing. This makes it ideal for us to
showcase our design capability on this device. Our design is
capable of running at a maximum frequency of 200 MHz.
The design supports both inference and on-chip training.
It consumes about 9874 LUTs, 9788 FFs, along with 35
BRAMs (36 Kb). The design does not utilize any complex
arithmetic module such as multiplier. For processing a sample,
the proposed MP-kernel machine consumes 8024 clock cycles
for computing a (256× 1) kernel vector K− (Stage 1). Stage
2 consumes 5256 and 5710 clock cycles during inference and
learning, respectively. Stage 3, which is active during learning,
consumes 524 clock cycles. In top level, the proposed design
has two sections : section 1, executes stage 1 and section 2,
executes stage 2 and stage 3. Two sections work in pipeline
fashion. In real time applications, when pipe is full, it can
generate one output after 8024 clock cycles.
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TABLE II: Comparison of Architecture and Resource Utilization of Related Work.

Hardware
Comparison

Kuan et.al
[29]

Peng et.al
[43]

Peng et.al
[44]

Feng et.al
[45]

Jiang et.al
[26]

Mandal et.al
[31] This Work

FPGA Cyclone II
DE2-70

Spartan-3
c3s4000

Cyclone II
2C70

Cyclone II
ep2c70f896C6

Zynq
7000

Virtex
7vx485tffg1157

Artix-7
xc7a25tcpg238-3

Operating Frequency 50 MHz 50 MHz 50 MHz 50 MHz NA+ NA+ 62 MHz (Max.200 MHz)*

Multipliers 58 NA+ NA+ 41 152 515 0

Resources 6395 (LEs) 5612 (LEs) 5755 (LEs) 6839 (LEs)
21305 (FFs)

14028*(LUTs)
19023 (FFs)

19023 (LUTs)
9735 (Max. 9788)*(FFs)

9535 (Max. 9874)*(LUTs)
RAM (Kbits) 445 432 456 304 NA+ NA+ 317

Input Vector Size 16 16 16 8 NA+ 12 32
Vector bit length 24-bit 24-bit 24-bit 16-bit 25-bit NA+ 12-bit
Training Cycles 454M 13M 60M 2964K NA+ NA+ 2054K

On-Chip Classification
Support No No Yes No No No Yes

Dynamic Power 216 mW 206 mW 195 mW 45 mW NA+ NA+ 107 mW
Energy Consumed† 116 pJ NA+ NA+ 45.1 pJ NA+ NA+ 13.4 pJ

+ These works did not report the corresponding values for their designs.
* These values correspond to design changes for operating at a frequency of 200 MHz.
† Based on analysis in [18] for energy consumed for different operations on 45 nm technology node. Multipliers and Adders are used as operations in this
case.
Note that LUTs/FFs from Xilinx and LEs from Intel are not equivalent.

TABLE III: Comparison of Traditional SVM Inference and
MP Kernel Machine (Training and Inference) Resource Uti-
lization at operating frequency of 62 MHz.

Hardware
Resources

Traditional
SVM

(Inference)

MP
Kernel Machine

(Training and Inference)

FPGA xc7z020-1
clg400c

xc7z020-1
clg400c

xc7a25
tcpg238-3

FFs 6148 9734 9735
LUTs 18141 9572 9535

BRAMs (36k) 46 35 35
DSPs 192 0 0

Dynamic Power 320 mW 107 mW 107 mW

We compare our system with similar SVM systems in the
literature. From Table II, it is clear that our system consumes
the least amount of energy of 13.4 pJ compared to similar
SVM systems with online training capability. Based on the
type and number of operations used in each design and the
energy consumed by each type of operator, using [18] as the
reference, we arrive at the energy consumption of each system.
Our system can process an input vector size of 32, which is
higher than other systems, and at the same time consumes
lower RAM bits with no DSP usage making it resource
efficient. The amount of training cycles required by our system
is lowest, i.e, around 2054K, providing lower latency and
higher throughput. A traditional SVM inference algorithm
is also implemented on the PYNQ board (xc7z020clg400-
1), manufactured at 28 nm technology node, to compare
resource utilization and power consumption with the proposed
MP kernel machine algorithm. We used linear kernel for
this implementation as non-linear kernel was complex for
implementation. The hardware design for the traditional SVM
algorithm consumed a higher number of resources, and due
to this, we were unable to fit the design in the same FPGA
part used for the kernel machine design. To obtain a fair
comparison, we implemented our design on the same PYNQ
board. The design parameters for both designs are the same
to make a direct comparison and bring out the efficiency

TABLE IV: Accuracy in % for UCI Datasets in Percent.

Datasets
Full Precision Fixed Point

(12-bit)

Traditional
SVM*

MP
SVM

MP
SVM

Train Test Train Test Train Test
Occupancy
Detection 98.6 [46] 97.8 [46] 98 94 97.9 93.8

FSDD
Jackson 99 [47] 99 [47] 97.5 96 97 96

AReM
Bending 96 [48] 96 [48] 96 94.1 96 93.2

AReM
Lying 96 [48] 96 [48] 96 94.7 95.9 94

* These values are reported in different works.

[t]

of our system. The maximum operating frequency of the
traditional SVM design is limited to 62 MHz. The power
and efficiency of our system, which includes training and
inference, is compared to this traditional SVM implementation
having only an inference engine in Table III. We see that
our MP kernel machine consumes a fraction of the power
and about half of the LUTs (including the training engine) in
comparison to the traditional SVM. Due to the multiplierless
design, we see no DSPs consumed compared to 192 DSPs in
traditional SVM design. For edge devices, the requirement of
a small footprint and low power is fulfilled by our system.

We used datasets from different domains for classification
to benchmark our system. We used the occupancy detection
dataset from the UCI ML repository [49] [50], which detects
whether a particular room is occupied or not based on dif-
ferent sensors like light, temperature, humidity, and CO2. We
also verified our system on the Activity Recognition dataset
(AReM) [51]. We used a one versus all approach on the
AReM dataset for binary classification using this system. We
chose two of the activities as positive cases, i.e., bending and
lying activities, to verify the classification the capability of
our system. Free Spoken Digits Dataset (FSDD) was used to
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Fig. 11: Bit precision vs. Accuracy for Datasets

showcase the capability of our system for speech applications
[52]. Here, we used this dataset for the speaker verification
task. We identified a speaker named Jackson among 3 other
speakers. Mel-Frequency Cepstral Coefficients (MFCC) is
used as a feature extractor for this classification.

Since our hardware currently supports 256 input samples,
we truncated the datasets to 256 inputs. We performed a k-
fold cross-validation to generate 256 separate train and test
samples per fold from the original dataset to arrive at the
results. This was repeated to cover the entire size of the dataset
and get the average accuracy results across separate runs.A
MATLAB model of the proposed architecture is developed
to determine the datapath precision. We can see from Fig.11,
that the dataset’s accuracy remains more or less constant as
we reduce the bit width precision up to 12-bit. Below 12-bit,
accuracy starts degrading due to quantization error. Hence,
we used 12-bit precision for implementing the datapath. The
accuracy degradation between full precision MATLAB model
and fixed point (12-bit) RTL versions were minimal, as shown
in Table IV. We compared the results of traditional SVM
from independent works using the same datasets with our
MP-based system. Despite being an approximation, we can
get the accuracy results of our system comparable to the
traditional SVM systems with minimal degradation in accuracy
in some cases. From these results, our system demonstrates its
capability in classification tasks, and also, with minor changes
to the hardware, it can adapt to any application.

VIII. CONCLUSION

In this paper, we show a novel algorithm used for classifica-
tion in edge devices using MP function approximation. This
algorithm proves to be hardware-friendly since the training
and inference algorithm can be implemented using basic
primitives like adders, comparators, counters, and threshold
operations. The unique training formulation for kernel ma-
chines is lightweight and hence enables online training. The
same hardware is used for training and inference, leveraging
hardware reuse policy to make it a highly efficient system.
Also, the system is highly scalable without requiring signifi-
cant hardware changes. In comparison to traditional SVMs, we
were able to achieve low power and computational resource

usage, making it ideal for edge device deployment. This
algorithm being multiplierless improves the speed of operation
when compared to traditional SVMs. Such edge devices can
be deployed in remote locations for surveillance and medical
applications, where human intervention may be minimal. We
can fabricate this system into Application Specific Integrated
Chip to make it more power and area efficient. Moreover, this
algorithm can be extended to more complex ML systems like
deep learning to leverage the low hardware footprint.
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